1
|
Hoffmann C, Murastov G, Tromm JV, Moog JB, Aslam MA, Matkovic A, Milovanovic D. Electric Potential at the Interface of Membraneless Organelles Gauged by Graphene. NANO LETTERS 2023; 23:10796-10801. [PMID: 37862690 PMCID: PMC10722609 DOI: 10.1021/acs.nanolett.3c02915] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/15/2023] [Indexed: 10/22/2023]
Abstract
Eukaryotic cells contain membrane-bound and membrane-less organelles that are often in contact with each other. How the interface properties of membrane-less organelles regulate their interactions with membranes remains challenging to assess. Here, we employ graphene-based sensors to investigate the electrostatic properties of synapsin 1, a major synaptic phosphoprotein, either in a single phase or after undergoing phase separation to form synapsin condensates. Using these graphene-based sensors, we discover that synapsin condensates generate strong electrical responses that are otherwise absent when synapsin is present as a single phase. By introducing atomically thin dielectric barriers, we show that the electrical response originates in an electric double layer whose formation governs the interaction between synapsin condensates and graphene. Our data indicate that the interface properties of the same protein are substantially different when the protein is in a single phase versus within a biomolecular condensate, unraveling that condensates can harbor ion potential differences at their interface.
Collapse
Affiliation(s)
- Christian Hoffmann
- Laboratory
of Molecular Neuroscience, German Center
for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
| | - Gennadiy Murastov
- Chair
of Physics, Department Physics, Mechanics and Electrical Engineering, Montanuniversität Leoben, 8700 Leoben, Austria
| | - Johannes Vincent Tromm
- Laboratory
of Molecular Neuroscience, German Center
for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
| | - Jean-Baptiste Moog
- Laboratory
of Molecular Neuroscience, German Center
for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
| | - Muhammad Awais Aslam
- Chair
of Physics, Department Physics, Mechanics and Electrical Engineering, Montanuniversität Leoben, 8700 Leoben, Austria
| | - Aleksandar Matkovic
- Chair
of Physics, Department Physics, Mechanics and Electrical Engineering, Montanuniversität Leoben, 8700 Leoben, Austria
| | - Dragomir Milovanovic
- Laboratory
of Molecular Neuroscience, German Center
for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
| |
Collapse
|
2
|
Xu H, Oses-Prieto JA, Khvotchev M, Jain S, Liang J, Burlingame A, Edwards RH. Adaptor protein AP-3 produces synaptic vesicles that release at high frequency by recruiting phospholipid flippase ATP8A1. Nat Neurosci 2023; 26:1685-1700. [PMID: 37723322 DOI: 10.1038/s41593-023-01434-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 08/14/2023] [Indexed: 09/20/2023]
Abstract
Neural systems encode information in the frequency of action potentials, which is then decoded by synaptic transmission. However, the rapid, synchronous release of neurotransmitters depletes synaptic vesicles (SVs), limiting release at high firing rates. How then do synapses convey information about frequency? Here, we show in mouse hippocampal neurons and slices that the adaptor protein AP-3 makes a subset of SVs that respond specifically to high-frequency stimulation. Neurotransmitter transporters slot onto these SVs in different proportions, contributing to the distinct properties of release observed at different excitatory synapses. Proteomics reveals that AP-3 targets the phospholipid flippase ATP8A1 to SVs; loss of ATP8A1 recapitulates the defect in SV mobilization at high frequency observed with loss of AP-3. The mechanism involves recruitment of synapsin by the cytoplasmically oriented phosphatidylserine translocated by ATP8A1. Thus, ATP8A1 enables the subset of SVs made by AP-3 to release at high frequency.
Collapse
Affiliation(s)
- Hongfei Xu
- Departments of Physiology and Neurology, University of California, San Francisco School of Medicine, San Francisco, CA, USA
| | - Juan A Oses-Prieto
- Department of Pharmaceutical Chemistry, University of California, San Francisco School of Medicine, San Francisco, CA, USA
| | - Mikhail Khvotchev
- Departments of Physiology and Neurology, University of California, San Francisco School of Medicine, San Francisco, CA, USA
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Shweta Jain
- Departments of Physiology and Neurology, University of California, San Francisco School of Medicine, San Francisco, CA, USA
| | - Jocelyn Liang
- Departments of Physiology and Neurology, University of California, San Francisco School of Medicine, San Francisco, CA, USA
| | - Alma Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco School of Medicine, San Francisco, CA, USA
| | - Robert H Edwards
- Departments of Physiology and Neurology, University of California, San Francisco School of Medicine, San Francisco, CA, USA.
| |
Collapse
|
3
|
Yu T, Flores-Solis D, Eastep GN, Becker S, Zweckstetter M. Phosphatidylserine-dependent structure of synaptogyrin remodels the synaptic vesicle membrane. Nat Struct Mol Biol 2023:10.1038/s41594-023-01004-9. [PMID: 37217654 DOI: 10.1038/s41594-023-01004-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 04/21/2023] [Indexed: 05/24/2023]
Abstract
Synaptic vesicles are small membrane-enclosed organelles that store neurotransmitters at presynaptic terminals. The uniform morphology of synaptic vesicles is important for brain function, because it enables the storage of well-defined amounts of neurotransmitters and thus reliable synaptic transmission. Here, we show that the synaptic vesicle membrane protein synaptogyrin cooperates with the lipid phosphatidylserine to remodel the synaptic vesicle membrane. Using NMR spectroscopy, we determine the high-resolution structure of synaptogyrin and identify specific binding sites for phosphatidylserine. We further show that phosphatidylserine binding changes the transmembrane structure of synaptogyrin and is critical for membrane bending and the formation of small vesicles. Cooperative binding of phosphatidylserine to both a cytoplasmic and intravesicular lysine-arginine cluster in synaptogyrin is required for the formation of small vesicles. Together with other synaptic vesicle proteins, synaptogyrin thus can sculpt the membrane of synaptic vesicles.
Collapse
Affiliation(s)
- Taekyung Yu
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | | | - Gunnar N Eastep
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Stefan Becker
- Department for NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Markus Zweckstetter
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany.
- Department for NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
4
|
Sansevrino R, Hoffmann C, Milovanovic D. Condensate biology of synaptic vesicle clusters. Trends Neurosci 2023; 46:293-306. [PMID: 36725404 DOI: 10.1016/j.tins.2023.01.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/20/2022] [Accepted: 01/10/2023] [Indexed: 01/31/2023]
Abstract
Neuronal communication crucially relies on exocytosis of neurotransmitters from synaptic vesicles (SVs) which are clustered at synapses. To ensure reliable neurotransmitter release, synapses need to maintain an adequate pool of SVs at all times. Decades of research have established that SVs are clustered by synapsin 1, an abundant SV-associated phosphoprotein. The classical view postulates that SVs are crosslinked in a scaffold of protein-protein interactions between synapsins and their binding partners. Recent studies have shown that synapsins cluster SVs via liquid-liquid phase separation (LLPS), thus providing a new framework for the organization of the synapse. We discuss the evidence for phase separation of SVs, emphasizing emerging questions related to its regulation, specificity, and reversibility.
Collapse
Affiliation(s)
- Roberto Sansevrino
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
| | - Christian Hoffmann
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
| | - Dragomir Milovanovic
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany.
| |
Collapse
|
5
|
Qi Z, Wan M, Zhang J, Li Z. Influence of Cholesterol on the Membrane Binding and Conformation of α-Synuclein. J Phys Chem B 2023; 127:1956-1964. [PMID: 36812386 DOI: 10.1021/acs.jpcb.2c08077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
The α-Synuclein (α-Syn) plays an important role in the pathology of Parkinson's disease (PD), and its oligomers and fibrils are toxic to the nervous system. As organisms age, the cholesterol content in biological membranes increases, which is a potential cause of PD. Cholesterol may affect the membrane binding of α-Syn and its abnormal aggregation, but the mechanism remains unclear. Here, we present our molecular dynamics simulation studies on the interaction between α-Syn and lipid membranes, with or without cholesterol. It is demonstrated that cholesterol provides additional hydrogen bond interaction with α-Syn; however, the coulomb interaction and hydrophobic interaction between α-Syn and lipid membranes could be weakened by cholesterol. In addition, cholesterol leads to the shrinking of lipid packing defects and the decrease of lipid fluidity, thereby shortening the membrane binding region of α-Syn. Under these multifaceted effects of cholesterol, membrane-bound α-Syn shows signs of forming a β-sheet structure, which may further induce the formation of abnormal α-Syn fibrils. These results provide important information for the understanding of membrane binding of α-Syn, and they are expected to promote the bridging between cholesterol and the pathological aggregation of α-Syn.
Collapse
Affiliation(s)
- Ziqiang Qi
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Menglin Wan
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Jun Zhang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Zhen Li
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
6
|
Phosphatidylserine in the Nervous System: Cytoplasmic Regulator of the AKT and PKC Signaling Pathways and Extracellular "Eat-Me" Signal in Microglial Phagocytosis. Mol Neurobiol 2023; 60:1050-1066. [PMID: 36401705 DOI: 10.1007/s12035-022-03133-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/08/2022] [Indexed: 11/21/2022]
Abstract
Phosphatidylserine (PtdSer) is an important anionic phospholipid found in eukaryotic cells and has been proven to serve as a beneficial factor in the treatment of neurodegenerative diseases. PtdSer resides in the inner leaflet of the plasma membrane, where it is involved in regulating the AKT and PKC signaling pathways; however, it becomes exposed to the extracellular leaflet during neurodevelopmental processes and neurodegenerative diseases, participating in microglia-mediated synaptic and neuronal phagocytosis. In this paper, we review several characteristics of PtdSer, including the synthesis and translocation of PtdSer, the functions of cytoplasmic and exposed PtdSer, and different PtdSer-detection materials used to further understand the role of PtdSer in the nervous system.
