1
|
Ramchatesingh B, Martínez Villarreal A, Arcuri D, Lagacé F, Setah SA, Touma F, Al-Badarin F, Litvinov IV. The Use of Retinoids for the Prevention and Treatment of Skin Cancers: An Updated Review. Int J Mol Sci 2022; 23:ijms232012622. [PMID: 36293471 PMCID: PMC9603842 DOI: 10.3390/ijms232012622] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/21/2022] Open
Abstract
Retinoids are natural and synthetic vitamin A derivatives that are effective for the prevention and the treatment of non-melanoma skin cancers (NMSC). NMSCs constitute a heterogenous group of non-melanocyte-derived skin cancers that impose substantial burdens on patients and healthcare systems. They include entities such as basal cell carcinoma and cutaneous squamous cell carcinoma (collectively called keratinocyte carcinomas), cutaneous lymphomas and Kaposi’s sarcoma among others. The retinoid signaling pathway plays influential roles in skin physiology and pathology. These compounds regulate diverse biological processes within the skin, including proliferation, differentiation, angiogenesis and immune regulation. Collectively, retinoids can suppress skin carcinogenesis. Both topical and systemic retinoids have been investigated in clinical trials as NMSC prophylactics and treatments. Desirable efficacy and tolerability in clinical trials have prompted health regulatory bodies to approve the use of retinoids for NMSC management. Acceptable off-label uses of these compounds as drugs for skin cancers are also described. This review is a comprehensive outline on the biochemistry of retinoids, their activities in the skin, their effects on cancer cells and their adoption in clinical practice.
Collapse
Affiliation(s)
| | | | - Domenico Arcuri
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H4A 3J1, Canada
| | - François Lagacé
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H4A 3J1, Canada
- Division of Dermatology, McGill University Health Center, Montreal, QC H4A 3J1, Canada
| | - Samy Abu Setah
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H4A 3J1, Canada
| | - Fadi Touma
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H4A 3J1, Canada
| | - Faris Al-Badarin
- Faculté de Médicine, Université Laval, Québec, QC G1V 0V6, Canada
| | - Ivan V. Litvinov
- Division of Experimental Medicine, McGill University, Montreal, QC H4A 3J1, Canada
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H4A 3J1, Canada
- Division of Dermatology, McGill University Health Center, Montreal, QC H4A 3J1, Canada
- Correspondence:
| |
Collapse
|
2
|
Salata GC, Malagó ID, Carvalho Dartora VFM, Marçal Pessoa AF, Fantini MCDA, Costa SKP, Machado-Neto JA, Lopes LB. Microemulsion for Prolonged Release of Fenretinide in the Mammary Tissue and Prevention of Breast Cancer Development. Mol Pharm 2021; 18:3401-3417. [PMID: 34482696 DOI: 10.1021/acs.molpharmaceut.1c00319] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The need of pharmacological strategies to preclude breast cancer development motivated us to develop a non-aqueous microemulsion (ME) capable of forming a depot after administration in the mammary tissue and uptake of interstitial fluids for prolonged release of the retinoid fenretinide. The selected ME was composed of phosphatidylcholine/tricaprylin/propylene glycol (45:5:50, w/w/w) and presented a droplet diameter of 175.3 ± 8.9 nm. Upon water uptake, the ME transformed successively into a lamellar phase, gel, and a lamellar phase-containing emulsion in vitro as the water content increased and released 30% of fenretinide in vitro after 9 days. Consistent with the slow release, the ME formed a depot in cell cultures and increased fenretinide IC50 values by 68.3- and 13.2-fold in MCF-7 and T-47D cells compared to a solution, respectively. At non-cytotoxic concentrations, the ME reduced T-47D cell migration by 75.9% and spheroid growth, resulting in ∼30% smaller structures. The depot formed in vivo prolonged a fluorochrome release for 30 days without producing any sings of local irritation. In a preclinical model of chemically induced carcinogenesis, ME administration every 3 weeks for 3 months significantly reduced (4.7-fold) the incidence of breast tumors and increased type II collagen expression, which might contribute to limit spreading. These promising results support the potential ME applicability as a preventive therapy of breast cancer.
