1
|
Carvalho RS, Schaffer JL, Gerstenfeld LC. Osteoblasts induce osteopontin expression in response to attachment on fibronectin: demonstration of a common role for integrin receptors in the signal transduction processes of cell attachment and mechanical stimulation. J Cell Biochem 1998; 70:376-90. [PMID: 9706875 DOI: 10.1002/(sici)1097-4644(19980901)70:3<376::aid-jcb11>3.0.co;2-j] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Osteopontin is a predominant integrin binding protein of bone and its expression has been shown to be induced by mechanical stimuli within osteoblasts (Toma et al. [1997] J. Bone Miner. Res. 12:1626-1636). The present studies examined if the cell adhesion would mimic the mechano-transduction that stimulated opn mRNA expression and whether integrin receptors were involved in these processes. Osteopontin mRNA expression was induced three- to four-fold, 24 hours after embryonic chicken calvaria osteoblast attachment to fibronectin (FN), however no induction was observed if the cells were plated on tissue culture plastic alone. Osteopontin mRNA induction in response to cell attachment on FN was dependent on new protein synthesis and the activation of a tyrosine protein kinase(s) but unlike mechano-induction was independent of the maintenance of the cell's microfilament structure. Integrin receptor(s) were shown to be involved in mediating the signal transduction processes of both cell attachment and mechanical stimulation since incubation of osteoblasts with the integrin binding peptide RGDS partially blocked the induction of opn expression in response to both stimuli. Interestingly, incubation of the osteoblasts that were adherent on tissue culture plastic alone with the RGDS peptide lead to an induction in opn expression suggesting that integrin occupancy by itself was sufficient to initiate the signal transduction process that induced opn expression. In order to assess the role of integrin occupancy vs. focal adhesion complex formation that accompanies cell attachment, in the signal transduction process that induces opn expression, receptor clustering was stimulated pharmacologically with bombesin or lysophosphatidic acid in osteoblasts attached to tissue culture plastic. Neither compound in the absence of occupancy of the integrin receptors was capable of stimulating opn expression in attached cells, however if the cells were placed in suspension pharmacological mediation of receptor clustering and integrin occupancy were additive in their effect of inducing opn expression. These data demonstrate that induction of opn expression by mechanical stimuli and cell attachment are commonly mediated through integrin receptor(s). However, when cells are attached receptor clustering alone which accompanies focal adhesion formation was incapable of mediating signal transduction suggesting that receptor occupancy was a prerequisite to the signal transduction process that leads to the induction of opn mRNA expression.
Collapse
Affiliation(s)
- R S Carvalho
- The Laboratory for the Study of Skeletal Disorders and Rehabilitation, Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
2
|
Wise CJ, Watt DJ, Jones GE. Conversion of dermal fibroblasts to a myogenic lineage is induced by a soluble factor derived from myoblasts. J Cell Biochem 1996. [DOI: 10.1002/(sici)1097-4644(19960601)61:3<363::aid-jcb4>3.0.co;2-r] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
3
|
Wise CJ, Watt DJ, Jones GE. Conversion of dermal fibroblasts to a myogenic lineage is induced by a soluble factor derived from myoblasts. J Cell Biochem 1996; 61:363-74. [PMID: 8761941 DOI: 10.1002/(sici)1097-4644(19960601)61:3%3c363::aid-jcb4%3e3.0.co;2-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The limb and axial skeletal muscles of mammals originate from somitic dermomyotome, which during early development separates to form two discrete structures, the dermatome and the myotome. The latter cell mass gives rise to the muscle-forming lineage while cells of the dermatome will form the skin dermal fibroblast population of the dorsal regions of the body. It has been generally accepted for some time that myotome-derived myoblasts were the sole source of muscle fibre nuclei, but evidence has recently been presented from several laboratories that fibroblasts can fuse with myoblasts to contribute active nuclei to the resulting myotubes. We report here an investigation into the myogenic capacity of fibroblasts. Confluent monocultures of mouse dermal fibroblasts, muscle fibroblasts, and C2C12 myoblasts each retain their individual phenotype when maintained for periods up to 7 days in culture. We also grew isolated colonies of fibroblasts and myoblasts in an arrangement which allowed free exchange of tissue culture medium between the 2 cell types. We found evidence of the conversion of dermal fibroblasts to a myogenic lineage as measured by the appearance of MyoD-positive cells expressing the muscle-specific intermediate filament desmin. In addition, dermal fibroblast cultures contained multinucleate syncytia positive for MyoD and containing sarcomeric myosin heavy chain. In contrast, muscle-derived fibroblasts showed no evidence of myogenic conversion when maintained in identical culture conditions. We prepared conditioned medium from confluent cultures of C2C12 myoblasts and added this material to confluent monocultures of either dermal or muscle fibroblasts. While muscle fibroblasts showed no phenotypic alterations, cultures of dermal fibroblasts responded to myoblast conditioned medium by converting to a myogenic lineage as judged by expression of MyoD and desmin. We conclude that a proportion of dermal fibroblasts retain a myogenic capacity into stages well beyond their early association with myoblasts in the dermomyotome.