Collapse
|
7
|
Yu W, Lin L. Modeling and Evaluation of Vesicle Release Mechanisms in Neuro-Spike Communication. IEEE Trans Nanobioscience 2022; 21:416-424. [PMID: 35436195 DOI: 10.1109/tnb.2022.3168027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neuro-spike communication (NSC) is a communication method that includes electrical communication process and molecular communication process, which has been investigated extensively in recent years. The vesicle release process has a great influence on the accuracy of NSC systems. So the modeling of the vesicle release process has become a hot spot. There exist different vesicle release mechanisms, including univesicular release (UVR) case, multivesicular release (MVR) case and hybrid vesicle release (HVR) case. When a spike arrives, the UVR case refers to that at most one vesicle can be released. The MVR case refers to that more than one vesicle can be released. The HVR case is a mixed case of the UVR and MVR cases. This paper proposes the modeling of these three vesicle release cases. The theoretical analysis is conducted to compare them in terms of efficiency. Simulations are performed to evaluate the impacts of main vesicle releasing parameters on signal transmission accuracy. The simulation results show that the HVR model can effectively improve the transmission accuracy compared with UVR and MVR models under some conditions.
Collapse
|
8
|
He Y, Phan K, Bhatia S, Pickford R, Fu Y, Yang Y, Hodges JR, Piguet O, Halliday GM, Kim WS. Increased VLCFA-lipids and ELOVL4 underlie neurodegeneration in frontotemporal dementia. Sci Rep 2021; 11:21348. [PMID: 34725421 PMCID: PMC8560873 DOI: 10.1038/s41598-021-00870-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 10/18/2021] [Indexed: 12/22/2022] Open
Abstract
Rare, yet biologically critical, lipids that contain very long chain fatty acids (VLCFA-lipids) are synthesized in the brain by the enzyme ELOVL4. High levels of VLCFA-lipids are toxic to cells and excess VLCFA-lipids are actively removed by ABCD1 in an ATP-dependent manner. Virtually nothing is known about the impact of VLCFA-lipids in neurodegenerative diseases. Here, we investigated the possible role of VLCFA-lipids in frontotemporal dementia (FTD), which is a leading cause of younger-onset dementia. Using quantitative discovery lipidomics, we identified three VLCFA-lipid species that were significantly increased in FTD brain compared to controls, with strong correlations with ELOVL4. Increases in ELOVL4 expression correlated with significant decreases in the membrane-bound synaptophysin in FTD brain. Furthermore, increases in ABCD1 expression correlated with increases in VLCFA-lipids. We uncovered a new pathomechanism that is pertinent to understanding the pathogenesis of FTD.
Collapse
Affiliation(s)
- Ying He
- Brain and Mind Centre and School of Medical Sciences, The University of Sydney, Camperdown, Sydney, NSW, 2050, Australia
| | - Katherine Phan
- Brain and Mind Centre and School of Medical Sciences, The University of Sydney, Camperdown, Sydney, NSW, 2050, Australia
| | - Surabhi Bhatia
- Brain and Mind Centre and School of Medical Sciences, The University of Sydney, Camperdown, Sydney, NSW, 2050, Australia
| | - Russell Pickford
- Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, NSW, Australia
| | - YuHong Fu
- Brain and Mind Centre and School of Medical Sciences, The University of Sydney, Camperdown, Sydney, NSW, 2050, Australia
| | - Yue Yang
- Brain and Mind Centre and School of Medical Sciences, The University of Sydney, Camperdown, Sydney, NSW, 2050, Australia
| | - John R Hodges
- Brain and Mind Centre and School of Medical Sciences, The University of Sydney, Camperdown, Sydney, NSW, 2050, Australia
| | - Olivier Piguet
- Brain and Mind Centre and School of Psychology, The University of Sydney, Sydney, NSW, Australia
- Neuroscience Research Australia, Sydney, NSW, Australia
| | - Glenda M Halliday
- Brain and Mind Centre and School of Medical Sciences, The University of Sydney, Camperdown, Sydney, NSW, 2050, Australia
- Neuroscience Research Australia, Sydney, NSW, Australia
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Woojin Scott Kim
- Brain and Mind Centre and School of Medical Sciences, The University of Sydney, Camperdown, Sydney, NSW, 2050, Australia.
- Neuroscience Research Australia, Sydney, NSW, Australia.
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
9
|
Borgmeyer M, Coman C, Has C, Schött HF, Li T, Westhoff P, Cheung YFH, Hoffmann N, Yuanxiang P, Behnisch T, Gomes GM, Dumenieu M, Schweizer M, Chocholoušková M, Holčapek M, Mikhaylova M, Kreutz MR, Ahrends R. Multiomics of synaptic junctions reveals altered lipid metabolism and signaling following environmental enrichment. Cell Rep 2021; 37:109797. [PMID: 34610315 DOI: 10.1016/j.celrep.2021.109797] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 04/12/2021] [Accepted: 09/15/2021] [Indexed: 12/30/2022] Open
Abstract
Membrane lipids and their metabolism have key functions in neurotransmission. Here we provide a quantitative lipid inventory of mouse and rat synaptic junctions. To this end, we developed a multiomics extraction and analysis workflow to probe the interplay of proteins and lipids in synaptic signal transduction from the same sample. Based on this workflow, we generate hypotheses about novel mechanisms underlying complex changes in synaptic connectivity elicited by environmental stimuli. As a proof of principle, this approach reveals that in mice exposed to an enriched environment, reduced endocannabinoid synthesis and signaling is linked to increased surface expression of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) in a subset of Cannabinoid-receptor 1 positive synapses. This mechanism regulates synaptic strength in an input-specific manner. Thus, we establish a compartment-specific multiomics workflow that is suitable to extract information from complex lipid and protein networks involved in synaptic function and plasticity.
Collapse
Affiliation(s)
- Maximilian Borgmeyer
- Leibniz Group 'Dendritic Organelles and Synaptic Function,' University Medical Center Hamburg-Eppendorf, Center for Molecular Neurobiology, ZMNH, 20251 Hamburg, Germany; RG Neuroplasticity, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
| | - Cristina Coman
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44227 Dortmund, Germany; Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Wien, Austria
| | - Canan Has
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44227 Dortmund, Germany
| | - Hans-Frieder Schött
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44227 Dortmund, Germany
| | - Tingting Li
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44227 Dortmund, Germany
| | - Philipp Westhoff
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44227 Dortmund, Germany
| | - Yam F H Cheung
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44227 Dortmund, Germany
| | - Nils Hoffmann
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44227 Dortmund, Germany
| | - PingAn Yuanxiang
- RG Neuroplasticity, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
| | - Thomas Behnisch
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Guilherme M Gomes
- RG Neuroplasticity, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
| | - Mael Dumenieu
- RG Neuroplasticity, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
| | - Michaela Schweizer
- Morphology and Electron Microscopy, University Medical Center Hamburg-Eppendorf, Center for Molecular Neurobiology, ZMNH, 20251 Hamburg, Germany
| | - Michaela Chocholoušková
- University of Pardubice, Department of Analytical Chemistry, CZ-532 10 Pardubice, Czech Republic
| | - Michal Holčapek
- University of Pardubice, Department of Analytical Chemistry, CZ-532 10 Pardubice, Czech Republic
| | - Marina Mikhaylova
- Emmy Noether Group 'Neuronal Protein Transport,' University Medical Center Hamburg-Eppendorf, Center for Molecular Neurobiology, ZMNH, 20251 Hamburg, Germany; AG Optobiology, Institute for Biology, Humboldt Universität zu Berlin, 10115 Berlin, Germany
| | - Michael R Kreutz
- Leibniz Group 'Dendritic Organelles and Synaptic Function,' University Medical Center Hamburg-Eppendorf, Center for Molecular Neurobiology, ZMNH, 20251 Hamburg, Germany; RG Neuroplasticity, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany; Center for Behavioral Brain Sciences, 30120 Magdeburg, Germany.
| | - Robert Ahrends
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44227 Dortmund, Germany; Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Wien, Austria.
| |
Collapse
|
10
|
Longhena F, Faustini G, Brembati V, Pizzi M, Benfenati F, Bellucci A. An updated reappraisal of synapsins: structure, function and role in neurological and psychiatric disorders. Neurosci Biobehav Rev 2021; 130:33-60. [PMID: 34407457 DOI: 10.1016/j.neubiorev.2021.08.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/29/2021] [Accepted: 08/09/2021] [Indexed: 01/02/2023]
Abstract
Synapsins (Syns) are phosphoproteins strongly involved in neuronal development and neurotransmitter release. Three distinct genes SYN1, SYN2 and SYN3, with elevated evolutionary conservation, have been described to encode for Synapsin I, Synapsin II and Synapsin III, respectively. Syns display a series of common features, but also exhibit distinctive localization, expression pattern, post-translational modifications (PTM). These characteristics enable their interaction with other synaptic proteins, membranes and cytoskeletal components, which is essential for the proper execution of their multiple functions in neuronal cells. These include the control of synapse formation and growth, neuron maturation and renewal, as well as synaptic vesicle mobilization, docking, fusion, recycling. Perturbations in the balanced expression of Syns, alterations of their PTM, mutations and polymorphisms of their encoding genes induce severe dysregulations in brain networks functions leading to the onset of psychiatric or neurological disorders. This review presents what we have learned since the discovery of Syn I in 1977, providing the state of the art on Syns structure, function, physiology and involvement in central nervous system disorders.
Collapse
Affiliation(s)
- Francesca Longhena
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| | - Gaia Faustini
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| | - Viviana Brembati
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| | - Marina Pizzi
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| | - Fabio Benfenati
- Italian Institute of Technology, Via Morego 30, Genova, Italy; IRCSS Policlinico San Martino Hospital, Largo Rosanna Benzi 10, 16132, Genova, Italy.
| | - Arianna Bellucci
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy; Laboratory for Preventive and Personalized Medicine, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| |
Collapse
|
11
|
Giving names to the actors of synaptic transmission: The long journey from synaptic vesicles to neural plasticity. ADVANCES IN PHARMACOLOGY 2021; 90:19-37. [PMID: 33706933 DOI: 10.1016/bs.apha.2020.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
More than a scientific paper or a review article, this is a remembrance of a unique time of science and life that the authors spent in Paul Greengard's laboratory at the Rockefeller University in New York in the 1980s and 1990s, forming the so-called synaptic vesicle group. It was a time in which the molecular mechanisms of synaptic transmission and the nature of the organelles in charge of storing and releasing neurotransmitter were just beginning to be understood. It was an exciting time in which the protein composition of synaptic vesicles started to be identified. It turned out that the interactions of synaptic vesicle proteins with the cytoskeleton and the presynaptic membrane and their modulation by protein phosphorylation represented an essential network regulating the efficiency of neurotransmitter release and thereby synaptic strength and plasticity. This is also a description of the distinct scientific journeys that the three authors took on going back to Europe and how they were strongly influenced by the generous and outstanding mentorship of Paul Greengard, his genuine interest in their lives and careers and the life-long friendship with him.