Collapse
Affiliation(s)
- Giovanna Cassone Salata
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes, 1524, São Paulo, São Paulo 05508-000, Brazil
| | - Isabella D Malagó
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes, 1524, São Paulo, São Paulo 05508-000, Brazil
| | - Vanessa F M Carvalho Dartora
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes, 1524, São Paulo, São Paulo 05508-000, Brazil
| | - Ana Flávia Marçal Pessoa
- Departamento de Cirurgia, LIM26, Faculdade de Medicina, Universidade de São Paulo, Av. Dr. Arnaldo, 455, São Paulo, São Paulo 01246903, Brazil
| | - Márcia Carvalho de Abreu Fantini
- Departamento de Física Aplicada, Instituto de Física, Universidade de São Paulo, Rua do Matão, 1371, São Paulo, São Paulo 05508-090, Brazil
| | - Soraia K P Costa
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes, 1524, São Paulo, São Paulo 05508-000, Brazil
| | - João Agostinho Machado-Neto
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes, 1524, São Paulo, São Paulo 05508-000, Brazil
| | - Luciana B Lopes
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes, 1524, São Paulo, São Paulo 05508-000, Brazil
| |
Collapse
|
3
|
Yildirim NC, Ak TP, Samasas O. Toxicological effects of di-(2-ethylhexyl) phthalate in Gammarus pulex: a biochemical and histopathological assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:44442-44451. [PMID: 33847894 DOI: 10.1007/s11356-021-13925-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
This study aimed to reveal the toxic characteristics of di-(2-ethylhexyl) phthalate (DEHP) by examining the biochemical and histopathological changes in Gammarus pulex, exposed to different doses of DEHP. For this purpose, the lethal concentration 50 (LC50) value of the DEHP was determined by using a static test and found to be 0.079 ± 0.01 ppm. Three subletal doses of DEHP were applied to the G. pulex for 24 and 96 h. Superoxide dismutase (SOD), catalase (CAT), cytochrome P450 1A1 (CYP1A1), and glutathione S-transferase (GST) activities were measured using commercial ELISA kits. The caspase method, which is an immunohistochemical analysis method, was used to determine the apoptosis that occurred in the G. pulex. The results showed that the CYP1A1 activities decreased in the groups exposed to different doses of DEHP compared to the control group (p > 0.05). CAT activity was found to increase in the application groups at the 24 and 96 h compared to the control group. In addition, it was found that SOD and GST activities increased at the 96 h compared to the control group. In light of the microscope examination of the model organism, hemolymphatic lacunae filled with hemolymph and reduction or absence of hemolymphatic ducts were observed especially in the G. pulex gills. Collapse of the gills and hyperplasia were observed after 96 h. As a result, it is suggested that changes in SOD, CAT, and GST activities can potentially be used as sensitive biomarkers for risk assessment in the environment and increased immunoreactivity in G. pulex caused by DEHP depending on increased application doses and application times.
Collapse
Affiliation(s)
- Nuran Cikcikoglu Yildirim
- Laboratory and Veterinarian Health Program, Department of Veterinary Medicine, Pertek Sakine Genc Vocational School, Munzur University, 62000, Tunceli, Turkey.
