1
|
KOHAMA K. Calcium inhibition as an intracellular signal for actin-myosin interaction. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2016; 92:478-498. [PMID: 27941307 PMCID: PMC5328785 DOI: 10.2183/pjab.92.478] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 10/26/2016] [Indexed: 06/06/2023]
Abstract
Intracellular signaling pathways include both the activation and the inhibition of biological processes. The activation of Ca2+ regulation of actin-myosin interactions was examined first, whereas it took 20 years for the author to clarify the inhibitory mode by using Physarum polycephalum, a lower eukaryote. This review describes the investigation of the inhibitory mode since 1980. The inhibitory effect of Ca2+ on myosin was detected chemically by ATPase assays and mechanically by in vitro motility assays. The Ca2+-binding ability of Physarum myosin is as high as that of scallop myosin. Ca2+ inhibits Physarum myosin, whereas it activates scallop myosin. We cloned cDNA of the myosin heavy chain and light chains to express a hybrid of Physarum and scallop myosin, and found that the Ca-binding light chain (CaLc), which belongs to an alkali light chain class, plays a major role in Ca inhibition. The role of CaLc was confirmed by mutating its EF-hand, Ca-binding structure and expressing Physarum myosin as a recombinant protein. Thus, the data obtained by classical protein purification were confirmed by the results obtained with the modern recombinant techniques. However, there are some discrepancies that remain to be solved as described in Section XII.
Collapse
Affiliation(s)
- Kazuhiro KOHAMA
- Research Institute of Pharmaceutical Sciences, Musashino University, Nishitokyo, Tokyo, Japan
- Professor emeritus, Gunma University, Maebashi, Gunma, Japan
| |
Collapse
|
2
|
Kuroda S, Takagi S, Nakagaki T, Ueda T. Allometry in Physarum plasmodium during free locomotion: size versus shape, speed and rhythm. ACTA ACUST UNITED AC 2015; 218:3729-38. [PMID: 26449972 DOI: 10.1242/jeb.124354] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 09/22/2015] [Indexed: 11/20/2022]
Abstract
Physarum plasmodium is a giant unicellular organism whose length can vary by more than three orders of magnitude. Using plasmodia ranging in size from 100 μm to 10 cm, we investigated the size dependency of their thickness distributions and locomotion speeds during free locomotion. (1) In the longitudinal direction, the organism is thickest close to the front, and decreases exponentially in thickness towards the rear. The slenderness ratio varies with body size according to a power law, such that large plasmodia are long and flat, whereas small plasmodia are short and thick. (2) The mean locomotion speed is proportional to the mean maximum thickness of the frontal part. By conducting a dimensional analysis, possible physical models are discussed. (3) The intrinsic period of the thickness oscillation, which is related to shuttle streaming (period 1-2 min), increases logarithmically with body size. (4) Various characteristics exhibit size-independent, long-period (20±10 min) oscillations, including speed, shape and intrinsic thickness oscillation period. These variations are closely coupled to formation of the entire cell shape, including undulation of thickness along the longitudinal axis and timing of branching of the frontal tip. Based on these experimental results and those reported previously, we propose a simple mathematical model for cell locomotion.