Collapse
|
12
|
Botterbusch S, Baumgart T. Interactions between Phase-Separated Liquids and Membrane Surfaces. APPLIED SCIENCES (BASEL, SWITZERLAND) 2021; 11:1288. [PMID: 34327010 PMCID: PMC8315427 DOI: 10.3390/app11031288] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Liquid-liquid phase separation has recently emerged as an important fundamental organizational phenomenon in biological settings. Most studies of biological phase separation have focused on droplets that "condense" from solution above a critical concentration, forming so-called "membraneless organelles" suspended in solution. However, membranes are ubiquitous throughout cells, and many biomolecular condensates interact with membrane surfaces. Such membrane-associated phase-separated systems range from clusters of integral or peripheral membrane proteins in the plane of the membrane to free, spherical droplets wetting membrane surfaces to droplets containing small lipid vesicles. In this review, we consider phase-separated liquids that interact with membrane surfaces and we discuss the consequences of those interactions. The physical properties of distinct liquid phases in contact with bilayers can reshape the membrane, and liquid-liquid phase separation can construct membrane-associated protein structures, modulate their function, and organize collections of lipid vesicles dynamically. We summarize the common phenomena that arise in these systems of liquid phases and membranes.
Collapse
|
13
|
Park D, Wu Y, Lee SE, Kim G, Jeong S, Milovanovic D, De Camilli P, Chang S. Cooperative function of synaptophysin and synapsin in the generation of synaptic vesicle-like clusters in non-neuronal cells. Nat Commun 2021; 12:263. [PMID: 33431828 PMCID: PMC7801664 DOI: 10.1038/s41467-020-20462-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 12/02/2020] [Indexed: 02/01/2023] Open
Abstract
Clusters of tightly packed synaptic vesicles (SVs) are a defining feature of nerve terminals. While SVs are mobile within the clusters, the clusters have no boundaries consistent with a liquid phase. We previously found that purified synapsin, a peripheral SV protein, can assemble into liquid condensates and trap liposomes into them. How this finding relates to the physiological formation of SV clusters in living cells remains unclear. Here, we report that synapsin alone, when expressed in fibroblasts, has a diffuse cytosolic distribution. However, when expressed together with synaptophysin, an integral SV membrane protein previously shown to be localized on small synaptic-like microvesicles when expressed in non-neuronal cells, is sufficient to organize such vesicles in clusters highly reminiscent of SV clusters and with liquid-like properties. This minimal reconstitution system can be a powerful model to gain mechanistic insight into the assembly of structures which are of fundamental importance in synaptic transmission. Synaptic vesicle clusters were proposed to represent phase separated condensates. Here, the authors show that only two proteins, synapsin and synaptophysin, are sufficient to make vesicle clusters in fibroblasts which are similar to those found at synapses in morphology and liquid-like properties.
Collapse
Affiliation(s)
- Daehun Park
- Departments of Neuroscience and Cell Biology, Howard Hughes Medical Institute, Program in Cellular Neuroscience, Neurodegeneration and Repair, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Yumei Wu
- Departments of Neuroscience and Cell Biology, Howard Hughes Medical Institute, Program in Cellular Neuroscience, Neurodegeneration and Repair, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Sang-Eun Lee
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Goeun Kim
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Seonyoung Jeong
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Dragomir Milovanovic
- Departments of Neuroscience and Cell Biology, Howard Hughes Medical Institute, Program in Cellular Neuroscience, Neurodegeneration and Repair, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA.,Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), Charitéplatz 1, 10117, Berlin, Germany
| | - Pietro De Camilli
- Departments of Neuroscience and Cell Biology, Howard Hughes Medical Institute, Program in Cellular Neuroscience, Neurodegeneration and Repair, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA.
| | - Sunghoe Chang
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea.
| |
Collapse
|
14
|
Wesseling JF, Phan S, Bushong EA, Siksou L, Marty S, Pérez-Otaño I, Ellisman M. Sparse force-bearing bridges between neighboring synaptic vesicles. Brain Struct Funct 2019; 224:3263-3276. [PMID: 31667576 PMCID: PMC6875159 DOI: 10.1007/s00429-019-01966-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 10/05/2019] [Indexed: 12/28/2022]
Abstract
Most vesicles in the interior of synaptic terminals are clustered in clouds close to active zone regions of the plasma membrane where exocytosis occurs. Electron-dense structures, termed bridges, have been reported between a small minority of pairs of neighboring vesicles within the clouds. Synapsin proteins have been implicated previously, but the existence of the bridges as stable structures in vivo has been questioned. Here we use electron tomography to show that the bridges are present but less frequent in synapsin knockouts compared to wildtype. An analysis of distances between neighbors in wildtype tomograms indicated that the bridges are strong enough to resist centrifugal forces likely induced by fixation with aldehydes. The results confirm that the bridges are stable structures and that synapsin proteins are involved in formation or stabilization.
Collapse
Affiliation(s)
- John F Wesseling
- Instituto de Neurociencias, CSIC-UMH, San Juan de Alicante, Spain. .,Departmento de Neurociencias (CIMA), Universidad de Navarra, Pamplona, Spain.
| | - Sébastien Phan
- National Center for Microscopy and Imaging Research, University of California, San Diego, CA, USA
| | - Eric A Bushong
- National Center for Microscopy and Imaging Research, University of California, San Diego, CA, USA
| | - Léa Siksou
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, INSERM, CNRS, PSL Research University, Paris, France.,Global Research and Development, Teva Pharmaceutical Industries Ltd, Netanya, Israel
| | - Serge Marty
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, INSERM, CNRS, PSL Research University, Paris, France.,Institut du Cerveau et de la Moelle épinière, INSERM U1127, CNRS UMR7225, Université Pierre et Marie Curie, Sorbonne Universités, Paris, France
| | | | - Mark Ellisman
- National Center for Microscopy and Imaging Research and Department of Neuroscience, University of California, San Diego, CA, USA
| |
Collapse
|
15
|
Marte A, Russo I, Rebosio C, Valente P, Belluzzi E, Pischedda F, Montani C, Lavarello C, Petretto A, Fedele E, Baldelli P, Benfenati F, Piccoli G, Greggio E, Onofri F. Leucine‐rich repeat kinase 2 phosphorylation on synapsin I regulates glutamate release at pre‐synaptic sites. J Neurochem 2019; 150:264-281. [PMID: 31148170 DOI: 10.1111/jnc.14778] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 05/20/2019] [Accepted: 05/28/2019] [Indexed: 12/25/2022]
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is a large multidomain scaffolding protein with kinase and GTPase activities involved in synaptic vesicle (SV) dynamics. While its role in Parkinson's disease has been largely investigated, little is known about LRRK2 physiological role and until now few proteins have been described as substrates. We have previously demonstrated that LRRK2 through its WD40 domain interacts with synapsin I, an important SV-associated phosphoprotein involved in neuronal development and in the regulation of neurotransmitter release. To test whether synapsin I is substrate for LRRK2 and characterize the properties of its phosphorylation, we used in vitro kinase and binding assays as well as cellular model and site-direct mutagenesis. Using synaptosomes in superfusion, patch-clamp recordings in autaptic WT and synapsin I KO cortical neurons and SypHy assay on primary cortical culture from wild-type and BAC human LRRK2 G2019S mice we characterized the role of LRRK2 kinase activity on glutamate release and SV trafficking. Here we reported that synapsin I is phosphorylated by LRRK2 and demonstrated that the interaction between LRRK2 WD40 domain and synapsin I is crucial for this phosphorylation. Moreover, we showed that LRRK2 phosphorylation of synapsin I at threonine 337 and 339 significantly reduces synapsin I-SV/actin interactions. Using complementary experimental approaches, we demonstrated that LRRK2 controls glutamate release and SV dynamics in a kinase activity and synapsin I-dependent manner. Our findings show that synapsin I is a LRRK2 substrate and describe a novel mechanisms of regulation of glutamate release by LRRK2 kinase activity.
Collapse
Affiliation(s)
- Antonella Marte
- Department of Experimental Medicine University of Genova Genova Italy
| | | | | | - Pierluigi Valente
- Department of Experimental Medicine University of Genova Genova Italy
- IRCCS Ospedale Policlinico San Martino Genova Italy
| | - Elisa Belluzzi
- Rheumatology Unit, Department of Medicine‐DIMED University Hospital of Padova Padova Italy
| | - Francesca Pischedda
- Center for Integrative Biology (CIBIO) University of Trento Trento Italy
- Dulbecco Telethon Institute Trento Italy
| | - Caterina Montani
- Center for Integrative Biology (CIBIO) University of Trento Trento Italy
- Dulbecco Telethon Institute Trento Italy
| | - Chiara Lavarello
- Laboratory of Mass Spectrometry ‐ Core Facilities Istituto Giannina Gaslini Genova Italy
| | - Andrea Petretto
- Laboratory of Mass Spectrometry ‐ Core Facilities Istituto Giannina Gaslini Genova Italy
| | - Ernesto Fedele
- Department of Pharmacy University of Genova Genova Italy
- IRCCS Ospedale Policlinico San Martino Genova Italy
| | - Pietro Baldelli
- Department of Experimental Medicine University of Genova Genova Italy
- IRCCS Ospedale Policlinico San Martino Genova Italy
| | - Fabio Benfenati
- IRCCS Ospedale Policlinico San Martino Genova Italy
- Center for Synaptic Neuroscience and Technology Istituto Italiano di Tecnologia Genova Italy
| | - Giovanni Piccoli
- Center for Integrative Biology (CIBIO) University of Trento Trento Italy
- Dulbecco Telethon Institute Trento Italy
| | - Elisa Greggio
- Department of Biology University of Padova Padova Italy
| | - Franco Onofri
- Department of Experimental Medicine University of Genova Genova Italy
- IRCCS Ospedale Policlinico San Martino Genova Italy
| |
Collapse
|
16
|
Milovanovic D, Wu Y, Bian X, De Camilli P. A liquid phase of synapsin and lipid vesicles. Science 2018; 361:604-607. [PMID: 29976799 DOI: 10.1126/science.aat5671] [Citation(s) in RCA: 329] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 06/25/2018] [Indexed: 12/14/2022]
Abstract
Neurotransmitter-containing synaptic vesicles (SVs) form tight clusters at synapses. These clusters act as a reservoir from which SVs are drawn for exocytosis during sustained activity. Several components associated with SVs that are likely to help form such clusters have been reported, including synapsin. Here we found that synapsin can form a distinct liquid phase in an aqueous environment. Other scaffolding proteins could coassemble into this condensate but were not necessary for its formation. Importantly, the synapsin phase could capture small lipid vesicles. The synapsin phase rapidly disassembled upon phosphorylation by calcium/calmodulin-dependent protein kinase II, mimicking the dispersion of synapsin 1 that occurs at presynaptic sites upon stimulation. Thus, principles of liquid-liquid phase separation may apply to the clustering of SVs at synapses.