Collapse
Affiliation(s)
- C J Wise
- Randall Institute, King's College London, United Kingdom
| | | | | |
Collapse
|
4
|
Filbin MT, Tennekoon GI. Homophilic adhesion of the myelin P0 protein requires glycosylation of both molecules in the homophilic pair. J Cell Biol 1993; 122:451-9. [PMID: 7686552 PMCID: PMC2119647 DOI: 10.1083/jcb.122.2.451] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The myelin P0 protein is glycosylated at a single site, asparagine 93, within its only immunoglobulin (Ig)-like domain. We have previously shown that P0 behaves like a homophilic adhesion molecule (Filbin, M. T., F. S. Walsh, B. D. Trapp, J. A. Pizzey, and G. I. Tennekoon. 1990. Nature (Lond.). 344:871-872). To determine if the sugar residues of this molecule contribute to its adhesiveness, the glycosylation site was eliminated by replacing asparagine 93 with an alanine, through site-directed mutagenesis of the P0 cDNA. The mutated P0 cDNA was transfected into CHO cells and surface expression of the mutated P0 was assessed by immunofluorescence, limited trypsinization and an ELISA. A cell line was chosen which expressed approximately equivalent amounts of the unglcosylated P0 (UNGP0) at the cell surface as did a cell line expressing the fully glycosylated P0 (GPo); the adhesive properties of these two cell lines were compared. It was found that when a single cell suspension of the UNGPo cells were incubated, by 60 min, unlike the GP0 cells, they had not formed large aggregates; they were indistinguishable from the control transfected cells. This suggests that the UNGP0 protein does not behave like an adhesion molecule. To establish if only one molecule in the P0:P0 homophilic pair must be glycosylated for adhesion to occur, the ability of UNGP0 cells to adhere to GP0 cells was assessed both qualitatively and quantitatively. The results of both types of assay imply that, indeed, both P0 molecules in the homophilic pair must be glycosylated for adhesion to take place.
Collapse
Affiliation(s)
- M T Filbin
- Department of Biological Sciences, Hunter College of the City University of New York, New York 10021
| | | |
Collapse
|
5
|
Moore R, Walsh FS. The cell adhesion molecule M-cadherin is specifically expressed in developing and regenerating, but not denervated skeletal muscle. Development 1993; 117:1409-20. [PMID: 8404540 DOI: 10.1242/dev.117.4.1409] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The spatiotemporal distribution of M-cadherin mRNA has been determined by in situ hybridization in the mouse embryo and in adult skeletal muscle following experimental regeneration and denervation. M-cadherin mRNA is highly tissue specific and is found only in developing skeletal muscle. In contrast, N-cadherin mRNA has a broader tissue distribution in the embryo, being found on both neural elements and skeletal and cardiac muscle. M-cadherin is expressed in the myotomes shortly after they form, along with the myogenic regulatory factor myogenin. M-cadherin is expressed in muscles derived from the myotomes and is detected in forelimb bud precursor cells at embryonic day 11.5. In the latter case M-cadherin expression appears co-ordinately with that of myogenin and cardiac alpha-actin. Shortly before birth, M-cadherin expression is down regulated. M-cadherin can, however, be re-expressed following experimental regeneration of skeletal muscle. Here M-cadherin is transiently expressed on regenerating myoblasts but not myotubes. Following muscle denervation no evidence was found for re-expression of M-cadherin under conditions where there was strong expression of the nicotinic acetylcholine receptor on myofibres. The highly specific tissue distribution and unique developmental profile distinguishes M-cadherin from other cadherins and suggests a role in cell surface events during early myogenesis.
