1
|
Macias-Díaz A, Nieto-Felipe J, Jardín I, Camello PJ, Martinez-Quintana EM, Salido GM, Smani T, Lopez JJ, Rosado JA. Filamin A C-terminal fragment modulates Orai1 expression by inhibition of protein degradation. Am J Physiol Cell Physiol 2025; 328:C657-C669. [PMID: 39764579 DOI: 10.1152/ajpcell.00745.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/16/2024] [Accepted: 12/30/2024] [Indexed: 02/05/2025]
Abstract
Filamin A (FLNA) is an actin-binding protein that has been reported to interact with STIM1 modulating the activation of Orai1 channels. Cleaving of FLNA by calpain leads to a C-terminal fragment that is involved in a variety of functional and pathological events, including pro-oncogenic activity in different types of cancer. Here, we show that full-length FLNA is downregulated in samples from patients with colon cancer as well as in the adenocarcinoma cell line HT-29. This is consistent with an increased calpain-dependent FLNA cleaving with enhanced expression of the C-terminal FLNA fragment accompanied by enhanced expression of Orai1 and STIM1, as well as store-operated Ca2+ entry (SOCE). To further explore the mechanism underlying the enhancement of SOCE by the C-terminal FLNA fragment, we expressed in HEK-293 cells the C-terminal FLNA region encompassing repeats 16-24 (FLNA16-24 fragment), which enhanced both Orai1 and STIM1 as well as SOCE. Transfection of the FLNA16-24 fragment attenuates Orai1 and STIM1 protein degradation, and, specifically, abrogates Orai1α lysosomal degradation and retains this channel in the plasma membrane. However, the C-terminal FLNA fragment did not induce a detectable modification in Orai1β degradation. Due to the relevance of SOCE in cell physiology, our results provide evidence of a novel mechanism for the regulation of Ca2+ influx with relevant pathophysiological implications.NOTE & NOTEWORTHY FLNA cleaving by calpain has been observed in a variety of tumoral, including prostate and colorectal cancer cells, as well as in nontumoral cells, leading to a C-terminal fragment encompassing repeats 16-24. Expression of the FLNA16-24 fragment in HEK-293 cells enhances Orai1 and STIM1 expression, as well as SOCE, a mechanism mediated by attenuation of Orai1α and STIM1 degradation, providing evidence for a novel mechanism for the regulation of SOCE in normal and malignant cells.
Collapse
Affiliation(s)
- Alvaro Macias-Díaz
- Department of Physiology (Cellular Physiology Research Group), Institute of Molecular Pathology Biomarkers (IMPB), University of Extremadura, Caceres, Spain
| | - Joel Nieto-Felipe
- Department of Physiology (Cellular Physiology Research Group), Institute of Molecular Pathology Biomarkers (IMPB), University of Extremadura, Caceres, Spain
| | - Isaac Jardín
- Department of Physiology (Cellular Physiology Research Group), Institute of Molecular Pathology Biomarkers (IMPB), University of Extremadura, Caceres, Spain
| | - Pedro J Camello
- Department of Physiology (Cellular Physiology Research Group), Institute of Molecular Pathology Biomarkers (IMPB), University of Extremadura, Caceres, Spain
| | | | - Gines M Salido
- Department of Physiology (Cellular Physiology Research Group), Institute of Molecular Pathology Biomarkers (IMPB), University of Extremadura, Caceres, Spain
| | - Tarik Smani
- Group of Cardiovascular Pathophysiology, Institute of Biomedicine of Seville, University Hospital of Virgen del Rocío/University of Seville/CSIC, Seville, Spain
- Department of Medical Physiology and Biophysics, Faculty of Medicine, University of Seville, Seville, Spain
| | - Jose J Lopez
- Department of Physiology (Cellular Physiology Research Group), Institute of Molecular Pathology Biomarkers (IMPB), University of Extremadura, Caceres, Spain
| | - Juan A Rosado
- Department of Physiology (Cellular Physiology Research Group), Institute of Molecular Pathology Biomarkers (IMPB), University of Extremadura, Caceres, Spain
| |
Collapse
|
2
|
Wade EM, Goodin EA, Morgan T, Pereira S, Woolley AG, Jenkins ZA, Daniel PB, Robertson SP. The hinge-1 domain of Flna is not necessary for diverse physiological functions in mice. Eur J Clin Invest 2024; 54:e14308. [PMID: 39215762 DOI: 10.1111/eci.14308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION The filamins are cytoskeletal binding proteins that dynamically crosslink actin into orthogonal networks or bundle it into stress fibres. The domain structure of filamin proteins is very well characterised, with an N-terminal actin-binding region, followed by 24 immunoglobulin-like repeat units. The repeat domains are separated into distinct segments by two regions of low-complexity known as hinge-1 and hinge-2. The role of hinge-1 especially has been proposed to be essential for protein function as it provides flexibility to the otherwise rigid protein, and is a target for cleavage by calpain. Hinge-1 protects cells from otherwise destructive forces, and the products of calpain cleavage are involved in critical cellular signalling processes, such as survival during hypoxia. Pathogenic variants in FLNA encoding Filamin A, including those that remove the hinge-1 domain, cause a wide range of survivable developmental disorders. In contrast, complete loss of function of this gene is embryonic lethal in human and mouse. METHODS AND RESULTS In this study, we show that removing filamin A hinge-1 from mouse (FlnaΔH1), while preserving its expression level leads to no obvious developmental phenotype. Detailed characterisation of the skeletons of FlnaΔH1 mice showed no skeletal phenotype reminiscent of that found in the FLNA-causing skeletal dysplasia. Furthermore, nuclear functions of FLNA are maintained with loss of Filamin A hinge-1. CONCLUSION We conclude that hinge-1 is dispensable for filamin A protein function during development over the murine lifespan.
