1
|
Schindler-Johnson M, Petridou NI. Collective effects of cell cleavage dynamics. Front Cell Dev Biol 2024; 12:1358971. [PMID: 38559810 PMCID: PMC10978805 DOI: 10.3389/fcell.2024.1358971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
A conserved process of early embryonic development in metazoans is the reductive cell divisions following oocyte fertilization, termed cell cleavages. Cell cleavage cycles usually start synchronously, lengthen differentially between the embryonic cells becoming asynchronous, and cease before major morphogenetic events, such as germ layer formation and gastrulation. Despite exhibiting species-specific characteristics, the regulation of cell cleavage dynamics comes down to common controllers acting mostly at the single cell/nucleus level, such as nucleus-to-cytoplasmic ratio and zygotic genome activation. Remarkably, recent work has linked cell cleavage dynamics to the emergence of collective behavior during embryogenesis, including pattern formation and changes in embryo-scale mechanics, raising the question how single-cell controllers coordinate embryo-scale processes. In this review, we summarize studies across species where an association between cell cleavages and collective behavior was made, discuss the underlying mechanisms, and propose that cell-to-cell variability in cell cleavage dynamics can serve as a mechanism of long-range coordination in developing embryos.
Collapse
Affiliation(s)
- Magdalena Schindler-Johnson
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Nicoletta I. Petridou
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
2
|
Bakshi A, Iturra FE, Alamban A, Rosas-Salvans M, Dumont S, Aydogan MG. Cytoplasmic division cycles without the nucleus and mitotic CDK/cyclin complexes. Cell 2023; 186:4694-4709.e16. [PMID: 37832525 PMCID: PMC10659773 DOI: 10.1016/j.cell.2023.09.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 05/11/2023] [Accepted: 09/12/2023] [Indexed: 10/15/2023]
Abstract
Cytoplasmic divisions are thought to rely on nuclear divisions and mitotic signals. We demonstrate in Drosophila embryos that cytoplasm can divide repeatedly without nuclei and mitotic CDK/cyclin complexes. Cdk1 normally slows an otherwise faster cytoplasmic division cycle, coupling it with nuclear divisions, and when uncoupled, cytoplasm starts dividing before mitosis. In developing embryos where CDK/cyclin activity can license mitotic microtubule (MT) organizers like the spindle, cytoplasmic divisions can occur without the centrosome, a principal organizer of interphase MTs. However, centrosomes become essential in the absence of CDK/cyclin activity, implying that the cytoplasm can employ either the centrosome-based interphase or CDK/cyclin-dependent mitotic MTs to facilitate its divisions. Finally, we present evidence that autonomous cytoplasmic divisions occur during unperturbed fly embryogenesis and that they may help extrude mitotically stalled nuclei during blastoderm formation. We postulate that cytoplasmic divisions occur in cycles governed by a yet-to-be-uncovered clock mechanism autonomous from CDK/cyclin complexes.
Collapse
Affiliation(s)
- Anand Bakshi
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Fabio Echegaray Iturra
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Andrew Alamban
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Biophysics Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Miquel Rosas-Salvans
- Department of Bioengineering and Therapeutic Science, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sophie Dumont
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Mustafa G Aydogan
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Biophysics Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
3
|
Dwivedi D, Harry D, Meraldi P. Mild replication stress causes premature centriole disengagement via a sub-critical Plk1 activity under the control of ATR-Chk1. Nat Commun 2023; 14:6088. [PMID: 37773176 PMCID: PMC10541884 DOI: 10.1038/s41467-023-41753-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 09/18/2023] [Indexed: 10/01/2023] Open
Abstract
A tight synchrony between the DNA and centrosome cycle is essential for genomic integrity. Centriole disengagement, which licenses centrosomes for duplication, occurs normally during mitotic exit. We recently demonstrated that mild DNA replication stress typically seen in cancer cells causes premature centriole disengagement in untransformed mitotic human cells, leading to transient multipolar spindles that favour chromosome missegregation. How mild replication stress accelerates the centrosome cycle at the molecular level remained, however, unclear. Using ultrastructure expansion microscopy, we show that mild replication stress induces premature centriole disengagement already in G2 via the ATR-Chk1 axis of the DNA damage repair pathway. This results in a sub-critical Plk1 kinase activity that primes the pericentriolar matrix for Separase-dependent disassembly but is insufficient for rapid mitotic entry, causing premature centriole disengagement in G2. We postulate that the differential requirement of Plk1 activity for the DNA and centrosome cycles explains how mild replication stress disrupts the synchrony between both processes and contributes to genomic instability.
Collapse
Affiliation(s)
- Devashish Dwivedi
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva 4, Geneva, Switzerland
- Translational Research Centre in Onco-hematology, Faculty of Medicine, University of Geneva, 1211 Geneva 4, Geneva, Switzerland
| | - Daniela Harry
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva 4, Geneva, Switzerland
- Translational Research Centre in Onco-hematology, Faculty of Medicine, University of Geneva, 1211 Geneva 4, Geneva, Switzerland
| | - Patrick Meraldi
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva 4, Geneva, Switzerland.
- Translational Research Centre in Onco-hematology, Faculty of Medicine, University of Geneva, 1211 Geneva 4, Geneva, Switzerland.
| |
Collapse
|
4
|
Chan KY, Yan CCS, Roan HY, Hsu SC, Tseng TL, Hsiao CD, Hsu CP, Chen CH. Skin cells undergo asynthetic fission to expand body surfaces in zebrafish. Nature 2022; 605:119-125. [PMID: 35477758 DOI: 10.1038/s41586-022-04641-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/10/2022] [Indexed: 12/24/2022]
Abstract
As an animal's surface area expands during development, skin cell populations must quickly respond to maintain sufficient epithelial coverage. Despite much progress in understanding of skin cell behaviours in vivo1,2, it remains unclear how cells collectively act to satisfy coverage demands at an organismic level. Here we created a multicolour cell membrane tagging system, palmskin, to monitor the entire population of superficial epithelial cells (SECs) in developing zebrafish larvae. Using time-lapse imaging, we found that many SECs readily divide on the animal body surface; during a specific developmental window, a single SEC can produce a maximum of four progeny cells over its lifetime on the surface of the animal. Remarkably, EdU assays, DNA staining and hydroxyurea treatment showed that these terminally differentiated skin cells continue splitting despite an absence of DNA replication, causing up to 50% of SECs to exhibit reduced genome size. On the basis of a simple mathematical model and quantitative analyses of cell volumes and apical surface areas, we propose that 'asynthetic fission' is used as an efficient mechanism for expanding epithelial coverage during rapid growth. Furthermore, global or local manipulation of body surface growth affects the extent and mode of SEC division, presumably through tension-mediated activation of stretch-activated ion channels. We speculate that this frugal yet flexible mode of cell proliferation might also occur in contexts other than zebrafish skin expansion.
Collapse
Affiliation(s)
- Keat Ying Chan
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.,Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, Taiwan
| | | | - Hsiao-Yuh Roan
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Shao-Chun Hsu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Tzu-Lun Tseng
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Chung-Der Hsiao
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li, Taiwan
| | - Chao-Ping Hsu
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan.,Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan.,Division of Physics, National Center for Theoretical Sciences, Taipei, Taiwan
| | - Chen-Hui Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
5
|
El Dika M. Use of Xenopus laevis cell-free extracts to study BRCA2 role in chromosome alignment. DNA Repair (Amst) 2021; 100:103053. [PMID: 33550028 DOI: 10.1016/j.dnarep.2021.103053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 01/19/2021] [Accepted: 01/23/2021] [Indexed: 11/18/2022]
Affiliation(s)
- Mohammed El Dika
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, VT, USA; Institut Curie, PSL Research University, CNRS, UMR3348, Orsay, France; Paris Sud University, Paris-Saclay University, CNRS, UMR3348, Orsay, France.
| |
Collapse
|
6
|
Abstract
Model organisms are extensively used in research as accessible and convenient systems for studying a particular area or question in biology. Traditionally, only a limited number of organisms have been studied in detail, but modern genomic tools are enabling researchers to extend beyond the set of classical model organisms to include novel species from less-studied phylogenetic groups. This review focuses on model species for an important group of multicellular organisms, the brown algae. The development of genetic and genomic tools for the filamentous brown alga Ectocarpus has led to it emerging as a general model system for this group, but additional models, such as Fucus or Dictyota dichotoma, remain of interest for specific biological questions. In addition, Saccharina japonica has emerged as a model system to directly address applied questions related to algal aquaculture. We discuss the past, present, and future of brown algal model organisms in relation to the opportunities and challenges in brown algal research.
Collapse
Affiliation(s)
- Susana M Coelho
- Laboratory of Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), CNRS, Sorbonne Université, 29680 Roscoff, France;
- Current affiliation: Department of Algal Development and Evolution, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany;
| | - J Mark Cock
- Laboratory of Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), CNRS, Sorbonne Université, 29680 Roscoff, France;
| |
Collapse
|
7
|
Kermi C, Aze A, Maiorano D. Preserving Genome Integrity During the Early Embryonic DNA Replication Cycles. Genes (Basel) 2019; 10:genes10050398. [PMID: 31137726 PMCID: PMC6563053 DOI: 10.3390/genes10050398] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 05/15/2019] [Indexed: 02/06/2023] Open
Abstract
During the very early stages of embryonic development chromosome replication occurs under rather challenging conditions, including a very short cell cycle, absence of transcription, a relaxed DNA damage response and, in certain animal species, a highly contracted S-phase. This raises the puzzling question of how the genome can be faithfully replicated in such a peculiar metabolic context. Recent studies have provided new insights into this issue, and unveiled that embryos are prone to accumulate genetic and genomic alterations, most likely due to restricted cellular functions, in particular reduced DNA synthesis quality control. These findings may explain the low rate of successful development in mammals and the occurrence of diseases, such as abnormal developmental features and cancer. In this review, we will discuss recent findings in this field and put forward perspectives to further study this fascinating question.
