1
|
Nguyen LTP, Kim JH, Son J, Hur SS, Lee M, Byeon HK, Kim JY, Ban MJ, Kim JH, Lee MR, Park JH, Hwang Y. 3D Spheroid Cultures for Salivary Gland Tissue Engineering: Effects of Fibroblast on Epithelial Cell Function. Life (Basel) 2025; 15:607. [PMID: 40283162 PMCID: PMC12028948 DOI: 10.3390/life15040607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 03/31/2025] [Accepted: 04/02/2025] [Indexed: 04/29/2025] Open
Abstract
Three-dimensional (3D) spheroid cultures are crucial for modeling salivary gland (SG) morphogenesis and advancing regenerative medicine. This study evaluated the effects of varying ratios of mouse SG-derived epithelial cells co-cultured with human dermal fibroblasts (hDFs), identifying a 2:1 ratio (spheroids containing 67% EpCAMpos cells with 33% hDFs) as optimal for preserving native SG-derived epithelial cell phenotypes. At this ratio, 67% EpCAMpos spheroids maintained structural integrity and demonstrated a significant reduction in apoptosis and senescence markers, specifically, cleaved caspase-3 (Cc3) and Serpine1, alongside an enhanced expression of the progenitor marker Keratin 5 (KRT5). This highlights the pivotal role of fibroblasts in supporting epithelial cell function in 3D cultures. These spheroids provide a useful model for developing SG tissues that closely mimic physiological properties. Despite promising results, these findings are preliminary and require further validation under diverse conditions and across different SG models.
Collapse
Affiliation(s)
- Lan Thi Phuong Nguyen
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Republic of Korea; (L.T.P.N.); (J.H.K.); (J.S.); (S.S.H.); (M.L.)
- Department of Integrated Biomedical Science, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Joo Hyun Kim
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Republic of Korea; (L.T.P.N.); (J.H.K.); (J.S.); (S.S.H.); (M.L.)
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Soonchunhyang University Cheonan Hospital, Cheonan 31151, Republic of Korea;
| | - Jiwon Son
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Republic of Korea; (L.T.P.N.); (J.H.K.); (J.S.); (S.S.H.); (M.L.)
| | - Sung Sik Hur
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Republic of Korea; (L.T.P.N.); (J.H.K.); (J.S.); (S.S.H.); (M.L.)
| | - Minyong Lee
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Republic of Korea; (L.T.P.N.); (J.H.K.); (J.S.); (S.S.H.); (M.L.)
- Department of Integrated Biomedical Science, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Hyung Kwon Byeon
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Soonchunhyang University Seoul Hospital, Seoul 04401, Republic of Korea;
| | - Jin-Young Kim
- Division of Respiratory Allergy and Critical Care Medicine, Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan 31151, Republic of Korea;
| | - Myung Jin Ban
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Soonchunhyang University Cheonan Hospital, Cheonan 31151, Republic of Korea;
| | - Joo Hyun Kim
- Department of Otorhinolaryngology, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin 16995, Republic of Korea;
| | - Man Ryul Lee
- Department of Stem Cell and Regenerative Biotechnology, Konkuk Institute of Science and Technology, Konkuk University, Seoul 05029, Republic of Korea
| | - Jae Hong Park
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Soonchunhyang University Cheonan Hospital, Cheonan 31151, Republic of Korea;
| | - Yongsung Hwang
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Republic of Korea; (L.T.P.N.); (J.H.K.); (J.S.); (S.S.H.); (M.L.)
- Department of Integrated Biomedical Science, Soonchunhyang University, Asan 31538, Republic of Korea
| |
Collapse
|
2
|
Murphy GRF, Feneck E, Paget J, Sivakumar B, Smith G, Logan MPO. Investigating the role connective tissue fibroblasts play in the altered muscle anatomy associated with the limb abnormality, Radial Dysplasia. J Anat 2024; 245:217-230. [PMID: 38624036 PMCID: PMC11259744 DOI: 10.1111/joa.14040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 02/13/2024] [Accepted: 03/10/2024] [Indexed: 04/17/2024] Open
Abstract
Radial dysplasia (RD) is a congenital upper limb birth defect that presents with changes to the upper limb anatomy, including a shortened or absent radius, bowed ulna, thumb malformations, a radially deviated hand and a range of muscle and tendon malformations, including absent or abnormally shaped muscle bundles. Current treatments to address wrist instability caused by a shortened or absent radius frequently require an initial soft tissue distraction intervention followed by a wrist stabilisation procedure. Following these surgical interventions, however, recurrence of the wrist deviation remains a common, long-term problem following treatment. The impact of the abnormal soft connective tissue (muscle and tendon) anatomy on the clinical presentation of RD and the complications following surgery are not understood. To address this, we have examined the muscle, fascia and the fascial irregular connective tissue (ICT) fibroblasts found within soft connective tissues, from RD patients. We show that ICT fibroblasts isolated from RD patients are functionally abnormal when compared to the same cells isolated from control patients and secrete a relatively disordered extracellular matrix (ECM). Furthermore, we show that ICT fibroblast dysfunction is a unifying feature found in RD patients, even when the RD clinical presentation is caused by distinct genetic syndromes.
Collapse
Affiliation(s)
- George R. F. Murphy
- Randall Centre of Cell and Molecular BiophysicsKing's College LondonLondonUK
- Plastic and Reconstructive Surgery DepartmentGreat Ormond Street Hospital for ChildrenLondonUK
| | - Eleanor Feneck
- Randall Centre of Cell and Molecular BiophysicsKing's College LondonLondonUK
| | - James Paget
- Targeted Therapy Team, Chester Beatty LaboratoriesInstitute of Cancer ResearchLondonUK
| | - Branavan Sivakumar
- Plastic and Reconstructive Surgery DepartmentGreat Ormond Street Hospital for ChildrenLondonUK
| | - Gill Smith
- Plastic and Reconstructive Surgery DepartmentGreat Ormond Street Hospital for ChildrenLondonUK
| | - Malcolm P. O. Logan
- Randall Centre of Cell and Molecular BiophysicsKing's College LondonLondonUK
| |
Collapse
|
3
|
Tkadlec J, Kaveh K, Chatterjee K, Nowak MA. Evolutionary dynamics of mutants that modify population structure. J R Soc Interface 2023; 20:20230355. [PMID: 38016637 PMCID: PMC10684346 DOI: 10.1098/rsif.2023.0355] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 11/01/2023] [Indexed: 11/30/2023] Open
Abstract
Natural selection is usually studied between mutants that differ in reproductive rate, but are subject to the same population structure. Here we explore how natural selection acts on mutants that have the same reproductive rate, but different population structures. In our framework, population structure is given by a graph that specifies where offspring can disperse. The invading mutant disperses offspring on a different graph than the resident wild-type. We find that more densely connected dispersal graphs tend to increase the invader's fixation probability, but the exact relationship between structure and fixation probability is subtle. We present three main results. First, we prove that if both invader and resident are on complete dispersal graphs, then removing a single edge in the invader's dispersal graph reduces its fixation probability. Second, we show that for certain island models higher invader's connectivity increases its fixation probability, but the magnitude of the effect depends on the exact layout of the connections. Third, we show that for lattices the effect of different connectivity is comparable to that of different fitness: for large population size, the invader's fixation probability is either constant or exponentially small, depending on whether it is more or less connected than the resident.
Collapse
Affiliation(s)
- Josef Tkadlec
- Department of Mathematics, Harvard University, Cambridge, MA 02138, USA
- Computer Science Institute, Charles University, Prague, Czech Republic
| | - Kamran Kaveh
- Department of Applied Mathematics, University of Washington, Seattle, WA 98195, USA
| | - Krishnendu Chatterjee
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Martin A. Nowak
- Department of Mathematics, Harvard University, Cambridge, MA 02138, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
4
|
Brown Y, Hua S, Tanwar PS. Extracellular Matrix in High-Grade Serous Ovarian Cancer: Advances in Understanding of Carcinogenesis and Cancer Biology. Matrix Biol 2023; 118:16-46. [PMID: 36781087 DOI: 10.1016/j.matbio.2023.02.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 01/20/2023] [Accepted: 02/08/2023] [Indexed: 02/13/2023]
Abstract
High-grade serous ovarian cancer (HGSOC) is notoriously known as the "silent killer" of post-menopausal women as it has an insidious progression and is the deadliest gynaecological cancer. Although a dual origin of HGSOC is now widely accepted, there is growing evidence that most cases of HGSOC originate from the fallopian tube epithelium. In this review, we will address the fallopian tube origin and involvement of the extracellular matrix (ECM) in HGSOC development. There is limited research on the role of ECM at the earliest stages of HGSOC carcinogenesis. Here we aim to synthesise current understanding on the contribution of ECM to each stage of HGSOC development and progression, beginning at serous tubal intraepithelial carcinoma (STIC) precursor lesions and proceeding across key events including dissemination of tumourigenic fallopian tube epithelial cells to the ovary, survival of these cells in peritoneal fluid as multicellular aggregates, and colonisation of the ovary. Likewise, as part of the metastatic series of events, serous ovarian cancer cells survive travel in peritoneal fluid, attach to, migrate across the mesothelium and invade into the sub-mesothelial matrix of secondary sites in the peritoneal cavity. Halting cancer at the pre-metastatic stage and finding ways to stop the dissemination of ovarian cancer cells from the primary site is critical for improving patient survival. The development of drug resistance also contributes to poor survival statistics in HGSOC. In this review, we provide an update on the involvement of the ECM in metastasis and drug resistance in HGSOC. Interplay between different cell-types, growth factor gradients as well as evolving ECM composition and organisation, creates microenvironment conditions that promote metastatic progression and drug resistance of ovarian cancer cells. By understanding ECM involvement in the carcinogenesis and chemoresistance of HGSOC, this may prompt ideas for further research for developing new early diagnostic tests and therapeutic strategies for HGSOC with the end goal of improving patient health outcomes.
Collapse
Affiliation(s)
- Yazmin Brown
- Global Centre for Gynaecological Diseases, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia.; Cancer Detection and Therapy Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia..
| | - Susan Hua
- Therapeutic Targeting Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia.; Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Pradeep S Tanwar
- Global Centre for Gynaecological Diseases, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia.; Cancer Detection and Therapy Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia..
| |
Collapse
|
5
|
Tumor-Derived Exosomes and Their Role in Breast Cancer Metastasis. Int J Mol Sci 2022; 23:ijms232213993. [PMID: 36430471 PMCID: PMC9693078 DOI: 10.3390/ijms232213993] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Breast cancer has been the most common cancer in women worldwide, and metastasis is the leading cause of death from breast cancer. Even though the study of breast cancer metastasis has been extensively carried out, the molecular mechanism is still not fully understood, and diagnosis and prognosis need to be improved. Breast cancer metastasis is a complicated process involving multiple physiological changes, and lung, brain, bone and liver are the main metastatic targets. Exosomes are membrane-bound extracellular vesicles that contain secreted cellular constitutes. The biogenesis and functions of exosomes in cancer have been intensively studied, and mounting studies have indicated that exosomes play a crucial role in cancer metastasis. In this review, we summarize recent findings on the role of breast cancer-derived exosomes in metastasis organotropism and discuss the potential promising clinical applications of targeting exosomes as novel strategies for breast cancer diagnosis and therapy.
Collapse
|
6
|
EMT, Stemness, and Drug Resistance in Biological Context: A 3D Tumor Tissue/In Silico Platform for Analysis of Combinatorial Treatment in NSCLC with Aggressive KRAS-Biomarker Signatures. Cancers (Basel) 2022; 14:cancers14092176. [PMID: 35565305 PMCID: PMC9099837 DOI: 10.3390/cancers14092176] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/09/2022] [Accepted: 04/15/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary The phenotypic transition of tumor cells from epithelial to mesenchymal characteristics is called EMT and is widely discussed in the scientific community as a game changer in drug resistance and metastasis formation. However, clinical studies could not prove the efficacy of EMT-interfering treatments, and in clinical routine, EMT is not investigated to assess invasion. To fill this gap between bench and bedside, we use in this study a lung tumor tissue model with a preserved basement membrane for investigation of EMT functions with respect to invasion across this membrane and drug resistance. Our results suggest EMT is more a marker of drug resistance than a maker. Invasion is enhanced by EMT but more dependent on intrinsic factors, and EMT is not detected in the center of invasive tumor nodules. An in silico signaling network model is used to integrate these in vitro results and to reveal determinants for drug response. Abstract Epithelial-to-mesenchymal transition (EMT) is discussed to be centrally involved in invasion, stemness, and drug resistance. Experimental models to evaluate this process in its biological complexity are limited. To shed light on EMT impact and test drug response more reliably, we use a lung tumor test system based on a decellularized intestinal matrix showing more in vivo-like proliferation levels and enhanced expression of clinical markers and carcinogenesis-related genes. In our models, we found evidence for a correlation of EMT with drug resistance in primary and secondary resistant cells harboring KRASG12C or EGFR mutations, which was simulated in silico based on an optimized signaling network topology. Notably, drug resistance did not correlate with EMT status in KRAS-mutated patient-derived xenograft (PDX) cell lines, and drug efficacy was not affected by EMT induction via TGF-β. To investigate further determinants of drug response, we tested several drugs in combination with a KRASG12C inhibitor in KRASG12C mutant HCC44 models, which, besides EMT, display mutations in P53, LKB1, KEAP1, and high c-MYC expression. We identified an aurora-kinase A (AURKA) inhibitor as the most promising candidate. In our network, AURKA is a centrally linked hub to EMT, proliferation, apoptosis, LKB1, and c-MYC. This exemplifies our systemic analysis approach for clinical translation of biomarker signatures.