| | - Tuba Parlak Ak
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Munzur University, 62000, Tunceli, Turkey
| | - Omer Samasas
- Department of Environmental Engineering, Munzur University, 62000, Tunceli, Turkey
| |
Collapse
|
4
|
Cytotoxicity of juglone and thymoquinone against pancreatic cancer cells. Chem Biol Interact 2020; 327:109142. [DOI: 10.1016/j.cbi.2020.109142] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/01/2020] [Accepted: 05/20/2020] [Indexed: 12/21/2022]
|
5
|
Orienti I, Cripe TP, Currier MA, Cavallari C, Teti G, Falconi M. A Cationic Nanomicellar Complex of the Quaternary Amphiphilic Amine RC16+ with Fenretinide as a New Multitasking System for Antitumor Therapy. Curr Drug Deliv 2020; 16:807-817. [PMID: 31577206 DOI: 10.2174/1567201816666191002100745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 07/27/2019] [Accepted: 09/09/2019] [Indexed: 11/22/2022]
Abstract
OBJECTIVES This study investigated the antitumor effect of a new nanomicellar complex obtained by combining the antitumor agent fenretinide with a quaternary amphiphilic amine RC16+ also endowed with antitumor activity. METHODS The complex (Fen-RC16+) strongly improved the aqueous solubility of fenretinide (from 1,71 ± 0.08 µg/ml, pure fenretinide to 1500 ± 164 µg /ml, Fen-RC16+ complex) and provided a cytotoxic effect on SH-SY5Y neuroblastoma cell lines resulting from the intrinsic activity of both the complex components. Moreover, the mean size of the nanomicellar complex (ranging from 20 ± 1.97 nm to 40 ± 3.05 nm) was suitable for accumulation to the tumor site by the enhanced permeability and retention effect and the positive charge provided by the quaternary RC16+ induced adsorption of the complex on the tumor cell surface improving the intracellular concentration of fenretinide. RESULTS All these characteristics made the Fen-RC16+ complex a multitasking system for antitumor therapy. CONCLUSION Indeed its in vivo activity, evaluated on SH-SY5Y xenografts, was strong, and the tumor growth did not resume after the treatment withdrawal.
Collapse
Affiliation(s)
- Isabella Orienti
- Department of Pharmacy and Biotechnology, University of Bologna, Via S. Donato 19/2, Bologna, Italy
| | - Timothy P Cripe
- Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, Columbus, Ohio, United States
| | - Mark A Currier
- Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, Columbus, Ohio, United States
| | - Cristina Cavallari
- Department of Pharmacy and Biotechnology, University of Bologna, Via S. Donato 19/2, Bologna, Italy
| | - Gabriella Teti
- Department for Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, via Irnerio 48, Bologna, Italy
| | - Mirella Falconi
- Department for Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, via Irnerio 48, Bologna, Italy
| |
Collapse
|
6
|
Orienti I, Salvati V, Sette G, Zucchetti M, Bongiorno-Borbone L, Peschiaroli A, Zolla L, Francescangeli F, Ferrari M, Matteo C, Bello E, Di Virgilio A, Falchi M, De Angelis ML, Baiocchi M, Melino G, De Maria R, Zeuner A, Eramo A. A novel oral micellar fenretinide formulation with enhanced bioavailability and antitumour activity against multiple tumours from cancer stem cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:373. [PMID: 31439019 PMCID: PMC6706930 DOI: 10.1186/s13046-019-1383-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 08/13/2019] [Indexed: 11/15/2022]
Abstract
Background An increasing number of anticancer agents has been proposed in recent years with the attempt to overcome treatment-resistant cancer cells and particularly cancer stem cells (CSC), the major culprits for tumour resistance and recurrence. However, a huge obstacle to treatment success is the ineffective delivery of drugs within the tumour environment due to limited solubility, short circulation time or inconsistent stability of compounds that, together with concomitant dose-limiting systemic toxicity, contribute to hamper the achievement of therapeutic drug concentrations. The synthetic retinoid Fenretinide (4-hydroxy (phenyl)retinamide; 4-HPR) formerly emerged as a promising anticancer agent based on pre-clinical and clinical studies. However, a major limitation of fenretinide is traditionally represented by its poor aqueous solubility/bioavailability due to its hydrophobic nature, that undermined the clinical success of previous clinical trials. Methods Here, we developed a novel nano-micellar fenretinide formulation called bionanofenretinide (Bio-nFeR), based on drug encapsulation in an ion-pair stabilized lipid matrix, with the aim to raise fenretinide