1
|
Lin L, Xie L, Huang L, Huang L, Wu Y. Splitting and separation mechanism of tenofovir alafenamide fumarate chiral isomers based on indirect chiral ligand exchange chromatography. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:7898-7907. [PMID: 39431429 DOI: 10.1039/d4ay01388c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
The isolation and analysis of chiral isomers are critical parts of the drug development process to ensure effective and safe drug administration to patients. Indirect chiral ligand exchange chromatography (ICLEC) was developed to separate and determine tenofovir alafenamide fumarate (TAF) and its diastereoisomer GS-7339, with a hypothesized separation mechanism. The effect of using a chiral column versus a standard C18 column on the separation of the TAF chiral isomer mixture was investigated. Various factors in ICLEC, including ligand type, ligand ratio, mobile phase composition, and column temperature, were optimized. The separation of TAF and GS-7339 was successfully achieved by selecting L-phenylalanine as the chiral selective agent and Cu(II) as the central metal ion, using a C18 column as the analytic column and a mobile phase of 20 mM ammonium dihydrogen phosphate buffer (pH = 4.0)-acetonitrile (79 : 21, v/v). The corresponding linearity range for TAF and GS-7339 indicated a good correlation with R2 > 0.9960. The average recoveries of TAF and GS-7339 ranged from 98.2% to 106.9%. None of the eight manufacturers detected GS-7339, and the percentage of TAF-labeled amounts in the drugs ranged from 95.0% to 98.5%. TAF tablets from eight manufacturers were of satisfactory quality. The separation mechanism of TAF and GS-7339 by ICLEC is due to the different spatial configurations of the two ternary complexes formed by the two chiral isomers, leading to differences in their thermodynamic stability and retention behavior. The established ICLEC method is economical, simple, and flexible, providing an effective strategy for studying chiral drug separation and analysis.
Collapse
Affiliation(s)
- Li Lin
- School of Pharmacy, Fujian Medical University, 1 Xuefu North Road University Town, Fuzhou, Fujian, 350122, China.
- Fuzhou Second Hospital, Fuzhou, Fujian, 350007, China
| | - Longchao Xie
- School of Pharmacy, Fujian Medical University, 1 Xuefu North Road University Town, Fuzhou, Fujian, 350122, China.
| | - Lingyi Huang
- School of Pharmacy, Fujian Medical University, 1 Xuefu North Road University Town, Fuzhou, Fujian, 350122, China.
| | - Liying Huang
- School of Pharmacy, Fujian Medical University, 1 Xuefu North Road University Town, Fuzhou, Fujian, 350122, China.
| | - Youjia Wu
- School of Pharmacy, Fujian Medical University, 1 Xuefu North Road University Town, Fuzhou, Fujian, 350122, China.
| |
Collapse
|
2
|
De Clercq E, Li G, Zhang Y, Huang J, Tan L. Unachieved antiviral strategies with acyclic nucleoside phosphonates: Dedicated to the memory of dr. Salvatore "Sam" Joseph Enna. Biochem Pharmacol 2024; 228:116448. [PMID: 39043335 DOI: 10.1016/j.bcp.2024.116448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 07/25/2024]
Abstract
Many acyclic nucleoside phosphonates such as cidofovir, adefovir dipivoxil, tenofovir disoproxil fumarate, and tenofovir alafenamide have been marketed for the treatment or prophylaxis of infectious diseases. Here, this review highlights potent acyclic nucleoside phosphonates for their potential in the treatment of retrovirus (e.g., human immunodeficiency virus) and DNA virus (e.g., adeno-, papilloma-, herpes- and poxvirus) infections. If properly assessed and/or optimized, some potent acyclic nucleoside phosphonates can be possibly applied in the control of current and emerging infectious diseases.
Collapse
Affiliation(s)
- Erik De Clercq
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Leuven 3000, Belgium
| | - Guangdi Li
- Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Yun Zhang
- Huaihua City Maternal and Child Health Care Hospital, Huaihua 418000, China
| | - Jie Huang
- Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Li Tan
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Hunan Clinical Molecular Diagnosis Center, Molecular Diagnostic Technology Hunan Engineering Research Center, Clinical Medical Research Center for Molecular Diagnosis of Infectious Diseases in Hunan Province, Changsha 410011, China.
| |
Collapse
|
3
|
Li M, Zhou T, Zhang QW. Chiral Analysis of the Key Intermediates of Tenofovir Alafenamide Fumarate. PHARMACEUTICAL FRONTS 2023. [DOI: 10.1055/s-0043-1763512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
Abstract(R)-Tenofovir phenyl ester ((R)-1) and (R)-tenofovir diphenyl ester ((R)-2) are key intermediates for the practical synthesis of tenofovir alafenamide fumarate, which is a mainstay antiretroviral for the treatment of chronic hepatitis B and HIV-1 infections. This article deals with the chiral analysis of (R)-1 and (R)-2 against their respective optical impurity (S)-tenofovir phenyl ester ((S)-1) and (S)-tenofovir diphenyl ester ((S)-2) using a polysaccharide-coated chiral stationary phase (CSP) by normal-phase high-performance liquid chromatography (HPLC). To this end, a chiral synthetic strategy for (S)-2 was efficiently executed capitalizing on a classical Mitsunobu reaction to stereospecifically invert the configuration of chiral carbon in readily accessible (R)-HPA ((R)-4) to deliver (S)-HPA ((S)-4), from which (S)--tenofovir ((S)-3) was in turn prepared and further transformed into (S)-2. With reference substance (S)-2 in hand, a chiral analytical method for (R)-2 using Chiralpak AD-H as CSP by normal-phase HPLC has been developed and validated. The validation results indicated that this chiral analytical method has been achieved with satisfactory separation effect, high sensitivity, and good precision and accuracy, and thus can be deployed for the determination of optical impurities in samples of (R)-1 (via derivation to (R)-2) and (R)-2.