Collapse
Affiliation(s)
- R Moore
- Department of Experimental Pathology, UMDS, Guy's Hospital, London, UK
| | | |
Collapse
|
6
|
Abstract
Factors which effect proliferation and fusion of muscle precursor cells have been studied extensively in tissue culture, although little is known about these events in vivo. This review assesses the tissue culture derived data with a view to understanding factors which may control the regeneration of mature skeletal muscle in vivo. The following topics are discussed in the light of recent developments in cell and molecular biology: 1) Injury and necrosis of mature skeletal muscle fibres 2) Phagocytosis of myofibre debris 3) Revascularisation of injured muscle 4) Activation and proliferation of muscle precursor cells (mpc) in vivo Identification of mpcs; Satellite cell relationships; Extracellular matrix; Growth factors; Hormones; Replication. 5) Differentiation and fusion of muscle precursor cells in vivo Differentiation; Fusion; Extracellular matrix; Cell surface molecules: Growth factors and prostaglandins 6) Myotubes and innervation.
Collapse
Affiliation(s)
- M D Grounds
- Department of Pathology, University of Western Australia
| |
Collapse
|
7
|
Rouiller DG, Cirulli V, Halban PA. Differences in aggregation properties and levels of the neural cell adhesion molecule (NCAM) between islet cell types. Exp Cell Res 1990; 191:305-12. [PMID: 2257882 DOI: 10.1016/0014-4827(90)90019-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cells within rat islets of Langerhans are typically organized as a core of B-cells, surrounded by the other cell types. When mixed in culture, primary islet cells and insulinoma (RIN2A) cells form aggregates where B-cells are centrally located, surrounded by non-B-cells, while RIN-cells segregate as the outermost layer. To gain insight into the molecular basis underlying this nonrandom cellular organization, the aggregation properties of the three cell populations were studied. Isolated islet cells were separated into B-cells and non-B-cells by autofluorescence-activated cell sorting (FACS). In a short-term aggregation assay, primary B-cell aggregation in the absence of calcium was only 19 +/- 3.7%, compared to the 67 +/- 2.9% seen in the presence of calcium (mean +/- SEM; P less than 0.001; n = 7). By contrast, non-B-cell aggregation and RIN cell aggregation in the absence of calcium (62 +/- 2 and 66 +/- 2%, respectively) were only slightly less than with calcium (70 +/- 3 and 76 +/- 3%). The surface density of the Ca2(+)-independent neural CAM (NCAM) was therefore measured by flow cytometry and found to be 2.64 +/- 0.82-fold higher in non-B-cells, compared to that in B-cells (P less than 0.01; n = 3). Even higher levels were found on RIN cells. In the three cell types, NCAM-140 was the only molecular form detected by immunoblotting. In conclusion, differences in the calcium dependency of aggregation and in the levels of NCAM are demonstrated among islet B-cells, non-B-cells, and RIN cells. Because cell-cell adhesion is crucial for the maintenance of adult tissue, these aggregation specificities might contribute to the concentric segregation of islet cell types in culture and to the nonrandom distribution of cells within rat islets.
Collapse
Affiliation(s)
- D G Rouiller
- Laboratoires de Recherche Louis Jeantet, Centre Médical Universitaire, Geneva, Switzerland
| | | | | |
Collapse
|
8
|
Knudsen KA, Myers L, McElwee SA. A role for the Ca2(+)-dependent adhesion molecule, N-cadherin, in myoblast interaction during myogenesis. Exp Cell Res 1990; 188:175-84. [PMID: 2335185 DOI: 10.1016/0014-4827(90)90157-6] [Citation(s) in RCA: 123] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The formation of multinucleate skeletal muscle cells (myotubes) is a Ca2(+)-dependent process involving the interaction and fusion of mononucleate muscle cells (myoblasts). Specific cell-cell adhesion precedes lipid bilayer union during myoblast fusion and has been shown to involve both Ca2(+)-independent (CI)2 and Ca2(+)-dependent (CD) mechanisms. In this paper we present evidence that CD myoblast adhesion involves a molecule similar or identical to two known CD adhesion glycoproteins, N-cadherin and A-CAM. These molecules were previously identified by other laboratories in brain and cardiac muscle, respectively, and are postulated to be the same molecule. Antibodies to N-cadherin and A-CAM immunoblotted a similar band with a molecular weight of approximately 125,000 in extracts of brain, heart, and pectoral muscle isolated from chick embryos and in extracts of muscle cells grown in vitro at Ca2+ concentrations that either promoted or inhibited myotube formation. In assays designed to measure the interaction of fusion-competent myoblasts in suspension, both polyclonal and monoclonal anti-N-cadherin antibodies inhibited CD myoblast aggregation, suggesting that N-cadherin mediates the CD aspect of myoblast adhesion. Anti-N-cadherin also had a partial inhibitory effect on myotube formation likely due to the effect on myoblast-myoblast adhesion. The results indicate that N-cadherin/A-CAM plays a role in myoblast recognition and adhesion during skeletal myogenesis.