Collapse
Affiliation(s)
- Dragomir Milovanovic
- Departments of Neuroscience and Cell Biology, Howard Hughes Medical Institute, Kavli Institute for Neuroscience, Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT, USA
| | - Yumei Wu
- Departments of Neuroscience and Cell Biology, Howard Hughes Medical Institute, Kavli Institute for Neuroscience, Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT, USA
| | - Xin Bian
- Departments of Neuroscience and Cell Biology, Howard Hughes Medical Institute, Kavli Institute for Neuroscience, Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT, USA
| | - Pietro De Camilli
- Departments of Neuroscience and Cell Biology, Howard Hughes Medical Institute, Kavli Institute for Neuroscience, Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
17
|
Milovanovic D, De Camilli P. Synaptic Vesicle Clusters at Synapses: A Distinct Liquid Phase? Neuron 2017; 93:995-1002. [PMID: 28279363 DOI: 10.1016/j.neuron.2017.02.013] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 02/06/2017] [Accepted: 02/06/2017] [Indexed: 11/17/2022]
Abstract
Phase separation in the cytoplasm is emerging as a major principle in intracellular organization. In this process, sets of macromolecules assemble themselves into liquid compartments that are distinct from the surrounding medium but are not delimited by membrane boundaries. Here, we discuss how phase separation, in which a component of one of the two phases is vesicles rather than macromolecules, could underlie the formation of synaptic vesicle (SV) clusters in proximity to presynaptic sites. The organization of SVs into a liquid phase could explain how SVs remain tightly clustered without being stably bound to a scaffold so that they can be efficiently recruited to release site by active zone components.
Collapse
Affiliation(s)
- Dragomir Milovanovic
- Departments of Neuroscience and Cell Biology, Program in Cellular Neuroscience, Neurodegeneration and Repair, Kavli Institute for Neuroscience, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Pietro De Camilli
- Departments of Neuroscience and Cell Biology, Program in Cellular Neuroscience, Neurodegeneration and Repair, Kavli Institute for Neuroscience, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
18
|
Kao HT, Ryoo K, Lin A, Janoschka SR, Augustine GJ, Porton B. Synapsins regulate brain-derived neurotrophic factor-mediated synaptic potentiation and axon elongation by acting on membrane rafts. Eur J Neurosci 2017; 45:1085-1101. [PMID: 28245069 DOI: 10.1111/ejn.13552] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 01/27/2017] [Accepted: 02/15/2017] [Indexed: 11/29/2022]
Abstract
In neurons, intracellular membrane rafts are essential for specific actions of brain-derived neurotrophic factor (BDNF), which include the regulation of axon outgrowth, growth cone turning and synaptic transmission. Virtually, all the actions of BDNF are mediated by binding to its receptor, TrkB. The association of TrkB with the tyrosine kinase, Fyn, is critical for its localization to intracellular membrane rafts. Here, we show that synapsins, a family of highly amphipathic neuronal phosphoproteins, regulate membrane raft lipid composition and consequently, the ability of BDNF to regulate axon/neurite development and potentiate synaptic transmission. In the brains of mice lacking all synapsins, the expression of both BDNF and TrkB were increased, suggesting that BDNF/TrkB-mediated signaling is impaired. Consistent with this finding, synapsin-depleted neurons exhibit altered raft lipid composition, deficient targeting of Fyn to rafts, attenuated TrkB activation, and abrogation of BDNF-stimulated axon outgrowth and synaptic potentiation. Conversely, overexpression of synapsins in neuroblastoma cells results in corresponding reciprocal changes in raft lipid composition, increased localization of Fyn to rafts and promotion of BDNF-stimulated neurite formation. In the presence of synapsins, the ratio of cholesterol to estimated total phospholipids converged to 1, suggesting that synapsins act by regulating the ratio of lipids in intracellular membranes, thereby promoting lipid raft formation. These studies reveal a mechanistic link between BDNF and synapsins, impacting early development and synaptic transmission.
Collapse
Affiliation(s)
- Hung-Teh Kao
- Department of Psychiatry and Human Behavior, Brown University, 171 Meeting Street, Room 187, Providence, RI, 02912, USA.,Butler Hospital, Providence, RI, USA
| | - Kanghyun Ryoo
- Center for Functional Connectomics, Korea Institute of Science and Technology, Sungbukgu, Seoul, Korea
| | - Albert Lin
- Department of Psychiatry and Human Behavior, Brown University, 171 Meeting Street, Room 187, Providence, RI, 02912, USA.,Butler Hospital, Providence, RI, USA
| | - Stephen R Janoschka
- Department of Psychiatry and Human Behavior, Brown University, 171 Meeting Street, Room 187, Providence, RI, 02912, USA.,Butler Hospital, Providence, RI, USA
| | - George J Augustine
- Center for Functional Connectomics, Korea Institute of Science and Technology, Sungbukgu, Seoul, Korea.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Barbara Porton
- Department of Psychiatry and Human Behavior, Brown University, 171 Meeting Street, Room 187, Providence, RI, 02912, USA.,Butler Hospital, Providence, RI, USA
| |
Collapse
|
19
|
Matam Y, Ray BD, Petrache HI. Direct affinity of dopamine to lipid membranes investigated by Nuclear Magnetic Resonance spectroscopy. Neurosci Lett 2016; 618:104-109. [DOI: 10.1016/j.neulet.2016.02.052] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 02/25/2016] [Accepted: 02/26/2016] [Indexed: 11/16/2022]
|
20
|
Affiliation(s)
- Daniel Otzen
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Center for Insoluble Protein Structures (inSPIN), Aarhus University, Aarhus, Denmark
| |
Collapse
|
21
|
Abstract
Synaptic vesicles release their vesicular contents to the extracellular space by Ca(2+)-triggered exocytosis. The Ca(2+)-triggered exocytotic process is regulated by synaptotagmin (Syt), a vesicular Ca(2+)-binding C2 domain protein. Synaptotagmin 1 (Syt1), the most studied major isoform among 16 Syt isoforms, mediates Ca(2+)-triggered synaptic vesicle exocytosis by interacting with the target membranes and SNARE/complexin complex. In synapses of the central nervous system, synaptobrevin 2, a major vesicular SNARE protein, forms a ternary SNARE complex with the plasma membrane SNARE proteins, syntaxin 1 and SNAP25. The affinities of Ca(2+)-dependent interactions between Syt1 and its targets (i.e., SNARE complexes and membranes) are well correlated with the efficacies of the corresponding exocytotic processes. Therefore, different SNARE protein isoforms and membrane lipids, which interact with Syt1 with various affinities, are capable of regulating the efficacy of Syt1-mediated exocytosis. Otoferlin, another type of vesicular C2 domain protein that binds to the membrane in a Ca(2+)-dependent manner, is also involved in the Ca(2+)-triggered synaptic vesicle exocytosis in auditory hair cells. However, the functions of otoferlin in the exocytotic process are not well understood. In addition, at least five different types of synaptic vesicle proteins such as synaptic vesicle protein 2, cysteine string protein α, rab3, synapsin, and a group of proteins containing four transmembrane regions, which includes synaptophysin, synaptogyrin, and secretory carrier membrane protein, are involved in modulating the exocytotic process by regulating the formation and trafficking of synaptic vesicles.
Collapse
Affiliation(s)
- Ok-Ho Shin
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
22
|
Khitrin A, Khitrin K, Model M. A model for membrane potential and intracellular ion distribution. Chem Phys Lipids 2014; 184:76-81. [DOI: 10.1016/j.chemphyslip.2014.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 10/27/2014] [Accepted: 10/31/2014] [Indexed: 10/24/2022]
|
23
|
Qin Z, Kaufman RS, Khoury RN, Khoury MK, Aswad DW. Isoaspartate accumulation in mouse brain is associated with altered patterns of protein phosphorylation and acetylation, some of which are highly sex-dependent. PLoS One 2013; 8:e80758. [PMID: 24224061 PMCID: PMC3818261 DOI: 10.1371/journal.pone.0080758] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 10/14/2013] [Indexed: 12/05/2022] Open
Abstract
Isoaspartate (isoAsp) formation is a major source of protein damage that is kept in check by the repair function of protein L-isoaspartyl methyltransferase (PIMT). Mice deficient in PIMT accumulate isoAsp-containing proteins, resulting in cognitive deficits, abnormal neuronal physiology and cytoarchitecture, and fatal epileptic seizures 30–60 days after birth. Synapsins I and II, dynamin-1, collapsin response mediator protein 2 (CRMP2), and α/β-tubulin are major targets of PIMT in brain. To investigate links between isoAsp accumulation and the neurological phenotype of the KO mice, we used Western blotting to compare patterns of in vivo phosphorylation or acetylation of the major PIMT targets listed above. Phosphorylations of synapsins I and II at Ser-9 were increased in female KO vs. WT mice, and acetylation of tubulin at Lys-40 was decreased in male KO vs. WT mice. Average levels of dynamin-1 phosphorylation at Ser-778 and Ser-795 were higher in male KO vs. WT mice, but the statistical significance (P>0.1) was low. No changes in phosphorylation were found in synapsins I and II at Ser-603, in CRMP2 at Ser-522 or Thr-514, in DARPP-32 at Thr-34, or in PDK1 at Ser-241. General levels of phosphorylation assessed with Pro-Q Diamond stain, or an anti-phosphotyrosine antibody, appeared similar in the WT and KO mice. We conclude that isoAsp accumulation is associated with altered functional status of several neuronal proteins that are highly susceptible to this type of damage. We also uncovered unexpected differences in how male and female mice respond to isoAsp accumulation in the brain.