Collapse
Affiliation(s)
- Emma M Wade
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Elizabeth A Goodin
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Tim Morgan
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Stephana Pereira
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Adele G Woolley
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Biodiscovery, University of Otago, Dunedin, New Zealand
| | - Zandra A Jenkins
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Philip B Daniel
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Stephen P Robertson
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| |
Collapse
|
3
|
Wade EM, Morgan T, Gimenez G, Jenkins ZA, Titheradge H, O'Donnell M, Skidmore D, Suri M, Robertson SP. Pathogenic FLNA variants affecting the hinge region of filamin A are associated with male survival. Am J Med Genet A 2024; 194:e63779. [PMID: 38853608 DOI: 10.1002/ajmg.a.63779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/07/2024] [Accepted: 05/18/2024] [Indexed: 06/11/2024]
Abstract
Pathogenic variants in FLNA cause a diversity of X-linked developmental disorders associated with either preserved or diminished levels of filamin A protein and are conceptualized dichotomously as relating to underlying gain- or loss-of-function pathogenic mechanisms. Hemizygosity for germline deletions or truncating variants in FLNA is generally considered to result in embryonic lethality. Structurally, filamin A is composed of an N-terminal actin-binding region, followed by 24 immunoglobulin-like repeat units. The repeat domains are separated into distinct segments by two regions of low-complexity known as hinge-1 and hinge-2. Hinge-1 is proposed to confer flexibility to the otherwise rigid protein and is a target for cleavage by calpain with the resultant filamin fragments mediating crucial cellular signaling processes. Here, three families with pathogenic variants in FLNA that impair the function of hinge-1 in males are described, leading to distinct clinical phenotypes. One large in-frame deletion that includes the hinge leads to frontometaphyseal dysplasia in affected males and females, while two germline truncating variants located within the exon encoding hinge 1 result in phenotypes in males that are explained by exon skipping and under-expression of a transcript that deletes hinge-1 from the resultant protein. These three variants affecting hinge-1 indicate that this domain does not mediate cellular functions that, when deficientresult in embryonic lethality in males and that germline truncating variants in this region of FLNA can result in viable phenotypes in males.
Collapse
Affiliation(s)
- Emma M Wade
- Department of Women's and Children's Health, Dunedin School of Medicine, Otago University, Dunedin, New Zealand
| | - Tim Morgan
- Department of Women's and Children's Health, Dunedin School of Medicine, Otago University, Dunedin, New Zealand
| | - Gregory Gimenez
- Department of Pathology, Dunedin School of Medicine, Otago University, Dunedin, New Zealand
| | - Zandra A Jenkins
- Department of Women's and Children's Health, Dunedin School of Medicine, Otago University, Dunedin, New Zealand
| | - Hannah Titheradge
- Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Marie O'Donnell
- Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - David Skidmore
- IWK Hospital, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Mohnish Suri
- Clinical Genetics Service, City Hospital, Nottingham, UK
| | - Stephen P Robertson
- Department of Women's and Children's Health, Dunedin School of Medicine, Otago University, Dunedin, New Zealand
| |
Collapse
|
4
|
Kopsidas CA, Lowe CC, McDaniel DP, Zhou X, Feng Y. Sustained generation of neurons destined for neocortex with oxidative metabolic upregulation upon filamin abrogation. iScience 2024; 27:110199. [PMID: 38989458 PMCID: PMC11233971 DOI: 10.1016/j.isci.2024.110199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 04/01/2024] [Accepted: 06/03/2024] [Indexed: 07/12/2024] Open
Abstract
Neurons in the neocortex are generated during embryonic development. While the adult ventricular-subventricular zone (V-SVZ) contains cells with neural stem/progenitors' characteristics, it remains unclear whether it has the capacity of producing neocortical neurons. Here, we show that generating neurons with transcriptomic resemblance to upper layer neocortical neurons continues in the V-SVZ of mouse models of a human condition known as periventricular heterotopia by abrogating Flna and Flnb. We found such surplus neurogenesis was associated with V-SVZ's upregulation of oxidative phosphorylation, mitochondrial biogenesis, and vascular abundance. Additionally, spatial transcriptomics analyses showed V-SVZ's neurogenic activation was coupled with transcriptional enrichment of genes in diverse pathways for energy metabolism, angiogenesis, cell signaling, synaptic transmission, and turnovers of nucleic acids and proteins in upper cortical layers. These findings support the potential of generating neocortical neurons in adulthood through boosting brain-wide vascular circulation, aerobic adenosine triphosphate synthesis, metabolic turnover, and neuronal activity.
Collapse
Affiliation(s)
- Caroline A. Kopsidas
- Department of Biochemistry and Molecular Biology, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Clara C. Lowe
- Department of Biochemistry and Molecular Biology, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Dennis P. McDaniel
- Biomedical Instrumentation Center, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Xiaoming Zhou
- Department of Medicine, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Yuanyi Feng
- Department of Biochemistry and Molecular Biology, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| |
Collapse
|
5
|
Shead KD, Salyahetdinova V, Baillie GS. Charting the importance of filamin A posttranslational modifications. Biochem J 2024; 481:865-881. [PMID: 38958472 PMCID: PMC11346442 DOI: 10.1042/bcj20240121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/04/2024]
Abstract
Filamin A is an essential protein in the cell cytoskeleton because of its actin binding properties and unique homodimer rod-shaped structure, which organises actin into three-dimensional orthogonal networks imperative to cell motility, spreading and adhesion. Filamin A is subject to extensive posttranslational modification (PTM) which serves to co-ordinate cellular architecture and to modulate its large protein-protein interaction network which is key to the protein's role as a cellular signalling hub. Characterised PTMs include phosphorylation, irreversible cleavage, ubiquitin mediated degradation, hydroxylation and O-GlcNAcylation, with preliminary evidence of tyrosylation, carbonylation and acetylation. Each modification and its relation to filamin A function will be described here. These modifications are often aberrantly applied in a range of diseases including, but not limited to, cancer, cardiovascular disease and neurological disease and we discuss the concept of target specific PTMs with novel therapeutic modalities. In summary, our review represents a topical 'one-stop-shop' that enables understanding of filamin A function in cell homeostasis and provides insight into how a variety of modifications add an extra level of Filamin A control.