Collapse
Affiliation(s)
- K A Knudsen
- Lankenau Medical Research Center, Philadelphia, Pennsylvania 19151
| | | | | |
Collapse
|
9
|
Filbin MT, Walsh FS, Trapp BD, Pizzey JA, Tennekoon GI. Role of myelin P0 protein as a homophilic adhesion molecule. Nature 1990; 344:871-2. [PMID: 1691824 DOI: 10.1038/344871a0] [Citation(s) in RCA: 264] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Peripheral nervous system myelin is an extension of the Schwann cell's plasma membrane that tightly enwraps axons in many layers and permits nerve impulses to be rapidly conducted. It is not known how these multiple membrane layers are held together in this compact form. Here we present evidence supporting the hypothesis that the extracellular leaflets of myelin are held together by the most abundant protein of myelin of the peripheral nervous system, P0, by homophilic interaction of its extracellular domains. Transfected Chinese hamster ovary cells expressing P0 protein adhere to each other in suspension, to form large aggregates, whereas cells that are identical but which do not express P0 do not. We also show that this aggregation is mediated by homophilic binding between P0-expressing cells and that the apposing plasma membranes of these cells specifically form desmosomes, whereas control transfected cells do not. As the only difference between the two cell populations is the expression of P0, this protein is apparently responsible for the changes in morphology and adhesion in the cells that express it. The idea that P0 is a homophilic adhesion molecule is supported by its inclusion in the immunoglobulin supergene family, all members of which are involved in recognition and/or adhesion.
Collapse
Affiliation(s)
- M T Filbin
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | | | | | | | | |
Collapse
|
10
|
Dickson G, Peck D, Moore SE, Barton CH, Walsh FS. Enhanced myogenesis in NCAM-transfected mouse myoblasts. Nature 1990; 344:348-51. [PMID: 2179732 DOI: 10.1038/344348a0] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The fusion of mononucleate precursor myoblasts to form the multinucleated skeletal muscle fibre is proceeded by a series of complex cell-cell interactions but the cell-surface molecules involved in these events have not been characterized. During myogenesis in vivo and in vitro, expression of the neural cell adhesion molecule (NCAM) undergoes an isoform transition that precisely correlates with terminal myoblast differentiation and myotube formation. Altered processing of RNA results in the replacement of the transmembrane NCAM (relative molecular mass, 145,000 (145K) in proliferating myoblasts by a predominant 125K NCAM form linked to glycosyl phosphatidylinositol in myotubes. We now report that mouse myoblasts transfected to constitutively express the human muscle-specific 125K glycosylphosphatidylinositol-linked NCAM isoform more readily fuse to form myotubes. This suggests that NCAM plays a part in myoblast fusion and that the isoform switch may promote this function.
Collapse
Affiliation(s)
- G Dickson
- Department of Experimental Pathology, United Medical School, Guy's Hospital, London, UK
| | | | | | | | | |
Collapse
|
11
|
A role for the neural cell adhesion molecule, NCAM, in myoblast interaction during myogenesis. Dev Biol 1990; 138:159-68. [PMID: 2407576 DOI: 10.1016/0012-1606(90)90185-l] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The Ca2(+)-independent neural cell adhesion molecule, NCAM, is expressed by both nerve and muscle cells and has been shown to mediate both nerve-nerve and nerve-muscle cell interaction. A role for NCAM in muscle-muscle cell interaction has been proposed but not demonstrated. Here we report evidence that NCAM is expressed by embryonic chick muscle cells during in vitro development and functions together with Ca2(+)-dependent adhesion molecules in mediating myoblast interaction during the formation of multinucleate cells.