Collapse
Affiliation(s)
- Zhenxia Qin
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, California, United States of America
| | - Rachel S. Kaufman
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, California, United States of America
| | - Rana N. Khoury
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, California, United States of America
| | - Mitri K. Khoury
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, California, United States of America
| | - Dana W. Aswad
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
24
|
Giannandrea M, Guarnieri FC, Gehring NH, Monzani E, Benfenati F, Kulozik AE, Valtorta F. Nonsense-mediated mRNA decay and loss-of-function of the protein underlie the X-linked epilepsy associated with the W356× mutation in synapsin I. PLoS One 2013; 8:e67724. [PMID: 23818987 PMCID: PMC3688603 DOI: 10.1371/journal.pone.0067724] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 05/21/2013] [Indexed: 11/22/2022] Open
Abstract
Synapsins are a family of neuronal phosphoproteins associated with the cytosolic surface of synaptic vesicles. Experimental evidence suggests a role for synapsins in synaptic vesicle clustering and recycling at the presynaptic terminal, as well as in neuronal development and synaptogenesis. Synapsin knock-out (Syn1(-/-) ) mice display an epileptic phenotype and mutations in the SYN1 gene have been identified in individuals affected by epilepsy and/or autism spectrum disorder. We investigated the impact of the c.1067G>A nonsense transition, the first mutation described in a family affected by X-linked syndromic epilepsy, on the expression and functional properties of the synapsin I protein. We found that the presence of a premature termination codon in the human SYN1 transcript renders it susceptible to nonsense-mediated mRNA decay (NMD). Given that the NMD efficiency is highly variable among individuals and cell types, we investigated also the effects of expression of the mutant protein and found that it is expressed at lower levels compared to wild-type synapsin I, forms perinuclear aggregates and is unable to reach presynaptic terminals in mature hippocampal neurons grown in culture. Taken together, these data indicate that in patients carrying the W356× mutation the function of synapsin I is markedly impaired, due to both the strongly decreased translation and the altered function of the NMD-escaped protein, and support the value of Syn1(-/-) mice as an experimental model mimicking the human pathology.
Collapse
MESH Headings
- Animals
- Blotting, Northern
- Cells, Cultured
- Codon, Nonsense
- Epilepsy/genetics
- Epilepsy/metabolism
- Female
- Gene Expression
- Genetic Diseases, X-Linked/genetics
- Genetic Diseases, X-Linked/metabolism
- HeLa Cells
- Hippocampus/cytology
- Hippocampus/metabolism
- Humans
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Microscopy, Fluorescence
- Microtubule-Associated Proteins/metabolism
- Neurons/metabolism
- Nonsense Mediated mRNA Decay
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Synapsins/genetics
- Synapsins/metabolism
Collapse
Affiliation(s)
- Maila Giannandrea
- Division of Neuroscience, San Raffaele Scientific Institute and Vita-Salute University, Milan, Italy
| | - Fabrizia C. Guarnieri
- Division of Neuroscience, San Raffaele Scientific Institute and Vita-Salute University, Milan, Italy
| | | | - Elena Monzani
- Division of Neuroscience, San Raffaele Scientific Institute and Vita-Salute University, Milan, Italy
| | - Fabio Benfenati
- Department of Neuroscience and Brain Technologies, The Italian Institute of Technology, Genoa, Italy
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Andreas E. Kulozik
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg Medical Center and Molecular Medicine Partnership Unit, EMBL and University of Heidelberg, Heidelberg, Germany
| | - Flavia Valtorta
- Division of Neuroscience, San Raffaele Scientific Institute and Vita-Salute University, Milan, Italy
| |
Collapse
|
25
|
Cho H, Wu M, Bilgin B, Walton SP, Chan C. Latest developments in experimental and computational approaches to characterize protein-lipid interactions. Proteomics 2013; 12:3273-85. [PMID: 22997137 DOI: 10.1002/pmic.201200255] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Revised: 08/30/2012] [Accepted: 09/05/2012] [Indexed: 12/16/2022]
Abstract
Understanding the functional roles of all the molecules in cells is an ultimate goal of modern biology. An important facet is to understand the functional contributions from intermolecular interactions, both within a class of molecules (e.g. protein-protein) or between classes (e.g. protein-DNA). While the technologies for analyzing protein-protein and protein-DNA interactions are well established, the field of protein-lipid interactions is still relatively nascent. Here, we review the current status of the experimental and computational approaches for detecting and analyzing protein-lipid interactions. Experimental technologies fall into two principal categories, namely solution-based and array-based methods. Computational methods include large-scale data-driven analyses and predictions/dynamic simulations based on prior knowledge of experimentally identified interactions. Advances in the experimental technologies have led to improved computational analyses and vice versa, thereby furthering our understanding of protein-lipid interactions and their importance in biological systems.
Collapse
Affiliation(s)
- Hyunju Cho
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA
| | | | | | | | | |
Collapse
|
26
|
Rituper B, Flašker A, Guček A, Chowdhury HH, Zorec R. Cholesterol and regulated exocytosis: A requirement for unitary exocytotic events. Cell Calcium 2012; 52:250-8. [DOI: 10.1016/j.ceca.2012.05.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 05/07/2012] [Accepted: 05/15/2012] [Indexed: 11/30/2022]
|
27
|
Abstract
Sustained neurotransmitter release at synapses during high-frequency synaptic activity involves the mobilization of synaptic vesicles (SVs) from the tightly clustered reserve pool (RP). Synapsin I (Syn I), a brain-specific peripheral membrane protein that undergoes activity-dependent cycles of SV association and dissociation, is implicated in RP organization via its ability to cluster SVs. Although Syn I has affinity for phospholipids, the mechanism for the reversible association of synapsin with SV membranes remains enigmatic. Here, we show that rat Syn I is able to sense membrane curvature via an evolutionary conserved amphipathic lipid packing sensor motif (ALPS). Deletion or mutational inactivation of the ALPS impairs the ability of Syn I to associate with highly curved membranes and with SVs. Furthermore, a Syn I mutant lacking ALPS displays defects in its ability to undergo activity-induced cycles of dispersion and reclustering in neurons and fails to induce vesicle clustering in vitro. Our data suggest a crucial role for ALPS-mediated sensing of membrane curvature in regulating synapsin function.
Collapse
|
28
|
Valtorta F, Pozzi D, Benfenati F, Fornasiero EF. The synapsins: multitask modulators of neuronal development. Semin Cell Dev Biol 2011; 22:378-86. [PMID: 21798361 DOI: 10.1016/j.semcdb.2011.07.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 07/13/2011] [Indexed: 01/10/2023]
Abstract
Neurons are examples of specialized cells that evolved the extraordinary ability to transmit electrochemical information in complex networks of interconnected cells. During their development, neurons undergo precisely regulated processes that define their lineage, positioning, morphogenesis and pattern of activity. The events leading to the establishment of functional neuronal networks follow a number of key steps, including asymmetric cell division from neuronal precursors, migration, establishment of polarity, neurite outgrowth and synaptogenesis. Synapsins are a family of abundant neuronal phosphoproteins that have been extensively studied for their role in the regulation of neurotransmission in presynaptic terminals. Beside their implication in the homeostasis of adult cells, synapsins influence the development of young neurons, interacting with cytoskeletal and vesicular components and regulating their dynamics. Although the exact molecular mechanisms determining synapsin function in neuronal development are still largely unknown, in this review we summarize the most important literature on the subject, providing a conceptual framework for the progress of present and future research.
Collapse
Affiliation(s)
- Flavia Valtorta
- San Raffaele Scientific Institute and Vita-Salute University, Via Olgettina 58, Milano, Italy.
| | | | | | | |
Collapse
|
29
|
Messa M, Congia S, Defranchi E, Valtorta F, Fassio A, Onofri F, Benfenati F. Tyrosine phosphorylation of synapsin I by Src regulates synaptic-vesicle trafficking. J Cell Sci 2010; 123:2256-65. [PMID: 20530578 DOI: 10.1242/jcs.068445] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Synapsins are synaptic vesicle (SV)-associated phosphoproteins involved in the regulation of neurotransmitter release. Synapsins reversibly tether SVs to the cytoskeleton and their phosphorylation by serine/threonine kinases increases SV availability for exocytosis by impairing their association with SVs and/or actin. We recently showed that synapsin I, through SH3- or SH2-mediated interactions, activates Src and is phosphorylated by the same kinase at Tyr301. Here, we demonstrate that, in contrast to serine phosphorylation, Src-mediated tyrosine phosphorylation of synapsin I increases its binding to SVs and actin, and increases the formation of synapsin dimers, which are both potentially involved in SV clustering. Synapsin I phosphorylation by Src affected SV dynamics and was physiologically regulated in brain slices in response to depolarization. Expression of the non-phosphorylatable (Y301F) synapsin I mutant in synapsin-I-knockout neurons increased the sizes of the readily releasable and recycling pools of SVs with respect to the wild-type form, which is consistent with an increased availability of recycled SVs for exocytosis. The data provide a mechanism for the effects of Src on SV trafficking and indicate that tyrosine phosphorylation of synapsins, unlike serine phosphorylation, stimulates the reclustering of recycled SVs and their recruitment to the reserve pool.