Collapse
Affiliation(s)
- Kyle D. Shead
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow G128QQ, U.K
| | - Veneta Salyahetdinova
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow G128QQ, U.K
| | - George S. Baillie
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow G128QQ, U.K
| |
Collapse
|
6
|
Liang W, Zhang Y, Guo Y, Zhang P, Jin J, Guan H, Li Y. FLNA overexpression promotes papillary thyroid cancer aggression via the FAK/AKT signaling pathway. Endocr Connect 2024; 13:e240034. [PMID: 38614124 PMCID: PMC11103747 DOI: 10.1530/ec-24-0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/11/2024] [Indexed: 04/15/2024]
Abstract
Background Filamin A (FLNA) is a member of the filamin family and has been found to be critical for the progression of several cancers. However, its biological function in papillary thyroid cancer (PTC) remains largely unexplored. Methods Data from The Cancer Genome Atlas (TCGA) databases were utilized to analyze the FLNA expression level and its influence on the clinical implications of patients with PTC. Gene Expression Omnibus (GEO) and qRT-PCR was used to verify the expression levels of FLNA in PTC. Kaplan-Meier survival analysis was conducted to evaluate the prognostic value of FLNA in PTC. Transwell assays and wound healing were performed to examine the biological function of FLNA knockdown in PTC cells. Gene set enrichment analysis (GSEA) and Western blotting were conducted to investigate the potential mechanisms underlying the role of FLNA in PTC progression. In addition, the relationship between FLNA expression and the tumor immune microenvironment (TME) in PTC was explored. Results FLNA was significantly upregulated in PTC tissues. High expression levels of FLNA was correlated with advanced TNM stage, T stage, and N stage, as well as poor disease-free interval (DFI) and progression-free interval (PFI) time in PTC patients. Moreover, we found that FLNA knockdown inhibited the migration and invasion of PTC cells. Mechanistically, FLNA knockdown inhibited epithelial-mesenchymal transition (EMT) in PTC and affected the activation of the FAK/AKT signaling pathway. In addition, FLNA expression was associated with TME in PTC. Conclusion FLNA may be regarded as a new therapeutic target for PTC patients.
Collapse
Affiliation(s)
- Weiwei Liang
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yilin Zhang
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yan Guo
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Pengyuan Zhang
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jiewen Jin
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hongyu Guan
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yanbing Li
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
7
|
Georgana I, Scutts SR, Gao C, Lu Y, Torres AA, Ren H, Emmott E, Men J, Oei K, Smith GL. Filamin B restricts vaccinia virus spread and is targeted by vaccinia virus protein C4. J Virol 2024; 98:e0148523. [PMID: 38412044 PMCID: PMC10949515 DOI: 10.1128/jvi.01485-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 02/06/2024] [Indexed: 02/29/2024] Open
Abstract
Vaccinia virus (VACV) is a large DNA virus that encodes scores of proteins that modulate the host immune response. VACV protein C4 is one such immunomodulator known to inhibit the activation of both the NF-κB signaling cascade and the DNA-PK-mediated DNA sensing pathway. Here, we show that the N-terminal region of C4, which neither inhibits NF-κB nor mediates interaction with DNA-PK, still contributes to virus virulence. Furthermore, this domain interacts directly and with high affinity to the C-terminal domain of filamin B (FLNB). FLNB is a large actin-binding protein that stabilizes the F-actin network and is implicated in other cellular processes. Deletion of FLNB from cells results in larger VACV plaques and increased infectious viral yield, indicating that FLNB restricts VACV spread. These data demonstrate that C4 has a new function that contributes to virulence and engages the cytoskeleton. Furthermore, we show that the cytoskeleton performs further previously uncharacterized functions during VACV infection. IMPORTANCE Vaccinia virus (VACV), the vaccine against smallpox and monkeypox, encodes many proteins to counteract the host immune response. Investigating these proteins provides insights into viral immune evasion mechanisms and thereby indicates how to engineer safer and more immunogenic VACV-based vaccines. Here, we report that the N-terminal domain of VACV protein C4 interacts directly with the cytoskeletal protein filamin B (FLNB), and this domain of C4 contributes to virus virulence. Furthermore, VACV replicates and spreads better in cells lacking FLNB, thus demonstrating that FLNB has antiviral activity. VACV utilizes the cytoskeleton for movement within and between cells; however, previous studies show no involvement of C4 in VACV replication or spread. Thus, C4 associates with FLNB for a different reason, suggesting that the cytoskeleton has further uncharacterized roles during virus infection.
Collapse
Affiliation(s)
- Iliana Georgana
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Simon R. Scutts
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Chen Gao
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Yongxu Lu
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Alice A. Torres
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Hongwei Ren
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Edward Emmott
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Jinghao Men
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Keefe Oei
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Geoffrey L. Smith
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
8
|
Vitali E, Franceschini B, Milana F, Soldani C, Polidoro MA, Carriero R, Kunderfranco P, Trivellin G, Costa G, Milardi G, Di Tommaso L, Torzilli G, Lleo A, Lania AG, Donadon M. Filamin A is involved in human intrahepatic cholangiocarcinoma aggressiveness and progression. Liver Int 2024; 44:518-531. [PMID: 38010911 DOI: 10.1111/liv.15800] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 10/19/2023] [Accepted: 11/12/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND & AIMS Intrahepatic cholangiocarcinoma (iCCA) is a primary liver tumour, characterized by poor prognosis and lack of effective therapy. The cytoskeleton protein Filamin A (FLNA) is involved in cancer progression and metastasis, including primary liver cancer. FLNA is cleaved by calpain, producing a 90 kDa fragment (FLNACT ) that can translocate to the nucleus and inhibit gene transcription. We herein aim to define the role of FLNA and its cleavage in iCCA carcinogenesis. METHODS & RESULTS We evaluated the expression and localization of FLNA and FLNACT in liver samples from iCCA patients (n = 82) revealing that FLNA expression was independently correlated with disease-free survival. Primary tumour cells isolated from resected iCCA patients expressed both FLNA and FLNACT , and bulk RNA sequencing revealed a significant enrichment of cell proliferation and cell motility pathways in iCCAs with high FLNA expression. Further, we defined the impact of FLNA and FLNACT on the proliferation and migration of primary iCCA cells (n = 3) and HuCCT1 cell line using silencing and Calpeptin, a calpain inhibitor. We observed that FLNA silencing decreased cell proliferation and migration and Calpeptin was able to reduce FLNACT expression in both the HuCCT1 and iCCA cells (p < .05 vs. control). Moreover, Calpeptin 100 μM decreased HuCCT1 and primary iCCA cell proliferation (p <.00001 vs. control) and migration (p < .05 vs. control). CONCLUSIONS These findings demonstrate that FLNA is involved in human iCCA progression and calpeptin strongly decreased FLNACT expression, reducing cell proliferation and migration.