Collapse
|
12
|
Pizzey JA, Rowett LH, Barton CH, Dickson G, Walsh FS. Intercellular adhesion mediated by human muscle neural cell adhesion molecule: effects of alternative exon use. J Cell Biol 1989; 109:3465-76. [PMID: 2532218 PMCID: PMC2115936 DOI: 10.1083/jcb.109.6.3465] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Mouse 3T3 fibroblasts were permanently transfected with cDNAs encoding isoforms of the neural cell adhesion molecule (N-CAM) present in human skeletal muscle and brain. Parental and transfected cells were then used in a range of adhesion assays. In the absence of external shear forces, transfection with cDNAs encoding either transmembrane or glycosylphosphatidylinositol (GPI)-linked N-CAM species significantly increased the intercellular adhesiveness of 3T3 cells in suspension. Transfection of a cDNA encoding a secreted N-CAM isoform was without effect on adhesion. Cells transfected with cDNAs containing or lacking the muscle-specific domain 1 sequence, a four-exon group spliced into the muscle but not the brain GPI-linked N-CAM species, were equally adhesive in the assays used. We also demonstrate that N-CAM-mediated intercellular adhesiveness is inhibited by 0.2 mg/ml heparin; but, at higher concentrations, reduced adhesion of parental cells was also seen. Coaggregation of fluorescently labeled and unlabeled cell populations was performed and measured by comparing their distribution within aggregates with distributions that assume nonspecific (random) aggregation. These studies demonstrate that random aggregation occurs between transfected cells expressing the transmembrane and GPI-linked N-CAM species and between parental cells and those expressing the secreted N-CAM isoform. Other combinations of these populations tested exhibited partial adhesive specificity, indicating homophilic binding between surface-bound N-CAM. Thus, the approach exploited here allows for a full analysis of the requirements, characteristics, and specificities of the adhesive behavior of individual N-CAM isoforms.
Collapse
Affiliation(s)
- J A Pizzey
- Department of Neurochemistry, Institute of Neurology, Queen Square, London, United Kingdom
| | | | | | | | | |
Collapse
|
13
|
Affiliation(s)
- J M White
- Department of Pharmacology, University of California, San Francisco
| | | |
Collapse
|
14
|
Knudsen KA, Smith L, McElwee S. Involvement of cell surface phosphatidylinositol-anchored glycoproteins in cell-cell adhesion of chick embryo myoblasts. J Biophys Biochem Cytol 1989; 109:1779-86. [PMID: 2793939 PMCID: PMC2115793 DOI: 10.1083/jcb.109.4.1779] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
During myogenesis myoblasts fuse to form multinucleate cells that express muscle-specific proteins. A specific cell-cell adhesion process precedes lipid bilayer union during myoblast fusion (Knudsen, K. A., and A. F. Horwitz. 1977. Dev. Biol. 58:328-338) and is mediated by cell surface glycoproteins (Knudsen, K. A., 1985. J. Cell Biol. 101:891-897). In this paper we show that myoblast adhesion and myotube formation are inhibited by treating fusion-competent myoblasts with phosphatidylinositol-specific phospholipase C (PI-PLC). The effect of PI-PLC on myoblast adhesion is dose dependent and inhibited by D-myo-inositol 1-monophosphate and the effect on myotube formation is reversible, suggesting a specific, nontoxic effect on myogenesis by the enzyme. A soluble form of adhesion-related glycoproteins is released from fusion-competent myoblasts by treatment with PI-PLC as evidenced by (a) the ability of phospholipase C (PLC)-released material to block the adhesion-perturbing activity of a polyclonal antiserum to intact myoblasts; and (b) the ability of PLC-released glycoprotein to stimulate adhesion-perturbing antisera when injected into mice. PI-PLC treatment of fusion-competent myoblasts releases an isoform of N-CAM into the supernate, suggesting that N-CAM may participate in mediating myoblast interaction during myogenesis.
Collapse
Affiliation(s)
- K A Knudsen
- Lankenau Medical Research Center, Philadelphia, Pennsylvania 19151
| | | | | |
Collapse
|