Collapse
Affiliation(s)
- Shigeru Kuroda
- Research Institute for Electric Science, Hokkaido University, N20W10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan
| | - Seiji Takagi
- The School of Systems Information Science, Future University Hakodate, 116-2 Kamedanakano-cho, Hakodate, Hokkaido 041-8655, Japan
| | - Toshiyuki Nakagaki
- Research Institute for Electric Science, Hokkaido University, N20W10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan
| | - Tetsuo Ueda
- Research Institute for Electric Science, Hokkaido University, N20W10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan
| |
Collapse
|
3
|
Rieu JP, Delanoë-Ayari H, Takagi S, Tanaka Y, Nakagaki T. Periodic traction in migrating large amoeba of Physarum polycephalum. J R Soc Interface 2015; 12:20150099. [PMID: 25808339 PMCID: PMC4424688 DOI: 10.1098/rsif.2015.0099] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 02/26/2015] [Indexed: 11/12/2022] Open
Abstract
The slime mould Physarum polycephalum is a giant multinucleated cell exhibiting well-known Ca(2+)-dependent actomyosin contractions of its vein network driving the so-called cytoplasmic shuttle streaming. Its actomyosin network forms both a filamentous cortical layer and large fibrils. In order to understand the role of each structure in the locomotory activity, we performed birefringence observations and traction force microscopy on excised fragments of Physarum. After several hours, these microplasmodia adopt three main morphologies: flat motile amoeba, chain types with round contractile heads connected by tubes and motile hybrid types. Each type exhibits oscillations with a period of about 1.5 min of cell area, traction forces and fibril activity (retardance) when fibrils are present. The amoeboid types show only peripheral forces while the chain types present a never-reported force pattern with contractile rings far from the cell boundary under the spherical heads. Forces are mostly transmitted where the actomyosin cortical layer anchors to the substratum, but fibrils maintain highly invaginated structures and contribute to forces by increasing the length of the anchorage line. Microplasmodia are motile only when there is an asymmetry in the shape and/or the force distribution.
Collapse
Affiliation(s)
- Jean-Paul Rieu
- Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne cedex, France
| | - Hélène Delanoë-Ayari
- Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne cedex, France
| | - Seiji Takagi
- Research Institute for Electronic Science, Hokkaido University, N20W10, Sapporo 060-0806, Japan
| | - Yoshimi Tanaka
- Graduate School of Environment and Information Sciences, Yokohama National University, 79-7 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Toshiyuki Nakagaki
- Research Institute for Electronic Science, Hokkaido University, N20W10, Sapporo 060-0806, Japan JST, CREST, 5, Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| |
Collapse
|
4
|
Pickett-Heaps J, Forer A. Mitosis: spindle evolution and the matrix model. PROTOPLASMA 2009; 235:91-99. [PMID: 19255823 DOI: 10.1007/s00709-009-0030-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Accepted: 01/07/2009] [Indexed: 05/27/2023]
Abstract
Current spindle models explain "anaphase A" (movement of chromosomes to the poles) in terms of a motility system based solely on microtubules (MTs) and that functions in a manner unique to mitosis. We find both these propositions unlikely. An evolutionary perspective suggests that when the spindle evolved, it should have come to share not only components (e.g., microtubules) of the interphase cell but also the primitive motility systems available, including those using actin and myosin. Other systems also came to be involved in the additional types of motility that now accompany mitosis in extant spindles. The resultant functional redundancy built reliability into this critical and complex process. Such multiple mechanisms are also confusing to those who seek to understand how chromosomes move. Narrowing this commentary down to just anaphase A, we argue that the spindle matrix participates with MTs in anaphase A and that this matrix may contain actin and myosin. The diatom spindle illustrates how such a system could function. This matrix may be motile and work in association with the MT cytoskeleton, as it does with the actin cytoskeleton during cell ruffling and amoeboid movement. Instead of pulling the chromosome polewards, the kinetochore fibre's role might be to slow polewards movement to allow correct chromosome attachment to the spindle. Perhaps the earliest eukaryotic cell was a cytoplast organised around a radial MT cytoskeleton. For cell division, it separated into two cytoplasts via a spindle of overlapping MTs. Cytokinesis was actin-based cleavage. As chromosomes evolved into individual entities, their interaction with the dividing cytoplast developed into attachment of the kinetochore to radial (cytoplast) MTs. We believe it most likely that cytoplasmic motility systems participated in these events.