Collapse
Affiliation(s)
- Man Li
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| | - Ting Zhou
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| | - Qing-Wen Zhang
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| |
Collapse
|
4
|
Li G, Wang Y, De Clercq E. Approved HIV reverse transcriptase inhibitors in the past decade. Acta Pharm Sin B 2022; 12:1567-1590. [PMID: 35847492 PMCID: PMC9279714 DOI: 10.1016/j.apsb.2021.11.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/13/2021] [Accepted: 11/08/2021] [Indexed: 01/09/2023] Open
Abstract
HIV reverse transcriptase (RT) inhibitors are the important components of highly active antiretroviral therapies (HAARTs) for anti-HIV treatment and pre-exposure prophylaxis in clinical practice. Many RT inhibitors and their combination regimens have been approved in the past ten years, but a review on their drug discovery, pharmacology, and clinical efficacy is lacking. Here, we provide a comprehensive review of RT inhibitors (tenofovir alafenamide, rilpivirine, doravirine, dapivirine, azvudine and elsulfavirine) approved in the past decade, regarding their drug discovery, pharmacology, and clinical efficacy in randomized controlled trials. Novel RT inhibitors such as islatravir, MK-8504, MK-8507, MK8583, IQP-0528, and MIV-150 will be also highlighted. Future development may focus on the new generation of novel antiretroviral inhibitors with higher bioavailability, longer elimination half-life, more favorable side-effect profiles, fewer drug-drug interactions, and higher activities against circulating drug-resistant strains.
Collapse
Key Words
- 3TC, (−)-2′,3′-dideoxy-3′-thiacytidine (common name, lamivudine)
- ABC, abacavir
- ATV, atazanavir
- AZT, 3′-azido-3′-deoxy-thymidine (common name, zidovudine)
- BIC, bictegravir
- CAB, cabotegravir
- CC50, the 50% cytotoxic concentration
- COBI, cobicistat
- Clinical efficacy
- DOR, doravirine
- DPV, dapivirine
- DRV, darunavir
- DTG, dolutegravir
- EACS, European AIDS Clinical Society
- EC50, half maximal effective concentration
- EFV, efavirenz
- ESV, elsulfavirine
- EVG, elvitegravir
- F, bioavailability
- FDA, US Food and Drug Administration
- FTC, (−)-2′,3′-dideoxy-5-fluoro-3′-thiacytidine (common name, emtricitabine)
- HAART
- HAART, highly active antiretroviral therapy
- HIV treatment
- HIV, human immunodeficiency virus
- IAS-USA, International Antiviral Society-USA
- IC50, half maximal inhibitory concentration
- MSM, men who have sex with men
- NNRTI
- NNRTI, non-nucleoside reverse transcriptase inhibitor
- NRTI
- NRTI, nucleoside/nucleotide reverse transcriptase inhibitor
- RPV, rilpivirine
- TAF, tenofovir alafenamide
- TDF, tenofovir disoproxil fumarate
- t1/2, elimination half-life
Collapse
Affiliation(s)
- Guangdi Li
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Yali Wang
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Erik De Clercq
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven B-3000, Belgium
| |
Collapse
|
5
|
Synthesis, characterization and electrochemical behavior of new bis(fluoroalkyl) ferrocenylphosphonates and their tin tetrachloride complexes. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2021.122178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Kalčic F, Zgarbová M, Hodek J, Chalupský K, Dračínský M, Dvořáková A, Strmeň T, Šebestík J, Baszczyňski O, Weber J, Mertlíková-Kaiserová H, Janeba Z. Discovery of Modified Amidate (ProTide) Prodrugs of Tenofovir with Enhanced Antiviral Properties. J Med Chem 2021; 64:16425-16449. [PMID: 34713696 DOI: 10.1021/acs.jmedchem.1c01444] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This study describes the discovery of novel prodrugs bearing tyrosine derivatives instead of the phenol moiety present in FDA-approved tenofovir alafenamide fumarate (TAF). The synthesis was optimized to afford diastereomeric mixtures of novel prodrugs in one pot (yields up to 86%), and the epimers were resolved using a chiral HPLC column into fast-eluting and slow-eluting epimers. In human lymphocytes, the most efficient tyrosine-based prodrug reached a single-digit picomolar EC50 value against HIV-1 and nearly 300-fold higher selectivity index (SI) compared to TAF. In human hepatocytes, the most efficient prodrugs exhibited subnanomolar EC50 values for HBV and up to 26-fold higher SI compared to TAF. Metabolic studies demonstrated markedly higher cellular uptake of the prodrugs and substantially higher levels of released tenofovir inside the cells compared to TAF. These promising results provide a strong foundation for further evaluation of the reported prodrugs and their potential utility in the development of highly potent antivirals.