Collapse
Affiliation(s)
- Chames Kermi
- Laboratoire Surveillance et Stabilité du Génome, Institut de Génétique Humaine, UMR9002, CNRS, Université de Montpellier, 34090 Montpellier, France.
- Department of Chemical and Systems Biology, Stanford University School of Medicine, 318 Campus Drive, Stanford, CA 94305-5441, USA.
| | - Antoine Aze
- Laboratoire Surveillance et Stabilité du Génome, Institut de Génétique Humaine, UMR9002, CNRS, Université de Montpellier, 34090 Montpellier, France.
| | - Domenico Maiorano
- Laboratoire Surveillance et Stabilité du Génome, Institut de Génétique Humaine, UMR9002, CNRS, Université de Montpellier, 34090 Montpellier, France.
| |
Collapse
|
8
|
Ciardo D, Goldar A, Marheineke K. On the Interplay of the DNA Replication Program and the Intra-S Phase Checkpoint Pathway. Genes (Basel) 2019; 10:E94. [PMID: 30700024 PMCID: PMC6410103 DOI: 10.3390/genes10020094] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 01/23/2019] [Accepted: 01/25/2019] [Indexed: 12/12/2022] Open
Abstract
DNA replication in eukaryotes is achieved by the activation of multiple replication origins which needs to be precisely coordinated in space and time. This spatio-temporal replication program is regulated by many factors to maintain genome stability, which is frequently threatened through stresses of exogenous or endogenous origin. Intra-S phase checkpoints monitor the integrity of DNA synthesis and are activated when replication forks are stalled. Their activation leads to the stabilization of forks, to the delay of the replication program by the inhibition of late firing origins, and the delay of G2/M phase entry. In some cell cycles during early development these mechanisms are less efficient in order to allow rapid cell divisions. In this article, we will review our current knowledge of how the intra-S phase checkpoint regulates the replication program in budding yeast and metazoan models, including early embryos with rapid S phases. We sum up current models on how the checkpoint can inhibit origin firing in some genomic regions, but allow dormant origin activation in other regions. Finally, we discuss how numerical and theoretical models can be used to connect the multiple different actors into a global process and to extract general rules.
Collapse
Affiliation(s)
- Diletta Ciardo
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette CEDEX, France.
| | | | | |
Collapse
|
9
|
Blake-Hedges C, Megraw TL. Coordination of Embryogenesis by the Centrosome in Drosophila melanogaster. Results Probl Cell Differ 2019; 67:277-321. [PMID: 31435800 PMCID: PMC11725063 DOI: 10.1007/978-3-030-23173-6_12] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The first 3 h of Drosophila melanogaster embryo development are exemplified by rapid nuclear divisions within a large syncytium, transforming the zygote to the cellular blastoderm after 13 successive cleavage divisions. As the syncytial embryo develops, it relies on centrosomes and cytoskeletal dynamics to transport nuclei, maintain uniform nuclear distribution throughout cleavage cycles, ensure generation of germ cells, and coordinate cellularization. For the sake of this review, we classify six early embryo stages that rely on processes coordinated by the centrosome and its regulation of the cytoskeleton. The first stage features migration of one of the female pronuclei toward the male pronucleus following maturation of the first embryonic centrosomes. Two subsequent stages distribute the nuclei first axially and then radially in the embryo. The remaining three stages involve centrosome-actin dynamics that control cortical plasma membrane morphogenesis. In this review, we highlight the dynamics of the centrosome and its role in controlling the six stages that culminate in the cellularization of the blastoderm embryo.
Collapse
Affiliation(s)
- Caitlyn Blake-Hedges
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA.
| | - Timothy L Megraw
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
10
|
Spent embryo culture medium metabolites are related to the in vitro attachment ability of blastocysts. Sci Rep 2018; 8:17025. [PMID: 30451915 PMCID: PMC6242932 DOI: 10.1038/s41598-018-35342-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 10/29/2018] [Indexed: 12/14/2022] Open
Abstract
The metabolomic profile of an embryo culture medium can aid in the advanced prediction of embryonic developmental potential and genetic integrity. But it is not known if this technology can be used to determine the in vitro potential of inner cell mass (ICM) in adherence and proliferation. Here, we investigated the developmental potential of mouse 2-cell embryos carrying cisplatin-induced DNA lesions (IDL), beyond blastocyst stage using ICM outgrowth assay. The genetic integrity of ICM cells was determined by comet assay. The metabolic signatures of spent medium were recorded 84 hours post injection of hCG (hpi-hCG), and after 96 hours of extended in vitro culture (Ex 96) by NMR spectroscopy. We observed that blastocysts that lack the ability to adhere in vitro had an increased requirement of pyruvate (p < 0.01), lactate (p < 0.01), and were accompanied by a significant reduction of pyruvate-alanine ratio in the culture medium. We propose that the aforementioned metabolites from 84 hpi-hCG spent medium be further explored using appropriate experimental models, to prove their potential as biomarkers in the prediction of implantation ability of in vitro derived human embryos in clinical settings.
Collapse
|
11
|
Seller CA, O’Farrell PH. Rif1 prolongs the embryonic S phase at the Drosophila mid-blastula transition. PLoS Biol 2018; 16:e2005687. [PMID: 29746464 PMCID: PMC5963817 DOI: 10.1371/journal.pbio.2005687] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/22/2018] [Accepted: 04/23/2018] [Indexed: 01/09/2023] Open
Abstract
In preparation for dramatic morphogenetic events of gastrulation, rapid embryonic cell cycles slow at the mid-blastula transition (MBT). In Drosophila melanogaster embryos, down-regulation of cyclin-dependent kinase 1 (Cdk1) activity initiates this slowing by delaying replication of heterochromatic satellite sequences and extending S phase. We found that Cdk1 activity inhibited the chromatin association of Rap1 interacting factor 1 (Rif1), a candidate repressor of replication. Furthermore, Rif1 bound selectively to satellite sequences following Cdk1 down-regulation at the MBT. In the next S phase, Rif1 dissociated from different satellites in an orderly schedule that anticipated their replication. Rif1 lacking potential phosphorylation sites failed to dissociate and dominantly prevented completion of replication. Loss of Rif1 in mutant embryos shortened the post-MBT S phase and rescued embryonic cell cycles disrupted by depletion of the S phase–promoting kinase, cell division cycle 7 (Cdc7). Our work shows that Rif1 and S phase kinases compose a replication timer controlling first the developmental onset of late replication and then the precise schedule of replication within S phase. In addition, we describe how onset of late replication fits into the progressive maturation of heterochromatin during development. Cells divide rapidly in the early embryos of most animals. However, during a conserved period of development known as the mid-blastula transition (MBT), the cell cycle slows down dramatically. In Drosophila embryos, genome duplication abruptly slows to initiate this cell cycle prolongation. This is achieved through the onset of late replication, a well-recognized phenomenon in which specific sequences of the genome await replication until long after other sequences have finished. Even though this temporal program of replication is a major determinant of the duration of S phase, the factors involved in this process remain unknown. Here, we use genetics and real-time microscopy to visualize replication in developing fly embryos and show that the protein Rap1 interacting factor 1 (Rif1) mediates the introduction of late replication at the MBT. We find that at this stage, Rif1 binds to and selectively delays the replication of large blocks of repetitive DNA known as satellite sequences. During the rapid cell cycles before the MBT, we show that the cyclin-dependent kinase 1 (Cdk1) prevents Rif1 from slowing down DNA replication by driving its removal from the chromatin. The developmental down-regulation of Cdk1 at the MBT allows Rif1 to associate with the satellite sequences and initiate cell cycle slowing. Our work provides new insights into the temporal programming of S phase and into the embryonic origin of late replication.