bioavailability and antitumour efficacy. Results Bio-nFeR displayed marked antitumour activity against lung, colon and melanoma CSC both in vitro and in tumour xenografts, in absence of mice toxicity. Bio-nFeR is suitable for oral administration, reaching therapeutic concentrations within tumours and an unprecedented therapeutic activity in vivo as single agent. Conclusion Altogether, our results indicate Bio-nFeR as a novel anticancer agent with low toxicity and high activity against tumourigenic cells, potentially useful for the treatment of solid tumours of multiple origin. Electronic supplementary material The online version of this article (10.1186/s13046-019-1383-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Isabella Orienti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Valentina Salvati
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy.,Istituto di Patologia Generale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giovanni Sette
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy.,Istituto di Patologia Generale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Massimo Zucchetti
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | | | - Angelo Peschiaroli
- National Research Council of Italy (CNR), Institute of Translational Pharmacology IFT, Rome, Italy
| | - Lello Zolla
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | | | - Mariella Ferrari
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Cristina Matteo
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Ezia Bello
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Antonio Di Virgilio
- Service for Biotechnology and Animal Welfare, Istituto Superiore di Sanità, Rome, Italy
| | - Mario Falchi
- National AIDS Center, Istituto Superiore di Sanità, Rome, Italy
| | - Maria Laura De Angelis
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Marta Baiocchi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome, Italy
| | - Ruggero De Maria
- Istituto di Patologia Generale, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario "A. Gemelli" - I.R.C.C.S, Rome, Italy
| | - Ann Zeuner
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Adriana Eramo
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
7
|
Tombul M, Bulut A, Türk M, Uçar B, Işılar Ö. Synthesis and biological activity of ferrocenyl furoyl derivatives. INORG NANO-MET CHEM 2017. [DOI: 10.1080/15533174.2016.1218510] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Mustafa Tombul
- Department of Chemistry, Faculty of Art and Science, Kırıkkale University, Kırıkkale, Turkey
| | - Adnan Bulut
- Department of Chemistry, Faculty of Art and Science, Kırıkkale University, Kırıkkale, Turkey
| | - Mustafa Türk
- Department of Bioengineering, Faculty of Engineering, Kırıkkale University, Kırıkkale, Turkey
| | - Büşra Uçar
- Department of Chemistry, Faculty of Art and Science, Kırıkkale University, Kırıkkale, Turkey
| | - Özer Işılar
- Department of Chemistry, Faculty of Art and Science, Kırıkkale University, Kırıkkale, Turkey
| |
Collapse
|
8
|
Anti-tumor activity of fenretinide complexed with human serum albumin in lung cancer xenograft mouse model. Oncotarget 2015; 5:4811-20. [PMID: 25015569 PMCID: PMC4148101 DOI: 10.18632/oncotarget.2038] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Sufficient knowledge regarding cellular and molecular basis of lung cancer progression and metastasis would help in the development of novel and effective strategies for the treatment of lung cancer. 4HPR is a synthetic retinoid with potential anti-tumor activity but is still limited because of its poor bioavailability. The use of albumin as a complexing agent for a hydrophobic drug is expected to improve the water solubility and consequently their bioavailability.This study investigated the antitumor activity of a novel complex between albumin and 4-HPR in a mouse model of human lung cancer and focuses on role and mechanism of Cav-1 mainly involved in regulating cancer and Acsvl3 mainly connected with tumor growth. Their expressions were assayed by immunohistochemistry and qRT-PCR, to demonstrate the reduction of the tumor growth following the drug treatment. Our results showed a high antitumor activity of 4HPR-HSA by reduction of the volume of tumor mass and the presence of a high level of apoptotic cell by TUNEL assay. The downregulation of Cav-1 and Acsvl3 suggested a reduction of tumor growth. In conclusion, we demonstrated the great potential of 4HPR-HSA in the treatment of lung cancer. More data about the mechanism of drug delivery the 4HPR-HSA are necessary.