Collapse
Affiliation(s)
- Filip Kalčic
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Prague 2, Czech Republic
| | - Michala Zgarbová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Prague 6, Czech Republic
| | - Jan Hodek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Prague 6, Czech Republic
| | - Karel Chalupský
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Prague 6, Czech Republic
| | - Martin Dračínský
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Prague 6, Czech Republic
| | - Alexandra Dvořáková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Prague 6, Czech Republic
| | - Timotej Strmeň
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Prague 6, Czech Republic
| | - Jaroslav Šebestík
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Prague 6, Czech Republic
| | - Ondřej Baszczyňski
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Prague 2, Czech Republic
| | - Jan Weber
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Prague 6, Czech Republic
| | - Helena Mertlíková-Kaiserová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Prague 6, Czech Republic
| | - Zlatko Janeba
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Prague 6, Czech Republic
| |
Collapse
|
7
|
Serpi M, Pertusati F. An overview of ProTide technology and its implications to drug discovery. Expert Opin Drug Discov 2021; 16:1149-1161. [PMID: 33985395 DOI: 10.1080/17460441.2021.1922385] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: The ProTide technology is a phosphate (or phosphonate) prodrug method devised to deliver nucleoside monophosphate (or monophosphonate) intracellularly bypassing the key challenges of antiviral and anticancer nucleoside analogs. Three new antiviral drugs, exploiting this technology, have been approved by the FDA while others are in clinical studies as anticancer agents.Areas covered: The authors describe the origin and development of this technology and its incredible success in transforming the drug discovery of antiviral and anticancer nucleoside analogues. As evidence, discussion on the antiviral ProTides on the market, and those currently in clinical development are included. The authors focus on how the proven capacity of this technology to generate new drug candidates has stimulated its application to non-nucleoside-based molecules.Expert opinion: The ProTide approach has been extremely successful in delivering blockbuster antiviral medicines and it seems highly promising in oncology. Its application to non-nucleoside-based small molecules is recently emerging and proving effective in other therapeutic areas. However, investigations to explain the lack of activity of certain ProTide series and comprehensive structure activity relationship studies to identify the appropriate phosphoramidate motifs depending on the parent molecule are in our opinion mandatory for the future development of these compounds.
Collapse
Affiliation(s)
| | - Fabrizio Pertusati
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| |
Collapse
|
8
|
Laribi F, Sanhoury MAK, Mechi H, Merlet D, Chehidi I. Synthesis and characterization of new highly fluorinated phosphoramidates. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1910847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- F. Laribi
- Laboratory of Structural Organic Chemistry: Synthesis and Physico-Chemical Studies, Department of Chemistry, Faculty of Sciences of Tunis, University of Tunis El-Manar, Tunis, Tunisia
- Laboratoire de RMN en Milieu Orienté, Université Paris-Sud 11, ICMMO, UMR CNRS 8182, France
| | - M. A. K. Sanhoury
- Laboratory of Structural Organic Chemistry: Synthesis and Physico-Chemical Studies, Department of Chemistry, Faculty of Sciences of Tunis, University of Tunis El-Manar, Tunis, Tunisia
- Materials Chemistry Research Unit, Department of Chemistry, Faculty of Sciences and Techniques, UNA, Nouakchott, Mauritania
| | - H. Mechi
- Laboratory of Structural Organic Chemistry: Synthesis and Physico-Chemical Studies, Department of Chemistry, Faculty of Sciences of Tunis, University of Tunis El-Manar, Tunis, Tunisia
| | - D. Merlet
- Laboratoire de RMN en Milieu Orienté, Université Paris-Sud 11, ICMMO, UMR CNRS 8182, France
| | - I. Chehidi
- Laboratory of Structural Organic Chemistry: Synthesis and Physico-Chemical Studies, Department of Chemistry, Faculty of Sciences of Tunis, University of Tunis El-Manar, Tunis, Tunisia
| |
Collapse
|
9
|
Li L, Yin XH, Diao KS. Improving the solubility and bioavailability of anti-hepatitis B drug PEC via PEC–fumaric acid cocrystal. RSC Adv 2020; 10:36125-36134. [PMID: 35517067 PMCID: PMC9056957 DOI: 10.1039/d0ra06608g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/23/2020] [Indexed: 11/21/2022] Open
Abstract
A cocrystal of PEC with fumaric acid (FUA) (PEC–FUA, 1 : 1) was successfully obtained and characterized. The mean AUC0–24 h of the cocrystal is about 4.2 times that of free PEC.