Collapse
Affiliation(s)
- Mirko Messa
- Department of Experimental Medicine, University of Genova and Istituto Nazionale di Neuroscienze, Viale Benedetto XV 3, 161632 Genova, Italy
| | | | | | | | | | | | | |
Collapse
|
30
|
Munc13 C2B domain is an activity-dependent Ca2+ regulator of synaptic exocytosis. Nat Struct Mol Biol 2010; 17:280-8. [PMID: 20154707 PMCID: PMC2916016 DOI: 10.1038/nsmb.1758] [Citation(s) in RCA: 182] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Accepted: 12/04/2009] [Indexed: 11/08/2022]
Abstract
Munc13 is a multidomain protein present in presynaptic active zones that mediates the priming and plasticity of synaptic vesicle exocytosis, but the mechanisms involved remain unclear. Here we use biophysical, biochemical and electrophysiological approaches to show that the central C(2)B domain of Munc13 functions as a Ca(2+) regulator of short-term synaptic plasticity. The crystal structure of the C(2)B domain revealed an unusual Ca(2+)-binding site with an amphipathic alpha-helix. This configuration confers onto the C(2)B domain unique Ca(2+)-dependent phospholipid-binding properties that favor phosphatidylinositolphosphates. A mutation that inactivated Ca(2+)-dependent phospholipid binding to the C(2)B domain did not alter neurotransmitter release evoked by isolated action potentials, but it did depress release evoked by action-potential trains. In contrast, a mutation that increased Ca(2+)-dependent phosphatidylinositolbisphosphate binding to the C(2)B domain enhanced release evoked by isolated action potentials and by action-potential trains. Our data suggest that, during repeated action potentials, Ca(2+) and phosphatidylinositolphosphate binding to the Munc13 C(2)B domain potentiate synaptic vesicle exocytosis, thereby offsetting synaptic depression induced by vesicle depletion.
Collapse
|
31
|
The highly conserved synapsin domain E mediates synapsin dimerization and phospholipid vesicle clustering. Biochem J 2010; 426:55-64. [PMID: 19922412 DOI: 10.1042/bj20090762] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Synapsins are abundant SV (synaptic vesicle)-associated phosphoproteins that regulate synapse formation and function. The highly conserved C-terminal domain E was shown to contribute to several synapsin functions, ranging from formation of the SV reserve pool to regulation of the kinetics of exocytosis and SV cycling, although the molecular mechanisms underlying these effects are unknown. In the present study, we used a synthetic 25-mer peptide encompassing the most conserved region of domain E (Pep-E) to analyse the role of domain E in regulating the interactions between synapsin I and liposomes mimicking the phospholipid composition of SVs (SV-liposomes) and other pre-synaptic protein partners. In affinity-chromatography and cross-linking assays, Pep-E bound to endogenous and purified exogenous synapsin I and strongly inhibited synapsin dimerization, indicating a role in synapsin oligomerization. Consistently, Pep-E (but not its scrambled version) counteracted the ability of holo-synapsin I to bind and coat phospholipid membranes, as analysed by AFM (atomic force microscopy) topographical scanning, and significantly decreased the clustering of SV-liposomes induced by holo-synapsin I in FRET (Förster resonance energy transfer) assays, suggesting a causal relationship between synapsin oligomerization and vesicle clustering. Either Pep-E or a peptide derived from domain C was necessary and sufficient to inhibit both dimerization and vesicle clustering, indicating the participation of both domains in these activities of synapsin I. The results provide a molecular explanation for the effects of domain E in nerve terminal physiology and suggest that its effects on the size and integrity of SV pools are contributed by the regulation of synapsin dimerization and SV clustering.
Collapse
|
32
|
Presynaptic defects underlying impaired learning and memory function in lipoprotein lipase-deficient mice. J Neurosci 2009; 29:4681-5. [PMID: 19357293 DOI: 10.1523/jneurosci.0297-09.2009] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Lipoprotein lipase (LPL) is predominantly expressed in adipose and muscle where it plays a crucial role in the metabolism of triglyceride-rich plasma lipoproteins. LPL is also expressed in the brain with highest levels found in the pyramidal cells of the hippocampus, suggesting a possible role for LPL in the regulation of cognitive function. However, very little is currently known about the specific role of LPL in the brain. We have generated a mouse model of LPL deficiency which was rescued from neonatal lethality by somatic gene transfer. These mice show no exogenous and endogenous LPL expression in the brain. To study the role of LPL in learning and memory, the performance of LPL-deficient mice was tested in two cognitive tests. In a water maze test, LPL-deficient mice exhibited increased latency to escape platform and increased mistake frequency. Decreased latency to platform in the step-down inhibitory avoidance test was observed, consistent with impaired learning and memory in these mice. Transmission electron microscopy revealed a significant decrease in the number of presynaptic vesicles in the hippocampus of LPL-deficient mice. The levels of the presynaptic marker synaptophysin were also reduced in the hippocampus, whereas postsynaptic marker postsynaptic density protein 95 levels remained unchanged in LPL-deficient mice. Theses findings indicate that LPL plays an important role in learning and memory function possibly by influencing presynaptic function.
Collapse
|
33
|
Benfenati F, Valtorta F, Neyroz P, Greengard P. Binding of Synapsin I to Synaptic Vesicles: Clues from the Study of its Interactions with Liposomes. J Liposome Res 2008. [DOI: 10.3109/08982109309150742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
34
|
Evergren E, Benfenati F, Shupliakov O. The synapsin cycle: a view from the synaptic endocytic zone. J Neurosci Res 2008; 85:2648-56. [PMID: 17455288 DOI: 10.1002/jnr.21176] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Although the synapsin phosphoproteins were discovered more than 30 years ago and are known to play important roles in neurotransmitter release and synaptogenesis, a complete picture of their functions within the nerve terminal is lacking. It has been shown that these proteins play an important role in the clustering of synaptic vesicles (SVs) at active zones and function as modulators of synaptic strength by acting at both pre- and postdocking levels. Recent studies have demonstrated that synapsins migrate to the endocytic zone of central synapses during neurotransmitter release, which suggests that there are additional functions for these proteins in SV recycling.
Collapse
Affiliation(s)
- E Evergren
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | | | | |
Collapse
|
35
|
Abstract
G-proteins (guanine nucleotide-binding proteins) are membrane-attached proteins composed of three subunits, alpha, beta, and gamma. They transduce signals from G-protein coupled receptors (GPCRs) to target effector proteins. The agonistactivated receptor induces a conformational change in the G-protein trimer so that the alpha-subunit binds GTP in exchange for GDP and alpha-GTP, and betagamma-subunits separate to interact with the target effector. Effector-interaction is terminated by the alpha-subunit GTPase activity, whereby bound GTP is hydrolyzed to GDP. This is accelerated in situ by RGS proteins, acting as GTPase-activating proteins (GAPs). Galpha-GDP and Gbetagamma then reassociate to form the Galphabetagamma trimer. G-proteins primarily involved in the modulation of neurotransmitter release are G(o), G(q) and G(s). G(o) mediates the widespread presynaptic auto-inhibitory effect of many neurotransmitters (e.g., via M2/M4 muscarinic receptors, alpha(2) adrenoreceptors, micro/delta opioid receptors, GABAB receptors). The G(o) betagamma-subunit acts in two ways: first, and most ubiquitously, by direct binding to CaV2 Ca(2+) channels, resulting in a reduced sensitivity to membrane depolarization and reduced Ca(2+) influx during the terminal action potential; and second, through a direct inhibitory effect on the transmitter release machinery, by binding to proteins of the SNARE complex. G(s) and G(q) are mainly responsible for receptor-mediated facilitatory effects, through activation of target enzymes (adenylate cyclase, AC and phospholipase-C, PLC respectively) by the GTP-bound alpha-subunits.
Collapse
Affiliation(s)
- David A Brown
- Department of Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK.
| | | |
Collapse
|
36
|
Almqvist J, Huang Y, Laaksonen A, Wang DN, Hovmöller S. Docking and homology modeling explain inhibition of the human vesicular glutamate transporters. Protein Sci 2007; 16:1819-29. [PMID: 17660252 PMCID: PMC2206968 DOI: 10.1110/ps.072944707] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
As membrane transporter proteins, VGLUT1-3 mediate the uptake of glutamate into synaptic vesicles at presynaptic nerve terminals of excitatory neural cells. This function is crucial for exocytosis and the role of glutamate as the major excitatory neurotransmitter in the central nervous system. The three transporters, sharing 76% amino acid sequence identity in humans, are highly homologous but differ in regional expression in the brain. Although little is known regarding their three-dimensional structures, hydropathy analysis on these proteins predicts 12 transmembrane segments connected by loops, a topology similar to other members in the major facilitator superfamily, where VGLUT1-3 have been phylogenetically classified. In this work, we present a three-dimensional model for the human VGLUT1 protein based on its distant bacterial homolog in the same superfamily, the glycerol-3-phosphate transporter from Escherichia coli. This structural model, stable during molecular dynamics simulations in phospholipid bilayers solvated by water, reveals amino acid residues that face its pore and are likely to affect substrate translocation. Docking of VGLUT1 substrates to this pore localizes two different binding sites, to which inhibitors also bind with an overall trend in binding affinity that is in agreement with previously published experimental data.
Collapse
Affiliation(s)
- Jonas Almqvist
- Division of Structural Chemistry, Arrhenius Laboratory, Stockholm University, S-10691 Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
37
|
Awizio AK, Onofri F, Benfenati F, Bonaccurso E. Influence of synapsin I on synaptic vesicles: an analysis by force-volume mode of the atomic force microscope and dynamic light scattering. Biophys J 2007; 93:1051-60. [PMID: 17483172 PMCID: PMC1913160 DOI: 10.1529/biophysj.107.104406] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Synaptic vesicles (SVs) are small neuronal organelles that store neurotransmitters and release them by exocytosis into the synaptic cleft for signal transmission between nerve cells. They consist of a highly curved membrane composed of different lipids containing several proteins with specific functions. A family of abundant extrinsic SV proteins, the synapsins, interact with SV proteins and phospholipids and play an important role in the regulation of SV trafficking and stability. We investigated the interactions of one these proteins with the SV membrane using atomic force microscope and dynamic light scattering. We examined SVs isolated from rat forebrain both under native conditions and after depletion of endogenous synapsin I. We used the atomic force microscope in two modes: imaging mode for characterizing the shape and size of SVs, and force-volume mode for characterizing their stiffness. Synapsin-depleted SVs were larger in size and showed a higher tendency to aggregate than native vesicles, although their stiffness was not significantly different. Because synapsins are believed to cross-link SV to each other and to the actin cytoskeleton, we also measured the SV aggregation kinetics induced by synapsin I by dynamic light scattering and atomic force microscopy and found that the addition of synapsin I promotes a rapid aggregation of SVs. The data indicate that synapsin directly affects SV stability and aggregation state and support the physiological role of synapsins in the assembly and regulation of SV pools within nerve terminals.