Collapse
|
7
|
Conde I, Ribeiro AS, Paredes J. Breast Cancer Stem Cell Membrane Biomarkers: Therapy Targeting and Clinical Implications. Cells 2022; 11:934. [PMID: 35326385 PMCID: PMC8946706 DOI: 10.3390/cells11060934] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the most common malignancy affecting women worldwide. Importantly, there have been significant improvements in prevention, early diagnosis, and treatment options, which resulted in a significant decrease in breast cancer mortality rates. Nevertheless, the high rates of incidence combined with therapy resistance result in cancer relapse and metastasis, which still contributes to unacceptably high mortality of breast cancer patients. In this context, a small subpopulation of highly tumourigenic cancer cells within the tumour bulk, commonly designated as breast cancer stem cells (BCSCs), have been suggested as key elements in therapy resistance, which are responsible for breast cancer relapses and distant metastasis. Thus, improvements in BCSC-targeting therapies are crucial to tackling the metastatic progression and might allow therapy resistance to be overcome. However, the design of effective and specific BCSC-targeting therapies has been challenging since there is a lack of specific biomarkers for BCSCs, and the most common clinical approaches are designed for commonly altered BCSCs signalling pathways. Therefore, the search for a new class of BCSC biomarkers, such as the expression of membrane proteins with cancer stem cell potential, is an area of clinical relevance, once membrane proteins are accessible on the cell surface and easily recognized by specific antibodies. Here, we discuss the significance of BCSC membrane biomarkers as potential prognostic and therapeutic targets, reviewing the CSC-targeting therapies under clinical trials for breast cancer.
Collapse
Affiliation(s)
- Inês Conde
- i3S, Institute of Investigation and Innovation in Health, 4200-135 Porto, Portugal; (I.C.); (A.S.R.)
- Ipatimup, Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
| | - Ana Sofia Ribeiro
- i3S, Institute of Investigation and Innovation in Health, 4200-135 Porto, Portugal; (I.C.); (A.S.R.)
- Ipatimup, Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
| | - Joana Paredes
- i3S, Institute of Investigation and Innovation in Health, 4200-135 Porto, Portugal; (I.C.); (A.S.R.)
- Ipatimup, Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| |
Collapse
|
8
|
Xi G, Qiu L, Xu S, Guo W, Fu F, Kang D, Zheng L, He J, Zhang Q, Li L, Wang C, Chen J. Computer-assisted quantification of tumor-associated collagen signatures to improve the prognosis prediction of breast cancer. BMC Med 2021; 19:273. [PMID: 34789257 PMCID: PMC8600902 DOI: 10.1186/s12916-021-02146-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 09/28/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Collagen fibers play an important role in tumor initiation, progression, and invasion. Our previous research has already shown that large-scale tumor-associated collagen signatures (TACS) are powerful prognostic biomarkers independent of clinicopathological factors in invasive breast cancer. However, they are observed on a macroscale and are more suitable for identifying high-risk patients. It is necessary to investigate the effect of the corresponding microscopic features of TACS so as to more accurately and comprehensively predict the prognosis of breast cancer patients. METHODS In this retrospective and multicenter study, we included 942 invasive breast cancer patients in both a training cohort (n = 355) and an internal validation cohort (n = 334) from one clinical center and in an external validation cohort (n = 253) from a different clinical center. TACS corresponding microscopic features (TCMFs) were firstly extracted from multiphoton images for each patient, and then least absolute shrinkage and selection operator (LASSO) regression was applied to select the most robust features to build a TCMF-score. Finally, the Cox proportional hazard regression analysis was used to evaluate the association of TCMF-score with disease-free survival (DFS). RESULTS TCMF-score is significantly associated with DFS in univariate Cox proportional hazard regression analysis. After adjusting for clinical variables by multivariate Cox regression analysis, the TCMF-score remains an independent prognostic indicator. Remarkably, the TCMF model performs better than the clinical (CLI) model in the three cohorts and is particularly outstanding in the ER-positive and lower-risk subgroups. By contrast, the TACS model is more suitable for the ER-negative and higher-risk subgroups. When the TACS and TCMF are combined, they could complement each other and perform well in all patients. As expected, the full model (CLI+TCMF+TACS) achieves the best performance (AUC 0.905, [0.873-0.938]; 0.896, [0.860-0.931]; 0.882, [0.840-0.925] in the three cohorts). CONCLUSION These results demonstrate that the TCMF-score is an independent prognostic factor for breast cancer, and the increased prognostic performance (TCMF+TACS-score) may help us develop more appropriate treatment protocols.
Collapse
Affiliation(s)
- Gangqin Xi
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, 350007, China
| | - Lida Qiu
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, 350007, China.,College of Physics and Electronic Information Engineering, Minjiang University, Fuzhou, 350108, China
| | - Shuoyu Xu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Wenhui Guo
- Breast Surgery Ward, Department of Breast Surgery, Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Fangmeng Fu
- Breast Surgery Ward, Department of Breast Surgery, Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Deyong Kang
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Liqin Zheng
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, 350007, China
| | - Jiajia He
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, 350007, China
| | - Qingyuan Zhang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Lianhuang Li
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, 350007, China.
| | - Chuan Wang
- Breast Surgery Ward, Department of Breast Surgery, Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China.
| | - Jianxin Chen
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, 350007, China.
| |
Collapse
|
9
|
Damaghi M, Mori H, Byrne S, Xu L, Chen T, Johnson J, Gallant ND, Marusyk A, Borowsky AD, Gillies RJ. Collagen production and niche engineering: A novel strategy for cancer cells to survive acidosis in DCIS and evolve. Evol Appl 2020; 13:2689-2703. [PMID: 33294017 PMCID: PMC7691473 DOI: 10.1111/eva.13075] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/09/2020] [Accepted: 07/12/2020] [Indexed: 12/31/2022] Open
Abstract
Growing tumors are dynamic and nonlinear ecosystems, wherein cancer cells adapt to their local microenvironment, and these adaptations further modify the environment, inducing more changes. From nascent intraductal neoplasms to disseminated metastatic disease, several levels of evolutionary adaptations and selections occur. Here, we focus on one example of such an adaptation mechanism, namely, "niche construction" promoted by adaptation to acidosis, which is a metabolic adaptation to the early harsh environment in intraductal neoplasms. The avascular characteristics of ductal carcinoma in situ (DCIS) make the periluminal volume profoundly acidic, and cancer cells must adapt to this to survive. Based on discovery proteomics, we hypothesized that a component of acid adaptation involves production of collagen by pre-cancer cells that remodels the extracellular matrix (ECM) and stabilizes cells under acid stress. The proteomic data were surprising as collagen production and deposition are commonly believed to be the responsibility of mesenchymally derived fibroblasts, and not cells of epithelial origin. Subsequent experiments in 3D culture, spinning disk and second harmonic generation microscopy of DCIS lesions in patients' samples are concordant. Collagen production assay by acid-adapted cells in vitro demonstrated that the mechanism of induction involves the RAS and SMAD pathways. Secretome analyses show upregulation of ECM remodeling enzymes such as TGM2 and LOXL2 that are collagen crosslinkers. These data strongly indicate that acidosis in incipient cancers induces collagen production by cancer cells and support the hypothesis that this adaptation initiates a tumor-permissive microenvironment promoting survival and growth of nascent cancers.
Collapse
Affiliation(s)
- Mehdi Damaghi
- Department of Cancer PhysiologyMoffitt Cancer Center and Research InstituteTampaFLUSA
- Department of Oncologic SciencesMorsani College of MedicineUniversity of South FloridaTampaFLUSA
| | - Hidetoshi Mori
- Center for Immunology and Infectious DiseasesComprehensive Cancer CenterDepartment of Pathology and Laboratory MedicineSchool of MedicineUniversity of California, DavisSacramentoCAUSA
| | - Samantha Byrne
- Department of Cancer PhysiologyMoffitt Cancer Center and Research InstituteTampaFLUSA
| | - Liping Xu
- Department of Cancer PhysiologyMoffitt Cancer Center and Research InstituteTampaFLUSA
| | - Tingan Chen
- Analytic Microscopy CoreMoffitt Cancer Center and Research InstituteTampaFLUSA
| | - Joseph Johnson
- Analytic Microscopy CoreMoffitt Cancer Center and Research InstituteTampaFLUSA
| | - Nathan D. Gallant
- Department of Mechanical EngineeringUniversity of South FloridaTampaFLUSA
| | - Andriy Marusyk
- Department of Cancer PhysiologyMoffitt Cancer Center and Research InstituteTampaFLUSA
| | - Alexander D. Borowsky
- Center for Immunology and Infectious DiseasesComprehensive Cancer CenterDepartment of Pathology and Laboratory MedicineSchool of MedicineUniversity of California, DavisSacramentoCAUSA
| | - Robert J. Gillies
- Department of Cancer PhysiologyMoffitt Cancer Center and Research InstituteTampaFLUSA
| |
Collapse
|
10
|
Swaminathan S, Clyne AM. Direct Bioprinting of 3D Multicellular Breast Spheroids onto Endothelial Networks. J Vis Exp 2020:10.3791/61791. [PMID: 33191938 PMCID: PMC7737489 DOI: 10.3791/61791] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Bioprinting is emerging as a promising tool to fabricate 3D human cancer models that better recapitulate critical hallmarks of in vivo tissue architecture. In current layer-by-layer extrusion bioprinting, individual cells are extruded in a bioink together with complex spatial and temporal cues to promote hierarchical tissue self-assembly. However, this biofabrication technique relies on complex interactions among cells, bioinks and biochemical and biophysical cues. Thus, self-assembly may take days or even weeks, may require specific bioinks, and may not always occur when there is more than one cell type involved. We therefore developed a technique to directly bioprint pre-formed 3D breast epithelial spheroids in a variety of bioinks. Bioprinted pre-formed 3D breast epithelial spheroids sustained their viability and polarized architecture after printing. We additionally printed the 3D spheroids onto vascular endothelial cell networks to create a co-culture model. Thus, the novel bioprinting technique rapidly creates a more physiologically relevant 3D human breast model at lower cost and with higher flexibility than traditional bioprinting techniques. This versatile bioprinting technique can be extrapolated to create 3D models of other tissues in additional bioinks.
Collapse
|
11
|
Tien J, Ghani U, Dance YW, Seibel AJ, Karakan MÇ, Ekinci KL, Nelson CM. Matrix Pore Size Governs Escape of Human Breast Cancer Cells from a Microtumor to an Empty Cavity. iScience 2020; 23:101673. [PMID: 33163933 PMCID: PMC7599434 DOI: 10.1016/j.isci.2020.101673] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 10/02/2020] [Accepted: 10/08/2020] [Indexed: 02/03/2023] Open
Abstract
How the extracellular matrix (ECM) affects the progression of a localized tumor to invasion of the ECM and eventually to vascular dissemination remains unclear. Although many studies have examined the role of the ECM in early stages of tumor progression, few have considered the subsequent stages that culminate in intravasation. In the current study, we have developed a three-dimensional (3D) microfluidic culture system that captures the entire process of invasion from an engineered human micro-tumor of MDA-MB-231 breast cancer cells through a type I collagen matrix and escape into a lymphatic-like cavity. By varying the physical properties of the collagen, we have found that MDA-MB-231 tumor cells invade and escape faster in lower-density ECM. These effects are mediated by the ECM pore size, rather than by the elastic modulus or interstitial flow speed. Our results underscore the importance of ECM structure in the vascular escape of human breast cancer cells.