Collapse
Affiliation(s)
- Charles A. Seller
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
| | - Patrick H. O’Farrell
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
12
|
Krasinska L, Fisher D. Non-Cell Cycle Functions of the CDK Network in Ciliogenesis: Recycling the Cell Cycle Oscillator. Bioessays 2018; 40:e1800016. [DOI: 10.1002/bies.201800016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/22/2018] [Indexed: 01/05/2023]
Affiliation(s)
- Liliana Krasinska
- Institut de Génétique Moléculaire de Montpellier (IGMM); University of Montpellier, CNRS 1919 Route de Mende; Montpellier 34293 France
- Equipe Labellisée LIGUE 2018; Ligue Nationale contre le Cancer; 75013 Paris France
| | - Daniel Fisher
- Institut de Génétique Moléculaire de Montpellier (IGMM); University of Montpellier, CNRS 1919 Route de Mende; Montpellier 34293 France
- Equipe Labellisée LIGUE 2018; Ligue Nationale contre le Cancer; 75013 Paris France
| |
Collapse
|
13
|
Rapid DNA Synthesis During Early Drosophila Embryogenesis Is Sensitive to Maternal Humpty Dumpty Protein Function. Genetics 2017; 207:935-947. [PMID: 28942426 DOI: 10.1534/genetics.117.300318] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 09/20/2017] [Indexed: 12/29/2022] Open
Abstract
Problems with DNA replication cause cancer and developmental malformations. It is not fully understood how DNA replication is coordinated with development and perturbed in disease. We had previously identified the Drosophila gene humpty dumpty (hd), and showed that null alleles cause incomplete DNA replication, tissue undergrowth, and lethality. Animals homozygous for the missense allele, hd272-9 , were viable, but adult females had impaired amplification of eggshell protein genes in the ovary, resulting in the maternal effects of thin eggshells and embryonic lethality. Here, we show that expression of an hd transgene in somatic cells of the ovary rescues amplification and eggshell synthesis but not embryo viability. The germline of these mothers remain mutant for the hd272-9 allele, resulting in reduced maternal Hd protein and embryonic arrest during mitosis of the first few S/M nuclear cleavage cycles with chromosome instability and chromosome bridges. Epistasis analysis of hd with the rereplication mutation plutonium indicates that the chromosome bridges of hd embryos are the result of a failed attempt to segregate incompletely replicated sister chromatids. This study reveals that maternally encoded Humpty dumpty protein is essential for DNA replication and genome integrity during the little-understood embryonic S/M cycles. Moreover, the two hd272-9 maternal-effect phenotypes suggest that ovarian gene amplification and embryonic cleavage are two time periods in development that are particularly sensitive to mild deficits in DNA replication function. This last observation has broader relevance for interpreting why mild mutations in the human ortholog of humpty dumpty and other DNA replication genes cause tissue-specific malformations of microcephalic dwarfisms.
Collapse
|
14
|
Essential Function of the Serine Hydroxymethyl Transferase (SHMT) Gene During Rapid Syncytial Cell Cycles in Drosophila. G3-GENES GENOMES GENETICS 2017; 7:2305-2314. [PMID: 28515048 PMCID: PMC5499137 DOI: 10.1534/g3.117.043133] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Many metabolic enzymes are evolutionarily highly conserved and serve a central function in the catabolism and anabolism of cells. The serine hydroxymethyl transferase (SHMT) catalyzing the conversion of serine and glycine and vice versa feeds into tetrahydrofolate (THF)-mediated C1 metabolism. We identified a Drosophila mutation in SHMT (CG3011) in a screen for blastoderm mutants. Embryos from SHMT mutant germline clones specifically arrest the cell cycle in interphase 13 at the time of the midblastula transition (MBT) and prior to cellularization. The phenotype is due to a loss of enzymatic activity as it cannot be rescued by an allele with a point mutation in the catalytic center but by an allele based on the SHMT coding sequence from Escherichia coli. The onset of zygotic gene expression and degradation of maternal RNAs in SHMT mutant embryos are largely similar to that in wild-type embryos. The specific timing of the defects in SHMT mutants indicates that at least one of the SHMT-dependent metabolites becomes limiting in interphase 13, if it is not produced by the embryo. Our data suggest that mutant eggs contain maternally-provided and SHMT-dependent metabolites in amounts that suffice for early development until interphase 13.
Collapse
|
15
|
Lattao R, Kovács L, Glover DM. The Centrioles, Centrosomes, Basal Bodies, and Cilia of Drosophila melanogaster. Genetics 2017; 206:33-53. [PMID: 28476861 PMCID: PMC5419478 DOI: 10.1534/genetics.116.198168] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 03/24/2017] [Indexed: 12/19/2022] Open
Abstract
Centrioles play a key role in the development of the fly. They are needed for the correct formation of centrosomes, the organelles at the poles of the spindle that can persist as microtubule organizing centers (MTOCs) into interphase. The ability to nucleate cytoplasmic microtubules (MTs) is a property of the surrounding pericentriolar material (PCM). The centriole has a dual life, existing not only as the core of the centrosome but also as the basal body, the structure that templates the formation of cilia and flagellae. Thus the structure and functions of the centriole, the centrosome, and the basal body have an impact upon many aspects of development and physiology that can readily be modeled in Drosophila Centrosomes are essential to give organization to the rapidly increasing numbers of nuclei in the syncytial embryo and for the spatially precise execution of cell division in numerous tissues, particularly during male meiosis. Although mitotic cell cycles can take place in the absence of centrosomes, this is an error-prone process that opens up the fly to developmental defects and the potential of tumor formation. Here, we review the structure and functions of the centriole, the centrosome, and the basal body in different tissues and cultured cells of Drosophila melanogaster, highlighting their contributions to different aspects of development and cell division.
Collapse
Affiliation(s)
- Ramona Lattao
- Department of Genetics, University of Cambridge, CB2 3EH, United Kingdom
| | - Levente Kovács
- Department of Genetics, University of Cambridge, CB2 3EH, United Kingdom
| | - David M Glover
- Department of Genetics, University of Cambridge, CB2 3EH, United Kingdom
| |
Collapse
|
16
|
Regulation of DNA Replication in Early Embryonic Cleavages. Genes (Basel) 2017; 8:genes8010042. [PMID: 28106858 PMCID: PMC5295036 DOI: 10.3390/genes8010042] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 01/06/2017] [Accepted: 01/11/2017] [Indexed: 11/18/2022] Open
Abstract
Early embryonic cleavages are characterized by short and highly synchronous cell cycles made of alternating S- and M-phases with virtually absent gap phases. In this contracted cell cycle, the duration of DNA synthesis can be extraordinarily short. Depending on the organism, the whole genome of an embryo is replicated at a speed that is between 20 to 60 times faster than that of a somatic cell. Because transcription in the early embryo is repressed, DNA synthesis relies on a large stockpile of maternally supplied proteins stored in the egg representing most, if not all, cellular genes. In addition, in early embryonic cell cycles, both replication and DNA damage checkpoints are inefficient. In this article, we will review current knowledge on how DNA synthesis is regulated in early embryos and discuss possible consequences of replicating chromosomes with little or no quality control.
Collapse
|
17
|
Riparbelli MG, Gottardo M, Callaini G. Parthenogenesis in Insects: The Centriole Renaissance. Results Probl Cell Differ 2017; 63:435-479. [PMID: 28779329 DOI: 10.1007/978-3-319-60855-6_19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Building a new organism usually requires the contribution of two differently shaped haploid cells, the male and female gametes, each providing its genetic material to restore diploidy of the new born zygote. The successful execution of this process requires defined sequential steps that must be completed in space and time. Otherwise, development fails. Relevant among the earlier steps are pronuclear migration and formation of the first mitotic spindle that promote the mixing of parental chromosomes and the formation of the zygotic nucleus. A complex microtubule network ensures the proper execution of these processes. Instrumental to microtubule organization and bipolar spindle assembly is a distinct non-membranous organelle, the centrosome. Centrosome inheritance during fertilization is biparental, since both gametes provide essential components to build a functional centrosome. This model does not explain, however, centrosome formation during parthenogenetic development, a special mode of sexual reproduction in which the unfertilized egg develops without the contribution of the male gamete. Moreover, whereas fertilization is a relevant example in which the cells actively check the presence of only one centrosome, to avoid multipolar spindle formation, the development of parthenogenetic eggs is ensured, at least in insects, by the de novo assembly of multiple centrosomes.Here, we will focus our attention on the assembly of functional centrosomes following fertilization and during parthenogenetic development in insects. Parthenogenetic development in which unfertilized eggs are naturally depleted of centrosomes would provide a useful experimental system to investigate centriole assembly and duplication together with centrosome formation and maturation.
Collapse
Affiliation(s)
| | - Marco Gottardo
- Department of Life Sciences, University of Siena, Via A. Moro 2, 53100, Siena, Italy
| | - Giuliano Callaini
- Department of Life Sciences, University of Siena, Via A. Moro 2, 53100, Siena, Italy.
| |
Collapse
|
18
|
Unraveling the association between genetic integrity and metabolic activity in pre-implantation stage embryos. Sci Rep 2016; 6:37291. [PMID: 27853269 PMCID: PMC5112559 DOI: 10.1038/srep37291] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 10/28/2016] [Indexed: 02/07/2023] Open
Abstract
Early development of certain mammalian embryos is protected by complex checkpoint systems to maintain the genomic integrity. Several metabolic pathways are modulated in response to genetic insults in mammalian cells. The present study investigated the relationship between the genetic integrity, embryo metabolites and developmental competence in preimplantation stage mouse embryos with the aim to identify early biomarkers which can predict embryonic genetic integrity using spent medium profiling by NMR spectroscopy. Embryos carrying induced DNA lesions (IDL) developed normally for the first 2.5 days, but began to exhibit a developmental delay at embryonic day 3.5(E3.5) though they were morphologically indistinguishable from control embryos. Analysis of metabolites in the spent medium on E3.5 revealed a significant association between pyruvate, lactate, glucose, proline, lysine, alanine, valine, isoleucine and thymine and the extent of genetic instability observed in the embryos on E4.5. Further analysis revealed an association of apoptosis and micronuclei frequency with P53 and Bax transcripts in IDL embryos on the E4.5 owing to delayed induction of chromosome instability. We conclude that estimation of metabolites on E3.5 in spent medium may serve as a biomarker to predict the genetic integrity in pre-implantation stage embryos which opens up new avenues to improve outcomes in clinical IVF programs.