Collapse
|
9
|
Synthesis and characterization of poly(glycerol-co-sebacate-co-ε-caprolactone) elastomers. J Tissue Eng Regen Med 2013; 10:E14-22. [DOI: 10.1002/term.1759] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 02/10/2013] [Accepted: 04/02/2013] [Indexed: 11/07/2022]
|
10
|
Cytotoxicity and apoptotic effects of nickel oxide nanoparticles in cultured HeLa cells. Folia Histochem Cytobiol 2011; 48:524-9. [PMID: 21478093 DOI: 10.2478/v10042-010-0045-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The aim of this study was to observe the cytotoxicity and apoptotic effects of nickel oxide nanoparticles on human cervix epithelioid carcinoma cell line (HeLa). Nickel oxide precursors were synthesized by an nickel sulphate-excess urea reaction in boiling aqueous solution. The synthesized NiO nanoparticles (<200 nm) were investigated by X-ray diffraction analysis and transmission electron microscopy techniques. For cytotoxicity experiments, HeLa cells were incubated in 50-500 μg/mL NiO for 2, 6, 12 and 16 hours. The viable cells were counted with a haemacytometer using light microscopy. The cytotoxicity was observed low in 50-200 μg/mL concentration for 16 h, but high in 400-500 μg/mL concentration for 2-6 h. HeLa cells' cytoplasm membrane was lysed and detached from the well surface in 400 μg/mL concentration NiO nanoparticles. Double staining and M30 immunostaining were performed to quantify the number of apoptotic cells in culture on the basis of apoptotic cell nuclei scores. The apoptotic effect was observed 20% for 16 h incubation.
Collapse
|
11
|
Kahraman G, Türk M, Rzayev ZMO, Unsal ME, Söylemez E. Bioengineering functional copolymers. XV. Synthesis of organoboron amide-ester branched derivatives of oligo(maleic anhydride) and their interaction with HeLa and L929 fibroblast cells. ACTA ACUST UNITED AC 2011. [DOI: 10.1135/cccc2010080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Novel bioengineering functional organoboron oligomers were synthesized by (i) amidolysis of oligo(maleic anhydride) (OMA) with 2-aminoethyldiphenylborinate (2-AEPB), (ii) esterification of organoboron oligomer (OMA-B) with α-hydroxy-ω-methoxypoly(ethylene oxide) (PEO) as a compatibilizer and (iii) conjugation of organoboron PEO branches (OMA-B-PEO) with folic acid as a taggering agent. Structure and composition of the synthesized oligomers were characterized by FTIR-ART and 1H (13C) NMR spectroscopy, chemical and physical analysis methods. Interaction of functional oligomers and oligomer···FA complex (OMA-B-PEO-F) with HeLa and L929 fibroblast cells were investigated by using different biochemical methods such as cytotoxicity, statistical, apoptotic and necrotic cell indexes, double staining and caspase-3 immunostaining, light and fluorescence inverted microscope analyses. It was found that citotoxisity and apoptotic/necrotic effects of oligomers significantly depend on the structure and composition of studied oligomers, and increase the following raw: OMA << OMA-B < OMA-B-PEO < OMA-B-PEO-F. A folic acid complex (MA-PEG-B-F) at 400 μg ml–1 (2.36 μmol ml–1) concentration as a therapeutic drug exhibits minimal toxcisity toward the fibroblast cells, but influential for HeLa cells.
Collapse
|
12
|
Rzayev ZMO, Türk M, Uzgören A. Bioengineering functional copolymers. XV. Synthesis and characterization of poly(N-isopropyl acrylamide-co-3,4-dihydro-2H-pyran-alt-maleic anhydride)s and their PEO branched derivatives. ACTA ACUST UNITED AC 2010. [DOI: 10.1002/pola.24217] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
13
|
Qian J, Zhang JS, Wang XQ, Ji JL, Mei S. Fenretinide stimulates the apoptosis of hepatic stellate cells and ameliorates hepatic fibrosis in mice. Hepatol Res 2009; 39:1229-47. [PMID: 19788699 DOI: 10.1111/j.1872-034x.2009.00562.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AIM To investigate whether fenretinide, a clinically proved apoptosis-inducing chemopreventive agent in tumor cells, can induce apoptosis in hepatic stellate cells (HSCs) and resolve hepatic fibrosis. METHODS CCl(4)-induced liver fibrosis in mice and rat activated hepatic stellate cells (HSC-T6) as well as hepatocytes (BRL-3A) were studied. RESULTS The duplex staining of proliferating cell nuclear antigen and alpha- smooth muscle actin or terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling and alpha- smooth muscle actin demonstrated that fenretinide executed its anti-fibrosis effect in liver by inducing apoptosis rather than inhibiting proliferation of HSCs, while it had no apparently apoptotic effect on hepatocytes. Fenretinide could elicit apoptosis of HSC-T6 in vitro at the concentration range from 0.5 to 5 microM, but at higher concentrations >/=5 microM was required to induce apoptosis in hepatocytes (BRL-3A). CONCLUSION Further studies using malondialdehyde measurement, Western blot, antioxidant, inhibitors for p53, caspase 8 and 9 - as well as anti-Fas neutralizing antibody - have shown that in HSC-T6, fenretinide-induced apoptosis involves a reactive oxygen species (ROS)-generated, P53-independent, mitochondria-associated intrinsic pathway, whereas in hepatocytes (BRL-3A), a ROS-generated, P53-dependent, Fas-related extrinsic pathway is triggered only at high concentration.