Collapse
Affiliation(s)
- Joe Tien
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Division of Materials Science and Engineering, Boston University, Boston, MA 02215, USA
- Corresponding author
| | - Usman Ghani
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Yoseph W. Dance
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Alex J. Seibel
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - M. Çağatay Karakan
- Department of Mechanical Engineering, Boston University, Boston, MA 02215, USA
- Photonics Center, Boston University, Boston, MA 02215, USA
| | - Kamil L. Ekinci
- Division of Materials Science and Engineering, Boston University, Boston, MA 02215, USA
- Department of Mechanical Engineering, Boston University, Boston, MA 02215, USA
- Photonics Center, Boston University, Boston, MA 02215, USA
| | - Celeste M. Nelson
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08554, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ 08554, USA
- Corresponding author
| |
Collapse
|
12
|
Wu B, Chen X, Wang J, Qing X, Wang Z, Ding X, Xie Z, Niu L, Guo X, Cai T, Guo X, Yang F. Separation and characterization of extracellular vesicles from human plasma by asymmetrical flow field-flow fractionation. Anal Chim Acta 2020; 1127:234-245. [DOI: 10.1016/j.aca.2020.06.071] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/23/2020] [Accepted: 06/27/2020] [Indexed: 12/20/2022]
|
13
|
Hoesl C, Zanuttigh E, Fröhlich T, Philippou-Massier J, Krebs S, Blum H, Dahlhoff M. The secretome of skin cancer cells activates the mTOR/MYC pathway in healthy keratinocytes and induces tumorigenic properties. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118717. [PMID: 32283126 DOI: 10.1016/j.bbamcr.2020.118717] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/20/2020] [Accepted: 04/07/2020] [Indexed: 12/21/2022]
Abstract
Cutaneous squamous cell carcinoma (cSCC) is the most prominent tumor of non-melanoma skin cancers and the most aggressive tumor among keratinocyte carcinoma of the skin, showing a high potential for local invasion and metastasis. The cSCC incidences increased dramatically in recent years and the disease occurs more commonly than any other malignancy. The secretome of cancer cells is currently the focus of many studies in order to identify new marker proteins for different types of cancer and to investigate its influence on the tumor microenvironment. In our study we evaluated whether the secretome of cSCC cells has an impact on keratinocytes, the surrounding tissue cells of cSCC. Therefore, we analyzed and compared the secretome of human A431 cancer cells and of HaCaT keratinocytes by mass spectrometry. In a second experiment, keratinocytes were exposed to the secretome of A431 cells and vice versa and the transcriptome was analyzed by next-generation sequencing. HaCaT cells incubated with A431 conditioned medium revealed a significantly activated mammalian target of rapamycin pathway with a concomitant increase in proliferation and migration. In conclusion, our data demonstrate the impact of the secretome of cancer cells on the transcription machinery of the cells surrounding the tumor, leading to a tumorigenic cell fate.
Collapse
Affiliation(s)
- Christine Hoesl
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, LMU, München, Germany
| | - Enrica Zanuttigh
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, LMU, München, Germany
| | - Thomas Fröhlich
- Laboratory for Functional Genome Analysis LAFUGA, Gene Center, LMU, München, Germany
| | | | - Stefan Krebs
- Laboratory for Functional Genome Analysis LAFUGA, Gene Center, LMU, München, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis LAFUGA, Gene Center, LMU, München, Germany
| | - Maik Dahlhoff
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, LMU, München, Germany.
| |
Collapse
|
14
|
The Extracellular Matrix: An Accomplice in Gastric Cancer Development and Progression. Cells 2020; 9:cells9020394. [PMID: 32046329 PMCID: PMC7072625 DOI: 10.3390/cells9020394] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/03/2020] [Accepted: 02/06/2020] [Indexed: 02/07/2023] Open
Abstract
The extracellular matrix (ECM) is a dynamic and highly organized tissue structure, providing support and maintaining normal epithelial architecture. In the last decade, increasing evidence has emerged demonstrating that alterations in ECM composition and assembly strongly affect cellular function and behavior. Even though the detailed mechanisms underlying cell-ECM crosstalk are yet to unravel, it is well established that ECM deregulation accompanies the development of many pathological conditions, such as gastric cancer. Notably, gastric cancer remains a worldwide concern, representing the third most frequent cause of cancer-associated deaths. Despite increased surveillance protocols, patients are usually diagnosed at advanced disease stages, urging the identification of novel diagnostic biomarkers and efficient therapeutic strategies. In this review, we provide a comprehensive overview regarding expression patterns of ECM components and cognate receptors described in normal gastric epithelium, pre-malignant lesions, and gastric carcinomas. Important insights are also discussed for the use of ECM-associated molecules as predictive biomarkers of the disease or as potential targets in gastric cancer.
Collapse
|
15
|
Integrated Therapeutic Targeting of the Prostate Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1296:183-198. [PMID: 34185293 DOI: 10.1007/978-3-030-59038-3_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Prostate cancer is a common and deadly cancer among men. The heterogeneity that characterizes prostate tumors contributes to clinical challenges in the diagnosis, prognosis, and treatment of this malignancy. While localized prostate cancer can be treated with surgery or radiotherapy, metastatic disease to the lymph nodes and the bone requires aggressive treatment with androgen deprivation treatment (ADT). Unfortunately, this often eventually progresses to metastatic castration-resistant prostate cancer (mCRPC). Advanced prostate cancer treatment today involves 1st- and 2nd-line taxane chemotherapy and 2nd-generation antiandrogens. The process of epithelial mesenchymal transition (EMT), during which epithelial cells lose their adhesions and their polarity, is a critical contributor to prostate cancer metastasis. In this article, we aim to integrate the current understanding of mechanisms dictating the dynamics of phenotypic EMT, with apoptosis outcomes in prostate tumors in response to antiandrogen and taxane chemotherapy for the treatment of advanced disease. Novel insights into the signaling mechanisms that target the functional interface between apoptosis and EMT will be considered in the context of potential clinical markers of tumor prognosis, as well as for effective therapeutic targeting of α- and β- adrenergic signaling (by novel and existing chemotherapeutic agents and antiandrogens). Interfering with EMT and apoptosis simultaneously toward eradicating the tumor mass is of major significance in combating the lethal disease and increasing patient survival.
Collapse
|
16
|
Young BM, Shankar K, Tho CK, Pellegrino AR, Heise RL. Laminin-driven Epac/Rap1 regulation of epithelial barriers on decellularized matrix. Acta Biomater 2019; 100:223-234. [PMID: 31593773 DOI: 10.1016/j.actbio.2019.10.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 10/03/2019] [Accepted: 10/03/2019] [Indexed: 12/28/2022]
Abstract
Decellularized tissues offer a unique tool for developing regenerative biomaterials or in vitro platforms for the study of cell-extracellular matrix (ECM) interactions. One main challenge associated with decellularized lung tissue is that ECM components can be stripped away or altered by the detergents used to remove cellular debris. Without characterizing the composition of lung decellularized ECM (dECM) and the cellular response caused by the altered composition, it is difficult to utilize dECM for regeneration and specifically, engineering the complexities of the alveolar-capillary barrier. This study takes steps towards uncovering if dECM must be enhanced with lost ECM proteins to achieve proper epithelial barrier formation. To achieve this, the epithelial barrier function was assessed on dECM coatings with and without the systematic addition of several key basement membrane proteins. After comparing barrier function on collagen I, fibronectin, laminin, and dECM in varying combinations as an in vitro coating, the alveolar epithelium exhibited superior barrier function when dECM was supplemented with laminin as evidenced by trans-epithelial electrical resistance (TEER) and permeability assays. Increased barrier resistance with laminin addition was associated with upregulation of Claudin-18, E-cadherin, and junction adhesion molecule (JAM)-A, and stabilization of zonula occludens (ZO)-1 at junction complexes. The Epac/Rap1 pathway was observed to play a role in the ECM-mediated barrier function determined by protein expression and Epac inhibition. These findings revealed potential ECM coatings and molecular therapeutic targets for improved regeneration with decellularized scaffolds. STATEMENT OF SIGNIFICANCE: Efforts to produce a transplantable organ-scale biomaterial for lung regeneration has not been entirely successful to date, due to incomplete cell-cell junction formation, ultimately leading to severe edema in vivo. To fully understand the process of alveolar junction formation on ECM-derived biomaterials, this research has characterized and tailored decellularized ECM (dECM) to mitigate reductions in barrier strength or cell attachment caused by abnormal ECM compositions or detergent damage to dECM. These results indicate that laminin-driven Epac signaling plays a vital role in the stabilization of the alveolar barrier. Addition of laminin or Epac agonists during alveolar regeneration can reduce epithelial permeability within bioengineered lungs.
Collapse
Affiliation(s)
- Bethany M Young
- Department of Biomedical Engineering, Virginia Commonwealth University, 800 E. Leigh St, Room 1071, Richmond, VA 23219, United States
| | - Keerthana Shankar
- Department of Biomedical Engineering, Virginia Commonwealth University, 800 E. Leigh St, Room 1071, Richmond, VA 23219, United States
| | - Cindy K Tho
- Department of Biomedical Engineering, Virginia Commonwealth University, 800 E. Leigh St, Room 1071, Richmond, VA 23219, United States
| | - Amanda R Pellegrino
- Department of Biomedical Engineering and Nursing, Duquesne University, 600 Forbes Ave, Pittsburg, Pennsylvania 15282, United States
| | - Rebecca L Heise
- Department of Biomedical Engineering, Virginia Commonwealth University, 800 E. Leigh St, Room 1071, Richmond, VA 23219, United States; Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, 1101 East Marshall St, Richmond, Virginia 23298, United States.
| |
Collapse
|
17
|
Bjørgen H, Hellberg H, Løken OM, Gunnes G, Koppang EO, Dale OB. Tumor microenvironment and stroma in intestinal adenocarcinomas and associated metastases in Atlantic salmon broodfish (Salmo salar). Vet Immunol Immunopathol 2019; 214:109891. [PMID: 31378219 DOI: 10.1016/j.vetimm.2019.109891] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/26/2019] [Accepted: 07/03/2019] [Indexed: 01/12/2023]
Abstract
Animal models are invaluable tools in cancer research. In this context, salmon is a promising candidate. Intestinal adenocarcinoma with metastases may be induced as a consequence of a plant-based diet triggering the inflammation - dysplasia- carcinogenesis pathway. Here, we investigate the stroma and the presence and nature of immune cells in such tumors by staining for mast cells, immunohistochemistry for T cells and antigen-presenting cells and in situ hybridization for B cells. In intestinal tumors, substantial amounts of T cells were detected in the stroma, whilst MHC class II+ cells were mainly among the cancerous cells. Ig+ cells were observed primarily in the tumor periphery. Mast cells showed a strong association with stroma. In metastases, scarce amounts of T cells were detected, whilst MHC I and II-reactivity varied, some tumors being completely negative. Ig+ cells were scattered around the metastatic tissue in no particular pattern, but were occasionally observed within clusters of tumor cells. Small numbers of mast cells were detected in the stroma. To the best of our knowledge, this is the first report addressing immune cells in fish tumors. The teleost tumor microenvironment seems comparable to that of mammals, making fish interesting model animals in oncoimmunology research.
Collapse
Affiliation(s)
- Håvard Bjørgen
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway.
| | | | - Oskar Mongstad Løken
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway.
| | - Gjermund Gunnes
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway.
| | - Erling Olaf Koppang
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway.
| | | |
Collapse
|
18
|
Pan-Cancer analysis of the expression and regulation of matrisome genes across 32 tumor types. Matrix Biol Plus 2019; 1:100004. [PMID: 33543003 PMCID: PMC7852311 DOI: 10.1016/j.mbplus.2019.04.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 04/02/2019] [Accepted: 04/02/2019] [Indexed: 12/28/2022] Open
Abstract
The microenvironment plays a central role in cancer, and neoplastic cells actively shape it to their needs by complex arrays of extracellular matrix (ECM) proteins, enzymes, cytokines and growth factors collectively referred to as the matrisome. Studies on the cancer matrisome have been performed for single or few neoplasms, but a more systematic analysis is still missing. Here we present a Pan-Cancer study of matrisome gene expression in 10,487 patients across 32 tumor types, supplemented with transcription factors (TFs) and driver genes/pathways regulating each tumor's matrisome. We report on 919 TF-target pairs, either used specifically or shared across tumor types, and their prognostic significance, 40 master regulators, 31 overarching regulatory pathways and the potential for druggability with FDA-approved cancer drugs. These results provide a comprehensive transcriptional architecture of the cancer matrisome and suggest the need for development of specific matrisome-targeting approaches for future therapies. In-depth characterization of matrisome gene expression and regulation in 10,487 patients across 32 human tumor types. Identification of transcription factor (TF) and “master regulators” governing each cancer’s matrisome. Analysis unveils therapeutic possibilities and suggests new treatments by repurposing of FDA-approved cancer drugs.