Collapse
|
5
|
Nakagaki T, Guy RD. Intelligent behaviors of amoeboid movement based on complex dynamics of soft matter. SOFT MATTER 2007; 4:57-67. [PMID: 32907084 DOI: 10.1039/b706317m] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We review how soft matter is self-organized to perform information processing at the cell level by examining the model organism Physarum plasmodium. The amoeboid organism, Physarum polycephalum, in the class of true slime molds, exhibits the intelligent behavior of foraging in complex situations. When placed in a maze with food sources at two exits, the organism develops tubular structures with its body which connect the food sources along the shortest path so that the rates of nutrient absorption and intracellular communication are maximized. This intelligent behavior results from the organism's control of a dynamic network through which mechanical and chemical information is transmitted. We review experimental studies that explore the development and adaptation of structures that make up the network. Recently a model of the dynamic network has been developed, and we review the formulation of this model and present some key results. The model captures the dynamics of existing networks, but it does not answer the question of how such networks form initially. To address the development of cell shape, we review existing mechanochemical models of the protoplasm of Physarum, present more general models of motile cells, and discuss how to adapt existing models to explore the development of intelligent networks in Physarum.
Collapse
Affiliation(s)
- Toshiyuki Nakagaki
- Creative Research Initiative SOUSEI, Hokkaido University, 001-0021 Sapporo, Japan and Research Institute for Electronic Science, Hokkaido University, 060-0812 Sapporo, Japan.
| | - Robert D Guy
- Department of Mathematics, University of California Davis, Davis, CA, USA.
| |
Collapse
|
6
|
Kakiuchi Y, Takahashi T, Murakami A, Ueda T. Light Irradiation Induces Fragmentation of the Plasmodium, a Novel Photomorphogenesis in the True Slime Mold Physarum polycephalum: Action Spectra and Evidence for Involvement of the Phytochrome¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2001)0730324liifot2.0.co2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Kakiuchi Y, Ueda T. Multiple oscillations in changing cell shape by the plasmodium of Physarum polycephalum: general formula governing oscillatory phenomena by the Physarum plasmodium. BIOL RHYTHM RES 2006. [DOI: 10.1080/09291010500386618] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Yasutaka Kakiuchi
- a Research Institute for Electronic Science , Hokkaido University , Sapporo, 060-0812, Japan
- b Cell Biology and Biochemistry, Faculty of Science , Ochanomizu University , 2-1-1 Ohtsuka, Tokyo, 112-8610, Japan
| | - Tetsuo Ueda
- a Research Institute for Electronic Science , Hokkaido University , Sapporo, 060-0812, Japan
| |
Collapse
|
8
|
Kakiuchi Y, Takahashi T, Murakami A, Ueda T. Light irradiation induces fragmentation of the plasmodium, a novel photomorphogenesis in the true slime mold Physarum polycephalum: action spectra and evidence for involvement of the phytochrome. Photochem Photobiol 2001; 73:324-9. [PMID: 11281031 DOI: 10.1562/0031-8655(2001)073<0324:liifot>2.0.co;2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A new photomorphogenesis was found in the plasmodium of the true slime mold Physarum polycephalum: the plasmodium broke temporarily into equal-sized spherical pieces, each containing about eight nuclei, about 5 h after irradiation with light. Action spectroscopic study showed that UVA, blue and far-red lights were effective, while red light inhibited the far-red-induced fragmentation. Difference absorption spectra of both the living plasmodium and the plasmodial homogenate after alternate irradiation with far-red and red light gave two extremes at 750 and 680 nm, which agreed with those for the induction and inhibition of the fragmentation, respectively. A kinetic model similar to that of phytochrome action explained quantitatively the fluence rate-response curves of the fragmentation. Our results indicate that one of the photoreceptors for the plasmodial fragmentation is a phytochrome.
Collapse
Affiliation(s)
- Y Kakiuchi
- Research Institute for Electronic Science, Hokkaido University, 060-0812 Sapporo, Japan
| | | | | | | |
Collapse
|
9
|
Nakagaki T, Yamada H, Ueda T. Interaction between cell shape and contraction pattern in the Physarum plasmodium. Biophys Chem 2000; 84:195-204. [PMID: 10852307 DOI: 10.1016/s0301-4622(00)00108-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The relationship between cell shape and rhythmic contractile activity in the large amoeboid organism Physarum polycephalum was studied. The organism develops intricate networks of veins in which protoplasmic sol moved to and fro very regularly. When migrating on plain agar, the plasmodium extends like a sheet and develops dendritic veins toward the rear. After a particular stimulation, the vein organization changes into veinless or vein-network structures. In both structures, the mixing rate of the protoplasm, which is related to communication among contraction oscillators, decreased compared with that of the dendritic one. Accompanying these changes in vein structure, the spatio-temporal pattern of the rhythmic contraction changed into a small-structured pattern from a synchronized one. In the above process, cell shape affects the contraction pattern, but, conversely, the contraction pattern effects the cell shape. To demonstrate this, a phase difference in the rhythmic contraction was induced artificially by entraining the intrinsic rhythm to external temperature oscillations. New veins then formed along the direction parallel to the phase difference of the rhythm. Consequently, the vein organization of the cell interacts with the contractile activity to form a feedback loop in a mechanism of contraction pattern formation.