Collapse
|
19
|
Barker AR, McIntosh KV, Dawe HR. Centrosome positioning in non-dividing cells. PROTOPLASMA 2016; 253:1007-1021. [PMID: 26319517 DOI: 10.1007/s00709-015-0883-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 08/22/2015] [Indexed: 06/04/2023]
Abstract
Centrioles and centrosomes are found in almost all eukaryotic cells, where they are important for organising the microtubule cytoskeleton in both dividing and non-dividing cells. The spatial location of centrioles and centrosomes is tightly controlled and, in non-dividing cells, plays an important part in cell migration, ciliogenesis and immune cell functions. Here, we examine some of the ways that centrosomes are connected to other organelles and how this impacts on cilium formation, cell migration and immune cell function in metazoan cells.
Collapse
Affiliation(s)
- Amy R Barker
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
- Centre for Microvascular Research, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, EC1M 6BQ, London
| | - Kate V McIntosh
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Helen R Dawe
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK.
| |
Collapse
|
20
|
Abstract
The preimplantation development stage of mammalian embryogenesis consists of a series of highly conserved, regulated, and predictable cell divisions. This process is essential to allow the rapid expansion and differentiation of a single-cell zygote into a multicellular blastocyst containing cells of multiple developmental lineages. This period of development, also known as the germinal stage, encompasses several important developmental transitions, which are accompanied by dramatic changes in cell cycle profiles and dynamics. These changes are driven primarily by differences in the establishment and enforcement of cell cycle checkpoints, which must be bypassed to facilitate the completion of essential cell cycle events. Much of the current knowledge in this area has been amassed through the study of knockout models in mice. These mouse models are powerful experimental tools, which have allowed us to dissect the relative dependence of the early embryonic cell cycles on various aspects of the cell cycle machinery and highlight the extent of functional redundancy between members of the same gene family. This chapter will explore the ways in which the cell cycle machinery, their accessory proteins, and their stimuli operate during mammalian preimplantation using mouse models as a reference and how this allows for the usually well-defined stages of the cell cycle to be shaped and transformed during this unique and critical stage of development.
Collapse
|
21
|
Abstract
The union of haploid gametes at fertilization initiates the formation of the diploid zygote in sexually reproducing animals. This founding event of embryogenesis includes several fascinating cellular and nuclear processes, such as sperm-egg cellular interactions, sperm chromatin remodelling, centrosome formation or pronuclear migration. In comparison with other aspects of development, the exploration of animal fertilization at the functional level has remained so far relatively limited, even in classical model organisms. Here, we have reviewed our current knowledge of fertilization in Drosophila melanogaster, with a special emphasis on the genes involved in the complex transformation of the fertilizing sperm nucleus into a replicated set of paternal chromosomes.
Collapse
Affiliation(s)
- Benjamin Loppin
- Laboratoire de Biométrie et Biologie Evolutive, CNRS UMR5558, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Raphaëlle Dubruille
- Laboratoire de Biométrie et Biologie Evolutive, CNRS UMR5558, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Béatrice Horard
- Laboratoire de Biométrie et Biologie Evolutive, CNRS UMR5558, Université Claude Bernard Lyon 1, Villeurbanne, France
| |
Collapse
|
22
|
Microinjection techniques for studying centrosome function in Drosophila melanogaster syncytial embryos. Methods Cell Biol 2015; 129:229-249. [PMID: 26175442 DOI: 10.1016/bs.mcb.2015.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Microinjection is a powerful technique that can be used to study protein function. Early Drosophila embryos are particularly amenable to microinjection due to their large size and their single cell status. Here, we report methods to microinject these embryos with various reagents to study the function of proteins at centrosomes and centrosome function more generally. Although precise details vary between laboratories, many aspects of the process are conserved. We describe the process from setting up a fly cage to imaging the injected embryos on a spinning disk confocal microscope and use specific examples to highlight the potency of this technique.
Collapse
|
23
|
Abstract
The centrosome was discovered in the late 19th century when mitosis was first described. Long recognized as a key organelle of the spindle pole, its core component, the centriole, was realized more than 50 or so years later also to comprise the basal body of the cilium. Here, we chart the more recent acquisition of a molecular understanding of centrosome structure and function. The strategies for gaining such knowledge were quickly developed in the yeasts to decipher the structure and function of their distinctive spindle pole bodies. Only within the past decade have studies with model eukaryotes and cultured cells brought a similar degree of sophistication to our understanding of the centrosome duplication cycle and the multiple roles of this organelle and its component parts in cell division and signaling. Now as we begin to understand these functions in the context of development, the way is being opened up for studies of the roles of centrosomes in human disease.
Collapse
Affiliation(s)
- Jingyan Fu
- Cancer Research UK Cell Cycle Genetics Group, Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Iain M Hagan
- Cancer Research UK Manchester Institute, University of Manchester, Withington, Manchester M20 4BX, United Kingdom
| | - David M Glover
- Cancer Research UK Cell Cycle Genetics Group, Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| |
Collapse
|
24
|
Coordinating Cell Cycle Remodeling with Transcriptional Activation at the Drosophila MBT. Curr Top Dev Biol 2015; 113:113-48. [DOI: 10.1016/bs.ctdb.2015.06.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Luna, a Drosophila KLF6/KLF7, is maternally required for synchronized nuclear and centrosome cycles in the preblastoderm embryo. PLoS One 2014; 9:e96933. [PMID: 24915236 PMCID: PMC4051582 DOI: 10.1371/journal.pone.0096933] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 04/11/2014] [Indexed: 11/20/2022] Open
Abstract
Krüppel like factors (KLFs) are conserved transcription factors that have been implicated in many developmental processes including differentiation, organ patterning, or regulation of stem cell pluripotency. We report the generation and analysis of loss-of-function mutants of Drosophila Klf6/7, the luna gene. We demonstrate that luna mutants are associated with very early embryonic defects prior to cellularization at the syncytial stage and cause DNA separation defects during the rapid mitotic cycles resulting in un-coupled DNA and centrosome cycles. These defects manifest themselves, both in animals that are maternally homozygous and heterozygous mutant. Surprisingly, luna is only required during the syncytial stages and not later in development, suggesting that the DNA segregation defect is linked to centrosomes, since centrosomes are dispensable for later cell divisions.
Collapse
|
26
|
Dumollard R, Hebras C, Besnardeau L, McDougall A. Beta-catenin patterns the cell cycle during maternal-to-zygotic transition in urochordate embryos. Dev Biol 2013; 384:331-42. [PMID: 24140189 DOI: 10.1016/j.ydbio.2013.10.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 09/18/2013] [Accepted: 10/03/2013] [Indexed: 11/18/2022]
Abstract
During the transition from maternal to zygotic control of development, cell cycle length varies in different lineages, and this is important for their fates and functions. The maternal to zygotic transition (MZT) in metazoan embryos involves a profound remodeling of the cell cycle: S phase length increases then G2 is introduced. Although β-catenin is the master regulator of endomesoderm patterning at MZT in all metazoans, the influence of maternal β-catenin on the cell cycle at MZT remains poorly understood. By studying urochordate embryogenesis we found that cell cycle remodeling during MZT begins with the formation of 3 mitotic domains at the 16-cell stage arising from differential S phase lengthening, when endomesoderm is specified. Then, at the 64-cell stage, a G2 phase is introduced in the endoderm lineage during its specification. Strikingly, these two phases of cell cycle remodeling are patterned by β-catenin-dependent transcription. Functional analysis revealed that, at the 16-cell stage, β-catenin speeds up S phase in the endomesoderm. In contrast, two cell cycles later at gastrulation, nuclear β-catenin induces endoderm fate and delays cell division. Such interphase lengthening in invaginating cells is known to be a requisite for gastrulation movements. Therefore, in basal chordates β-catenin has a dual role to specify germ layers and remodel the cell cycle.
Collapse
Affiliation(s)
- Rémi Dumollard
- UMR 7009, UPMC University, Paris 06, France; Centre National de la Recherche (CNRS), Observatoire Océanologique, 06230 Villefranche-sur-Mer, France.
| | | | | | | |
Collapse
|
27
|
A hypomorphic mutation reveals a stringent requirement for the ATM checkpoint protein in telomere protection during early cell division in Drosophila. G3-GENES GENOMES GENETICS 2013; 3:1043-8. [PMID: 23604076 PMCID: PMC3689801 DOI: 10.1534/g3.113.006312] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Using Drosophila as a model system, we identified a stringent requirement for the conserved function of Ataxia Telangiectasia Mutated (ATM) in telomere protection during early embryonic development. Animals homozygous for a hypomorphic mutation in atm develop normally with minimal telomere dysfunction. However, mutant females produce inviable embryos that succumb to mitotic failure caused by covalent fusions of telomeric DNA. Interestingly, although the atm mutation encodes a premature stop codon, it must not have eliminated the production of the mutant protein, and the mutant protein retains kinase activity upon DNA damage. Moreover, although the embryonic phenotype of this mutation resembles that of hypomorphic mutations in the MRN complex, the function of MRN appears normal in the atm embryos. In contrast, there is a prominent reduction of the level of HipHop, an essential member of the Drosophila capping complex. How ATM functions in telomere protection remains poorly understood. The amenability of Drosophila embryos to molecular and biochemical investigations ensures that this newly identified mutation will facilitate future studies of ATM in telomere maintenance.