Collapse
|
19
|
Swaminathan S, Hamid Q, Sun W, Clyne AM. Bioprinting of 3D breast epithelial spheroids for human cancer models. Biofabrication 2019; 11:025003. [PMID: 30616234 PMCID: PMC7731635 DOI: 10.1088/1758-5090/aafc49] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
3D human cancer models provide a better platform for drug efficacy studies than conventional 2D culture, since they recapitulate important aspects of the in vivo microenvironment. While biofabrication has advanced model creation, bioprinting generally involves extruding individual cells in a bioink and then waiting for these cells to self-assemble into a hierarchical 3D tissue. This self-assembly is time consuming and requires complex cellular interactions with other cell types, extracellular matrix components, and growth factors. We therefore investigated if we could directly bioprint pre-formed 3D spheroids in alginate-based bioinks to create a model tissue that could be used almost immediately. Human breast epithelial cell lines were bioprinted as individual cells or as pre-formed spheroids, either in monoculture or co-culture with vascular endothelial cells. While individual breast cells only spontaneously formed spheroids in Matrigel-based bioink, pre-formed breast spheroids maintained their viability, architecture, and function after bioprinting. Bioprinted breast spheroids were more resistant to paclitaxel than individually printed breast cells; however, this effect was abrogated by endothelial cell co-culture. This study shows that 3D cellular structure bioprinting has potential to create tissue models that quickly replicate the tumor microenvironment.
Collapse
Affiliation(s)
- Swathi Swaminathan
- Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, PA 19104, United States of America
| | | | | | | |
Collapse
|
20
|
Sousa B, Ribeiro AS, Paredes J. Heterogeneity and Plasticity of Breast Cancer Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1139:83-103. [PMID: 31134496 DOI: 10.1007/978-3-030-14366-4_5] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the last 20 years, the conventional view of breast cancer as a homogeneous collection of highly proliferating malignant cells was totally replaced by a model of increased complexity, which points out that breast carcinomas are tissues composed of multiple populations of transformed cells. A large diversity of host cells and structural components of the extracellular matrix constitute the mammary tumour microenvironment, which supports its growth and progression, where individual cancer cells evolve with cumulative phenotypic and genetic heterogeneity. Moreover, contributing to this heterogeneity, it has been demonstrated that breast cancers can exhibit a hierarchical organization composed of tumour cells displaying divergent lineage biomarkers and where, at the apex of this hierarchy, some neoplastic cells are able to self-renew and to aberrantly differentiate. Breast cancer stem cells (BCSCs), as they were entitled, not only drive tumourigenesis, but also mediate metastasis and contribute to therapy resistance.Recently, adding more complexity to the system, it has been demonstrated that BCSCs maintain high levels of plasticity, being able to change between mesenchymal-like and epithelial-like states in a process regulated by the tumour microenvironment. These stem cell state transitions play a fundamental role in the process of tumour metastasis, as well as in the resistance to putative therapeutic strategies to target these cells. In this chapter, it will be mainly discussed the emerging knowledge regarding the contribution of BCSCs to tumour heterogeneity, their plasticity, and the role that this plasticity can play in the establishment of distant metastasis. A major focus will also be given to potential clinical implications of these discoveries in breast cancer recurrence and to possible BCSC targeted therapeutics by the use of specific biomarkers.
Collapse
Affiliation(s)
- Bárbara Sousa
- Institute of Pathology and Molecular Immunology of the University of Porto (Ipatimup), Porto, Portugal.,Institute of Investigation and Innovation in Health (i3S), Porto, Portugal
| | - Ana Sofia Ribeiro
- Institute of Pathology and Molecular Immunology of the University of Porto (Ipatimup), Porto, Portugal.,Institute of Investigation and Innovation in Health (i3S), Porto, Portugal
| | - Joana Paredes
- Institute of Pathology and Molecular Immunology of the University of Porto (Ipatimup), Porto, Portugal. .,Institute of Investigation and Innovation in Health (i3S), Porto, Portugal. .,Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal.
| |
Collapse
|
21
|
Cavo M, Caria M, Pulsoni I, Beltrame F, Fato M, Scaglione S. A new cell-laden 3D Alginate-Matrigel hydrogel resembles human breast cancer cell malignant morphology, spread and invasion capability observed "in vivo". Sci Rep 2018; 8:5333. [PMID: 29593247 PMCID: PMC5871779 DOI: 10.1038/s41598-018-23250-4] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 03/01/2018] [Indexed: 01/17/2023] Open
Abstract
Purpose of this study was the development of a 3D material to be used as substrate for breast cancer cell culture. We developed composite gels constituted by different concentrations of Alginate (A) and Matrigel (M) to obtain a structurally stable-in-time and biologically active substrate. Human aggressive breast cancer cells (i.e. MDA-MB-231) were cultured within the gels. Known the link between cell morphology and malignancy, cells were morphologically characterized and their invasiveness correlated through an innovative bioreactor-based invasion assay. A particular type of gel (i.e. 50% Alginate, 50% Matrigel) emerged thanks to a series of significant results: 1. cells exhibited peculiar cytoskeleton shapes and nuclear fragmentation characteristic of their malignancy; 2. cells expressed the formation of the so-called invadopodia, actin-based protrusion of the plasma membrane through which cells anchor to the extracellular matrix; 3. cells were able to migrate through the gels and attach to an engineered membrane mimicking the vascular walls hosted within bioreactor, providing a completely new 3D in vitro model of the very precursor steps of metastasis.
Collapse
Affiliation(s)
- Marta Cavo
- National Research Council (CNR) - IEIIT Institute, Genoa, 16149, Italy.,Department of Biophysical and Electronic Engineering (DIBRIS), University of Genoa, Genoa, 16145, Italy.,React4life S.r.l, Genoa, 16100, Italy
| | - Marco Caria
- National Research Council (CNR) - IEIIT Institute, Genoa, 16149, Italy.,Department of Biophysical and Electronic Engineering (DIBRIS), University of Genoa, Genoa, 16145, Italy
| | - Ilaria Pulsoni
- Department of Biophysical and Electronic Engineering (DIBRIS), University of Genoa, Genoa, 16145, Italy
| | - Francesco Beltrame
- National Research Council (CNR) - IEIIT Institute, Genoa, 16149, Italy.,Department of Biophysical and Electronic Engineering (DIBRIS), University of Genoa, Genoa, 16145, Italy
| | - Marco Fato
- National Research Council (CNR) - IEIIT Institute, Genoa, 16149, Italy.,Department of Biophysical and Electronic Engineering (DIBRIS), University of Genoa, Genoa, 16145, Italy
| | - Silvia Scaglione
- National Research Council (CNR) - IEIIT Institute, Genoa, 16149, Italy.
| |
Collapse
|
22
|
In vivo therapeutic applications of cell spheroids. Biotechnol Adv 2018; 36:494-505. [DOI: 10.1016/j.biotechadv.2018.02.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 02/01/2018] [Accepted: 02/01/2018] [Indexed: 01/08/2023]
|
23
|
Mittal S, Brown NJ, Holen I. The breast tumor microenvironment: role in cancer development, progression and response to therapy. Expert Rev Mol Diagn 2018; 18:227-243. [DOI: 10.1080/14737159.2018.1439382] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Suruchi Mittal
- Department of Oncology and Metabolism, University of Sheffield, UK
| | - Nicola J. Brown
- Department of Oncology and Metabolism, University of Sheffield, UK
| | - Ingunn Holen
- Department of Oncology and Metabolism, University of Sheffield, UK
| |
Collapse
|
24
|
Begemann D, Anastos H, Kyprianou N. Cell death under epithelial-mesenchymal transition control in prostate cancer therapeutic response. Int J Urol 2018; 25:318-326. [DOI: 10.1111/iju.13505] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 11/05/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Diane Begemann
- Department of Urology; University of Kentucky College of Medicine; Lexington Kentucky USA
- Department of Toxicology and Cancer Biology; University of Kentucky College of Medicine; Lexington Kentucky USA
| | - Harry Anastos
- Department of Urology; University of Kentucky College of Medicine; Lexington Kentucky USA
| | - Natasha Kyprianou
- Department of Urology; University of Kentucky College of Medicine; Lexington Kentucky USA
- Department of Toxicology and Cancer Biology; University of Kentucky College of Medicine; Lexington Kentucky USA
- Department of Molecular Biochemistry; University of Kentucky College of Medicine; Lexington Kentucky USA
| |
Collapse
|
25
|
Chen J, Kumar S. Biophysical Regulation of Cancer Stem/Initiating Cells: Implications for Disease Mechanisms and Translation. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2017; 1:87-95. [PMID: 29082354 DOI: 10.1016/j.cobme.2017.02.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cancer stem/initiating cells (CSCs) are a subset of tumor cells proposed to play privileged roles in seeding tumors and driving metastasis. CSCs have emerged as an increasingly important target of interest in cancer biology and therapy. Recent work has suggested that CSC maintenance and metastatic potential may be modulated by physical inputs within the tissue microenvironment, including interstitial pressure and extracellular matrix stiffness. Here we review recent progress in our understanding of CSC regulation by biophysical signals within the tumor microenvironment. While the mechanistic basis of this signaling remains incompletely understood, we discuss emerging evidence that mechanical inputs can epigenetically regulate CSC behavior and that some CSCs can evade mechanotransductive signals to more efficiently infiltrate tissue. We also describe efforts to leverage these findings to engineer culture platforms for the characterization of CSC mechanics for discovery and screening.
Collapse
Affiliation(s)
- Joseph Chen
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720
| | - Sanjay Kumar
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720
| |
Collapse
|
26
|
Majeed H, Okoro C, Kajdacsy-Balla A, Toussaint KC, Popescu G. Quantifying collagen fiber orientation in breast cancer using quantitative phase imaging. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:46004. [PMID: 28388706 DOI: 10.1117/1.jbo.22.4.046004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 03/16/2017] [Indexed: 05/20/2023]
Abstract
Tumor progression in breast cancer is significantly influenced by its interaction with the surrounding stromal tissue. Specifically, the composition, orientation, and alignment of collagen fibers in tumor-adjacent stroma affect tumor growth and metastasis. Most of the work done on measuring this prognostic marker has involved imaging of collagen fibers using second-harmonic generation microscopy (SHGM), which provides label-free specificity. Here, we show that spatial light interference microscopy (SLIM), a label-free quantitative phase imaging technique, is able to provide information on collagen-fiber orientation that is comparable to that provided by SHGM. Due to its wide-field geometry, the throughput of the SLIM system is much higher than that of SHGM and, because of the linear imaging, the equipment is simpler and significantly less expensive. Our results indicate that SLIM images can be used to extract important prognostic information from collagen fibers in breast tissue, potentially providing a convenient high throughput clinical tool for assessing patient prognosis.
Collapse
Affiliation(s)
- Hassaan Majeed
- University of Illinois at Urbana Champaign, Quantitative Light Imaging (QLI) Lab, Department of Bioengineering, Beckman Institute of Advanced Science and Technology, Urbana, Illinois, United States
| | - Chukwuemeka Okoro
- University of Illinois at Urbana Champaign, Photonics Research of Bio/Nano Environments (PROBE) Lab, Department of Electrical and Computer Engineering, Mechanical Engineering Lab, Urbana, Illinois, United States
| | - André Kajdacsy-Balla
- University of Illinois at Chicago, Department of Pathology, Chicago, Illinois, United States
| | - Kimani C Toussaint
- University of Illinois at Urbana Champaign, Photonics Research of Bio/Nano Environments (PROBE) Lab, Department of Mechanical Science and Engineering, Mechanical Engineering Lab, Urbana, Illinois, United States
| | - Gabriel Popescu
- University of Illinois at Urbana Champaign, Quantitative Light Imaging (QLI) Lab, Department of Electrical and Computer Engineering, Beckman Institute of Advanced Science and Technology, Urbana, Illinois, United States
| |
Collapse
|
27
|
Bray LJ, Binner M, Körner Y, von Bonin M, Bornhäuser M, Werner C. A three-dimensional ex vivo tri-culture model mimics cell-cell interactions between acute myeloid leukemia and the vascular niche. Haematologica 2017; 102:1215-1226. [PMID: 28360147 PMCID: PMC5566030 DOI: 10.3324/haematol.2016.157883] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 03/27/2017] [Indexed: 12/20/2022] Open
Abstract
Ex vivo studies of human disease, such as acute myeloid leukemia, are generally limited to the analysis of two-dimensional cultures which often misinterpret the effectiveness of chemotherapeutics and other treatments. Here we show that matrix metalloproteinase-sensitive hydrogels prepared from poly(ethylene glycol) and heparin functionalized with adhesion ligands and pro-angiogenic factors can be instrumental to produce robust three-dimensional culture models, allowing for the analysis of acute myeloid leukemia development and response to treatment. We evaluated the growth of four leukemia cell lines, KG1a, MOLM13, MV4-11 and OCI-AML3, as well as samples from patients with acute myeloid leukemia. Furthermore, endothelial cells and mesenchymal stromal cells were co-seeded to mimic the vascular niche for acute myeloid leukemia cells. Greater drug resistance to daunorubicin and cytarabine was demonstrated in three-dimensional cultures and in vascular co-cultures when compared with two-dimensional suspension cultures, opening the way for drug combination studies. Application of the C-X-C chemokine receptor type 4 (CXCR4) inhibitor, AMD3100, induced mobilization of the acute myeloid leukemia cells from the vascular networks. These findings indicate that the three-dimensional tri-culture model provides a specialized platform for the investigation of cell-cell interactions, addressing a key challenge of current testing models. This ex vivo system allows for personalized analysis of the responses of patients’ cells, providing new insights into the development of acute myeloid leukemia and therapies for this disease.