Collapse
Affiliation(s)
- Long Li
- Sichuan Kelun Pharmaceutical Research Institute Co., Ltd
- Chengdu 610000
- China
| | - Xian-Hong Yin
- College of Chemistry and Chemical Engineering
- Guangxi University for Nationalities
- Nanning
- China
| | - Kai-Sheng Diao
- College of Chemistry and Chemical Engineering
- Guangxi University for Nationalities
- Nanning
- China
| |
Collapse
|
10
|
Njenda DT, Aralaguppe SG, Singh K, Rao R, Sönnerborg A, Sarafianos SG, Neogi U. Antiretroviral potency of 4'-ethnyl-2'-fluoro-2'-deoxyadenosine, tenofovir alafenamide and second-generation NNRTIs across diverse HIV-1 subtypes. J Antimicrob Chemother 2019; 73:2721-2728. [PMID: 30053052 DOI: 10.1093/jac/dky256] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/04/2018] [Indexed: 01/21/2023] Open
Abstract
Objectives 4'-Ethnyl-2'-fluoro-2'-deoxyadenosine (EFdA) is a novel translocation-defective reverse transcriptase inhibitor. We investigated the virological and biochemical inhibitory potentials of EFdA against a broad spectrum of subtype-specific chimeric viruses and compared it with tenofovir alafenamide, nevirapine, efavirenz, rilpivirine and etravirine. Methods pNL4.3 chimeric viruses encoding gag-pol from treatment-naive patients (n = 24) and therapy-failure patients (n = 3) and a panel of reverse transcriptase inhibitor-resistant strains (n = 7) were used to compare the potency of reverse transcriptase inhibitor drugs. The phenotypic drug susceptibility assay was performed using TZM-bl cells. In vitro inhibition assays were done using patient-derived reverse transcriptase. IC50 values of NNRTIs were calculated using a PicoGreen-based spectrophotometric assay. Steady-state kinetics were used to determine the apparent binding affinity (Km.dNTP) of triphosphate form of EFdA (EFdA-TP) and dATP. Results Among the chimeric treatment-naive viruses, EFdA had an ex vivo antiretroviral activity [median (IQR) EC50 = 1.4 nM (0.6-2.1 nM)] comparable to that of tenofovir alafenamide [1.6 nM (0.5-3.6 nM)]. Subtype-specific differences were found for etravirine (P = 0.004) and rilpivirine (P = 0.017), where HIV-1C had the highest EC50 values. EFdA had a greater comparative efficiency [calculated by dividing the efficiency of monophosphate form of EFdA (EFdA-MP) incorporation (kcat.EFdA-TP/Km.EFdA-TP) over the efficiency of dATP incorporation (kcat.dATP/Km.dATP)] compared with the natural substrate dATP, with a fold change of between 1.6 and 3.2. Ex vivo analysis on reverse transcriptase inhibitor-resistant strains showed EFdA to have a higher potency. Despite the presence of rilpivirine DRMs, some non-B strains showed hypersusceptibility to rilpivirine. Conclusions Our combined virological and biochemical data suggest that EFdA inhibits both WT and reverse transcriptase inhibitor-resistant viruses efficiently in a subtype-independent manner. In contrast, HIV-1C is least susceptible to etravirine and rilpivirine.
Collapse
Affiliation(s)
- Duncan T Njenda
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Stockholm, Sweden.,Division of Medical Virology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Shambhu G Aralaguppe
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Kamalendra Singh
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Stockholm, Sweden.,Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, USA.,Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Rohit Rao
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Anders Sönnerborg
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Stockholm, Sweden.,Division of Infectious Diseases, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Stefan G Sarafianos
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, USA.,Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.,Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Ujjwal Neogi
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Stockholm, Sweden
| |
Collapse
|
11
|
Affiliation(s)
- Imran Ali
- Department of Chemistry, College of Sciences, Taibah University, Al-Madinah Al-Munawarah, Kingdom of Saudi Arabia
- Department of Chemistry, Jamia Millia Islamia (Central University), New Delhi, India
| | - Mohd. Suhail
- Department of Chemistry, Jamia Millia Islamia (Central University), New Delhi, India
| | - Hassan Y. Aboul-Enein
- Pharmaceutical and Medicinal Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Dokki, Cairo, Egypt
| |
Collapse
|
12
|
Synthesis and Evaluation of Biological Activity of New Arylphosphoramidates. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4567019. [PMID: 30225254 PMCID: PMC6129324 DOI: 10.1155/2018/4567019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 08/05/2018] [Indexed: 11/17/2022]
Abstract
The synthesis of new substituted arylphosphoramidates is performed in two steps through phosphorylation of the corresponding alcohols followed by aminolysis. The formation of the desired phosphoramidates depends on the subsequent addition of the two alcohols with the amine being added at the last step. The products were obtained in 58-95% yields. They were characterized mainly by multinuclear (1H, 13C, 31P, and 19F) NMR and IR spectroscopy. In addition, the antimicrobial and antiacetylcholinesterase activities were evaluated. The results showed acetylcholinesterase activity by some compounds, whilst no significant inhibitory effect against the tested bacterial strains has been recorded.
Collapse
|
13
|
Monroe M, Flexner C, Cui H. Harnessing nanostructured systems for improved treatment and prevention of HIV disease. Bioeng Transl Med 2018; 3:102-123. [PMID: 30065966 PMCID: PMC6063869 DOI: 10.1002/btm2.10096] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/15/2018] [Accepted: 05/17/2018] [Indexed: 12/12/2022] Open
Abstract
Combination antiretroviral therapy effectively controls human immunodeficiency virus (HIV) viral replication, delaying the progression to acquired immune deficiency syndrome and improving and extending quality of life of patients. However, the inability of antiretroviral therapeutics to target latent virus and their poor penetration of viral reserve tissues result in the need for continued treatment for the life of the patient. Side effects from long-term antiretroviral use and the development of drug resistance due to patient noncompliance are also continuing problems. Nanostructured systems of antiretroviral therapeutics have the potential to improve targeted delivery to viral reservoirs, reduce drug toxicity, and increase dosing intervals, thereby improving treatment outcomes and enhancing patient adherence. Despite these advantages, very few nanostructured antiretroviral delivery systems have made it to clinical trials due to challenges in preclinical and clinical development. In this context, we review the current challenges in HIV disease management, and the recent progress in leveraging the unique performance of nanostructured systems in therapeutic delivery for improved treatment and prevention of this incurable human disease.