Collapse
|
28
|
Riparbelli MG, Giordano R, Ueyama M, Callaini G. Wolbachia-mediated male killing is associated with defective chromatin remodeling. PLoS One 2012; 7:e30045. [PMID: 22291901 PMCID: PMC3264553 DOI: 10.1371/journal.pone.0030045] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 12/08/2011] [Indexed: 11/19/2022] Open
Abstract
Male killing, induced by different bacterial taxa of maternally inherited microorganisms, resulting in highly distorted female-biased sex-ratios, is a common phenomenon among arthropods. Some strains of the endosymbiont bacteria Wolbachia have been shown to induce this phenotype in particular insect hosts. High altitude populations of Drosophila bifasciata infected with Wolbachia show selective male killing during embryonic development. However, since this was first reported, circa 60 years ago, the interaction between Wolbachia and its host has remained unclear. Herein we show that D. bifasciata male embryos display defective chromatin remodeling, improper chromatid segregation and chromosome bridging, as well as abnormal mitotic spindles and gradual loss of their centrosomes. These defects occur at different times in the early development of male embryos leading to death during early nuclear division cycles or large defective areas of the cellular blastoderm, culminating in abnormal embryos that die before eclosion. We propose that Wolbachia affects the development of male embryos by specifically targeting male chromatin remodeling and thus disturbing mitotic spindle assembly and chromosome behavior. These are the first observations that demonstrate fundamental aspects of the cytological mechanism of male killing and represent a solid base for further molecular studies of this phenomenon.
Collapse
Affiliation(s)
| | - Rosanna Giordano
- Illinois Natural History Survey, Institute of Natural Resource Sustainability, University of Illinois at Urbana-Champaign, Champaign, Illinois, United States of America
| | - Morio Ueyama
- Laboratory of Cell Biology, Department of Bioinformatics, Soka University, Hachioji, Tokyo, Japan
| | - Giuliano Callaini
- Department of Evolutionary Biology, University of Siena, Siena, Italy
- * E-mail:
| |
Collapse
|
29
|
Andersen SL, Kuo HK, Savukoski D, Brodsky MH, Sekelsky J. Three structure-selective endonucleases are essential in the absence of BLM helicase in Drosophila. PLoS Genet 2011; 7:e1002315. [PMID: 22022278 PMCID: PMC3192830 DOI: 10.1371/journal.pgen.1002315] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 08/03/2011] [Indexed: 02/03/2023] Open
Abstract
DNA repair mechanisms in mitotically proliferating cells avoid generating crossovers, which can contribute to genome instability. Most models for the production of crossovers involve an intermediate with one or more four-stranded Holliday junctions (HJs), which are resolved into duplex molecules through cleavage by specialized endonucleases. In vitro studies have implicated three nuclear enzymes in HJ resolution: MUS81–EME1/Mms4, GEN1/Yen1, and SLX4–SLX1. The Bloom syndrome helicase, BLM, plays key roles in preventing mitotic crossover, either by blocking the formation of HJ intermediates or by removing HJs without cleavage. Saccharomyces cerevisiae mutants that lack Sgs1 (the BLM ortholog) and either Mus81–Mms4 or Slx4–Slx1 are inviable, but mutants that lack Sgs1 and Yen1 are viable. The current view is that Yen1 serves primarily as a backup to Mus81–Mms4. Previous studies with Drosophila melanogaster showed that, as in yeast, loss of both DmBLM and MUS81 or MUS312 (the ortholog of SLX4) is lethal. We have now recovered and analyzed mutations in Drosophila Gen. As in yeast, there is some redundancy between Gen and mus81; however, in contrast to the case in yeast, GEN plays a more predominant role in responding to DNA damage than MUS81–MMS4. Furthermore, loss of DmBLM and GEN leads to lethality early in development. We present a comparison of phenotypes occurring in double mutants that lack DmBLM and either MUS81, GEN, or MUS312, including chromosome instability and deficiencies in cell proliferation. Our studies of synthetic lethality provide insights into the multiple functions of DmBLM and how various endonucleases may function when DmBLM is absent. The maintenance of a stable genome is crucial to organismal survival. Genome stability is perpetually threatened by spontaneous DNA damage, and DNA repair proteins are required to accurately and efficiently repair DNA damage in ways that minimize genome alterations. Some repair pathways are linked to increased risk of genome changes. One example is repair associated with the production of crossovers between homologous chromosomes. The DNA helicase BLM suppresses genome changes by promoting non-crossover forms of repair; without BLM, spontaneous crossovers, deletions, and genome rearrangements increase. Using Drosophila as a model organism, our studies reveal the complex interactions between BLM and three structure-selective endonucleases with overlapping substrate specificities and partial functional redundancy. Loss of BLM and any one of the nucleases results in severe genome instability, reduced cell proliferation, and, ultimately, death of the animal. Our work suggests that these nucleases differentially rescue the loss of functions of BLM associated with problems that arise during DNA replication, illuminating the complexity of repair mechanisms required to maintain genome stability during replication. Further, our work advances models of replication-associated repair by suggesting specific roles for BLM and structure-selective endonucleases.
Collapse
Affiliation(s)
- Sabrina L Andersen
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | | | | | | | | |
Collapse
|
30
|
Kaczanowski A, Kiersnowska M. Inactivation of a macronuclear intra-S-phase checkpoint in Tetrahymena thermophila with caffeine affects the integrity of the micronuclear genome. Protist 2011; 162:616-36. [PMID: 21601521 DOI: 10.1016/j.protis.2011.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 01/23/2011] [Indexed: 01/16/2023]
Abstract
Aphidicolin (APH), an inhibitor of DNA polymerase α, arrested cell divisions in Tetrahymena thermophila. Surprisingly, low concentrations of APH induced an increase of macronuclear DNA content and cell size in non-dividing cells. In spite of the cell size increase, most proliferation of basal bodies, ciliogenesis and development of new oral primordia were prevented by the APH treatment. The division arrest induced by APH was partly overridden by caffeine (CAF) treatment, which caused the fragmentation ("pulverization") of the chromosomes in G2 micronuclei. Somatic progeny of dividers with pulverized micronuclei (APH+CAF strains) contained aneuploid and amicronucleate cells. The amicronucleate cells, after losing their oral structures and most of their cilia, and undergoing progressive disorganization of cortical structures, assumed an irregular shape ("crinkled") and were nonviable. "Crinkled" cells were not formed after APH + CAF treatment of the amicronuclear BI3840 strain, which contains some mic-specific sequences in its macronucleus. Most of the APH +CAF strains had a typical "*"- like conjugation phenotype: they did not produce pronuclei, but received them unilaterally from their mates and retained old macronuclei. However, 4 among 100 APH+CAF clones induced arrest at meiotic metaphase I in their wt mates. It is likely that the origin of such clones was enhanced by chromosome pulverization.
Collapse
|
31
|
Momčilović O, Navara C, Schatten G. Cell cycle adaptations and maintenance of genomic integrity in embryonic stem cells and induced pluripotent stem cells. Results Probl Cell Differ 2011; 53:415-458. [PMID: 21630155 DOI: 10.1007/978-3-642-19065-0_18] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Pluripotent stem cells have the capability to undergo unlimited self-renewal and differentiation into all somatic cell types. They have acquired specific adjustments in the cell cycle structure that allow them to rapidly proliferate, including cell cycle independent expression of cell cycle regulators and lax G(1) to S phase transition. However, due to the developmental role of embryonic stem cells (ES) it is essential to maintain genomic integrity and prevent acquisition of mutations that would be transmitted to multiple cell lineages. Several modifications in DNA damage response of ES cells accommodate dynamic cycling and preservation of genetic information. The absence of a G(1)/S cell cycle arrest promotes apoptotic response of damaged cells before DNA changes can be fixed in the form of mutation during the S phase, while G(2)/M cell cycle arrest allows repair of damaged DNA following replication. Furthermore, ES cells express higher level of DNA repair proteins, and exhibit enhanced repair of multiple types of DNA damage. Similarly to ES cells, induced pluripotent stem (iPS) cells are poised to proliferate and exhibit lack of G(1)/S cell cycle arrest, extreme sensitivity to DNA damage, and high level of expression of DNA repair genes. The fundamental mechanisms by which the cell cycle regulates genomic integrity in ES cells and iPS cells are similar, though not identical.
Collapse
Affiliation(s)
- Olga Momčilović
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA.
| | | | | |
Collapse
|
32
|
Upadhya D, Kalthur G, Kumar P, Rao BS, Adiga SK. Association between the extent of DNA damage in the spermatozoa, fertilization and developmental competence in preimplantation stage embryos. J Turk Ger Gynecol Assoc 2010; 11:182-6. [PMID: 24591933 DOI: 10.5152/jtgga.2010.34] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 08/24/2010] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE To examine the fertilizing ability and DNA damage response of preimplantation stage embryos derived from the γ-irradiated mouse sperm carrying varying amounts of DNA strand-breaks. MATERIAL AND METHODS The DNA damage in the sperm was induced by exposing the testicular area to different doses of γ-radiation. After mating with healthy female mice, sperm zona binding, fertilizing ability of DNA damaged sperm and developmental competence of embryos derived from the DNA damaged sperm were assessed. RESULTS The in vivo zona binding ability and fertilizing ability of DNA damaged sperm was significantly affected in the 5.0 and 10.0 Gy sperm irradiation groups. Although the development of the embryos derived from the DNA damaged sperm was not significantly affected until day 2.5 post-coitus, further development was significantly altered, as evidenced by the total cell number in the embryos. CONCLUSION The sperm carrying DNA strand breaks still has the ability to fertilize the oocyte normally. However, the events like zona-binding and successful fertilization depend on the extent of sperm DNA fragmentation. The study has also showed a great heterogeneity in embryonic development at peri-implantation period with respect to the degree of sperm DNA damage.