Collapse
Affiliation(s)
- Jin Qian
- Department of Pathology, Shanghai Medical College, Fudan University, Shanghai, China
| | | | | | | | | |
Collapse
|
14
|
Abstract
Fenretinide, a synthetic retinoid, has emerged as a promising anticancer agent based on numerous in vitro and animal studies, as well as chemoprevention clinical trials. In vitro observations suggest that the anticancer activity of fenretinide may arise from its ability to induce apoptosis in tumor cells. Diverse signaling molecules including reactive oxygen species, ceramide, and ganglioside GD3 can mediate apoptosis induction by fenretinide in transformed, premalignant, and malignant cells. In many cell types, these signaling intermediates appear to be induced by mechanisms that are independent of retinoic acid receptor activation, and ultimately initiate the intrinsic or mitochondrial-mediated pathway of cell elimination. Numerous investigations conducted during the past 10 years have discovered a great deal about the apoptogenic activity of fenretinide. In this review we explore the mechanisms associated with fenretinide-induced apoptosis and highlight certain mechanistic underpinnings of fenretinide-induced cell death that remain poorly understood and thus warrant further characterization.
Collapse
Affiliation(s)
- N Hail
- Department of Clinical Pharmacy, School of Pharmacy, The University of Colorado at Denver and Health Sciences Center, Box C238, 80262, USA.
| | | | | |
Collapse
|
15
|
Shishodia S, Gutierrez AM, Lotan R, Aggarwal BB. N-(4-Hydroxyphenyl)Retinamide Inhibits Invasion, Suppresses Osteoclastogenesis, and Potentiates Apoptosis through Down-regulation of IκBα Kinase and Nuclear Factor-κB–Regulated Gene Products. Cancer Res 2005; 65:9555-65. [PMID: 16230421 DOI: 10.1158/0008-5472.can-05-1585] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
N-(4-hydroxyphenyl) retinamide [4-HPR], a synthetic retinoid, has been shown to inhibit tumor cell growth, invasion, and metastasis by a mechanism that is not fully understood. Because the nuclear factor-kappaB (NF-kappaB) has also been shown to regulate proliferation, invasion, and metastasis of tumor cells, we postulated that 4-HPR modulates the activity of NF-kappaB. To test this postulate, we examined the effect of this retinoid on NF-kappaB and NF-kappaB-regulated gene products. We found that 4-HPR potentiated the apoptosis induced by tumor necrosis factor (TNF) and chemotherapeutic agents, suppressed TNF-induced invasion, and inhibited RANKL-induced osteoclastogenesis, all of which are known to require NF-kappaB activation. We found that 4-HPR suppressed both inducible and constitutive NF-kappaB activation without interfering with the direct DNA binding of NF-kappaB. 4-HPR was found to be synergistic with Velcade, a proteasome inhibitor. Further studies showed that 4-HPR blocked the phosphorylation and degradation of IkappaBalpha through the inhibition of activation of IkappaBalpha kinase (IKK), and this led to suppression of the phosphorylation and nuclear translocation of p65. 4-HPR also inhibited TNF-induced Akt activation linked with IKK activation. NF-kappaB-dependent reporter gene expression was also suppressed by 4-HPR, as was NF-kappaB reporter activity induced by TNFR1, TRADD, TRAF2, NIK, and IKK but not that induced by p65 transfection. The expression of NF-kappaB-regulated gene products involved in antiapoptosis (IAP1, Bfl-1/A1, Bcl-2, cFLIP, and TRAF1), proliferation (cyclin D1 and c-Myc), and angiogenesis (vascular endothelial growth factor, cyclooxygenase-2, and matrix metalloproteinase-9) were also down-regulated by 4-HPR. This correlated with potentiation of apoptosis induced by TNF and chemotherapeutic agents.