Collapse
Affiliation(s)
- Eleonora Vitali
- Laboratory of Cellular and Molecular Endocrinology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Barbara Franceschini
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Flavio Milana
- Division of Hepatobiliary and General Surgery, Department of Surgery, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Cristiana Soldani
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Michela A Polidoro
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Roberta Carriero
- Bioinformatics Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | | | - Giampaolo Trivellin
- Laboratory of Cellular and Molecular Endocrinology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Guido Costa
- Division of Hepatobiliary and General Surgery, Department of Surgery, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Giulia Milardi
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Luca Di Tommaso
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Pathology Department, Humanitas Clinical and Research Center-IRCCS, Milan, Italy
| | - Guido Torzilli
- Division of Hepatobiliary and General Surgery, Department of Surgery, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Ana Lleo
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Division of Internal Medicine and Hepatology, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Andrea G Lania
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Endocrinology, Diabetology and Medical Andrology Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Matteo Donadon
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
- Department of General Surgery, University Maggiore Hospital, Novara, Italy
| |
Collapse
|
9
|
Ellis ML, Terreaux A, Alwis I, Smythe R, Perdomo J, Eckly A, Cranmer SL, Passam FH, Maclean J, Schoenwaelder SM, Ruggeri ZM, Lanza F, Taoudi S, Yuan Y, Jackson SP. GPIbα-filamin A interaction regulates megakaryocyte localization and budding during platelet biogenesis. Blood 2024; 143:342-356. [PMID: 37922495 DOI: 10.1182/blood.2023021292] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/27/2023] [Accepted: 10/24/2023] [Indexed: 11/05/2023] Open
Abstract
ABSTRACT Glycoprotein Ibα (GPIbα) is expressed on the surface of platelets and megakaryocytes (MKs) and anchored to the membrane skeleton by filamin A (flnA). Although GPIb and flnA have fundamental roles in platelet biogenesis, the nature of this interaction in megakaryocyte biology remains ill-defined. We generated a mouse model expressing either human wild-type (WT) GPIbα (hGPIbαWT) or a flnA-binding mutant (hGPIbαFW) and lacking endogenous mouse GPIbα. Mice expressing the mutant GPIbα transgene exhibited macrothrombocytopenia with preserved GPIb surface expression. Platelet clearance was normal and differentiation of MKs to proplatelets was unimpaired in hGPIbαFW mice. The most striking abnormalities in hGPIbαFW MKs were the defective formation of the demarcation membrane system (DMS) and the redistribution of flnA from the cytoplasm to the peripheral margin of MKs. These abnormalities led to disorganized internal MK membranes and the generation of enlarged megakaryocyte membrane buds. The defective flnA-GPIbα interaction also resulted in misdirected release of buds away from the vasculature into bone marrow interstitium. Restoring the linkage between flnA and GPIbα corrected the flnA redistribution within MKs and DMS ultrastructural defects as well as restored normal bud size and release into sinusoids. These studies define a new mechanism of macrothrombocytopenia resulting from dysregulated MK budding. The link between flnA and GPIbα is not essential for the MK budding process, however, it plays a major role in regulating the structure of the DMS, bud morphogenesis, and the localized release of buds into the circulation.
Collapse
Affiliation(s)
- Marc L Ellis
- Thrombosis Research Group, The Heart Institute, Newtown, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Antoine Terreaux
- Blood Cell Formation Lab, Walter and Eliza Hall Institute, Parkville, VIC, Australia
| | - Imala Alwis
- Thrombosis Research Group, The Heart Institute, Newtown, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Rhyll Smythe
- Thrombosis Research Group, The Heart Institute, Newtown, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Jose Perdomo
- Haematology Research Unit, St George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Anita Eckly
- Université de Strasbourg, INSERM, French Blood Establishment (EFS) Grand Est, BPPS UMR-S 1255, FMTS, Strasbourg, France
| | - Susan L Cranmer
- Eastern Health Clinical School, Monash University, Box Hill, VIC, Australia
| | - Freda H Passam
- Thrombosis Research Group, The Heart Institute, Newtown, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Jessica Maclean
- Thrombosis Research Group, The Heart Institute, Newtown, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Simone M Schoenwaelder
- Thrombosis Research Group, The Heart Institute, Newtown, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
- School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Zaverio M Ruggeri
- Department of Molecular Medicine, MERU-Roon Research Center on Vascular Biology, The Scripps Research Institute, La Jolla, CA
| | - Francois Lanza
- Université de Strasbourg, INSERM, French Blood Establishment (EFS) Grand Est, BPPS UMR-S 1255, FMTS, Strasbourg, France
| | - Samir Taoudi
- Blood Cell Formation Lab, Walter and Eliza Hall Institute, Parkville, VIC, Australia
- The University of Melbourne, Parkville, VIC, Australia
| | - Yuping Yuan
- Thrombosis Research Group, The Heart Institute, Newtown, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Shaun P Jackson
- Thrombosis Research Group, The Heart Institute, Newtown, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
- Department of Molecular Medicine, MERU-Roon Research Center on Vascular Biology, The Scripps Research Institute, La Jolla, CA
| |
Collapse
|
10
|
Du T, Ma C, Wang Z, Hao Y, Zhang W. Distribution and Degradation of Pork Filamin during Postmortem Aging. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15287-15295. [PMID: 37788342 DOI: 10.1021/acs.jafc.3c04208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The filamin C (FLNC) was hypothesized to be colocalized with its certain binding partners in pork tissues and calpain as well as caspase was assumed responsible for the postmortem degradation of FLNC. Therefore, the specific distribution of pork FLNC and its degradation pattern during postmortem aging were investigated in this study. The longissimus thoracis muscles from 12 pigs were removed from the carcasses and then aged at 4 °C for 1, 6, 12, 24, 72, and 168 h, respectively. The FLNC signals appeared to localize in subsarcolemmal areas by cross-sectional images, while the localization was found surrounding the myofibrils at the level of the Z-discs in longitudinal sections. FLNC displayed a highly overlapped spatial colocalization with actin or integrin. Western blot results showed that the intact 290 kDa FLNC was rapidly degraded to produce an approximately 280 kDa band. An almost overlapped distribution pattern was observed between FLNC and μ-calpain or caspase-3 in porcine skeletal muscle cells. Moreover, both the μ-calpain inhibitor and the caspase-3 inhibitor could inhibit the degradation of FLNC in porcine LT muscles during postmortem aging.