Collapse
Affiliation(s)
- Maya Monroe
- Dept. of Chemical and Biomolecular Engineering The Johns Hopkins University, 3400 N Charles Street Baltimore MD 21218.,Institute for NanoBioTechnology The Johns Hopkins University, 3400 N Charles Street Baltimore MD 21218
| | - Charles Flexner
- Div. of Clinical Pharmacology and Infectious Diseases Johns Hopkins University School of Medicine and Bloomberg School of Public Health Baltimore MD 21205
| | - Honggang Cui
- Dept. of Chemical and Biomolecular Engineering The Johns Hopkins University, 3400 N Charles Street Baltimore MD 21218.,Institute for NanoBioTechnology The Johns Hopkins University, 3400 N Charles Street Baltimore MD 21218.,Dept. of Oncology, Sidney Kimmel Comprehensive Cancer Center The Johns Hopkins University School of Medicine Baltimore MD 21205.,Center for Nanomedicine The Wilmer Eye Institute, The Johns Hopkins University School of Medicine Baltimore MD 21231
| |
Collapse
|
14
|
Nayab Rasool SK, Babu PH, Janaki Ramudu DB, Jyothi Kumar MV, Appa Rao C, Raju CN. Synthesis and bioactivity evaluation of new phenyl N,N′-phenylphosphorodiamidates. PHOSPHORUS SULFUR 2018. [DOI: 10.1080/10426507.2017.1370468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- SK. Nayab Rasool
- Department of Chemistry, Sri Venkateswara University, Tirupati, Andhra Pradesh, India
| | - P. Hari Babu
- Department of Chemistry, Sri Venkateswara University, Tirupati, Andhra Pradesh, India
| | - D. B. Janaki Ramudu
- Department of Chemistry, Sri Venkateswara University, Tirupati, Andhra Pradesh, India
| | - M. V. Jyothi Kumar
- Department of Biotechnology, Sri Venkateswara University, Tirupati, Andhra Pradesh, India
| | - Ch. Appa Rao
- Department of Bio-Chemistry, Sri Venkateswara University, Tirupati, Andhra Pradesh, India
| | - C. Naga Raju
- Department of Chemistry, Sri Venkateswara University, Tirupati, Andhra Pradesh, India
| |
Collapse
|
15
|
Slusarczyk M, Serpi M, Pertusati F. Phosphoramidates and phosphonamidates (ProTides) with antiviral activity. Antivir Chem Chemother 2018; 26:2040206618775243. [PMID: 29792071 PMCID: PMC5971382 DOI: 10.1177/2040206618775243] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 04/09/2018] [Indexed: 12/15/2022] Open
Abstract
Following the first report on the nucleoside phosphoramidate (ProTide) prodrug approach in 1990 by Chris McGuigan, the extensive investigation of ProTide technology has begun in many laboratories. Designed with aim to overcome limitations and the key resistance mechanisms associated with nucleoside analogues used in the clinic (poor cellular uptake, poor conversion to the 5'-monophosphate form), the ProTide approach has been successfully applied to a vast number of nucleoside analogues with antiviral and anticancer activity. ProTides consist of a 5'-nucleoside monophosphate in which the two hydroxyl groups are masked with an amino acid ester and an aryloxy component which once in the cell is enzymatically metabolized to deliver free 5'-monophosphate, which is further transformed to the active 5'-triphosphate form of the nucleoside analogue. In this review, the seminal contribution of Chris McGuigan's research to this field is presented. His technology proved to be extremely successful in drug discovery and has led to two Food and Drug Administration-approved antiviral agents.
Collapse
Affiliation(s)
| | - Michaela Serpi
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | - Fabrizio Pertusati
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| |
Collapse
|
16
|
Thornton PJ, Kadri H, Miccoli A, Mehellou Y. Nucleoside Phosphate and Phosphonate Prodrug Clinical Candidates. J Med Chem 2016; 59:10400-10410. [DOI: 10.1021/acs.jmedchem.6b00523] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Peter J. Thornton
- School
of Pharmacy, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
- School
of Chemistry, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Hachemi Kadri
- School
of Pharmacy, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Ageo Miccoli
- School
of Chemistry, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Youcef Mehellou
- School
of Pharmacy, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
- School
of Chemistry, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| |
Collapse
|
17
|
Bahri L, Barhoumi-Slimi T, Mallek R, Sanhoury M, Crousse B, Ben Dhia M. One-pot synthesis of new highly substituted allylic phosphorodiamidates. J Fluor Chem 2016. [DOI: 10.1016/j.jfluchem.2016.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
18
|
De Clercq E. Tenofovir alafenamide (TAF) as the successor of tenofovir disoproxil fumarate (TDF). Biochem Pharmacol 2016; 119:1-7. [PMID: 27133890 DOI: 10.1016/j.bcp.2016.04.015] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 04/27/2016] [Indexed: 02/06/2023]
Abstract
Tenofovir alafenamide (TAF) can be considered a new prodrug of tenofovir (TFV), as successor of tenofovir disoproxil fumarate (TDF). It is in vivo as potent against human immunodeficiency virus (HIV) at a 30-fold lower dose (10mg) than TDF (300mg). TAF has been approved in November 2015 (in the US and EU), as a single-tablet regimen (STR) containing 150mg elvitegravir (E), 150mg cobicistat (C), 200mg emtricitabine [(-)FTC] (F) and 10mg TAF, marketed as Genvoya®, on 01 March 2016 in the US as an STR containing 25mg rilpivirine (R), 200mg F and 25mg TAF, marketed as Odefsey®, and on 4 April 2016 in the US, as an STR containing 200mg F and 25mg TAF, marketed as Descovy®, for the treatment of HIV infections. STR combinations containing TAF and emtricitabine could be paired with a range of third agents, for example, darunavir and cobicistat. TAF has a much lower risk of kidney toxicity or bone density changes than TDF, and also offers long-term potential in the pre-exposure prophylaxis (PrEP) of HIV infections. TAF is specifically accumulated in lymphatic tissue, and in the liver, and hence also holds great potential for the treatment of hepatitis B virus (HBV) infections. Akin to TDF, TAF is converted intracellularly to TFV. Its active diphosphate metabolite (TFVpp) is targeted at the RNA-dependent DNA polymerase (reverse transcriptase) of either HIV or HBV.