Collapse
Affiliation(s)
- Shishir Shishodia
- Cytokine Research Laboratory, Department of Experimental Therapeutics and Thoracic/Head and Neck Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
16
|
Ulukaya E, Colakogullari M, Wood EJ. Interference by Anti-Cancer Chemotherapeutic Agents in the MTT-Tumor Chemosensitivity Assay. Chemotherapy 2004; 50:43-50. [PMID: 15084806 DOI: 10.1159/000077285] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2002] [Accepted: 06/13/2003] [Indexed: 11/19/2022]
Abstract
BACKGROUND One of the major goals of oncology is to predict the response of patients with cancer to chemotherapeutic agents by employing laboratory methods variously called 'tumor chemosensitivity assays', 'drug response assays', or 'drug sensitivity assays', in vitro. The MTT assay is one of the methods used to predict the drug response in malignancies. However, it may suffer from interference by the anticancer drugs with the MTT assay. METHODS The MTT assay, a colorimetric viability assay, was checked in a cell-free system in terms of its possible chemical interactions with 22 different anticancer drugs. RESULTS It was found that epirubicine, paclitaxel, doxetaxel, and cisplatin caused a relatively significant increase in absorbance values, resulting in the MTT assay giving rise to false results (untrue increase in viability) although most of the drugs tested did not seem to cause any significant change. CONCLUSIONS It was concluded that before employing the MTT assay, drugs (or any kind of substances) to be included in the assay should be checked first in terms of possible chemical interactions with MTT, otherwise it may be impossible to evaluate the MTT viability assay results correctly.
Collapse
Affiliation(s)
- Engin Ulukaya
- University of Uludag, School of Medicine, Department of Biochemistry, Bursa, Turkey.
| | | | | |
Collapse
|
17
|
Chapman JS, Weiss KL, Curley RW, Highland MA, Clagett-Dame M. Hydrolysis of 4-HPR to atRA occurs in vivo but is not required for retinamide-induced apoptosis. Arch Biochem Biophys 2004; 419:234-43. [PMID: 14592467 DOI: 10.1016/j.abb.2003.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The retinamide, N-(4-hydroxyphenyl)retinamide (4-HPR), has shown promising anti-tumor activity, but it is unclear whether this compound is hydrolyzed to all-trans retinoic acid (atRA) and if so, whether this plays any role in its chemotherapeutic activity. To address this issue, the ability of 4-hydroxybenzylretinone (4-HBR), a carbon-linked analog of 4-HPR, to support growth in vitamin A-deficient (VAD) animals and to activate an atRA-responsive gene in vivo was compared to 4-HPR and atRA. Further, the non-hydrolyzable 4-HBR analog was used to determine whether the presence of the labile amide linkage in 4-HPR is essential for the induction of apoptosis in cultured MCF-7 breast cancer cells. Studies in VAD rats showed that 4-HPR, like atRA, supports animal growth and induces CYP26B1 mRNA expression in lung whereas 4-HBR does not. Analysis of plasma from 4-HPR- and atRA-treated VAD animals revealed the presence of atRA whereas it was not detected in plasma from animals given 4-HBR. To determine whether hydrolysis to atRA is necessary for apoptosis induced by 4-HPR in MCF-7 breast cancer cells, morphological and biochemical assays for apoptosis were performed. 4-HBR, like 4-HPR, induced apoptosis in MCF-7 cells. Apoptosis was not induced even at high concentrations of atRA, showing that 4-HPR and 4-HBR act in cells via a distinct signaling pathway. These results show that although limited hydrolysis of 4-HPR occurs in vivo, the ability to liberate atRA is not required for these 4-hydroxyphenyl retinoids to induce apoptosis in MCF-7 breast cancer cells. Thus the non-hydrolyzable analog, 4-HBR, may have significant therapeutic advantage over 4-HPR because it does not liberate atRA that can contribute to the adverse side effects of drug administration in vivo.