Collapse
|
38
|
Takamori S, Holt M, Stenius K, Lemke EA, Grønborg M, Riedel D, Urlaub H, Schenck S, Brügger B, Ringler P, Müller SA, Rammner B, Gräter F, Hub JS, De Groot BL, Mieskes G, Moriyama Y, Klingauf J, Grubmüller H, Heuser J, Wieland F, Jahn R. Molecular anatomy of a trafficking organelle. Cell 2006; 127:831-46. [PMID: 17110340 DOI: 10.1016/j.cell.2006.10.030] [Citation(s) in RCA: 1767] [Impact Index Per Article: 93.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2006] [Revised: 07/27/2006] [Accepted: 10/12/2006] [Indexed: 02/08/2023]
Abstract
Membrane traffic in eukaryotic cells involves transport of vesicles that bud from a donor compartment and fuse with an acceptor compartment. Common principles of budding and fusion have emerged, and many of the proteins involved in these events are now known. However, a detailed picture of an entire trafficking organelle is not yet available. Using synaptic vesicles as a model, we have now determined the protein and lipid composition; measured vesicle size, density, and mass; calculated the average protein and lipid mass per vesicle; and determined the copy number of more than a dozen major constituents. A model has been constructed that integrates all quantitative data and includes structural models of abundant proteins. Synaptic vesicles are dominated by proteins, possess a surprising diversity of trafficking proteins, and, with the exception of the V-ATPase that is present in only one to two copies, contain numerous copies of proteins essential for membrane traffic and neurotransmitter uptake.
Collapse
Affiliation(s)
- Shigeo Takamori
- Department of Neurobiology, Max-Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Pang ZP, Shin OH, Meyer AC, Rosenmund C, Südhof TC. A gain-of-function mutation in synaptotagmin-1 reveals a critical role of Ca2+-dependent soluble N-ethylmaleimide-sensitive factor attachment protein receptor complex binding in synaptic exocytosis. J Neurosci 2006; 26:12556-65. [PMID: 17135417 PMCID: PMC6674888 DOI: 10.1523/jneurosci.3804-06.2006] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Synaptotagmin-1, the Ca2+ sensor for fast neurotransmitter release, was proposed to function by Ca2+-dependent phospholipid binding and/or by Ca2+-dependent soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex binding. Extensive in vivo data support the first hypothesis, but testing the second hypothesis has been difficult because no synaptotagmin-1 mutation is known that selectively interferes with SNARE complex binding. Using knock-in mice that carry aspartate-to-asparagine substitutions in a Ca2+-binding site of synaptotagmin-1 (the D232N or D238N substitutions), we now show that the D232N mutation dramatically increases Ca2+-dependent SNARE complex binding by native synaptotagmin-1, but leaves phospholipid binding unchanged. In contrast, the adjacent D238N mutation does not significantly affect SNARE complex binding, but decreases phospholipid binding. Electrophysiological recordings revealed that the D232N mutation increased Ca2+-triggered release, whereas the D238N mutation decreased release. These data establish that fast vesicle exocytosis is driven by a dual Ca2+-dependent activity of synaptotagmin-1, namely Ca2+-dependent binding both to SNARE complexes and to phospholipids.
Collapse
Affiliation(s)
| | | | - Alexander C. Meyer
- Department of Membrane Biophysics, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany, and
| | - Christian Rosenmund
- Department of Membrane Biophysics, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany, and
- Departments of Neuroscience and Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| | - Thomas C. Südhof
- Center for Basic Neuroscience
- Department of Molecular Genetics, and
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| |
Collapse
|
40
|
Lonart G, Simsek-Duran F. Deletion of synapsins I and II genes alters the size of vesicular pools and rabphilin phosphorylation. Brain Res 2006; 1107:42-51. [PMID: 16844103 DOI: 10.1016/j.brainres.2006.05.092] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2005] [Revised: 05/04/2006] [Accepted: 05/28/2006] [Indexed: 01/21/2023]
Abstract
Previous studies established that genetic deletion of synapsins, synaptic vesicle-associated phosphoproteins that regulate neurotransmitter release, decreases the number of synaptic vesicles in nerve terminals. To investigate whether these changes affect the release properties of the remaining synaptic vesicles, we used a radioactive labeling technique to measure release independently of the total number of synaptic vesicles. 3H-glutamate and 14C-gamma-amino-butyric-acid (GABA) release from isolated nerve terminals prepared from the neocortex of synapsins I and II double knock-out mice (DKO) was assayed and compared to wild-type preparations. Hyperosmotic shock-evoked 3H-glutamate was reduced by 20+/-3% from DKO nerve terminals and potassium depolarization-evoked glutamate release was also decreased by 28+/-2%. Surprisingly, sucrose or potassium depolarization-evoked release of 14C-GABA was increased by 32+/-4% and 29+/-5%, respectively. The basal efflux of both 3H-glutamate and 14C-GABA increased by 17+/-2% and 12+/-2% from DKO nerve terminals. As lack of synapsins I and II, major phosphoproteins of synaptic vesicles, may lead to deregulation of phosphorylation events, we compared phosphorylation state of another synaptic vesicle protein, rabphilin. In DKO nerve terminals, membrane-associated rabphilin level was reduced by approximately 0.28-fold, its phosphorylation at 234serine was increased by approximately 1.61-fold whereas cytosolic rabphilin levels showed both more dramatic reduction in abundance, approximately 16.5-fold, and increase in phosphorylation, approximately 4.8-fold. Collectively, these data suggest that deletion of major synapsin isoforms leads to (1) deregulation of basal neurotransmission causing "leaky" basal release, (2) changes in either the size or mobilization of releasable or reserve pools, and (3) a decrease in rabphilin abundance accompanied by an increase in basal phosphorylation of the remaining rabphilin.
Collapse
Affiliation(s)
- György Lonart
- Department of Pathology and Anatomy, Eastern Virginia Medical School, 700 W. Olney Rd. Norfolk, VA 23507, USA.
| | | |
Collapse
|
41
|
Li L, Shin OH, Rhee JS, Araç D, Rah JC, Rizo J, Südhof T, Rosenmund C. Phosphatidylinositol phosphates as co-activators of Ca2+ binding to C2 domains of synaptotagmin 1. J Biol Chem 2006; 281:15845-52. [PMID: 16595652 DOI: 10.1074/jbc.m600888200] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ca2+-dependent phospholipid binding to the C2A and C2B domains of synaptotagmin 1 is thought to trigger fast neurotransmitter release, but only Ca2+ binding to the C2B domain is essential for release. To investigate the underlying mechanism, we have compared the role of basic residues in Ca2+/phospholipid binding and in release. Mutations in a polybasic sequence on the side of the C2B domain beta-sandwich or in a basic residue in a top Ca2+-binding loop of the C2A domain (R233) cause comparable decreases in the apparent Ca2+ affinity of synaptotagmin 1 and the Ca2+ sensitivity of release, whereas mutation of the residue homologous to Arg233 in the C2B domain (Lys366) has no effect. Phosphatidylinositol polyphosphates co-activate Ca2+-dependent and -independent phospholipid binding to synaptotagmin 1, but the effects of these mutations on release only correlate with their effects on the Ca2+-dependent component. These results reveal clear distinctions in the Ca2+-dependent phospholipid binding modes of the synaptotagmin 1 C2 domains that may underlie their functional asymmetry and suggest that phosphatidylinositol polyphosphates may serve as physiological modulators of Ca2+ affinity of synaptotagmin 1 in vivo.
Collapse
Affiliation(s)
- LiYi Li
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Hilfiker S, Benfenati F, Doussau F, Nairn AC, Czernik AJ, Augustine GJ, Greengard P. Structural domains involved in the regulation of transmitter release by synapsins. J Neurosci 2006; 25:2658-69. [PMID: 15758176 PMCID: PMC6725186 DOI: 10.1523/jneurosci.4278-04.2005] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Synapsins are a family of neuron-specific phosphoproteins that regulate neurotransmitter release by associating with synaptic vesicles. Synapsins consist of a series of conserved and variable structural domains of unknown function. We performed a systematic structure-function analysis of the various domains of synapsin by assessing the actions of synapsin fragments on neurotransmitter release, presynaptic ultrastructure, and the biochemical interactions of synapsin. Injecting a peptide derived from domain A into the squid giant presynaptic terminal inhibited neurotransmitter release in a phosphorylation-dependent manner. This peptide had no effect on vesicle pool size, synaptic depression, or transmitter release kinetics. In contrast, a peptide fragment from domain C reduced the number of synaptic vesicles in the periphery of the active zone and increased the rate and extent of synaptic depression. This peptide also slowed the kinetics of neurotransmitter release without affecting the number of docked vesicles. The domain C peptide, as well as another peptide from domain E that is known to have identical effects on vesicle pool size and release kinetics, both specifically interfered with the binding of synapsins to actin but not with the binding of synapsins to synaptic vesicles. This suggests that both peptides interfere with release by preventing interactions of synapsins with actin. Thus, interactions of domains C and E with the actin cytoskeleton may allow synapsins to perform two roles in regulating release, whereas domain A has an actin-independent function that regulates transmitter release in a phosphorylation-sensitive manner.
Collapse
Affiliation(s)
- Sabine Hilfiker
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, New York 10021, USA.
| | | | | | | | | | | | | |
Collapse
|
43
|
Rhee JS, Li LY, Shin OH, Rah JC, Rizo J, Südhof TC, Rosenmund C. Augmenting neurotransmitter release by enhancing the apparent Ca2+ affinity of synaptotagmin 1. Proc Natl Acad Sci U S A 2005; 102:18664-9. [PMID: 16352718 PMCID: PMC1311909 DOI: 10.1073/pnas.0509153102] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Synaptotagmin 1 likely acts as a Ca2+ sensor in neurotransmitter release by Ca2+-binding to its two C2 domains. This notion was strongly supported by the observation that a mutation in the C2A domain causes parallel decreases in the apparent Ca2+ affinity of synaptotagmin 1 and in the Ca2+ sensitivity of release. However, this study was based on a single loss-of-function mutation. We now show that tryptophan substitutions in the synaptotagmin 1 C2 domains act as gain-of-function mutations to increase the apparent Ca2+ affinity of synaptotagmin 1. The same substitutions, when introduced into synaptotagmin 1 expressed in neurons, enhance the Ca2+ sensitivity of release. Mutations in the two C2 domains lead to comparable and additive effects in release. Our results thus show that the apparent Ca2+ sensitivity of release is dictated by the apparent Ca2+ affinity of synaptotagmin 1 in both directions, and that Ca2+ binding to both C2 domains contributes to Ca2+ triggering of release.