Collapse
Affiliation(s)
- Laura J Bray
- Max Bergmann Center of Biomaterials, Leibniz Institute of Polymer Research Dresden, Germany .,Science and Engineering Faculty, Queensland University of Technology, Brisbane, Australia
| | - Marcus Binner
- Max Bergmann Center of Biomaterials, Leibniz Institute of Polymer Research Dresden, Germany
| | - Yvonne Körner
- Max Bergmann Center of Biomaterials, Leibniz Institute of Polymer Research Dresden, Germany
| | - Malte von Bonin
- Universitätsklinikum Carl-Gustav Carus, Faculty of Medicine, Technische Universität Dresden, Saxony, Germany.,German Cancer Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), partner site Dresden, Germany
| | - Martin Bornhäuser
- Universitätsklinikum Carl-Gustav Carus, Faculty of Medicine, Technische Universität Dresden, Saxony, Germany.,German Cancer Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), partner site Dresden, Germany
| | - Carsten Werner
- Max Bergmann Center of Biomaterials, Leibniz Institute of Polymer Research Dresden, Germany
| |
Collapse
|
28
|
Crotti S, Piccoli M, Rizzolio F, Giordano A, Nitti D, Agostini M. Extracellular Matrix and Colorectal Cancer: How Surrounding Microenvironment Affects Cancer Cell Behavior? J Cell Physiol 2016; 232:967-975. [PMID: 27775168 DOI: 10.1002/jcp.25658] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 10/20/2016] [Indexed: 12/12/2022]
Abstract
Colorectal cancer (CRC) whit more than a million of new cases per year is one of the most common registered cancers worldwide with few treatment options especially for advanced and metastatic patients.The tumor microenvironment is composed by extracellular matrix (ECM), cells, and interstitial fluids. Among all these constituents, in the last years an increased interest around the ECM and its potential role in cancer tumorigenesis is arisen. During cancer progression the ECM structure and composition became disorganized, allowing cellular transformation and metastasis. Up to now, the focus has mainly been on the characterization of CRC microenvironment analyzing separately structural ECM components or cell secretome modifications. A more extensive view that interconnects these aspects should be addressed. In this review, biochemical (secretome) and biomechanical (structure and architecture) changes of tumor microenvironment will be discussed, giving suggestions on how these changes can affect cancer cell behavior. J. Cell. Physiol. 232: 967-975, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sara Crotti
- Institute of Paediatric Research-Città della Speranza, Corso Stati Uniti 4, Padova, Italy
| | - Martina Piccoli
- Institute of Paediatric Research-Città della Speranza, Corso Stati Uniti 4, Padova, Italy
| | - Flavio Rizzolio
- Department of Translational Research, IRCCS-National Cancer Institute, Aviano, Italy
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania.,Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Donato Nitti
- First Surgical Clinic Section, Department of Surgical, Oncological and Gastroenterological Sciences, University of Padua, Via Nicolo Giustiniani 2, Padova, Italy
| | - Marco Agostini
- Institute of Paediatric Research-Città della Speranza, Corso Stati Uniti 4, Padova, Italy.,First Surgical Clinic Section, Department of Surgical, Oncological and Gastroenterological Sciences, University of Padua, Via Nicolo Giustiniani 2, Padova, Italy
| |
Collapse
|
29
|
Chang IW, Li CF, Lin VCH, He HL, Liang PI, Wu WJ, Li CC, Huang CN. Prognostic Impact of Thrombospodin-2 (THBS2) Overexpression on Patients with Urothelial Carcinomas of Upper Urinary Tracts and Bladders. J Cancer 2016; 7:1541-1549. [PMID: 27471570 PMCID: PMC4964138 DOI: 10.7150/jca.15696] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/31/2016] [Indexed: 01/12/2023] Open
Abstract
PURPOSE Urothelial carcinoma (UC) is a type of tumor, especially of the urinary bladder, that affects people worldwide. Clarification of its detailed tumor biology and discovery of potential targets for developing treatment strategies are imperative because of frequent recurrences and poor prognosis of advanced UCs. By data mining a published dataset of UC of bladder (UCB) transcriptome (GSE31684) from Gene Expression Omnibus, National Center of Biotechnology Information (GEO, NCBI), we identified that THBS2 was the most significantly upregulated gene among those related to structural molecule activity (GO:0005198). Therefore, we evaluated the clinical significance and prognostic impact of thrombospondin-2 (THBS2) protein, A.K.A. TSP2, which encoded by THBS2 gene. MATERIALS AND METHODS THBS2 immunostaining was performed in 340 UCs of upper urinary tract (UC-UUTs) and 295 UCBs; subsequently, both groups were dichotomized into high- and low-expression subgroups. Moreover, statistical analyses were performed to correlate the association between THBS2 expression and clinicopathological parameters with two survival indexes: disease-specific survival (DSS) and metastasis-free survival (MeFS). RESULTS High THBS2 immunoexpression was significantly associated with advanced primary tumor status, nodal metastasis, and vascular invasion in both UC-UUT and UCB groups (all P ≤ .001). In addition, THBS2 overexpression was linked to adverse DSS and MeFS in univariate analyses and served as an independent prognosticator indicating poor outcomes in both groups in multivariate analyses. CONCLUSION THBS2 may play a crucial role in UC progression and may be a novel prognostic marker. Additional investigations to elucidate the molecular pathway are necessary for developing potential THBS2-targeted therapies for UCs.
Collapse
Affiliation(s)
- I-Wei Chang
- 1. Department of Pathology, E-DA Hospital, I-Shou University, Kaohsiung, Taiwan
- 2. School of Medicine for International Students, I-Shou University, Kaohsiung, Taiwan
| | - Chien-Feng Li
- 3. Department of Pathology, Chi-Mei Medical Center, Tainan, Taiwan
- 4. Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan
- 5. Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- 6. National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Victor Chia-Hsiang Lin
- 2. School of Medicine for International Students, I-Shou University, Kaohsiung, Taiwan
- 7. Department of Urology, E-DA Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Hong-Lin He
- 1. Department of Pathology, E-DA Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Per-In Liang
- 8. Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wen-Jeng Wu
- 9. Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- 10. Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- 11. Department of Urology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| | - Ching-Chia Li
- 9. Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- 10. Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- 11. Department of Urology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| | - Chun-Nung Huang
- 9. Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- 10. Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| |
Collapse
|
30
|
3D extracellular matrix interactions modulate tumour cell growth, invasion and angiogenesis in engineered tumour microenvironments. Acta Biomater 2016; 36:73-85. [PMID: 26971667 DOI: 10.1016/j.actbio.2016.03.017] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 02/23/2016] [Accepted: 03/09/2016] [Indexed: 12/15/2022]
Abstract
UNLABELLED Interactions between tumour cells and extracellular matrix proteins of the tumour microenvironment play crucial roles in cancer progression. So far, however, there are only a few experimental platforms available that allow us to study these interactions systematically in a mechanically defined three-dimensional (3D) context. Here, we have studied the effect of integrin binding motifs found within common extracellular matrix (ECM) proteins on 3D breast (MCF-7) and prostate (PC-3, LNCaP) cancer cell cultures, and co-cultures with endothelial and mesenchymal stromal cells. For this purpose, matrix metalloproteinase-degradable biohybrid poly(ethylene) glycol-heparin hydrogels were decorated with the peptide motifs RGD, GFOGER (collagen I), or IKVAV (laminin-111). Over 14days, cancer spheroids of 100-200μm formed. While the morphology of poorly invasive MCF-7 and LNCaP cells was not modulated by any of the peptide motifs, the aggressive PC-3 cells exhibited an invasive morphology when cultured in hydrogels comprising IKVAV and GFOGER motifs compared to RGD motifs or nonfunctionalised controls. PC-3 (but not MCF-7 and LNCaP) cell growth and endothelial cell infiltration were also significantly enhanced in IKVAV and GFOGER presenting gels. Taken together, we have established a 3D culture model that allows for dissecting the effect of biochemical cues on processes relevant to early cancer progression. These findings provide a basis for more mechanistic studies that may further advance our understanding of how ECM modulates cancer cell invasion and how to ultimately interfere with this process. STATEMENT OF SIGNIFICANCE Threedimensional in vitro cancer models have generated great interest over the past decade. However, most models are not suitable to systematically study the effects of environmental cues on cancer development and progression. To overcome this limitation, we have developed an innovative hydrogel platform to study the interactions between breast and prostate cancer cells and extracellular matrix ligands relevant to the tumour microenvironment. Our results show that hydrogels with laminin- and collagen-derived adhesive peptides induce a malignant phenotype in a cell-line specific manner. Thus, we have identified a method to control the incorporation of biochemical cues within a three dimensional culture model and anticipate that it will help us in better understanding the effects of the tumour microenvironment on cancer progression.
Collapse
|
31
|
Li H, Xu F, Li S, Zhong A, Meng X, Lai M. The tumor microenvironment: An irreplaceable element of tumor budding and epithelial-mesenchymal transition-mediated cancer metastasis. Cell Adh Migr 2016; 10:434-46. [PMID: 26743180 DOI: 10.1080/19336918.2015.1129481] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Tumor budding occurs at the invasive front of cancer; the tumor cells involved have metastatic and stemness features, indicating a poor prognosis. Tumor budding is partly responsible for cancer metastasis, and its initiation is based on the epithelial-mesenchymal transition (EMT) process. The EMT process involves the conversion of epithelial cells into migratory and invasive cells, and is a profound event in tumorigenesis. The EMT, associated with the formation of cancer stem cells (CSCs) and resistance to therapy, results from a combination of gene mutation, epigenetic regulation, and microenvironmental control. Tumor budding can be taken to represent the EMT in vivo. The EMT process is under the influence of the tumor microenvironment as well as tumor cells themselves. Here, we demonstrate that the tumor microenvironment dominates EMT development and impacts cancer metastasis, as well as promotes CSC formation and mediates drug resistance. In this review, we mainly discuss components of the microenvironment, such as the extracellular matrix (ECM), inflammatory cytokines, metabolic products, and hypoxia, that are involved in and impact on the acquisition of tumor-cell motility and dissemination, the EMT, metastatic tumor-cell formation, tumor budding and CSCs, and cancer metastasis, including subsequent chemo-resistance. From our point of view, the tumor microenvironment now constitutes a promising target for cancer therapy.