Collapse
Affiliation(s)
- Tongyao Du
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chao Ma
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zixu Wang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuejing Hao
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wangang Zhang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
11
|
Shahid H, Shakoor N, Bibi A, Qazi AS, Saeed RF, Nawaz A, Malik S, Mumtaz S. A Stop-gain Variant c.220C>T (p.(Gln74*)) in FLNB Segregates with Spondylocarpotarsal Synostosis Syndrome in a Consanguineous Family. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2023; 96:383-396. [PMID: 37781000 PMCID: PMC10524816 DOI: 10.59249/utcp9818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Spondylocarpotarsal synostosis (SCT) syndrome is a very rare and severe form of skeletal dysplasia. The hallmark features of SCT are disproportionate short stature, scoliosis, fusion of carpal and tarsal bones, and clubfoot. Other common manifestations are cleft palate, conductive and sensorineural hearing loss, joint stiffness, and dental enamel hypoplasia. Homozygous variants in FLNB are known to cause SCT. This study was aimed to investigate the phenotypic and genetic basis of unique presentation of SCT syndrome segregating in a consanguineous Pakistani family. Three of the four affected siblings evaluated had severe short stature, short trunk, short neck, kyphoscoliosis, pectus carinatum, and winged scapula. The subjects had difficulty in walking and gait problems and complained of knee pain and backache. Roentgenographic examination of the eldest patient revealed gross anomalies in the axial skeleton including thoracolumbar and cervical fusion of ribs, severe kyphoscoliosis, thoracic and lumbar lordosis, coxa valga, fusion of certain carpals and tarsals, and clinodactyly. The patients had normal faces and lacked other typical features of SCT like cleft palate, conductive and sensorineural hearing loss, joint stiffness, and dental enamel hypoplasia. Whole exome sequencing (WES) of two affected siblings led to the discovery of a rare stop-gain variant c.220C>T (p.(Gln74*)) in exon 1 of the FLNB gene. The variant was homozygous and segregated with the malformation in this family. This study reports extensive phenotypic variability in SCT and expands the mutation spectrum of FLNB.
Collapse
Affiliation(s)
- Hamna Shahid
- Department of Biological Sciences, National University of Medical Sciences,
Rawalpindi, Pakistan
| | - Nazish Shakoor
- Human Genetics Program, Department of Zoology, Faculty of Biological Sciences,
Quaid-i-Azam University, Islamabad, Pakistan
| | - Anisa Bibi
- Human Genetics Program, Department of Zoology, Faculty of Biological Sciences,
Quaid-i-Azam University, Islamabad, Pakistan
| | - Asma Saleem Qazi
- Department of Biological Sciences, National University of Medical Sciences,
Rawalpindi, Pakistan
| | - Rida Fatima Saeed
- Department of Biological Sciences, National University of Medical Sciences,
Rawalpindi, Pakistan
| | - Aqeela Nawaz
- Human Genetics Program, Department of Zoology, Faculty of Biological Sciences,
Quaid-i-Azam University, Islamabad, Pakistan
| | - Sajid Malik
- Human Genetics Program, Department of Zoology, Faculty of Biological Sciences,
Quaid-i-Azam University, Islamabad, Pakistan
| | - Sara Mumtaz
- Department of Biological Sciences, National University of Medical Sciences,
Rawalpindi, Pakistan
| |
Collapse
|
12
|
Ahmadi SE, Shabannezhad A, Kahrizi A, Akbar A, Safdari SM, Hoseinnezhad T, Zahedi M, Sadeghi S, Mojarrad MG, Safa M. Tissue factor (coagulation factor III): a potential double-edge molecule to be targeted and re-targeted toward cancer. Biomark Res 2023; 11:60. [PMID: 37280670 DOI: 10.1186/s40364-023-00504-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/19/2023] [Indexed: 06/08/2023] Open
Abstract
Tissue factor (TF) is a protein that plays a critical role in blood clotting, but recent research has also shown its involvement in cancer development and progression. Herein, we provide an overview of the structure of TF and its involvement in signaling pathways that promote cancer cell proliferation and survival, such as the PI3K/AKT and MAPK pathways. TF overexpression is associated with increased tumor aggressiveness and poor prognosis in various cancers. The review also explores TF's role in promoting cancer cell metastasis, angiogenesis, and venous thromboembolism (VTE). Of note, various TF-targeted therapies, including monoclonal antibodies, small molecule inhibitors, and immunotherapies have been developed, and preclinical and clinical studies demonstrating the efficacy of these therapies in various cancer types are now being evaluated. The potential for re-targeting TF toward cancer cells using TF-conjugated nanoparticles, which have shown promising results in preclinical studies is another intriguing approach in the path of cancer treatment. Although there are still many challenges, TF could possibly be a potential molecule to be used for further cancer therapy as some TF-targeted therapies like Seagen and Genmab's tisotumab vedotin have gained FDA approval for treatment of cervical cancer. Overall, based on the overviewed studies, this review article provides an in-depth overview of the crucial role that TF plays in cancer development and progression, and emphasizes the potential of TF-targeted and re-targeted therapies as potential approaches for the treatment of cancer.