Collapse
Affiliation(s)
- Dinesh Upadhya
- Clinical Embryology, Division of Reproductive Medicine, Department of Obstetrics and Gynecology, Kasturba Medical College, Manipal University, Manipal, India
| | - Guruprasad Kalthur
- Clinical Embryology, Division of Reproductive Medicine, Department of Obstetrics and Gynecology, Kasturba Medical College, Manipal University, Manipal, India
| | - Pratap Kumar
- Clinical Embryology, Division of Reproductive Medicine, Department of Obstetrics and Gynecology, Kasturba Medical College, Manipal University, Manipal, India
| | - Bola S Rao
- Department of Radiobiology and Toxicology, Manipal Life Science Centre, Manipal University, Manipal, India
| | - Satish K Adiga
- Clinical Embryology, Division of Reproductive Medicine, Department of Obstetrics and Gynecology, Kasturba Medical College, Manipal University, Manipal, India
| |
Collapse
|
33
|
Cunha-Ferreira I, Bento I, Bettencourt-Dias M. From zero to many: control of centriole number in development and disease. Traffic 2010; 10:482-98. [PMID: 19416494 DOI: 10.1111/j.1600-0854.2009.00905.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Centrioles are essential for the formation of microtubule-derived structures, including cilia, flagella and centrosomes. These structures are involved in a variety of functions, from cell motility to division. In most dividing animal cells, centriole formation is coupled to the chromosome cycle. However, this is not the case in certain specialized divisions, such as meiosis, and in some differentiating cells. For example, oocytes loose their centrioles upon differentiation, whereas multiciliated epithelial cells make several of those structures after they exit the cell cycle. Aberrations of centriole number are seen in many cancer cells. Recent studies began to shed light on the molecular control of centriole number, its variations in development, and how centriole number changes in human disease. Here we review the recent developments in this field.
Collapse
Affiliation(s)
- Inês Cunha-Ferreira
- Cell Cycle Regulation Lab, Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6P-2780-156 Oeiras, Portugal
| | | | | |
Collapse
|
34
|
McGarry TJ, Bonaguidi M, Lyass L, Kessler JA, Bodily JM, Doglio L. Enucleation of feeder cells and egg cells with psoralens. Dev Dyn 2010; 238:2614-21. [PMID: 19705441 DOI: 10.1002/dvdy.22080] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The cell nucleus must be inactivated or destroyed in order to generate feeder layers for cultured cells or to prepare recipient egg cells for nuclear transfer. Existing enucleation techniques are either cumbersome or employ toxic chemicals. Here we report a new method to enucleate cells by treatment with a psoralen and long-wave ultraviolet light. The technique is >90% efficient and causes little cytoplasmic damage to the treated cell. We have used psoralen treatment to enucleate a wide variety of cells, including eggs, sperm, HeLa cells, and fibroblasts. Colonies of human embryonic stem cells (hESCs) and human keratinocyte precursors grown on psoralen-treated feeders are indistinguishable from those grown on gamma-irradiated or mitomycin C-treated cells. Psoralen enucleation provides a rapid, simple, and non-toxic method to generate feeder cells. The technique is also useful for nuclear transfer studies in species with large eggs whose cleavage divisions are not regulated by cell-cycle checkpoints.
Collapse
Affiliation(s)
- Thomas J McGarry
- Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA.
| | | | | | | | | | | |
Collapse
|
35
|
McCleland ML, Shermoen AW, O'Farrell PH. DNA replication times the cell cycle and contributes to the mid-blastula transition in Drosophila embryos. ACTA ACUST UNITED AC 2009; 187:7-14. [PMID: 19786576 PMCID: PMC2762091 DOI: 10.1083/jcb.200906191] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Deletion of S phase disrupts mitotic timing in maternally regulated cycles, but it doesn't alter the cell cycle once zygotic transcription has begun. We examined the contribution of S phase in timing cell cycle progression during Drosophila embryogenesis using an approach that deletes S phase rather than arresting its progress. Injection of Drosophila Geminin, an inhibitor of replication licensing, prevented subsequent replication so that the following mitosis occurred with uninemic chromosomes, which failed to align. The effect of S phase deletion on interphase length changed with development. During the maternally regulated syncytial blastoderm cycles, deleting S phase shortened interphase, and deletion of the last of blastoderm S phase (cycle 14) induced an extra synchronous division and temporarily deferred mid-blastula transition (MBT) events. In contrast, deleting S phase after the MBT in cycle 15 did not dramatically affect mitotic timing, which appears to retain its dependence on developmentally programmed zygotic transcription. We conclude that normal S phase and replication checkpoint activities are important timers of the undisturbed cell cycle before, but not after, the MBT.
Collapse
Affiliation(s)
- Mark L McCleland
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | |
Collapse
|
36
|
Nie M, Xie Y, Loo JA, Courey AJ. Genetic and proteomic evidence for roles of Drosophila SUMO in cell cycle control, Ras signaling, and early pattern formation. PLoS One 2009; 4:e5905. [PMID: 19529778 PMCID: PMC2692000 DOI: 10.1371/journal.pone.0005905] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Accepted: 05/17/2009] [Indexed: 11/27/2022] Open
Abstract
SUMO is a protein modifier that is vital for multicellular development. Here we present the first system-wide analysis, combining multiple approaches, to correlate the sumoylated proteome (SUMO-ome) in a multicellular organism with the developmental roles of SUMO. Using mass-spectrometry-based protein identification, we found over 140 largely novel SUMO conjugates in the early Drosophila embryo. Enriched functional groups include proteins involved in Ras signaling, cell cycle, and pattern formation. In support of the functional significance of these findings, sumo germline clone embryos exhibited phenotypes indicative of defects in these same three processes. Our cell culture and immunolocalization studies further substantiate roles for SUMO in Ras signaling and cell cycle regulation. For example, we found that SUMO is required for efficient Ras-mediated MAP kinase activation upstream or at the level of Ras activation. We further found that SUMO is dynamically localized during mitosis to the condensed chromosomes, and later also to the midbody. Polo kinase, a SUMO substrate found in our screen, partially colocalizes with SUMO at both sites. These studies show that SUMO coordinates multiple regulatory processes during oogenesis and early embryogenesis. In addition, our database of sumoylated proteins provides a valuable resource for those studying the roles of SUMO in development.
Collapse
Affiliation(s)
- Minghua Nie
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Yongming Xie
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Joseph A. Loo
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Albert J. Courey
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
37
|
Centrosomin: a complex mix of long and short isoforms is required for centrosome function during early development in Drosophila melanogaster. Genetics 2009; 182:979-97. [PMID: 19528326 DOI: 10.1534/genetics.109.103887] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Centrosomin (Cnn) is a required core component in mitotic centrosomes during syncytial development and the presence of Cnn at centrosomes has become synonymous with fully functional centrosomes in Drosophila melanogaster. Previous studies of Cnn have attributed this embryonic function to a single isoform or splice variant. In this study, we present new evidence that significantly increases the complexity of cnn. Rather than a single isoform, Cnn function can be attributed to two unique classes of proteins that comprise a total of at least 10 encoded protein isoforms. We present the initial characterization of a new class of Cnn short isoforms required for centrosome function during gametogenesis and embryogenesis. We also introduce new evidence for a complex mix of Cnn isoforms present during early embryogenesis. Finally, we reexamine cnn mutations, in light of the short isoforms, and find previously overlooked differences attributable to allele-specific mutant phenotypes. This study addresses several questions surrounding Cnn function at the centrosome during embryogenesis and shows that cnn function cannot be ascribed to a single protein.
Collapse
|
38
|
Mre11-Rad50-Nbs complex is required to cap telomeres during Drosophila embryogenesis. Proc Natl Acad Sci U S A 2009; 106:10728-33. [PMID: 19520832 DOI: 10.1073/pnas.0902707106] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Using Drosophila as a model system, we identified here a stringent requirement for Mre11-Rad50-Nbs (MRN) function in telomere protection during early embryonic development. Animals homozygous for hypomorphic mutations in either mre11 or nbs develop normally with minimal telomere dysfunction. However, they produce inviable embryos that succumb to failure of mitosis caused by covalent fusion of telomeric DNA. Interestingly, the molecular defect is not the absence of MRN interaction or of Mre11 nuclease activities, but the depletion of the maternal pool of Nbs protein in these embryos. Because of Nbs depletion, Mre11 and Rad50 (MR) are excluded from chromatin. This maternal effect lethality in Drosophila is similar to that seen in mice carrying hypomorphic mrn mutations found in human patients, suggesting a common defect in telomere maintenance because of the loss of MRN integrity.
Collapse
|
39
|
Merkle JA, Rickmyre JL, Garg A, Loggins EB, Jodoin JN, Lee E, Wu LP, Lee LA. no poles encodes a predicted E3 ubiquitin ligase required for early embryonic development of Drosophila. Development 2009; 136:449-59. [PMID: 19141674 DOI: 10.1242/dev.027599] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In a screen for cell-cycle regulators, we identified a Drosophila maternal effect-lethal mutant that we named ;no poles' (nopo). Embryos from nopo females undergo mitotic arrest with barrel-shaped, acentrosomal spindles during the rapid S-M cycles of syncytial embryogenesis. We identified CG5140, which encodes a candidate RING domain-containing E3 ubiquitin ligase, as the nopo gene. A conserved residue in the RING domain is altered in our EMS-mutagenized allele of nopo, suggesting that E3 ligase activity is crucial for NOPO function. We show that mutation of a DNA checkpoint kinase, CHK2, suppresses the spindle and developmental defects of nopo-derived embryos, revealing that activation of a DNA checkpoint operational in early embryos contributes significantly to the nopo phenotype. CHK2-mediated mitotic arrest has been previously shown to occur in response to mitotic entry with DNA damage or incompletely replicated DNA. Syncytial embryos lacking NOPO exhibit a shorter interphase during cycle 11, suggesting that they may enter mitosis prior to the completion of DNA replication. We show that Bendless (BEN), an E2 ubiquitin-conjugating enzyme, interacts with NOPO in a yeast two-hybrid assay; furthermore, ben-derived embryos arrest with a nopo-like phenotype during syncytial divisions. These data support our model that an E2-E3 ubiquitination complex consisting of BEN-UEV1A (E2 heterodimer) and NOPO (E3 ligase) is required for the preservation of genomic integrity during early embryogenesis.