Collapse
Affiliation(s)
- Jason S Chapman
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
18
|
Wróbel A, Seltmann H, Fimmel S, Müller-Decker K, Tsukada M, Bogdanoff B, Mandt N, Blume-Peytavi U, Orfanos CE, Zouboulis CC. Differentiation and apoptosis in human immortalized sebocytes. J Invest Dermatol 2003; 120:175-81. [PMID: 12542519 DOI: 10.1046/j.1523-1747.2003.12029.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Increased cell volume, accumulation of lipid droplets in the cytoplasm, and nuclear degeneration are phenomena indicating terminal differentiation of human sebocytes followed by holocrine secretion and cell death. The molecular pathways of natural and induced sebocyte elimination are still unknown, however. In this study, SZ95 sebocytes were found to exhibit DNA fragmentation after a 6 h culture followed by increased lactate dehydrogenase release after 24 h, indicating cell damage. With the help of morphologic studies and using Oil Red detection of cellular lipids, cell enlargement, accumulation of lipid droplets in the cytoplasm, and nuclear fragmentation could be observed under treatment with arachidonic acid. Staurosporine, a potent inhibitor of phospholipid Ca2+-dependent protein kinase, increased externalized phosphatidylserine levels on SZ95 sebocytes, detected by annexin V/propidium iodide flow cytometry, as early as after 1 h, whereas dose-dependent reduction of bcl-2 mRNA and protein expression, enhanced DNA fragmentation, and increased caspase 3 levels, detected by caspase 3 inhibitor/propidium iodide flow cytometry, were found after 6 h of treatment. SZ95 sebocyte death was detected as early as after 6 h of SZ95 sebocyte treatment with high staurosporine concentrations (10(-6)-10(-5) M). 5Alpha-dihydrotestosterone (10(-8)-10(-5) M) did not affect externalized phosphatidylserine levels and DNA fragmentation in SZ95 sebocytes but slightly decreased lactate dehydrogenase cell release. Neither acitretin nor 13-cis retinoic acid (10(-8)-10(-5) M) affected externalized phosphatidylserine levels, DNA fragmentation, and lactate dehydrogenase cell release, despite the increased caspase 3 levels under treatment with 13-cis retinoic acid. The combined staurosporine and 13-cis retinoic acid treatment enhanced DNA fragmentation in SZ95 sebocytes to the same magnitude as in cells only treated with staurosporine. In conclusion, SZ95 sebocytes in vitro undergo apoptosis, which can be enhanced by the terminal differentiation inductor arachidonic acid or by staurosporine and leads to cell death. 5Alpha-dihydrotestosterone inhibits SZ95 sebocyte death without involving apoptotic pathways, and retinoids did not affect the programmed death of human sebocytes. The latter result fits well with the currently reported inability of normal skin cells to undergo apoptosis after treatment with retinoids, in contrast to their malignant counterparts.
Collapse
Affiliation(s)
- Anna Wróbel
- Department of Dermatology, University Medical Center Benjamin Franklin, The Free University of Berlin, Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
OBJECTIVES To discuss the principles, science, and roles of nurses related to skin cancer chemoprevention. DATA SOURCES Journal articles and federal government reports. CONCLUSIONS The skin is a model organ for investigating cancer prevention processes that may be relevant to other organs as well. Agents that selectively target molecular hallmarks of skin carcinogenesis are under intense clinical and preclinical investigation. IMPLICATIONS FOR NURSING PRACTICE Nurses play key roles in coordinating clinical trials, stimulating public awareness, and ensuring access to and acceptance of new agents. Nurses play a role in translational research by bridging the gap between technologic development and patient care.
Collapse
Affiliation(s)
- Ellen Richmond
- Gastrointestinal & Other Cancers Research Group, National Cancer Institute, Division of Cancer Prevention, Suite 2141, 6130 Executive Blvd, Bethesda, MD 20892-7317, USA
| | | |
Collapse
|