Collapse
Affiliation(s)
- Seyed Esmaeil Ahmadi
- Departments of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ashkan Shabannezhad
- Departments of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Kahrizi
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Armin Akbar
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Mehrab Safdari
- Departments of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Taraneh Hoseinnezhad
- Department of Hematolog, Faculty of Allied Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mohammad Zahedi
- Department of Medical Biotechnology, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Soroush Sadeghi
- Faculty of Science, Engineering and Computing, Kingston University, London, UK
| | - Mahsa Golizadeh Mojarrad
- Shahid Beheshti Educational and Medical Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Majid Safa
- Departments of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Wade EM, Goodin EA, Wang Y, Morgan T, Callon KE, Watson M, Daniel PB, Cornish J, McCulloch CA, Robertson SP. FLNA-filaminopathy skeletal phenotypes are not due to an osteoblast autonomous loss-of-function. Bone Rep 2023; 18:101668. [PMID: 36909664 PMCID: PMC9995945 DOI: 10.1016/j.bonr.2023.101668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 02/23/2023] [Accepted: 02/26/2023] [Indexed: 03/04/2023] Open
Abstract
Mutations in FLNA, which encodes the cytoskeletal protein FLNA, cause a spectrum of sclerosing skeletal dysplasias. Although many of these genetic variants are recurrent and cluster within the gene, the pathogenic mechanism that underpins the development of these skeletal phenotypes is unknown. To determine if the skeletal dysplasia in FLNA-related conditions is due to a cell-autonomous loss-of-function localising to osteoblasts and/or osteocytes, we utilised mouse models to conditionally remove Flna from this cellular lineage. Flna was conditionally knocked out from mature osteocytes using the Dmp1-promoter driven Cre-recombinase expressing mouse, as well as the committed osteoblast lineage using the Osx-Cre or Col1a1-Cre expressing lines. We measured skeletal parameters with μCT and histological methods, as well as gene expression in the mineralised skeleton. We found no measureable differences between the conditional Flna knockout mice, and their control littermate counterparts. Moreover, all of the conditional Flna knockout mice, developed and aged normally. From this we concluded that the skeletal dysplasia phenotype associated with pathogenic variants in FLNA is not caused by a cell-autonomous loss-of-function in the osteoblast-osteocyte lineage, adding more evidence to the hypothesis that these phenotypes are due to gain-of-function in FLNA.
Collapse
Affiliation(s)
- Emma M. Wade
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Elizabeth A. Goodin
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Yongqiang Wang
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Tim Morgan
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Karen E. Callon
- Bone and Joint Research Group, Department of Medicine, School of Medicine, The University of Auckland, Auckland, New Zealand
| | - Maureen Watson
- Bone and Joint Research Group, Department of Medicine, School of Medicine, The University of Auckland, Auckland, New Zealand
| | - Philip B. Daniel
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Jillian Cornish
- Bone and Joint Research Group, Department of Medicine, School of Medicine, The University of Auckland, Auckland, New Zealand
| | | | - Stephen P. Robertson
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
- Corresponding author.
| |
Collapse
|
14
|
Daeden A, Mietke A, Derivery E, Seum C, Jülicher F, Gonzalez-Gaitan M. Polarized branched Actin modulates cortical mechanics to produce unequal-size daughters during asymmetric division. Nat Cell Biol 2023; 25:235-245. [PMID: 36747081 PMCID: PMC9928585 DOI: 10.1038/s41556-022-01058-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/22/2022] [Indexed: 02/08/2023]
Abstract
The control of cell shape during cytokinesis requires a precise regulation of mechanical properties of the cell cortex. Only few studies have addressed the mechanisms underlying the robust production of unequal-sized daughters during asymmetric cell division. Here we report that unequal daughter-cell sizes resulting from asymmetric sensory organ precursor divisions in Drosophila are controlled by the relative amount of cortical branched Actin between the two cell poles. We demonstrate this by mistargeting the machinery for branched Actin dynamics using nanobodies and optogenetics. We can thereby engineer the cell shape with temporal precision and thus the daughter-cell size at different stages of cytokinesis. Most strikingly, inverting cortical Actin asymmetry causes an inversion of daughter-cell sizes. Our findings uncover the physical mechanism by which the sensory organ precursor mother cell controls relative daughter-cell size: polarized cortical Actin modulates the cortical bending rigidity to set the cell surface curvature, stabilize the division and ultimately lead to unequal daughter-cell size.
Collapse
Affiliation(s)
- Alicia Daeden
- Department of Biochemistry, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Alexander Mietke
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Center for Systems Biology Dresden, Dresden, Germany
| | - Emmanuel Derivery
- Department of Biochemistry, Faculty of Sciences, University of Geneva, Geneva, Switzerland
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Carole Seum
- Department of Biochemistry, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Frank Jülicher
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | - Marcos Gonzalez-Gaitan
- Department of Biochemistry, Faculty of Sciences, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
15
|
Konopa A, Meier MA, Franz MJ, Bernardinelli E, Voegele AL, Atreya R, Ribback S, Roessler S, Aigner A, Singer K, Singer S, Sarikas A, Muehlich S. LPA receptor 1 (LPAR1) is a novel interaction partner of Filamin A that promotes Filamin A phosphorylation, MRTF-A transcriptional activity and oncogene-induced senescence. Oncogenesis 2022; 11:69. [PMID: 36577757 PMCID: PMC9797565 DOI: 10.1038/s41389-022-00445-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/29/2022] Open
Abstract
Myocardin-related transcription factors A and B (MRTFs) are coactivators of Serum Response Factor (SRF), which controls fundamental biological processes such as cell growth, migration, and differentiation. MRTF and SRF transcriptional activity play an important role in hepatocellular carcinoma (HCC) growth, which represents the second leading cause of cancer-related mortality in humans worldwide. We, therefore, searched for druggable targets in HCC that regulate MRTF/SRF transcriptional activity and can be exploited therapeutically for HCC therapy. We identified the G protein-coupled lysophosphatidic acid receptor 1 (LPAR1) as a novel interaction partner of MRTF-A and Filamin A (FLNA) using fluorescence resonance energy transfer-(FRET) and proximity ligation assay (PLA) in vitro in HCC cells and in vivo in organoids. We found that LPAR1 promotes FLNA phosphorylation at S2152 which enhances the complex formation of FLNA and MRTF-A, actin polymerization, and MRTF transcriptional activity. Pharmacological blockade or depletion of LPAR1 prevents FLNA phosphorylation and complex formation with MRTF-A, resulting in reduced MRTF/SRF target gene expression and oncogene-induced senescence. Thus, inhibition of the LPAR1-FLNA-MRTF-A interaction represents a promising strategy for HCC therapy.