Collapse
Affiliation(s)
- Erik De Clercq
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Minderbroedersstraat 10, B-3000 Leuven, Belgium.
| |
Collapse
|
19
|
|
20
|
Enzymatic synthesis of acyclic nucleoside thiophosphonate diphosphates: Effect of the α-phosphorus configuration on HIV-1 RT activity. Antiviral Res 2015; 117:122-31. [DOI: 10.1016/j.antiviral.2015.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 02/27/2015] [Accepted: 03/02/2015] [Indexed: 01/08/2023]
|
21
|
A Rapid and Sensitive LC Method for Determination of Diastereomeric Purity of Tenofovir Alafenamide. Chromatographia 2014. [DOI: 10.1007/s10337-014-2745-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
22
|
De Clercq E. Dancing with chemical formulae of antivirals: a personal account. Biochem Pharmacol 2013; 86:711-25. [PMID: 23876344 DOI: 10.1016/j.bcp.2013.07.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 07/08/2013] [Accepted: 07/08/2013] [Indexed: 02/08/2023]
Abstract
A chemical structure is a joy forever, and this is how I perceived the chemical structures of a number of antiviral compounds with which I have been personally acquainted over the past 3 decades: (1) amino acid esters of acyclovir (i.e. valaciclovir); (2) 5-substituted 2'-deoxyuridines (i.e. brivudin); (3) 2',3'-dideoxynucleoside analogues (i.e. stavudine); (4) acyclic nucleoside phosphonates (ANPs) (i.e. cidofovir, adefovir); (5) tenofovir disoproxil fumarate (TDF) and drug combinations therewith; (6) tenofovir alafenamide (TAF, GS-7340), a new phosphonoamidate prodrug of tenofovir; (7) pro-prodrugs of PMEG (i.e. GS-9191 and GS-9219); (8) new ANPs: O-DAPy and 5-aza-C phosphonates; (9) non-nucleoside reverse transcriptase inhibitors (NNRTIs): HEPT and TIBO derivatives; and (10) bicyclam derivatives (i.e. AMD3100).
Collapse
Affiliation(s)
- Erik De Clercq
- Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium.
| |
Collapse
|
23
|
De Clercq E. A cutting-edge view on the current state of antiviral drug development. Med Res Rev 2013; 33:1249-77. [PMID: 23495004 DOI: 10.1002/med.21281] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Prominent in the current stage of antiviral drug development are: (i) for human immunodeficiency virus (HIV), the use of fixed-dose combinations (FDCs), the most recent example being Stribild(TM); (ii) for hepatitis C virus (HCV), the pleiade of direct-acting antivirals (DAAs) that should be formulated in the most appropriate combinations so as to obtain a cure of the infection; (iii)-(v) new strategies (i.e., AIC316, AIC246, and FV-100) for the treatment of herpesvirus infections: herpes simplex virus (HSV), cytomegalovirus (CMV), and varicella-zoster virus (VZV), respectively; (vi) the role of a new tenofovir prodrug, tenofovir alafenamide (TAF) (GS-7340) for the treatment of HIV infections; (vii) the potential use of poxvirus inhibitors (CMX001 and ST-246); (viii) the usefulness of new influenza virus inhibitors (peramivir and laninamivir octanoate); (ix) the position of the hepatitis B virus (HBV) inhibitors [lamivudine, adefovir dipivoxil, entecavir, telbivudine, and tenofovir disoproxil fumarate (TDF)]; and (x) the potential of new compounds such as FGI-103, FGI-104, FGI-106, dUY11, and LJ-001 for the treatment of filoviruses (i.e., Ebola). Whereas for HIV and HCV therapy is aimed at multiple-drug combinations, for all other viruses, HSV, CMV, VZV, pox, influenza, HBV, and filoviruses, current strategies are based on the use of single compounds.