Collapse
Affiliation(s)
- T Nakagaki
- Bio-mimetic Control Research Center, The Institute of Physical and Chemical Research (RIKEN), Moriyama, Nagoya, Japan.
| | | | | |
Collapse
|
10
|
Katoh K, Hammar K, Smith PJ, Oldenbourg R. Birefringence imaging directly reveals architectural dynamics of filamentous actin in living growth cones. Mol Biol Cell 1999; 10:197-210. [PMID: 9880336 PMCID: PMC25163 DOI: 10.1091/mbc.10.1.197] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/1998] [Accepted: 11/03/1998] [Indexed: 11/11/2022] Open
Abstract
We have investigated the dynamic behavior of cytoskeletal fine structure in the lamellipodium of nerve growth cones using a new type of polarized light microscope (the Pol-Scope). Pol-Scope images display with exquisite resolution and definition birefringent fine structures, such as filaments and membranes, without having to treat the cell with exogenous dyes or fluorescent labels. Furthermore, the measured birefringence of protein fibers in the thin lamellipodial region can be interpreted in terms of the number of filaments in the bundles. We confirmed that birefringent fibers are actin-based using conventional fluorescence-labeling methods. By recording movies of time-lapsed Pol-Scope images, we analyzed the creation and dynamic composition of radial fibers, filopodia, and intrapodia in advancing growth cones. The strictly quantitative information available in time-lapsed Pol-Scope images confirms previously deduced behavior and provides new insight into the architectural dynamics of filamentous actin.
Collapse
Affiliation(s)
- K Katoh
- Marine Biological Laboratory, Woods Hole, Massachusetts 02543-1015, USA
| | | | | | | |
Collapse
|
11
|
Sesaki H, Ogihara S. Protrusion of cell surface coupled with single exocytotic events of secretion of the slime in Physarum plasmodia. J Cell Sci 1997; 110 ( Pt 7):809-18. [PMID: 9133668 DOI: 10.1242/jcs.110.7.809] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Exocytosis has been proposed to participate in the formation of pseudopods. Using video-enhanced microscopy, we directly visualized exocytosis of single vesicles in living Physarum plasmodia migrating on a substrate. Vesicles containing slime, the plasmodial extracellular matrix, of approximately 3.5 microm in diameter, shrank at the cell periphery at the average rate of approximately 1 microm/second, and became invisible. Immediately after exocytotic events, the neighboring cell surface extended to form a protrusion. The rate of extension was approximately 1 microm/second. The protrusion showed lamella-like morphology, and contained actin microfilaments. Electron microscopy suggested that the organization of microfilaments in such protrusions may be a random meshwork rather than straight bundles. These morphologies suggest that protruded regions are pseudopods. Importantly, only the slime-containing vesicle preferentially invaded the hyaline layer that consists of dense actin microfilaments while the other vesicular organelles remained in the granuloplasm. Quantitative analysis demonstrated a linear relationship in terms of their surface area, between individual protrusions and single slime-containing vesicles. It is, therefore, likely that most of the plasma membrane of the protrusion was supplied by fusion of the slime-containing vesicle during exocytosis.