Collapse
Affiliation(s)
- Andreas Konopa
- grid.5330.50000 0001 2107 3311Department of Chemistry and Pharmacy, Molecular and Clinical Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Melanie A. Meier
- grid.5330.50000 0001 2107 3311Department of Chemistry and Pharmacy, Molecular and Clinical Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Miriam J. Franz
- grid.5330.50000 0001 2107 3311Department of Chemistry and Pharmacy, Molecular and Clinical Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Emanuele Bernardinelli
- grid.21604.310000 0004 0523 5263Institute of Pharmacology and Toxicology, Paracelsus Medical University, Salzburg, Austria
| | - Anna-Lena Voegele
- grid.5330.50000 0001 2107 3311Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Raja Atreya
- grid.5330.50000 0001 2107 3311Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Silvia Ribback
- grid.5603.0Institute of Pathology, University of Greifswald, Greifswald, Germany
| | - Stephanie Roessler
- grid.7700.00000 0001 2190 4373Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - Achim Aigner
- grid.9647.c0000 0004 7669 9786Rudolf Boehm Institute of Pharmacology and Toxicology, Clinical Pharmacology, University of Leipzig, Leipzig, Germany
| | - Kerstin Singer
- grid.411544.10000 0001 0196 8249Department for Pathology, University Hospital Tuebingen, 72076 Tuebingen, Germany
| | - Stephan Singer
- grid.411544.10000 0001 0196 8249Department for Pathology, University Hospital Tuebingen, 72076 Tuebingen, Germany
| | - Antonio Sarikas
- grid.21604.310000 0004 0523 5263Institute of Pharmacology and Toxicology, Paracelsus Medical University, Salzburg, Austria
| | - Susanne Muehlich
- grid.5330.50000 0001 2107 3311Department of Chemistry and Pharmacy, Molecular and Clinical Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
16
|
László ZI, Lele Z. Flying under the radar: CDH2 (N-cadherin), an important hub molecule in neurodevelopmental and neurodegenerative diseases. Front Neurosci 2022; 16:972059. [PMID: 36213737 PMCID: PMC9539934 DOI: 10.3389/fnins.2022.972059] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/31/2022] [Indexed: 12/03/2022] Open
Abstract
CDH2 belongs to the classic cadherin family of Ca2+-dependent cell adhesion molecules with a meticulously described dual role in cell adhesion and β-catenin signaling. During CNS development, CDH2 is involved in a wide range of processes including maintenance of neuroepithelial integrity, neural tube closure (neurulation), confinement of radial glia progenitor cells (RGPCs) to the ventricular zone and maintaining their proliferation-differentiation balance, postmitotic neural precursor migration, axon guidance, synaptic development and maintenance. In the past few years, direct and indirect evidence linked CDH2 to various neurological diseases, and in this review, we summarize recent developments regarding CDH2 function and its involvement in pathological alterations of the CNS.
Collapse
Affiliation(s)
- Zsófia I. László
- Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
- Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Zsolt Lele
- Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| |
Collapse
|
17
|
Cell-Dependent Pathogenic Roles of Filamin B in Different Skeletal Malformations. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8956636. [PMID: 35832491 PMCID: PMC9273461 DOI: 10.1155/2022/8956636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 06/10/2022] [Indexed: 11/17/2022]
Abstract
Mutations of filamin B (FLNB) gene can lead to a spectrum of autosomal skeletal malformations including spondylocarpotarsal syndrome (SCT), Larsen syndrome (LRS), type I atelosteogenesis (AO1), type III atelosteogenesis (AO3), and boomerang dysplasia (BD). Among them, LRS is milder while BD causes a more severe phenotype. However, the molecular mechanism underlying the differences in clinical phenotypes of different FLNB variants has not been fully determined. Here, we presented two patients suffering from autosomal dominant LRS and autosomal recessive vitamin D-dependent rickets type IA (VDDR-IA). Whole-exome sequencing revealed two novel missense variants in FLNB, c.4846A>G (p.T1616A) and c.7022T>G (p.I2341R), which are located in repeat 15 and 22 of filamin B, respectively. The expression of FLNBI2341R in the muscle tissue from our LRS patient was remarkably increased. And in vitro studies showed that both variants led to a lack of filopodia and accumulation of the mutants in the perinuclear region in HEK293 cells. We also found that c.4846A>G (p.T1616A) and c.7022T>G (p.I2341R) regulated endochondral osteogenesis in different ways. c.4846A>G (p.T1616A) activated AKT pathways through inhibiting SHIP2, suppressed the Smad3 pathway, and impaired the expression of Runx2 in both Saos-2 and ATDC5 cells. c.7022T>G (p.I2341R) activated both AKT and Smad3 pathways and increased the expression of Runx2 in Saos-2 cells, while in ATDC5 cells it activated AKT pathways through inhibiting SHIP2, suppressed the Smad3 pathway, and reduced the expression of Runx2. Our study demonstrated the pathogenic mechanisms of two novel FLNB variants in two different clinical settings and proved that FLNB variants could not only directly cause skeletal malformations but also worsen skeletal symptoms in the setting of other skeletal diseases. Besides, FLNB variants differentially affect skeletal development which contributes to clinical heterogeneity of FLNB-related disorders.