Collapse
Affiliation(s)
- J-S Rhee
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 7703, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Pera I, Stark R, Kappl M, Butt HJ, Benfenati F. Using the atomic force microscope to study the interaction between two solid supported lipid bilayers and the influence of synapsin I. Biophys J 2005; 87:2446-55. [PMID: 15454442 PMCID: PMC1304665 DOI: 10.1529/biophysj.104.044214] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To measure the interaction between two lipid bilayers with an atomic force microscope one solid supported bilayer was formed on a planar surface by spontaneous vesicle fusion. To spontaneously adsorb lipid bilayers also on the atomic force microscope tip, the tips were first coated with gold and a monolayer of mercapto undecanol. Calculations indicate that long-chain hydroxyl terminated alkyl thiols tend to enhance spontaneous vesicle fusion because of an increased van der Waals attraction as compared to short-chain thiols. Interactions measured between dioleoylphosphatidylcholine, dioleoylphosphatidylserine, and dioleoyloxypropyl trimethylammonium chloride showed the electrostatic double-layer force plus a shorter-range repulsion which decayed exponentially with a decay length of 0.7 nm for dioleoylphosphatidylcholine, 1.2 nm for dioleoylphosphatidylserine, and 0.8 nm for dioleoyloxypropyl trimethylammonium chloride. The salt concentration drastically changed the interaction between dioleoyloxypropyl trimethylammonium chloride bilayers. As an example for the influence of proteins on bilayer-bilayer interaction, the influence of the synaptic vesicle-associated, phospholipid binding protein synapsin I was studied. Synapsin I increased membrane stability so that the bilayers could not be penetrated with the tip.
Collapse
Affiliation(s)
- Ioana Pera
- Max-Planck-Institute for Polymer Research, D-55128 Mainz, Germany
| | | | | | | | | |
Collapse
|
45
|
Abstract
Membrane vesicle cycling is orchestrated through the combined actions of proteins and lipids. At neuronal synapses, this orchestration must meet the stringent demands of speed, fidelity and sustainability of the synaptic vesicle cycle that mediates neurotransmission. Historically, the lion's share of the attention has been focused on the proteins that are involved in this cycle; but, in recent years, it has become clear that the previously unheralded plasma membrane and vesicle lipids are also key regulators of this cycle. This article reviews recent insights into the roles of lipid-modifying enzymes and lipids in the acute modulation of neurotransmission.
Collapse
Affiliation(s)
- Jeffrey Rohrbough
- Department of Biological Sciences, Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, Tennessee 37235-1634, USA
| | | |
Collapse
|
46
|
Abstract
Neurotransmitter release is mediated by exocytosis of synaptic vesicles at the presynaptic active zone of nerve terminals. To support rapid and repeated rounds of release, synaptic vesicles undergo a trafficking cycle. The focal point of the vesicle cycle is Ca2+-triggered exocytosis that is followed by different routes of endocytosis and recycling. Recycling then leads to the docking and priming of the vesicles for another round of exo- and endocytosis. Recent studies have led to a better definition than previously available of how Ca2+ triggers exocytosis and how vesicles recycle. In particular, insight into how Munc18-1 collaborates with SNARE proteins in fusion, how the vesicular Ca2+ sensor synaptotagmin 1 triggers fast release, and how the vesicular Rab3 protein regulates release by binding to the active zone proteins RIM1 alpha and RIM2 alpha has advanced our understanding of neurotransmitter release. The present review attempts to relate these molecular data with physiological results in an emerging view of nerve terminals as macromolecular machines.
Collapse
Affiliation(s)
- Thomas C Sudhof
- Center for Basic Neuroscience, Department of Molecular Genetics, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9111, USA.Thomas.
| |
Collapse
|
47
|
Gitler D, Xu Y, Kao HT, Lin D, Lim S, Feng J, Greengard P, Augustine GJ. Molecular determinants of synapsin targeting to presynaptic terminals. J Neurosci 2004; 24:3711-20. [PMID: 15071120 PMCID: PMC6729754 DOI: 10.1523/jneurosci.5225-03.2004] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Although synapsins are abundant synaptic vesicle proteins that are widely used as markers of presynaptic terminals, the mechanisms that target synapsins to presynaptic terminals have not been elucidated. We have addressed this question by imaging the targeting of green fluorescent protein-tagged synapsins in cultured hippocampal neurons. Whereas all synapsin isoforms targeted robustly to presynaptic terminals in wild-type neurons, synapsin Ib scarcely targeted in neurons in which all synapsins were knocked-out. Coexpression of other synapsin isoforms significantly strengthened the targeting of synapsin Ib in knock-out neurons, indicating that heterodimerization is required for synapsin Ib to target. Truncation mutagenesis revealed that synapsin Ia targets via distributed binding sites that include domains B, C, and E. Although domain A was not necessary for targeting, its presence enhanced targeting. Domain D inhibited targeting, but this inhibition was overcome by domain E. Thus, multiple intermolecular and intramolecular interactions are required for synapsins to target to presynaptic terminals.
Collapse
Affiliation(s)
- Daniel Gitler
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Wenk MR, De Camilli P. Protein-lipid interactions and phosphoinositide metabolism in membrane traffic: insights from vesicle recycling in nerve terminals. Proc Natl Acad Sci U S A 2004; 101:8262-9. [PMID: 15146067 PMCID: PMC420382 DOI: 10.1073/pnas.0401874101] [Citation(s) in RCA: 242] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Great progress has been made in the elucidation of the function of proteins in membrane traffic. Less is known about the regulatory role of lipids in membrane dynamics. Studies of nerve terminals, compartments highly specialized for the recycling of synaptic vesicles, have converged with studies from other systems to reveal mechanisms in protein-lipid interactions that affect membrane shape as well as the fusion and fission of vesicles. Phosphoinositides have emerged as major regulators of the binding of cytosolic proteins to the bilayer. Phosphorylation on different positions of the inositol ring generates different isomers that are heterogeneously distributed on cell membranes and that together with membrane proteins generate a "dual keys" code for the recruitment of cytosolic proteins. This code helps controlling vectoriality of membrane transport. Powerful methods for the detection of lipids are rapidly advancing this field, thus complementing the broad range of information about biological systems that can be obtained from genomic and proteomic approaches.
Collapse
Affiliation(s)
- Markus R Wenk
- Howard Hughes Medical Institute and Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06511, USA
| | | |
Collapse
|
49
|
Cheetham JJ, Murray J, Ruhkalova M, Cuccia L, McAloney R, Ingold KU, Johnston LJ. Interaction of synapsin I with membranes. Biochem Biophys Res Commun 2003; 309:823-9. [PMID: 13679047 DOI: 10.1016/j.bbrc.2003.08.082] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The synapsins (I, II, and III) comprise a family of peripheral membrane proteins that are involved in both regulation of neurotransmitter release and synaptogenesis. Synapsins are concentrated at presynaptic nerve terminals and are associated with the cytoplasmic surface of synaptic vesicles. Membrane-binding of synapsins involves interaction with both protein and lipid components of synaptic vesicles. Synapsin I binds rapidly and with high affinity to liposomes containing anionic lipids. The binding of bovine synapsin I to liposomes was studied using fluoresceinphosphatidyl-ethanolamine (FPE) to measure membrane electrostatic potential. Synapsin binding to liposomes caused a rapid increase in FPE fluorescence, indicating an increase in positive charge at the membrane surface. Synapsin I binding to monolayers resulted in a substantial increase in monolayer surface pressure. At higher initial surface pressures, the synapsin-induced increase in monolayer surface pressure is dependent on the presence of anionic lipids in the monolayer. Synapsin I also induced rapid aggregation of liposomes, but did not induce leakage of entrapped carboxyfluorescein, while other aggregation-inducing agents promoted extensive leakage. These results are in agreement with the presence of amphipathic stretches of amino acids in synapsin I that exhibit both electrostatic and hydrophobic interactions with membranes, and offer a molecular explanation for the high affinity binding of synapsin I to liposomes and for stabilization of membranes by synapsin I.
Collapse
Affiliation(s)
- James J Cheetham
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ont., Canada K1S 5B6.
| | | | | | | | | | | | | |
Collapse
|
50
|
Caccin P, Rossetto O, Rigoni M, Johnson E, Schiavo G, Montecucco C. VAMP/synaptobrevin cleavage by tetanus and botulinum neurotoxins is strongly enhanced by acidic liposomes. FEBS Lett 2003; 542:132-6. [PMID: 12729912 DOI: 10.1016/s0014-5793(03)00365-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tetanus and botulinum neurotoxins (TeNT and BoNTs) block neuroexocytosis via specific cleavage and inactivation of SNARE proteins. Such activity is exerted by the N-terminal 50 kDa light chain (L) domain, which is a zinc-dependent endopeptidase. TeNT, BoNT/B, /D, /F and /G cleave vesicle associated membrane protein (VAMP), a protein of the neurotransmitter-containing small synaptic vesicles, at different single peptide bonds. Since the proteolytic activity of these metalloproteases is higher on native VAMP inserted in synaptic vesicles than on recombinant VAMP, we have investigated the influence of liposomes of different lipid composition on this activity. We found that the rate of VAMP cleavage with all neurotoxins tested here is strongly enhanced by negatively charged lipid mixtures. This effect is at least partially due to the binding of the metalloprotease to the lipid membranes, with electrostatic interactions playing an important role.
Collapse
Affiliation(s)
- Paola Caccin
- Istituto di Neuroscienze del CNR Biomembrane and Dipartimento di Scienze Biomediche, Università di Padova, Via G. Colombo 3, 35121 Padova, Italy
| | | | | | | | | | | |
Collapse
|