Collapse
Affiliation(s)
- H Sesaki
- Department of Biology, Graduate School of Science, Osaka University, Toyonaka, Japan
| | | |
Collapse
|
12
|
Ohl C, Stockem W. Distribution and function of myosin II as a main constituent of the microfilament system in Physarum polycephalum. Eur J Protistol 1995. [DOI: 10.1016/s0932-4739(11)80445-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
Affiliation(s)
- S Hatano
- Department of Molecular Biology, School of Science, Nagoya University, Japan
| |
Collapse
|
14
|
Analysis of Microfilament Organization and Contractile Activities in Physarum. ACTA ACUST UNITED AC 1994. [DOI: 10.1016/s0074-7696(08)62088-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
|
15
|
Ishikawa R, Okagaki T, Kohama K. Regulation by Ca(2+)-calmodulin of the actin-bundling activity of Physarum 210-kDa protein. J Muscle Res Cell Motil 1992; 13:321-8. [PMID: 1527219 DOI: 10.1007/bf01766460] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
From the plasmodia of a lower eukaryote, Physarum polycephalum, we have previously purified a 210-kDa protein that showed similar properties to those of smooth muscle caldesmon. Further characterization of the 210-kDa protein revealed that it bundled actin filaments. This bundling activity was inhibited by calmodulin in the presence of Ca2+. Unlike smooth muscle caldesmon, the 210-kDa protein bundled actin filaments whether or not a reducing agent, such as dithiothreitol, was present. The protein was shown to have two (or more) different actin-binding sites which were classified into salt-sensitive and salt-insensitive sites. Electron microscopy revealed that the 210-kDa protein was an elongated molecule (mean length, 97 +/- 25 nm) which was bent in the middle. The Stokes radius and sedimentation coefficient of the 210-kDa protein were 130 A and 2.9 S, respectively. An immunofluorescence study revealed that the 210-kDa protein colocalized with the bundles of actin filaments in thin-spread preparations of Physarum plasmodia, suggesting that the 210-kDa protein was regulating the appearance and disappearance of the actin bundles that are associated with the contraction-relaxation cycle of the plasmodia.
Collapse
Affiliation(s)
- R Ishikawa
- Department of Pharmacology, Gunma University School of Medicine, Japan
| | | | | |
Collapse
|
16
|
Abstract
We propose a mechanism for the cytoplasmic Ca++ oscillator which is thought to power shuttle streaming in strands of the slime-mold Physarum polycephalum. The mechanism uses a phosphorylation-dephosphorylation cycle of myosin light chain kinase. This kinase is bistable if the kinase phosphorylation chain, through adenylate cyclase and cAMP, is activated by calcium. Relaxation oscillations can then occur if calcium is exchanged between the cytoplasm and internal vacuoles known to exist in physarum. As contractile activity in physarum myosin is inhibited by calcium, this model can give calcium oscillations 180 degrees out of phase with actin filament tension as observed. Oscillations of ATP concentration are correctly predicted to be in phase with the tension, provided the actomyosin cycling rate is comparable with ATPase rates for phosphorylation of the myosin light chain and its kinase.
Collapse
Affiliation(s)
- D A Smith
- Department of Physics, Monash University, Clayton, Australia
| | | |
Collapse
|
17
|
|
18
|
Itano N, Hatano S. F-actin bundling protein from Physarum polycephalum: purification and its capacity for co-bundling of actin filaments and microtubules. CELL MOTILITY AND THE CYTOSKELETON 1991; 19:244-54. [PMID: 1934085 DOI: 10.1002/cm.970190403] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
An F-actin bundling protein was isolated and purified from plasmodium of Physarum polycephalum. The F-actin bundling protein in Physarum extract was passed through a DEAE-cellulose column. After the protein in the fraction was treated with 6 M urea, it was purified by gel filtration on Sephacryl S-300 HR followed by chromatography on CM-Toyopearl (cation exchange) in the presence of 6 M urea. The purified protein gave a single band on SDS-PAGE, and the molecular weight was estimated to be 52,000. This F-actin bundling protein is referred to as the 52 kDa protein. Interestingly, the 52 kDa protein also induced bundling of microtubules. The formation of F-actin and microtubule bundles was Ca(2+)-insensitive, but depended on the salt concentration. Each bundle formed at NaCl concentrations less than 0.1 M. The 52 kDa protein cross-reacted with monoclonal antibody raised against a HeLa 55 kDa protein (an F-actin bundling protein from HeLa cells) (Yamashiro-Matsumura and Matsumura: J. Biol. Chem. 260:5087-5097, 1985). When the 52 kDa protein was added to a mixture of actin filaments and microtubules, co-bundles composed of both filaments formed. This is the first reported example in which an F-actin bundling protein induced co-bundling of actin filaments and microtubules.