Collapse
Affiliation(s)
- Julie A Merkle
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, U-4200 MRBIII, 465 21st Avenue South, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Zhang G, Breuer M, Förster A, Egger-Adam D, Wodarz A. Mars, a Drosophila protein related to vertebrate HURP, is required for the attachment of centrosomes to the mitotic spindle during syncytial nuclear divisions. J Cell Sci 2009; 122:535-45. [PMID: 19174464 DOI: 10.1242/jcs.040352] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The formation of the mitotic spindle is controlled by the microtubule organizing activity of the centrosomes and by the effects of chromatin-associated Ran-GTP on the activities of spindle assembly factors. In this study we show that Mars, a Drosophila protein with sequence similarity to vertebrate hepatoma upregulated protein (HURP), is required for the attachment of the centrosome to the mitotic spindle. More than 80% of embryos derived from mars mutant females do not develop properly due to severe mitotic defects during the rapid nuclear divisions in early embryogenesis. Centrosomes frequently detach from spindles and from the nuclear envelope and nucleate astral microtubules in ectopic positions. Consistent with its function in spindle organization, Mars localizes to nuclei in interphase and associates with the mitotic spindle, in particular with the spindle poles, during mitosis. We propose that Mars is an important linker between the spindle and the centrosomes that is required for proper spindle organization during the rapid mitotic cycles in early embryogenesis.
Collapse
Affiliation(s)
- Gang Zhang
- Abteilung Stammzellbiologie, DFG Research Center for Molecular Physiology of the Brain (CMPB), Georg-August-Universität Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | | | | | | | | |
Collapse
|
41
|
Nakayama M, Yamaguchi SI, Sagisu Y, Sakurai H, Ito F, Kawasaki K. Loss of RecQ5 leads to spontaneous mitotic defects and chromosomal aberrations in Drosophila melanogaster. DNA Repair (Amst) 2008; 8:232-41. [PMID: 19013260 DOI: 10.1016/j.dnarep.2008.10.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 10/06/2008] [Accepted: 10/11/2008] [Indexed: 10/21/2022]
Abstract
RecQ5 belongs to the RecQ DNA helicase family that includes genes causative of Bloom, Werner, and Rothmund-Thomson syndromes. Although no human disease has been genetically linked to a mutation in RecQ5, Drosophila melanogaster RecQ5 is highly expressed in early embryos, suggesting an important role for it in the DNA metabolism of the early embryo. In this present study, we generated RecQ5 mutants in D. melanogaster. Embryos lacking maternally derived RecQ5 contained irregular nuclei in early embryogenesis. These irregular nuclei emerged in nuclear cycle 11-13, lost cell-cycle markers, and were located below the surface monolayer of nuclei. By time-lapse microscopy, these irregular nuclei were observed not to divide, whereas all neighboring nuclei proceeded through normal mitotic division with synchrony. These data suggest that the irregular nuclei exited from the nuclear division cycle. This phenotype is reminiscent of the effect of X-ray irradiation on wild-type embryos and was rescued by expression of RecQ5. Thus, the maternal supply of RecQ5 is important for the nuclear cycles in syncytical embryos. Furthermore, the frequencies of spontaneous and induced chromosomal aberrations were increased in RecQ5 mutant neuroblasts. These data imply that DNA damage accumulates spontaneously in RecQ5 mutants. Therefore, endogenous genomic damage may be produced in Drosophila development, and RecQ5 would be involved in the maintenance of genomic stability by suppressing the accumulation of DNA damage.
Collapse
Affiliation(s)
- Minoru Nakayama
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge, Hirakata, Osaka 573-0101, Japan
| | | | | | | | | | | |
Collapse
|
42
|
McCleland ML, O'Farrell PH. RNAi of mitotic cyclins in Drosophila uncouples the nuclear and centrosome cycle. Curr Biol 2008; 18:245-54. [PMID: 18291653 DOI: 10.1016/j.cub.2008.01.041] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Revised: 01/14/2008] [Accepted: 01/16/2008] [Indexed: 11/30/2022]
Abstract
BACKGROUND Successful cell duplication requires orderly progression through a succession of dramatic cell-cycle events. Disruption of this precise coupling can compromise genomic integrity. The coordination of cell-cycle events is thought to arise from control by a single master regulator, cyclin:Cdk, whose activity oscillates. However, we still know very little of how individual cell-cycle events are coupled to this oscillator and how the timing of each event is controlled. RESULTS We developed an approach with RNA interference (RNAi) and real-time imaging to study cyclin contributions to the rapid syncytial divisions of Drosophila embryos. Simultaneous knockdown of all three mitotic cyclins blocked nuclei from entering mitosis. Despite nuclear arrest, centrosomes and associated myosin cages continued to divide until the midblastula transition. Centrosome division was synchronous throughout the embryo and the period of the uncoupled duplication cycle increased over successive divisions. In contrast to its normal actions, injection of a competitive inhibitor of the anaphase-promoting complex/cyclosome (APC/C) after knockdown of the mitotic cyclins did not interfere with the centrosome-duplication cycles. Finally, we examined how cyclin knockdown affects the onset of cellularization at the midblastula transition and found that nuclear cell-cycle arrest did not advance or delay onset of cellularization. CONCLUSIONS We show that knockdown of mitotic cyclins allows centrosomes to duplicate in a cycle that is uncoupled from other cell-cycle events. We suggest that high mitotic cyclin normally ensures that the centrosome cycle remains entrained to the nuclear cycle.
Collapse
Affiliation(s)
- Mark L McCleland
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California 94143-2200, USA
| | | |
Collapse
|
43
|
Bothwell JHF, Kisielewska J, Genner MJ, McAinsh MR, Brownlee C. Ca2+ signals coordinate zygotic polarization and cell cycle progression in the brown alga Fucus serratus. Development 2008; 135:2173-81. [PMID: 18480164 DOI: 10.1242/dev.017558] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Zygotes of the fucoid brown algae provide excellent models for addressing fundamental questions about zygotic symmetry breaking. Although the acquisition of polarity is tightly coordinated with the timing and orientation of the first asymmetric division--with zygotes having to pass through a G1/S-phase checkpoint before the polarization axis can be fixed--the mechanisms behind the interdependence of polarization and cell cycle progression remain unclear. In this study, we combine in vivo Ca2+ imaging, single cell monitoring of S-phase progression and multivariate analysis of high-throughput intracellular Ca2+ buffer loading to demonstrate that Ca2+ signals coordinate polarization and cell cycle progression in the Fucus serratus zygote. Consistent with earlier studies on this organism, and in contrast to animal models, we observe no fast Ca2+ wave following fertilization. Rather, we show distinct slow localized Ca2+ elevations associated with both fertilization and S-phase progression, and we show that both S-phase and zygotic polarization are dependent on pre-S-phase Ca2+ increases. Surprisingly, this Ca2+ requirement cannot be explained by co-dependence on a single G1/S-phase checkpoint, as S phase and zygotic polarization are differentially sensitive to pre-S-phase Ca2+ elevations and can be uncoupled. Furthermore, subsequent cell cycle progression through M phase is independent of localized actin polymerization and zygotic polarization. This absence of a morphogenesis checkpoint, together with the observed Ca2+-dependences of S phase and polarization, show that the regulation of zygotic division in the brown algae differs from that in other eukaryotic model systems, such as yeast and Drosophila.
Collapse
Affiliation(s)
- John H F Bothwell
- Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth PL1 2PB,UK
| | | | | | | | | |
Collapse
|
44
|
Durcan TM, Halpin ES, Casaletti L, Vaughan KT, Pierson MR, Woods S, Hinchcliffe EH. Centrosome duplication proceeds during mimosine-induced G1 cell cycle arrest. J Cell Physiol 2008; 215:182-91. [PMID: 17960592 DOI: 10.1002/jcp.21298] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Centrosome duplication must remain coordinated with cell cycle progression to ensure the formation of a strictly bipolar mitotic spindle, but the mechanisms that regulate this coordination are poorly understood. Previous work has shown that prolonged S-phase is permissive for centrosome duplication, but prolonging either G2 or M-phase cannot support duplication. To examine whether G1 is permissive for centrosome duplication, we release serum-starved G0 cells into mimosine, which delays the cell cycle in G1. We find that in mimosine, centrosome duplication does occur, albeit slowly compared with cells that progress into S-phase; centrosome duplication in mimosine-treated cells also proceeds in the absence of a rise in Cdk2 kinase activity normally associated with the G1/S transition. CHO cells arrested with mimosine can also assemble more than four centrioles (termed "centrosome amplification"), but the extent of centrosome amplification during prolonged G1 is decreased compared to cells that enter S-phase and activate the Cdk2-cyclin complex. Together, our results suggest a model, which predicts that entry into S-phase and the rise in Cdk2 activity associated with this transition are not absolutely required to initiate centrosome duplication, but rather, serve to entrain the centrosome reproduction cycle with cell cycle progression.