Collapse
Affiliation(s)
- Hui Li
- a Department of Pathology , School of Medicine, Zhejiang University , Hangzhou , China.,b Key Laboratory of Disease Proteomics of Zhejiang Province , Hangzhou , China
| | - Fangying Xu
- a Department of Pathology , School of Medicine, Zhejiang University , Hangzhou , China.,b Key Laboratory of Disease Proteomics of Zhejiang Province , Hangzhou , China
| | - Si Li
- a Department of Pathology , School of Medicine, Zhejiang University , Hangzhou , China.,b Key Laboratory of Disease Proteomics of Zhejiang Province , Hangzhou , China
| | - Anjing Zhong
- a Department of Pathology , School of Medicine, Zhejiang University , Hangzhou , China.,b Key Laboratory of Disease Proteomics of Zhejiang Province , Hangzhou , China
| | - Xianwen Meng
- c State Key Laboratory of Plant Physiology and Biochemistry, Department of Bioinformatics, College of Life Sciences, Zhejiang University , Hangzhou , China
| | - Maode Lai
- a Department of Pathology , School of Medicine, Zhejiang University , Hangzhou , China.,b Key Laboratory of Disease Proteomics of Zhejiang Province , Hangzhou , China
| |
Collapse
|
32
|
Hoshino A, Costa-Silva B, Shen TL, Rodrigues G, Hashimoto A, Tesic Mark M, Molina H, Kohsaka S, Di Giannatale A, Ceder S, Singh S, Williams C, Soplop N, Uryu K, Pharmer L, King T, Bojmar L, Davies AE, Ararso Y, Zhang T, Zhang H, Hernandez J, Weiss JM, Dumont-Cole VD, Kramer K, Wexler LH, Narendran A, Schwartz GK, Healey JH, Sandstrom P, Labori KJ, Kure EH, Grandgenett PM, Hollingsworth MA, de Sousa M, Kaur S, Jain M, Mallya K, Batra SK, Jarnagin WR, Brady MS, Fodstad O, Muller V, Pantel K, Minn AJ, Bissell MJ, Garcia BA, Kang Y, Rajasekhar VK, Ghajar CM, Matei I, Peinado H, Bromberg J, Lyden D. Tumour exosome integrins determine organotropic metastasis. Nature 2015. [PMID: 26524530 DOI: 10.1038/nature 15756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Ever since Stephen Paget's 1889 hypothesis, metastatic organotropism has remained one of cancer's greatest mysteries. Here we demonstrate that exosomes from mouse and human lung-, liver- and brain-tropic tumour cells fuse preferentially with resident cells at their predicted destination, namely lung fibroblasts and epithelial cells, liver Kupffer cells and brain endothelial cells. We show that tumour-derived exosomes uptaken by organ-specific cells prepare the pre-metastatic niche. Treatment with exosomes from lung-tropic models redirected the metastasis of bone-tropic tumour cells. Exosome proteomics revealed distinct integrin expression patterns, in which the exosomal integrins α6β4 and α6β1 were associated with lung metastasis, while exosomal integrin αvβ5 was linked to liver metastasis. Targeting the integrins α6β4 and αvβ5 decreased exosome uptake, as well as lung and liver metastasis, respectively. We demonstrate that exosome integrin uptake by resident cells activates Src phosphorylation and pro-inflammatory S100 gene expression. Finally, our clinical data indicate that exosomal integrins could be used to predict organ-specific metastasis.
Collapse
Affiliation(s)
- Ayuko Hoshino
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA
| | - Bruno Costa-Silva
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA
| | - Tang-Long Shen
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA.,Department of Plant Pathology and Microbiology and Center for Biotechnology, National Taiwan University, Taipei 10617, Taiwan
| | - Goncalo Rodrigues
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA.,Graduate Program in Areas of Basic and Applied Biology, Abel Salazar Biomedical Sciences Institute, University of Porto, 4099-003 Porto, Portugal
| | - Ayako Hashimoto
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA.,Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tokyo, Tokyo 113-8655, Japan
| | - Milica Tesic Mark
- Proteomics Resource Center, The Rockefeller University, New York, New York 10065, USA
| | - Henrik Molina
- Proteomics Resource Center, The Rockefeller University, New York, New York 10065, USA
| | - Shinji Kohsaka
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Angela Di Giannatale
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA
| | - Sophia Ceder
- Department of Oncology and Pathology, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Swarnima Singh
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA
| | - Caitlin Williams
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA
| | - Nadine Soplop
- Electron Microscopy Resource Center (EMRC), Rockefeller University, New York, New York 10065, USA
| | - Kunihiro Uryu
- Electron Microscopy Resource Center (EMRC), Rockefeller University, New York, New York 10065, USA
| | - Lindsay Pharmer
- Breast Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, 10065, USA
| | - Tari King
- Breast Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, 10065, USA
| | - Linda Bojmar
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA.,Department of Surgery, County Council of Östergötland, and Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, 58185 Linköping, Sweden
| | - Alexander E Davies
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Yonathan Ararso
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA
| | - Tuo Zhang
- Genomics Resources Core Facility, Weill Cornell Medicine, New York, New York 10021, USA
| | - Haiying Zhang
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA
| | - Jonathan Hernandez
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA.,Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Joshua M Weiss
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA
| | - Vanessa D Dumont-Cole
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Kimberly Kramer
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Leonard H Wexler
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Aru Narendran
- Division of Pediatric Oncology, Alberta Children's Hospital, Calgary, Alberta T3B 6A8, Canada
| | - Gary K Schwartz
- Division of Hematology/Oncology, Columbia University School of Medicine, New York, New York 10032, USA
| | - John H Healey
- Orthopaedic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Per Sandstrom
- Department of Surgery, County Council of Östergötland, and Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, 58185 Linköping, Sweden
| | - Knut Jørgen Labori
- Department of Hepato-Pancreato-Biliary Surgery, Oslo University Hospital, Nydalen, Oslo 0424, Norway
| | - Elin H Kure
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Nydalen, Oslo 0424, Norway
| | - Paul M Grandgenett
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Michael A Hollingsworth
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Maria de Sousa
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA.,Graduate Program in Areas of Basic and Applied Biology, Abel Salazar Biomedical Sciences Institute, University of Porto, 4099-003 Porto, Portugal
| | - Sukhwinder Kaur
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Kavita Mallya
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - William R Jarnagin
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Mary S Brady
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA.,Gastric and Mixed Tumor Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Oystein Fodstad
- Department of Tumor Biology, Norwegian Radium Hospital, Oslo University Hospital, Nydalen, Oslo 0424, Norway.,Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Blindern, Oslo 0318, Norway
| | - Volkmar Muller
- Department of Gynecology, University Medical Center, Martinistrasse 52, 20246 Hamburg, Germany
| | - Klaus Pantel
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Andy J Minn
- Department of Radiation Oncology, Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Mina J Bissell
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey 08903, USA
| | - Vinagolu K Rajasekhar
- Breast Medicine Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Cyrus M Ghajar
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Irina Matei
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA
| | - Hector Peinado
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA.,Microenvironment and Metastasis Laboratory, Department of Molecular Oncology, Spanish National Cancer Research Center (CNIO), Madrid 28029, Spain
| | - Jacqueline Bromberg
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA.,Department of Medicine, Weill Cornell Medicine, New York, New York 10021, USA
| | - David Lyden
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA.,Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
33
|
Hoshino A, Costa-Silva B, Shen TL, Rodrigues G, Hashimoto A, Tesic Mark M, Molina H, Kohsaka S, Di Giannatale A, Ceder S, Singh S, Williams C, Soplop N, Uryu K, Pharmer L, King T, Bojmar L, Davies AE, Ararso Y, Zhang T, Zhang H, Hernandez J, Weiss JM, Dumont-Cole VD, Kramer K, Wexler LH, Narendran A, Schwartz GK, Healey JH, Sandstrom P, Labori KJ, Kure EH, Grandgenett PM, Hollingsworth MA, de Sousa M, Kaur S, Jain M, Mallya K, Batra SK, Jarnagin WR, Brady MS, Fodstad O, Muller V, Pantel K, Minn AJ, Bissell MJ, Garcia BA, Kang Y, Rajasekhar VK, Ghajar CM, Matei I, Peinado H, Bromberg J, Lyden D. Tumour exosome integrins determine organotropic metastasis. Nature 2015; 527:329-35. [PMID: 26524530 PMCID: PMC4788391 DOI: 10.1038/nature15756] [Citation(s) in RCA: 3655] [Impact Index Per Article: 365.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 09/29/2015] [Indexed: 12/11/2022]
Abstract
Ever since Stephen Paget’s 1889 hypothesis, metastatic organotropism has remained one of cancer’s greatest mysteries. Here we demonstrate that exosomes from mouse and human lung-, liver- and brain-tropic tumour cells fuse preferentially with resident cells at their predicted destination, namely lung fibroblasts and epithelial cells, liver Kupffer cells and brain endothelial cells. We show that tumour-derived exosomes uptaken by organ-specific cells prepare the pre-metastatic niche. Treatment with exosomes from lung-tropic models redirected the metastasis of bone-tropic tumour cells. Exosome proteomics revealed distinct integrin expression patterns, in which the exosomal integrins α6β4 and α6β1 were associated with lung metastasis, while exosomal integrin αvβ5 was linked to liver metastasis. Targeting the integrins α6β4 and αvβ5 decreased exosome uptake, as well as lung and liver metastasis, respectively. We demonstrate that exosome integrin uptake by resident cells activates Src phosphorylation and pro-inflammatory S100 gene expression. Finally, our clinical data indicate that exosomal integrins could be used to predict organ-specific metastasis.
Collapse
Affiliation(s)
- Ayuko Hoshino
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA
| | - Bruno Costa-Silva
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA
| | - Tang-Long Shen
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA.,Department of Plant Pathology and Microbiology and Center for Biotechnology, National Taiwan University, Taipei 10617, Taiwan
| | - Goncalo Rodrigues
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA.,Graduate Program in Areas of Basic and Applied Biology, Abel Salazar Biomedical Sciences Institute, University of Porto, 4099-003 Porto, Portugal
| | - Ayako Hashimoto
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA.,Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tokyo, Tokyo 113-8655, Japan
| | - Milica Tesic Mark
- Proteomics Resource Center, The Rockefeller University, New York, New York 10065, USA
| | - Henrik Molina
- Proteomics Resource Center, The Rockefeller University, New York, New York 10065, USA
| | - Shinji Kohsaka
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Angela Di Giannatale
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA
| | - Sophia Ceder
- Department of Oncology and Pathology, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Swarnima Singh
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA
| | - Caitlin Williams
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA
| | - Nadine Soplop
- Electron Microscopy Resource Center (EMRC), Rockefeller University, New York, New York 10065, USA
| | - Kunihiro Uryu
- Electron Microscopy Resource Center (EMRC), Rockefeller University, New York, New York 10065, USA
| | - Lindsay Pharmer
- Breast Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, 10065, USA
| | - Tari King
- Breast Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, 10065, USA
| | - Linda Bojmar
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA.,Department of Surgery, County Council of Östergötland, and Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, 58185 Linköping, Sweden
| | - Alexander E Davies
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Yonathan Ararso
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA
| | - Tuo Zhang
- Genomics Resources Core Facility, Weill Cornell Medicine, New York, New York 10021, USA
| | - Haiying Zhang
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA
| | - Jonathan Hernandez
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA.,Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Joshua M Weiss
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA
| | - Vanessa D Dumont-Cole
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Kimberly Kramer
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Leonard H Wexler
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Aru Narendran
- Division of Pediatric Oncology, Alberta Children's Hospital, Calgary, Alberta T3B 6A8, Canada
| | - Gary K Schwartz
- Division of Hematology/Oncology, Columbia University School of Medicine, New York, New York 10032, USA
| | - John H Healey
- Orthopaedic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Per Sandstrom
- Department of Surgery, County Council of Östergötland, and Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, 58185 Linköping, Sweden
| | - Knut Jørgen Labori
- Department of Hepato-Pancreato-Biliary Surgery, Oslo University Hospital, Nydalen, Oslo 0424, Norway
| | - Elin H Kure
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Nydalen, Oslo 0424, Norway
| | - Paul M Grandgenett
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Michael A Hollingsworth
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Maria de Sousa
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA.,Graduate Program in Areas of Basic and Applied Biology, Abel Salazar Biomedical Sciences Institute, University of Porto, 4099-003 Porto, Portugal
| | - Sukhwinder Kaur
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Kavita Mallya
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - William R Jarnagin
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Mary S Brady
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA.,Gastric and Mixed Tumor Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Oystein Fodstad
- Department of Tumor Biology, Norwegian Radium Hospital, Oslo University Hospital, Nydalen, Oslo 0424, Norway.,Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Blindern, Oslo 0318, Norway
| | - Volkmar Muller
- Department of Gynecology, University Medical Center, Martinistrasse 52, 20246 Hamburg, Germany
| | - Klaus Pantel
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Andy J Minn
- Department of Radiation Oncology, Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Mina J Bissell
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey 08903, USA
| | - Vinagolu K Rajasekhar
- Breast Medicine Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Cyrus M Ghajar
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Irina Matei
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA
| | - Hector Peinado
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA.,Microenvironment and Metastasis Laboratory, Department of Molecular Oncology, Spanish National Cancer Research Center (CNIO), Madrid 28029, Spain
| | - Jacqueline Bromberg
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA.,Department of Medicine, Weill Cornell Medicine, New York, New York 10021, USA
| | - David Lyden
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA.,Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
34
|
Cox MC, Reese LM, Bickford LR, Verbridge SS. Toward the Broad Adoption of 3D Tumor Models in the Cancer Drug Pipeline. ACS Biomater Sci Eng 2015; 1:877-894. [PMID: 33429520 DOI: 10.1021/acsbiomaterials.5b00172] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Despite a cost of approximately $1 billion to develop a new cancer drug, about 90% of drugs that enter clinical trials fail. A tremendous opportunity exists to streamline the drug selection and testing process, and innovative approaches promise to reduce the burdensome cost of health care for those suffering from cancer. There is great potential for 3D models of human tumors to complement more traditional testing methods; however, the shift from 2D to 3D assays at early stages of the drug discovery and development process is far from widely accepted. 3D platforms range from simple tumor spheroids to more complex microfluidic hydrogels that better mimic the tumor microenvironment. While several companies have developed and patented advanced high-throughput 3D platforms for drug screening, their cost and complexity have limited their adoption as an industry standard. In this review, we will highlight the various tumor platforms that have been developed, emphasizing the approaches that have successfully led to commercial products. We will then consider potential directions toward more relevant tumor models, advantages of the adoption of such platforms within the drug development and screening process, and new opportunities in personalized medicine that such platforms will uniquely enable.