Collapse
Affiliation(s)
- N Itano
- Department of Molecular Biology, Faculty of Science, Nagoya University, Aichi, Japan
| | | |
Collapse
|
19
|
Furuhashi K, Hatano S. Control of actin filament length by phosphorylation of fragmin-actin complex. J Cell Biol 1990; 111:1081-7. [PMID: 2202733 PMCID: PMC2116284 DOI: 10.1083/jcb.111.3.1081] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Fragmin is a Ca2(+)-sensitive F-actin-severing protein purified from a slime mold, Physarum polycephalum (Hasegawa, T., S. Takahashi, H. Hayashi, and S. Hatano. 1980. Biochemistry. 19:2677-2683). It binds to G-actin to form a 1:1 fragmin/actin complex in the presence of micromolar free Ca2+. The complex nucleates actin polymerization and caps the barbed end of the short F-actin (Sugino, H., and S. Hatano. 1982. Cell Motil. 2:457-470). Subsequent removal of Ca2+, however, hardly dissociates the complex. This complex nucleates actin polymerization and caps the F-actin regardless of Ca2+ concentration. Here we report that this activity of fragmin-actin complex can be abolished by phosphorylation of actin of the complex. When crude extract from Physarum plasmodium was incubated with 5 mM ATP and 1 mM EGTA, the activities of the complex decreased to a great extent. The inactivation of the complex in the crude extract was not observed in the presence of Ca2+. In addition, the activities of the complex inactivated in the crude extract were restored under conditions suitable for phosphatase reactions. We purified factors that inactivated fragmin-actin complex from the crude extract. These factors phosphorylated actin of the complex, and the activities of the complex decreased with an increased level of phosphorylation of the complex. These factors, termed actin kinase, also inactivated the complex that capped the barbed end of short F-actin, leading to elongation of the short F-actin to long F-actin. Thus the length of F-actin can be controlled by phosphorylation of fragmin-actin complex by actin kinase.
Collapse
Affiliation(s)
- K Furuhashi
- Department of Molecular Biology, School of Science, Nagoya University, Japan
| | | |
Collapse
|
20
|
Ueda T, Nakagaki T, Yamada T. Dynamic organization of ATP and birefringent fibrils during free locomotion and galvanotaxis in the plasmodium of Physarum polycephalum. J Cell Biol 1990; 110:1097-102. [PMID: 2324194 PMCID: PMC2116098 DOI: 10.1083/jcb.110.4.1097] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Directed migration by a cell is a good phenomenon for studying intracellular coordination. Dynamic organization of both ATP and birefringent fibrils throughout the cell was studied in the multinuclear ameboid cell of the Physarum plasmodium during free locomotion and galvanotaxis. In a directionally migrating plasmodium, waves of ATP as well as thickness oscillations propagated from just inside the advancing front to the rear, and ATP concentration was high at the front on the average. In a DC electric field, locomotion was inhibited more strongly, ATP concentration decreased more, and birefringent fibrils were formed more abundantly at the anodal than at the cathodal side. Inside the cell there were a few undulations in the distributions of ATP and birefringent fibrils. In short, birefringent fibrils become abundant where ATP concentration decreases. The possible mechanism of the coordination in the directed migration and the implications of the scaling law are discussed.