Collapse
Affiliation(s)
- Erik De Clercq
- Rega Institute for Medical Research, KU Leuven, B-3000, Leuven, Belgium.
| |
Collapse
|
24
|
Bao D, Ross BS, Sofia MJ. A liquid chromatography-tandem mass spectrometry method for the quantitative determination of diastereomers of a phosphoramidate nucleotide prodrug (PSI-7851) in human plasma. Biomed Chromatogr 2011; 26:583-8. [PMID: 21842514 DOI: 10.1002/bmc.1678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 06/24/2011] [Accepted: 06/28/2011] [Indexed: 11/11/2022]
Abstract
A rapid and stereospecific method using high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) for the separation and determination of PSI-7851 diastereomers in human K₂EDTA plasma has been developed. The analytical method involves direct protein precipitation with acetonitrile, followed by separation of the diastereomers on a Luna C₁₈ column, positive mode electrospray ionization and selected reaction monitoring mode mass spectrometry detection. The mobile phase composition and pH were investigated for the resolution of the two diastereomers of PSI-7851. The optimized method showed good resolution (R(s) = 4.8) within short analysis time (approximately 8 min). The assay range was 5-2500 ng/mL for both diastereomers using a 1/x² weighted linear regression analysis for standard curve fitting. Replicate sample analysis indicated that intra- and inter-day accuracy and precision were within ±15.0%. The recovery of diastereomers from human plasma was greater than 85% and no significant matrix effect was observed. The method was demonstrated to be sensitive, selective and robust, and was successfully used to support clinical studies.
Collapse
Affiliation(s)
- Donghui Bao
- Pharmasset, Inc., 303A College Road East, Princeton, NJ 08540, USA.
| | | | | |
Collapse
|
25
|
Roman CA, Balzarini J, Meier C. Diastereoselective synthesis of aryloxy phosphoramidate prodrugs of 3'-deoxy-2',3'-didehydrothymidine monophosphate. J Med Chem 2010; 53:7675-81. [PMID: 20945915 DOI: 10.1021/jm100817f] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The first diastereoselective synthesis of aryloxy phosphoramidate prodrugs of 3'-deoxy-2',3'-didehydrothymidine monophosphate (d4TMP) is reported. In our approach, (S)-4-isopropylthiazolidine-2-thione 1 was used as a chiral auxiliary to introduce the stereochemistry at the phosphorus atom. In the last step of the developed reaction sequence, the nucleoside analogue d4T was introduced to a stereochemically pure phosphordiamidate which led to the formation of the almost diastereomerically pure phosphoramidate prodrugs 8a-d (≥95% de). As expected, the individually prepared diastereomers of the phosphoramidate prodrugs showed significant differences in the antiviral activity. Moreover, the difference was strongly dependent on the aryl substituent attached to the phosphoramidate moiety.
Collapse
Affiliation(s)
- Cristina Arbelo Roman
- Department of Chemistry, Faculty of Science, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | | | | |
Collapse
|
26
|
Separation of diastereoisomers of Ara-C phosphotriesters using solid phase extraction and HPLC for the study of their decomposition kinetic in cell extracts. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877:3475-81. [DOI: 10.1016/j.jchromb.2009.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Revised: 07/17/2009] [Accepted: 08/03/2009] [Indexed: 11/24/2022]
|
27
|
Affiliation(s)
- Scott J. Hecker
- Metabasis Therapeutics, Inc., 11119 North Torrey Pines Road, La Jolla, California 92037
| | - Mark D. Erion
- Metabasis Therapeutics, Inc., 11119 North Torrey Pines Road, La Jolla, California 92037
| |
Collapse
|
28
|
Cong J, Lin B. Separation of Liquiritin by simulated moving bed chromatography. J Chromatogr A 2007; 1145:190-4. [PMID: 17289063 DOI: 10.1016/j.chroma.2007.01.088] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Revised: 01/22/2007] [Accepted: 01/25/2007] [Indexed: 11/22/2022]
Abstract
Liquiritin was extracted from the natural product Licorice, and then purified using a three-zone simulated moving bed set up in our laboratory, with a C(18)-bonded silica as the stationary phase and an aqueous solution of ethanol as the mobile phase. The isotherm parameters of Liquiritin and of the only closely eluting impurity were obtained using the inverse method, fitting the experimental elution profiles to calculated elution profiles, assuming a binary Langmuir isotherm model as an approximation. The operating parameters of the simulated moving bed were selected according to the Equilibrium Theory. This allowed the preparation of 85% pure Liquiritin. Finally, 99% pure Liquiritin was obtained through a last step of recrystallization.
Collapse
Affiliation(s)
- Jingxiang Cong
- School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | | |
Collapse
|
29
|
Venkatachalam TK, Qazi S, Uckun FM. Synthesis and metabolism of naphthyl substituted phosphoramidate derivatives of stavudine. Bioorg Med Chem 2006; 14:5161-77. [PMID: 16697204 DOI: 10.1016/j.bmc.2006.04.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2006] [Revised: 04/03/2006] [Accepted: 04/04/2006] [Indexed: 11/19/2022]
Abstract
The synthesis of naphthylphosphoramidate derivatives of stavudine was achieved using a four-step procedure. The derivatives were subjected to several different enzymes including lipase, esterase, Subtilisin Carlsberg, and Carica papaya, and their hydrolysis rates were determined. Based on the rates of hydrolysis, we were able to differentiate between the chiralities at the phosphorus center of the phosphoramidate compounds. In addition, lipase was found to distinguish between both alpha and beta forms of the compounds. The superior chiral selectivity shown by lipase toward the naphthyl substituted phosphoramidate derivatives is attributed to the restrictive binding pocket of the lipase.