Collapse
Affiliation(s)
- Megan C Cox
- School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Blacksburg, Virginia 24061, United States
| | - Laura M Reese
- School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Blacksburg, Virginia 24061, United States
| | - Lissett R Bickford
- School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Blacksburg, Virginia 24061, United States
| | - Scott S Verbridge
- School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Blacksburg, Virginia 24061, United States
| |
Collapse
|
35
|
Chang H, Dong T, Ma X, Zhang T, Chen Z, Yang Z, Zhang Y. Spondin 1 promotes metastatic progression through Fak and Src dependent pathway in human osteosarcoma. Biochem Biophys Res Commun 2015; 464:45-50. [DOI: 10.1016/j.bbrc.2015.05.092] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 05/28/2015] [Indexed: 10/23/2022]
|
36
|
Hosaka N, Ohe C, Miyasaka C, Nakano Y, Sakaida N, Uemura Y, Saito Y, Ikehara S, Tsubura A, Takahashi H. The role of CD5 expression in thymic carcinoma: possible mechanism for interaction with CD5+lymphoid stroma (microenvironment). Histopathology 2015; 68:450-5. [DOI: 10.1111/his.12742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 05/24/2015] [Indexed: 11/27/2022]
Affiliation(s)
- Naoki Hosaka
- Department of Pathology; Kori Hospital-Kansai Medical University; Osaka Japan
- Department of Clinical Sciences and Laboratory Medicine; Kansai Medical University; Osaka Japan
| | - Chisato Ohe
- Department of Diagnostic Pathology; Hirakata Hospital-Kansai Medical University; Osaka Japan
| | - Chika Miyasaka
- Department of Diagnostic Pathology; Hirakata Hospital-Kansai Medical University; Osaka Japan
| | - Yorika Nakano
- Department of Diagnostic Pathology; Hirakata Hospital-Kansai Medical University; Osaka Japan
| | - Noriko Sakaida
- Department of Diagnostic Pathology; Hirakata Hospital-Kansai Medical University; Osaka Japan
| | - Yoshiko Uemura
- Department of Diagnostic Pathology; Hirakata Hospital-Kansai Medical University; Osaka Japan
| | - Yukihito Saito
- Division of Thoracic Surgery; Hirakata Hospital-Kansai Medical University; Osaka Japan
| | - Susumu Ikehara
- Department of Stem Cell Disorders; Kansai Medical University; Osaka Japan
| | - Airo Tsubura
- Department of Pathology II; Kansai Medical University; Osaka Japan
| | - Hakuo Takahashi
- Department of Clinical Sciences and Laboratory Medicine; Kansai Medical University; Osaka Japan
| |
Collapse
|
37
|
Cichon MA, Radisky DC. Extracellular matrix as a contextual determinant of transforming growth factor-β signaling in epithelial-mesenchymal transition and in cancer. Cell Adh Migr 2015; 8:588-94. [PMID: 25482625 PMCID: PMC4594483 DOI: 10.4161/19336918.2014.972788] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Extracellular matrix (ECM) provides both structural support and contextual information to cells within tissues and organs. The combination of biochemical and biomechanical signals from the ECM modulates responses to extracellular signals toward differentiation, proliferation, or apoptosis; alterations in the ECM are necessary for development and remodeling processes, but aberrations in the composition and organization of ECM are associated with disease pathology and can predispose to development of cancer. The primary cell surface sensors of the ECM are the integrins, which provide the physical connection between the ECM and the cytoskeleton and also convey biochemical information about the composition of the ECM. Transforming growth factor-β (TGF-β) is an extracellular signaling molecule that is a powerful controller of a variety of cellular functions, and that has been found to induce very different outcomes according to cell type and cellular context. It is becoming clear that ECM-mediated signaling through integrins is reciprocally influenced by TGF-β: integrin expression, activation, and responses are affected by cellular exposure to TGF-β, and TGF-β activation and cellular responses are in turn controlled by signaling from the ECM through integrins. Epithelial-mesenchymal transition (EMT), a physiological process that is activated by TGF-β in normal development and in cancer, is also affected by the composition and structure of the ECM. Here, we will outline how signaling from the ECM controls the contextual response to TGF-β, and how this response is selectively modulated during disease, with an emphasis on recent findings, current challenges, and future opportunities.
Collapse
|
38
|
Fu Y, Feng MX, Yu J, Ma MZ, Liu XJ, Li J, Yang XM, Wang YH, Zhang YL, Ao JP, Xue F, Qin W, Gu J, Xia Q, Zhang ZG. DNA methylation-mediated silencing of matricellular protein dermatopontin promotes hepatocellular carcinoma metastasis by α3β1 integrin-Rho GTPase signaling. Oncotarget 2015; 5:6701-15. [PMID: 25149533 PMCID: PMC4196157 DOI: 10.18632/oncotarget.2239] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Dermatopontin (DPT), a tyrosine-rich, acidic matricellular protein, has been implicated in several human cancers. However, its biological functions and molecular mechanisms in cancer progression, particular hepatocellular carcinoma (HCC), remain unknown. We demonstrated that DPT was significantly down-regulated in 202 HCC clinical samples and that its expression level was closely correlated with cancer metastasis and patient prognosis. The overexpression of DPT dramatically suppressed HCC cell migration in vitro and intrahepatic metastasis in vivo. We further revealed that the down-regulation of DPT in HCC was due to epigenetic silencing by promoter DNA methylation. And the inhibitory effects of DPT on HCC cell motility were associated with dysregulated focal adhesion assembly, decreased RhoA activity and reduced focal adhesion kinase (FAK) and c-Src tyrosine kinase (Src) phosphorylation, and all of these alterations required the involvement of integrin signaling. Furthermore, we determined that the inhibitory effects of DPT on HCC cell motility were primarily mediated through α3β1 integrin. Our study provides new evidence for epigenetic control of tumor microenvironment, and suggests matricellular protein DPT may serve as a novel prognostic marker and act as a HCC metastasis suppressor.
Collapse
Affiliation(s)
- Ying Fu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. These authors contributed equally to this work
| | - Ming-Xuan Feng
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. These authors contributed equally to this work
| | - Jian Yu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming-Ze Ma
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Jin Liu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. Department of Plastic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jun Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Mei Yang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ya-Hui Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan-Li Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun-Ping Ao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Xue
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenxin Qin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianren Gu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhi-Gang Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
39
|
Mi K, Xing Z. CD44(+)/CD24(-) breast cancer cells exhibit phenotypic reversion in three-dimensional self-assembling peptide RADA16 nanofiber scaffold. Int J Nanomedicine 2015; 10:3043-53. [PMID: 25945050 PMCID: PMC4408941 DOI: 10.2147/ijn.s66723] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Background Self-assembling peptide nanofiber scaffolds have been shown to be a permissive biological material for tissue repair, cell proliferation, differentiation, etc. Recently, a subpopulation (CD44+/CD24−) of breast cancer cells has been reported to have stem/progenitor cell properties. The aim of this study was to investigate whether this subpopulation of cancer cells have different phenotypes in self-assembling COCH3-RADARADARADARADA-CONH2 (RADA16) peptide nanofiber scaffold compared with Matrigel® (BD Biosciences, Two Oak Park, Bedford, MA, USA) and collagen I. Methods CD44 and CD24 expression was determined by flow cytometry. Cell proliferation was measured by 5-bromo-2′-deoxyuridine assay and DNA content measurement. Immunostaining was used to indicate the morphologies of cells in three-dimensional (3D) cultures of different scaffolds and the localization of β-catenin in the colonies. Western blot was used to determine the expression of signaling proteins. In vitro migration assay and inoculation into nude mice were used to evaluate invasion and tumorigenesis in vivo. Results The breast cancer cell line MDA-MB-435S contained a high percentage (>99%) of CD44+/CD24− cells, which exhibited phenotypic reversion in 3D RADA16 nanofiber scaffold compared with collagen I and Matrigel. The newly formed reverted acini-like colonies reassembled a basement membrane and reorganized their cytoskeletons. At the same time, cells cultured and embedded in RADA16 peptide scaffold exhibited growth arrest. Also, they exhibited different migration potential, which links their migration ability with their cellular morphology. Consistent with studies in vitro, the in vivo tumor formation assay further supported of the functional changes caused by the reversion in 3D RADA16 culture. Expression levels of intercellular surface adhesion molecule-1 were upregulated in cells cultured in RADA16 scaffolds, and the NF-kappa B inhibitor pyrrolidine dithiocarbamate could inhibit RADA16-induced upregulation of intercellular surface adhesion molecule-1 and the phenotype reversion of MDA-MB-453S cells. Conclusion Culturing a CD44+/CD24−-enriched breast cancer cell population in 3D RADA16 peptide nanofiber scaffold led to a significant phenotypic reversion compared with Matrigel and collagen I.
Collapse
Affiliation(s)
- Kun Mi
- Department of Biochemistry and Molecular Biology, Sichuan Cancer Hospital and Institute, Chengdu, People's Republic of China
| | - Zhihua Xing
- Laboratory of Ethnopharmacology, Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
40
|
Coleman SJ, Watt J, Arumugam P, Solaini L, Carapuca E, Ghallab M, Grose RP, Kocher HM. Pancreatic cancer organotypics: High throughput, preclinical models for pharmacological agent evaluation. World J Gastroenterol 2014; 20:8471-8481. [PMID: 25024603 PMCID: PMC4093698 DOI: 10.3748/wjg.v20.i26.8471] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 01/15/2014] [Accepted: 04/01/2014] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer carries a terrible prognosis, as the fourth most common cause of cancer death in the Western world. There is clearly a need for new therapies to treat this disease. One of the reasons no effective treatment has been developed in the past decade may in part, be explained by the diverse influences exerted by the tumour microenvironment. The tumour stroma cross-talk in pancreatic cancer can influence chemotherapy delivery and response rate. Thus, appropriate preclinical in vitro models which can bridge simple 2D in vitro cell based assays and complex in vivo models are required to understand the biology of pancreatic cancer. Here we discuss the evolution of 3D organotypic models, which recapitulare the morphological and functional features of pancreatic ductal adenocarcinoma (PDAC). Organotypic cultures are a valid high throughput preclinical in vitro model that maybe a useful tool to help establish new therapies for PDAC. A huge advantage of the organotypic model system is that any component of the model can be easily modulated in a short time-frame. This allows new therapies that can target the cancer, the stromal compartment or both to be tested in a model that mirrors the in vivo situation. A major challenge for the future is to expand the cellular composition of the organotypic model to further develop a system that mimics the PDAC environment more precisely. We discuss how this challenge is being met to increase our understanding of this terrible disease and develop novel therapies that can improve the prognosis for patients.
Collapse
|
41
|
Volckaert T, De Langhe S. Lung epithelial stem cells and their niches: Fgf10 takes center stage. FIBROGENESIS & TISSUE REPAIR 2014; 7:8. [PMID: 24891877 PMCID: PMC4041638 DOI: 10.1186/1755-1536-7-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 04/04/2014] [Indexed: 12/20/2022]
Abstract
Throughout life adult animals crucially depend on stem cell populations to maintain and repair their tissues to ensure life-long organ function. Stem cells are characterized by their capacity to extensively self-renew and give rise to one or more differentiated cell types. These powerful stem cell properties are key to meet the changing demand for tissue replacement during normal lung homeostasis and regeneration after lung injury. Great strides have been made over the last few years to identify and characterize lung epithelial stem cells as well as their lineage relationships. Unfortunately, knowledge on what regulates the behavior and fate specification of lung epithelial stem cells is still limited, but involves communication with their microenvironment or niche, a local tissue environment that hosts and influences the behaviors or characteristics of stem cells and that comprises other cell types and extracellular matrix. As such, an intimate and dynamic epithelial-mesenchymal cross-talk, which is also essential during lung development, is required for normal homeostasis and to mount an appropriate regenerative response after lung injury. Fibroblast growth factor 10 (Fgf10) signaling in particular seems to be a well-conserved signaling pathway governing epithelial-mesenchymal interactions during lung development as well as between different adult lung epithelial stem cells and their niches. On the other hand, disruption of these reciprocal interactions leads to a dysfunctional epithelial stem cell-niche unit, which may culminate in chronic lung diseases such as chronic obstructive pulmonary disease (COPD), chronic asthma and idiopathic pulmonary fibrosis (IPF).