Collapse
Affiliation(s)
- Thomas M Durcan
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Elaboration of a multicellular organism requires highly efficient coordination between proliferation and developmental processes. Accordingly, the embryonic cell cycle exhibits a high degree of plasticity; however, the mechanisms underlying its regulation in vivo remain largely unknown. The purpose of this review is to summarize the data on cell cycle regulation during the early mouse embryonic development, a period characterized by major variations in cell cycle parameters which correlate with important developmental transitions. In particular, we analyse the contribution of mutant mice to the study of in vivo cell cycle regulation during early development and discuss possible contributions of cell cycle regulators to developmental programs.
Collapse
Affiliation(s)
- Jérôme Artus
- Unité de Génétique Fonctionnelle de la souris, CNRS URA 2578, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, France.
| | | |
Collapse
|
46
|
Rickmyre JL, Dasgupta S, Ooi DLY, Keel J, Lee E, Kirschner MW, Waddell S, Lee LA. TheDrosophilahomolog ofMCPH1,a human microcephaly gene, is required for genomic stability in the early embryo. J Cell Sci 2007; 120:3565-77. [PMID: 17895362 DOI: 10.1242/jcs.016626] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Mutation of human microcephalin (MCPH1) causes autosomal recessive primary microcephaly, a developmental disorder characterized by reduced brain size. We identified mcph1, the Drosophila homolog of MCPH1, in a genetic screen for regulators of S-M cycles in the early embryo. Embryos of null mcph1 female flies undergo mitotic arrest with barrel-shaped spindles lacking centrosomes. Mutation of Chk2 suppresses these defects, indicating that they occur secondary to a previously described Chk2-mediated response to mitotic entry with unreplicated or damaged DNA. mcph1 embryos exhibit genomic instability as evidenced by frequent chromatin bridging in anaphase. In contrast to studies of human MCPH1, the ATR/Chk1-mediated DNA checkpoint is intact in Drosophila mcph1 mutants. Components of this checkpoint, however, appear to cooperate with MCPH1 to regulate embryonic cell cycles in a manner independent of Cdk1 phosphorylation. We propose a model in which MCPH1 coordinates the S-M transition in fly embryos: in the absence of mcph1, premature chromosome condensation results in mitotic entry with unreplicated DNA, genomic instability, and Chk2-mediated mitotic arrest. Finally, brains of mcph1 adult male flies have defects in mushroom body structure, suggesting an evolutionarily conserved role for MCPH1 in brain development.
Collapse
Affiliation(s)
- Jamie L Rickmyre
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, U-4200 MRBIII, 465 21st Avenue South, Nashville, TN 37232-8240, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Adiga SK, Toyoshima M, Shimura T, Takeda J, Uematsu N, Niwa O. Delayed and stage specific phosphorylation of H2AX during preimplantation development of gamma-irradiated mouse embryos. Reproduction 2007; 133:415-22. [PMID: 17307909 DOI: 10.1530/rep-06-0048] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Within minutes of the induction of DNA double-strand breaks in somatic cells, histone H2AX becomes phosphorylated in the serine 139 residue at the damage site. The phosphorylated H2AX, designated as gamma-H2AX, is visible as nuclear foci in the irradiated cells which are thought to serve as a platform for the assembly of proteins involved in checkpoint response and DNA repair. It is known that early stage mammalian embryos are highly sensitive to radiation but the mechanism of radiosensitivity is not well understood. Thus, we investigated the damage response of the preimplantation stage development by analyzing focus formation of gamma-H2AX in mouse embryos gamma-irradiated in utero. Our analysis revealed that although H2AX is present in early preimplantation embryos, its phosphorylation after 3 Gy gamma-irradiation is hindered up to the two cell stage of development. When left in utero for another 24-64 h, however, these irradiated embryos showed delayed phosphorylation of H2AX. In contrast, phosphorylation of H2AX was readily induced by radiation in post-compaction stage embryos. It is possible that phosphorylation of H2AX is inefficient in early stage embryos. It is also possible that the phosphorylated H2AX exists in the dispersed chromatin structure of early stage embryonic pronuclei, so that it cannot readily be detected by conventional immunostaining method. In either case, this phenomenon is likely to correlate with the lack of cell cycle arrest, apoptosis and high radiosensitivity of these developmental stages.
Collapse
Affiliation(s)
- Satish Kumar Adiga
- Division of Reproductive Medicine, Department of Obstetrics and Gynecology, Kasturba Medical College, Manipal 576 104, India
| | | | | | | | | | | |
Collapse
|
48
|
Brunk K, Vernay B, Griffith E, Reynolds NL, Strutt D, Ingham PW, Jackson AP. Microcephalin coordinates mitosis in the syncytialDrosophilaembryo. J Cell Sci 2007; 120:3578-88. [PMID: 17895363 DOI: 10.1242/jcs.014290] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Microcephalin (MCPH1) is mutated in primary microcephaly, an autosomal recessive human disorder of reduced brain size. It encodes a protein with three BRCT domains that has established roles in DNA damage signalling and the cell cycle, regulating chromosome condensation. Significant adaptive evolutionary changes in primate MCPH1 sequence suggest that changes in this gene could have contributed to the evolution of the human brain. To understand the developmental role of microcephalin we have studied its function in Drosophila. We report here that Drosophila MCPH1 is cyclically localised during the cell cycle, co-localising with DNA during interphase, but not with mitotic chromosomes. mcph1 mutant flies have a maternal effect lethal phenotype, due to mitotic arrest occurring in early syncytial cell cycles. Mitotic entry is slowed from the very first mitosis in such embryos, with prolonged prophase and metaphase stages; and frequent premature separation as well as detachment of centrosomes. As a consequence, centrosome and nuclear cycles become uncoordinated, resulting in arrested embryonic development. Phenotypic similarities with abnormal spindle (asp) and centrosomin (cnn) mutants (whose human orthologues are also mutated in primary microcephaly), suggest that further studies in the Drosophila embryo may establish a common developmental and cellular pathway underlying the human primary microcephaly phenotype.
Collapse
Affiliation(s)
- Kathrin Brunk
- Institute of Integrative and Comparative Biology, University of Leeds, LS2 9JT, UK
| | | | | | | | | | | | | |
Collapse
|
49
|
Dasso M, Smythe C, Milarski K, Kornbluth S, Newport JW. DNA replication and progression through the cell cycle. CIBA FOUNDATION SYMPOSIUM 2007; 170:161-80; discussion 180-6. [PMID: 1483344 DOI: 10.1002/9780470514320.ch11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Somatic cells possess control mechanisms which monitor DNA replication and assure that it is complete before mitosis is initiated. We have been investigating these mechanisms in Xenopus egg extracts. Using in vitro cycling extracts, which spontaneously alternate between interphase and mitosis, we found that the onset of mitosis is inhibited by the presence of unreplicated DNA, demonstrating that the completion of DNA replication and the initiation of mitosis are coupled in these extracts. As in somatic cells, this coupling is sensitive to caffeine and to okadaic acid. In Xenopus extracts unreplicated DNA increases the tyrosine phosphorylation of p34cdc2, thereby maintaining MPF (mitosis-promoting factor) in an inactive state and preventing the onset of mitosis. The block to mitosis in the presence of unreplicated DNA can be reversed by the addition of bacterially expressed cdc25 protein. The extent of MPF activation by cdc25 protein under these conditions depends on the number of nuclei present. We have developed an assay to examine the rate of tyrosine phosphorylation on p34cdc2. It is increased by unreplicated DNA, in a manner consistent with unreplicated DNA up-regulating the kinase that phosphorylates p34cdc2. We have begun to examine how unreplicated DNA generates the signal that inhibits MPF activation by testing the ability of naked single- and double-stranded DNA templates to inhibit mitosis, and by investigating the role of RCC1, a chromatin-associated protein required for the coupling of DNA replication and mitosis.
Collapse
Affiliation(s)
- M Dasso
- Department of Biology, University of California, San Diego, La Jolla 92093
| | | | | | | | | |
Collapse
|
50
|
Adiga SK, Toyoshima M, Shiraishi K, Shimura T, Takeda J, Taga M, Nagai H, Kumar P, Niwa O. p21 provides stage specific DNA damage control to preimplantation embryos. Oncogene 2007; 26:6141-9. [PMID: 17420724 DOI: 10.1038/sj.onc.1210444] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The early stage embryogenesis of higher eukaryotes lacks some of the damage response pathways such as G1/S checkpoint, G2/M checkpoint and apoptosis. We examined here the damage response of preimplantation stage embryos after fertilization with 6 Gy irradiated sperm. Sperm-irradiated embryos developed normally for the first 2.5 days, but started to exhibit a developmental delay at day 3.5. p21 was activated in the delayed embryos, which carried numerous micronuclei owing to delayed chromosome instability. Apoptosis was observed predominantly in the inner cell mass of the day 4.0 embryos. Sperm-irradiated p21-/- embryos lacked the delay, but chromosome instability and apoptosis were more pronounced than the corresponding p21 wild-type embryos. We conclude from the result that damage responses come in a stage-specific manner during preimplantation stage development; p53-dependent S checkpoint at the zygote stage, p21-mediated cell cycle arrest at the morula/blastocyst stages and apoptosis after the blastocyst stage in the inner cell mass.
Collapse
Affiliation(s)
- S K Adiga
- Kasturba Medical College, Manipal, India
| | | | | | | | | | | | | | | | | |
Collapse
|