Collapse
Affiliation(s)
- T Ueda
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | | | | |
Collapse
|
21
|
Faulstich H, Zobeley S, Rinnerthaler G, Small JV. Fluorescent phallotoxins as probes for filamentous actin. J Muscle Res Cell Motil 1988; 9:370-83. [PMID: 3063723 DOI: 10.1007/bf01774064] [Citation(s) in RCA: 124] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- H Faulstich
- Max-Planck-Institut für Medizinische Forschung, Abteilung Physiologie, Heidelberg, F.R.G
| | | | | | | |
Collapse
|
22
|
Uyeda TQ, Hatano S, Kohama K, Furuya M. Purification of myxamoebal fragmin, and switching of myxamoebal fragmin to plasmodial fragmin during differentiation of Physarum polycephalum. J Muscle Res Cell Motil 1988; 9:233-40. [PMID: 2842375 DOI: 10.1007/bf01773893] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We have isolated and purified an activity from amoebae of Physarum polycephalum that reduces the flow birefringence of a solution of F-actin in a Ca2+-dependent manner. The purified activity from 100 g of amoebae consisted of 1 mg of a 40,000 mol. wt protein. DNase I-affinity chromatography demonstrated that the protein binds to Physarum actin in a Ca2+-dependent manner, and the binding is not reversed by excess EGTA. Viscometric measurement indicated that the protein (i) accelerates polymerization of G-actin, and (ii) severs F-actin, in a Ca2+-dependent manner. Thus, the protein appeared functionally similar to the fragmin previously isolated from Physarum plasmodia (plasmodial fragmin). However, the two proteins had slightly different mobilities on urea-SDS-PAGE, and antibodies raised against the two proteins scarcely cross-reacted with each other. Hence, we conclude that the two proteins are closely related to but are different from each other, and we have named the novel protein 'myxamoebal fragmin'. Immunoblot analysis indicated that myxamoebal and plasmodial fragmins are specifically present in amoebae and plasmodia, respectively. Results of immunofluorescence staining suggest that the synthesis of plasmodial fragmin is switched on coordinately with the synthesis of the heavy chain of plasmodial myosin and other plasmodium-specific contractile proteins during the apogamic differentiation of amoebae to plasmodia.
Collapse
Affiliation(s)
- T Q Uyeda
- Department of Biology, Faculty of Science, University of Tokyo, Japan
| | | | | | | |
Collapse
|
23
|
Kamiya N, Allen RD, Yoshimoto Y. Dynamic organization of Physarum plasmodium. CELL MOTILITY AND THE CYTOSKELETON 1988; 10:107-16. [PMID: 3180241 DOI: 10.1002/cm.970100115] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Birefringent fibrils (BRFs) with a positive sign composed of bundles of F-actin were found throughout the Physarum plasmodium with the mode of existence differing regionally. In the zone behind the leading edge of an advancing plasmodium, where cytoplasmic sol and gel were still not well differentiated, more BRFs came to the foreground when the endoplasm flowed backward (emptying phase), and a substantial portion disappeared when the endoplasm flowed forward (filling phase), except for nodes, from which BRFs were reorganized in the early emptying phase of each cycle. BRFs found in the wall of the streaming channel in the posterior network and the branched vein section ran in parallel to or helically around the channel. They were much more stable and maintained strong birefringence irrespective of the direction of the cytoplasmic flow. When the fan-like expanse ceased moving forward, the BRFs no longer appeared and disappeared cyclically but persisted in the area which had previously been the front. We concluded that the site of the active contraction-relaxation rhythm in an advancing plasmodium with antero-posterior polarity is restricted to its frontal zone and that the rest of the plasmodium is in a state of "tonus" which continuously imparts a certain level of hydrostatic pressure to the interior. The meaning of the tonus and the mechanics of tensile force production in the plasmodium are discussed in terms of a working hypothesis arrived at from the phase relationship between isometric and isotonic contraction waves.
Collapse
Affiliation(s)
- N Kamiya
- National Institute for Basic Biology, Okazaki, Japan
| | | | | |
Collapse
|
24
|
Uyeda TQP, Hatano S, Furuya M. Involvement of myxamoebal fragmin in the Ca2+-induced reorganization of the microfilamentous cytoskeleton in flagellates ofPhysarum polycephalum. ACTA ACUST UNITED AC 1988. [DOI: 10.1002/cm.970100308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|