Collapse
Affiliation(s)
- Thomas Volckaert
- Department of Pediatrics, Division of Cell Biology, National Jewish Health, 1400 Jackson St, Denver, CO 80206, USA ; The Inflammation Research Center, Unit of Molecular Signal Transduction in Inflammation, VIB, Technologiepark 927, 9052 Ghent, Belgium ; Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052 Ghent, Belgium
| | - Stijn De Langhe
- Department of Pediatrics, Division of Cell Biology, National Jewish Health, 1400 Jackson St, Denver, CO 80206, USA ; Department of Cellular and Developmental Biology, School of Medicine, University of Colorado Denver, 12605 E 16th Avenue, Aurora CO 80045, USA
| |
Collapse
|
42
|
Abstract
FGFR (fibroblast growth factor receptor) signalling plays critical roles in embryogensis, adult physiology, tissue repair and many pathologies. Of particular interest over recent years, it has been implicated in a wide range of cancers, and concerted efforts are underway to target different aspects of FGFR signalling networks. A major focus has been identifying the canonical downstream signalling pathways in cancer cells, and these are now relatively well understood. In the present review, we focus on two distinct but emerging hot topics in FGF biology: its role in stromal cross-talk during cancer progression and the potential roles of FGFR signalling in the nucleus. These neglected areas are proving to be of great interest clinically and are intimately linked, at least in pancreatic cancer. The importance of the stroma in cancer is well accepted, both as a conduit/barrier for treatment and as a target in its own right. Nuclear receptors are less acknowledged as targets, largely due to historical scepticism as to their existence or importance. However, increasing evidence from across the receptor tyrosine kinase field is now strong enough to make the study of nuclear growth factor receptors a major area of interest.
Collapse
|
43
|
Shin Y, Kim H, Han S, Won J, Jeong HE, Lee E, Kamm RD, Kim J, Chung S. Extracellular matrix heterogeneity regulates three-dimensional morphologies of breast adenocarcinoma cell invasion. Adv Healthc Mater 2013. [PMID: 23184641 DOI: 10.1002/adhm.201200320] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Plasticity and reciprocity of breast cancer cells to various extracellular matrice (ECMs) are three-dimensionally analyzed in quantitative way in a novel and powerful microfluidic in vitro platform. This successfully demonstrates the metastatic potential of cancer cells and their effective strategies of ECM proteolytic remodeling and morphological change, while interacting with other cells and invading into heterogeneous ECMs.
Collapse
Affiliation(s)
- Yoojin Shin
- School of Mechanical Engineering, Korea University, Anam‐Dong, Seongbuk‐Gu, Seoul 136‐713, Korea
| | - Hyunju Kim
- College of Life Science and Biotechnology, Korea University, Anam‐Dong, Seongbuk‐Gu, Seoul 136‐701, Korea
| | - Sewoon Han
- School of Mechanical Engineering, Korea University, Anam‐Dong, Seongbuk‐Gu, Seoul 136‐713, Korea
| | - Jihee Won
- School of Mechanical Engineering, Korea University, Anam‐Dong, Seongbuk‐Gu, Seoul 136‐713, Korea
| | - Hyo Eun Jeong
- School of Mechanical Engineering, Korea University, Anam‐Dong, Seongbuk‐Gu, Seoul 136‐713, Korea
| | - Eun‐Sook Lee
- National Cancer Center, Madu 1‐dong, Ilsandong‐gu, Goyang‐si, Gyeonggi‐do 410‐769, Korea
| | - Roger D. Kamm
- Department of Mechanical Engineering and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jae‐Hong Kim
- College of Life Science and Biotechnology, Korea University, Anam‐Dong, Seongbuk‐Gu, Seoul 136‐701, Korea
| | - Seok Chung
- School of Mechanical Engineering, Korea University, Anam‐Dong, Seongbuk‐Gu, Seoul 136‐713, Korea
| |
Collapse
|
44
|
Zhang J, Valianou M, Simmons H, Robinson MK, Lee HO, Mullins SR, Marasco WA, Adams GP, Weiner LM, Cheng JD. Identification of inhibitory scFv antibodies targeting fibroblast activation protein utilizing phage display functional screens. FASEB J 2012; 27:581-9. [PMID: 23104982 DOI: 10.1096/fj.12-210377] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Fibroblast activation protein (FAP) is a serine protease selectively expressed on tumor stromal fibroblasts in epithelial carcinomas and is important in cancer growth, adhesion, and metastases. As FAP enzymatic activity is a potent therapeutic target, we aimed to identify inhibitory antibodies. Using a competitive inhibition strategy, we used phage display techniques to identify 53 single-chain variable fragments (scFvs) after three rounds of panning against FAP. These scFvs were expressed and characterized for binding to FAP by surface plasmon resonance and flow cytometry. Functional assessment of these antibodies yielded an inhibitory scFv antibody, named E3, which could attenuate 35% of FAP cleavage of the fluorescent substrate Ala-Pro-7-amido-4-trifluoromethylcoumarin compared with nonfunctional scFv control. Furthermore, a mutant E3 scFv was identified by yeast affinity maturation. It had higher affinity (4-fold) and enhanced inhibitory effect on FAP enzyme activity (3-fold) than E3. The application of both inhibitory anti-FAP scFvs significantly affected the formation of 3-dimensional FAP-positive cell matrix, as demonstrated by reducing the fibronectin fiber orientation from 41.18% (negative antibody control) to 34.06% (E3) and 36.15% (mutant E3), respectively. Thus, we have identified and affinity-maturated the first scFv antibody capable of inhibiting FAP function. This scFv antibody has the potential to disrupt the role of FAP in tumor invasion and metastasis.
Collapse
Affiliation(s)
- Jiping Zhang
- Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, PA 19111-2497, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Zhang J, Liu J. Tumor stroma as targets for cancer therapy. Pharmacol Ther 2012; 137:200-15. [PMID: 23064233 DOI: 10.1016/j.pharmthera.2012.10.003] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 10/01/2012] [Indexed: 12/16/2022]
Abstract
Cancer is not only composed malignant epithelial component but also stromal components such as fibroblasts, endothelial cells, and inflammatory cells, by which an appropriate tumor microenvironment (TME) is formed to promote tumorigenesis, progression, and metastasis. As the most abundant component in the TME, cancer-associated fibroblasts (CAFs) are involved in multifaceted mechanistic details including remodeling the extracellular matrix, suppressing immune responses, and secreting growth factors and cytokines that mediate signaling pathways to extensively affect tumor cell growth and invasiveness, differentiation, angiogenesis, and chronic inflammatory milieu. Today, more and more therapeutic strategies are purposefully designed to target the TME as well as tumor cells. This review will focus on the role of CAFs in tumor development and the novel strategies to target this component to inhibit the tumor growth.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Pathology, State Key Laboratory of Tumor Biology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China.
| | | |
Collapse
|
46
|
Ambekar R, Lau TY, Walsh M, Bhargava R, Toussaint KC. Quantifying collagen structure in breast biopsies using second-harmonic generation imaging. BIOMEDICAL OPTICS EXPRESS 2012; 3:2021-35. [PMID: 23024898 PMCID: PMC3447546 DOI: 10.1364/boe.3.002021] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 07/19/2012] [Accepted: 08/04/2012] [Indexed: 05/18/2023]
Abstract
Quantitative second-harmonic generation imaging is employed to assess stromal collagen in normal, hyperplastic, dysplastic, and malignant breast tissues. The cellular scale organization is quantified using Fourier transform-second harmonic generation imaging (FT-SHG), while the molecular scale organization is quantified using polarization-resolved second-harmonic generation measurements (P-SHG). In the case of FT-SHG, we apply a parameter that quantifies the regularity in collagen fiber orientation and find that malignant tissue contains locally aligned fibers compared to other tissue conditions. Alternatively, using P-SHG we calculate the ratio of tensor elements (d(15)/d(31), d(22)/d(31), and d(33)/d(31)) of the second-order susceptibility χ(2) for collagen fibers in breast biopsies. In particular, d(15)/d(31) shows potential differences across the tissue pathology. We also find that trigonal symmetry (3m) is a more appropriate model to describe collagen fibers in malignant tissues as opposed to the conventionally used hexagonal symmetry (C6). This novel method of targeting collagen fibers using a combination of two quantitative SHG techniques, FT-SHG and P-SHG, holds promise for breast tissue analysis and applications to characterizing cancer in a manner that is compatible with clinical practice.
Collapse
Affiliation(s)
- Raghu Ambekar
- Photonics Research of Bio/nano Environments (PROBE), Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, 1206 W Green St, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, 1406 W Green St, Urbana, IL 61801, USA
| | - Tung-Yuen Lau
- Photonics Research of Bio/nano Environments (PROBE), Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, 1206 W Green St, Urbana, IL 61801, USA
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, 1206 W Green St, Urbana, IL 61801, USA
| | - Michael Walsh
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, 405 North Mathews Avenue, Urbana, IL 61801, USA
| | - Rohit Bhargava
- Department of Bioengineering, University of Illinois Urbana-Champaign, 1304 W Springfield Avenue, Urbana, IL 61801, USA
| | - Kimani C. Toussaint
- Photonics Research of Bio/nano Environments (PROBE), Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, 1206 W Green St, Urbana, IL 61801, USA
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, 1206 W Green St, Urbana, IL 61801, USA
- Affiliate in the departments of Electrical and Computer Engineering, and Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
47
|
Type IV collagen as a tumour marker for colorectal liver metastases. Eur J Surg Oncol 2011; 37:611-7. [DOI: 10.1016/j.ejso.2011.04.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 02/17/2011] [Accepted: 04/25/2011] [Indexed: 10/18/2022] Open
|
48
|
Liu M, Xu J, Deng H. Tangled fibroblasts in tumor-stroma interactions. Int J Cancer 2011; 129:1795-805. [DOI: 10.1002/ijc.26116] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2010] [Accepted: 03/21/2011] [Indexed: 12/13/2022]
|
49
|
Worthley DL, Giraud AS, Wang TC. The extracellular matrix in digestive cancer. CANCER MICROENVIRONMENT 2010; 3:177-85. [PMID: 21209783 DOI: 10.1007/s12307-010-0053-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2010] [Accepted: 09/06/2010] [Indexed: 01/01/2023]
Abstract
The extracellular components of the cancer microenvironment play a critical role in tumor initiation, progression and invasion. In this review we examine the normal formation and function of the basement membrane and extracellular matrix. We characterize the interactions between the matrix and the epithelium and explore the causes and consequences of the extracellular remodeling that accompanies carcinogenesis. Finally, we address the therapeutic possibilities of incorporating matrix as well as epithelial strategies in the management of digestive cancer.
Collapse
|
50
|
Worthley DL, Giraud AS, Wang TC. Stromal fibroblasts in digestive cancer. CANCER MICROENVIRONMENT : OFFICIAL JOURNAL OF THE INTERNATIONAL CANCER MICROENVIRONMENT SOCIETY 2010; 3:117-25. [PMID: 21209778 PMCID: PMC2970811 DOI: 10.1007/s12307-009-0033-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Accepted: 12/21/2009] [Indexed: 12/14/2022]
Abstract
The normal gastrointestinal stroma consists of extra-cellular matrix and a community of stromal cells including fibroblasts, myofibroblasts, smooth muscle cells, pericytes, endothelium and inflammatory cells. α-smooth muscle actin (α-SMA) positive stromal fibroblasts, often referred to as myofibroblasts or activated fibroblasts, are critical in the development of digestive cancer and help to create an environment that is permissive of tumor growth, angiogenesis and invasion. This review focusses on the contribution of activated fibroblasts in carcinogenesis and where possible directly applies this to, and draws on examples from, gastrointestinal cancer. In particular, the review expands on the definition, types and origins of activated fibroblasts. It examines the molecular biology of stromal fibroblasts and their contribution to the peritumoral microenvironment and concludes by exploring some of the potential clinical applications of this exciting branch of cancer research. Understanding the origin and biology of activated fibroblasts will help in the development of an integrated epithelial-stromal sequence to cancer that will ultimately inform cancer pathogenesis, natural history and future therapeutics.
Collapse
Affiliation(s)
- Daniel L. Worthley
- Royal Brisbane and Women’s Hospital Research Foundation Clinical Research Centre, Brisbane, Queensland Australia
- Conjoint Gastroenterology Laboratory, Queensland Institute of Medical Research, Brisbane, Queensland Australia
| | - Andrew S. Giraud
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, Victoria Australia
| | - Timothy C. Wang
- Division of Liver and Digestive Diseases, Department of Medicine, Columbia University Medical Center, 1130 St. Nicholas Avenue, Room 923, New York, NY 10032 USA
| |
Collapse
|