Collapse
Affiliation(s)
- T K Venkatachalam
- Department of Chemistry, Parker Hughes Institute, Roseville, MN 55113, USA
| | | | | |
Collapse
|
30
|
Keith KA, Hitchcock MJM, Lee WA, Holý A, Kern ER. Evaluation of nucleoside phosphonates and their analogs and prodrugs for inhibition of orthopoxvirus replication. Antimicrob Agents Chemother 2003; 47:2193-8. [PMID: 12821467 PMCID: PMC161877 DOI: 10.1128/aac.47.7.2193-2198.2003] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the event of a bioterrorism attack using smallpox virus, there currently is no approved drug for the treatment of infections with this virus. We have reported previously that (S)-1-[3-hydroxy-2-(phosphonomethoxy)propyl]cytosine (HPMPC) (also known as cidofovir [CDV]) has good activity against poxvirus infections; however, a major limitation is the requirement for intravenous administration. Two related acyclic nucleoside phosphonates (ANPs), adefovir (PMEA) and tenofovir (PMPA), are active against human immunodeficiency virus or hepatitis B virus but do not have activity against the orthopoxviruses. Therefore, we have evaluated a number of analogs and potential oral prodrugs of these three compounds for their ability to inhibit the replication of vaccinia virus or cowpox virus in tissue culture cells. The most-active compounds within the CDV series were (S)-HPMPA and (butyl L-alaninyl) cyclic HPMPC, with 50% effective concentrations (EC(50)s) from 4 to 8 microM, compared with 33 to 43 microM for CDV. Although PMEA itself was not active, adefovir dipivoxil [bis[(pivaloyl)oxymethyl] PMEA] and bis(butyl L-alaninyl) PMEA were active against both viruses, and bis(butyl L-alaninyl) PME-N6-(cyclopropyl)DAP and (isopropyl L-alaninyl)phenyl PME-N6-(cyclopropyl)DAP were the most active compounds tested, with EC(50)s of 0.1 to 2.6 microM. In the PMPA series, none of the analogs tested had significantly better activity than PMPA itself. These data indicate that a number of these ANP derivatives have activity against vaccinia virus and cowpox virus in vitro and should be evaluated for their efficacies in animal models.
Collapse
Affiliation(s)
- Kathy A Keith
- University of Alabama School of Medicine, Birmingham, Alabama 35233, USA.
| | | | | | | | | |
Collapse
|
31
|
Mesplet N, Saito Y, Morin P, Agrofoglio LA. Liquid chromatographic separation of phosphoramidate diastereomers on a polysaccharide-type chiral stationary phase. J Chromatogr A 2003; 983:115-24. [PMID: 12568375 DOI: 10.1016/s0021-9673(02)01738-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
To improve the therapeutic potential of anti-HIV nucleoside analogues (d4T, AZT, 3TC and ddl), the delivery of the corresponding monophosphate from neutral, membrane-permeable prodrugs has been realised by the synthesis of lipophilic phosphoramidate triester prodrugs, such as the simple phenyl-L-alaninephosphate derivatives. However, the present non-stereoselective synthesis results in a mixture of 1:1 diastereomers, which differ from the configuration of the phosphorus atom asymmetric center. Since each diastereomer may have different biological activity and pharmacokinetic profile, analytical methods have to be developed for their separation. This work aims at showing the ability of a polysaccharide-type chiral stationary phase to resolve such diastereomers in reversed-phase high-performance liquid chromatography. The influence of operating parameters has been studied to optimise the separation; a thermodynamic approach has also been investigated to gain an insight in the retention mechanism of the prodrugs. Preliminary validation study (linearity, accuracy, repeatability) has yielded good results; in addition, the feasibility of HPLC-electrospray-mass spectrometry (HPLC-ESI-MS) coupling has been demonstrated and it is expected that this will lead to lower detection limits.
Collapse
Affiliation(s)
- Nathalie Mesplet
- Institut de Chimie Organique et Analytique (I.C.O.A.), CNRS UMR 6005, Université d'Orléans, B.P. 6759, 45067 Orléans Cedex 2, France
| | | | | | | |
Collapse
|
32
|
Abstract
In order to overcome restrictions imposed by activation (phosphorylation) mechanism of antiviral and antitumor nucleoside analogues several prodrug approaches have been designed. Lipophilic pronucleotides are capable of intracellular delivery of monophosphates of nucleoside analogues, thus circumventing the limitations of enzymic phosphorylation. One of the successful approaches employs lipophilic amino acid ester (alanine) phenyl phosphoramidates as pronucleotides. This approach was applied to AIDS drugs such as AZT, d4T and related analogues but also to nonclassical nucleoside analogues based on allenic and methylenecyclopropane structure. Antiviral effects of the parent analogues were in many cases increased by conversion to phenyl phosphoralaninate (PPA) pronucleotides. Although cytotoxicity increase frequently accompanies antiviral effects of these pronucleotides, a favorable selectivity index can be obtained by manipulation of the parent structure as shown, e.g., for 2,6-diaminopurine methylenecyclopropane pronucleotide 15c. A lack of in vivo toxicity was demonstrated for 2-amino-6-methoxypurine methylenecyclopropane pronucleotide 15e in mice. The PPA pronucleotides can overcome deficiency of phosphorylating enzymes and offer favorable cross-resistance patterns when compared with other antiviral drugs.
Collapse
Affiliation(s)
- Jiri Zemlicka
- Department of Chemistry, Developmental Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, 110 E. Warren Ave., Detroit, MI 48201-1379, USA.
| |
Collapse
|