Collapse
|
18
|
Quiggle A, Charng WL, Antunes L, Nikolov M, Bledsoe X, Hecht JT, Dobbs MB, Gurnett CA. Whole Exome Sequencing in Individuals with Idiopathic Clubfoot Reveals a Recurrent Filamin B (FLNB) Deletion. Clin Orthop Relat Res 2022; 480:421-430. [PMID: 34491919 PMCID: PMC8747482 DOI: 10.1097/corr.0000000000001957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/11/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND Clubfoot, a congenital deformity that presents as a rigid, inward turning of the foot, affects approximately 1 in 1000 infants and occurs as an isolated birth defect in 80% of patients. Despite its high level of heritability, few causative genes have been identified, and mutations in known genes are only responsible for a small portion of clubfoot heritability. QUESTIONS/PURPOSES (1) Are any rare gene variants enriched (that is, shared) in unrelated patients with isolated clubfoot? (2) Are there other rare variants in the identified gene (Filamin B) in these patients with clubfoot? METHODS Whole-exome sequence data were generated from a discovery cohort of 183 unrelated probands with clubfoot and 2492 controls. Variants were filtered with minor allele frequency < 0.02 to identify rare variants as well as small insertions and deletions (indels) resulting in missense variants, nonsense or premature truncation, or in-frame deletions. A candidate deletion was then genotyped in another cohort of 974 unrelated patients with clubfoot (a replication cohort). Other rare variants in the candidate gene were also investigated. A segregation analysis was performed in multigenerational families of individuals with clubfoot to see if the genotypes segregate with phenotypes. Single-variant association analysis was performed using the Fisher two-tailed exact test (exact p values are presented to give an indication of the magnitude of the association). RESULTS There were no recurrent variants in the known genes causing clubfoot in this study. A three-base pair in-frame codon deletion of Filamin B (FLNB) (p.E1792del, rs1470699812) was identified in 1.6% (3 of 183) of probands with clubfoot in the discovery cohort compared with 0% of controls (0 of 2492) (odds ratio infinity (inf) [95% CI 5.64 to inf]; p = 3.18 x 10-5) and 0.0016% of gnomAD controls (2 of 125,709) (OR 1.01 x 103 [95% CI 117.42 to 1.64 x 104]; p = 3.13 x 10-8). By screening a replication cohort (n = 974 patients), we found two probands with the identical FLNB deletion. In total, the deletion was identified in 0.43% (5 of 1157) of probands with clubfoot compared with 0% of controls and 0.0016% of gnomAD controls (OR 268.5 [95% CI 43.68 to 2.88 x 103]; p = 1.43 x 10-9). The recurrent FLNB p.E1792del variant segregated with clubfoot, with incomplete penetrance in two families. Affected individuals were more likely to be male and have bilateral clubfoot. Although most patients had isolated clubfoot, features consistent with Larsen syndrome, including upper extremity abnormalities such as elbow and thumb hypermobility and wide, flat thumbs, were noted in affected members of one family. We identified 19 additional rare FLNB missense variants located throughout the gene in patients with clubfoot. One of these missense variants, FLNB p.G2397D, exhibited incomplete penetrance in one family. CONCLUSION A recurrent FLNB E1792 deletion was identified in 0.43% of 1157 isolated patients with clubfoot. Given the absence of any recurrent variants in our discovery phase (n = 183) for any of the known genes causing clubfoot, our findings support that novel and rare missense variants in FLNB in patients with clubfoot, although rare, may be among the most commonly known genetic causes of clubfoot. Patients with FLNB variants often have isolated clubfoot, but they and their family members may be at an increased risk of having additional clinical features consistent with Larsen syndrome. CLINICAL RELEVANCE Identification of FLNB variants may be useful for determining clubfoot recurrence risk and comorbidities.
Collapse
Affiliation(s)
- Ashley Quiggle
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, USA
| | - Wu-Lin Charng
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Lilian Antunes
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, USA
| | - Momchil Nikolov
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Xavier Bledsoe
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Jacqueline T. Hecht
- Department of Pediatrics, McGovern Medical School and School of Dentistry, the University of Texas Health Science Center at Houston, Houston, TX, USA
| | | | | |
Collapse
|
19
|
Uray IP, Uray K. Mechanotransduction at the Plasma Membrane-Cytoskeleton Interface. Int J Mol Sci 2021; 22:11566. [PMID: 34768998 PMCID: PMC8584042 DOI: 10.3390/ijms222111566] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 02/08/2023] Open
Abstract
Mechanical cues are crucial for survival, adaptation, and normal homeostasis in virtually every cell type. The transduction of mechanical messages into intracellular biochemical messages is termed mechanotransduction. While significant advances in biochemical signaling have been made in the last few decades, the role of mechanotransduction in physiological and pathological processes has been largely overlooked until recently. In this review, the role of interactions between the cytoskeleton and cell-cell/cell-matrix adhesions in transducing mechanical signals is discussed. In addition, mechanosensors that reside in the cell membrane and the transduction of mechanical signals to the nucleus are discussed. Finally, we describe two examples in which mechanotransduction plays a significant role in normal physiology and disease development. The first example is the role of mechanotransduction in the proliferation and metastasis of cancerous cells. In this system, the role of mechanotransduction in cellular processes, including proliferation, differentiation, and motility, is described. In the second example, the role of mechanotransduction in a mechanically active organ, the gastrointestinal tract, is described. In the gut, mechanotransduction contributes to normal physiology and the development of motility disorders.
Collapse
Affiliation(s)
- Iván P. Uray
- Department of Clinical Oncology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - Karen Uray
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
20
|
Chung S, Le TP, Vishwakarma V, Cheng YL, Andrew DJ. Isoform-specific roles of the Drosophila filamin-type protein Jitterbug (Jbug) during development. Genetics 2021; 219:iyab100. [PMID: 34173831 PMCID: PMC8860385 DOI: 10.1093/genetics/iyab100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/20/2021] [Indexed: 11/14/2022] Open
Abstract
Filamins are highly conserved actin-crosslinking proteins that regulate organization of the actin cytoskeleton. As key components of versatile signaling scaffolds, filamins are implicated in developmental anomalies and cancer. Multiple isoforms of filamins exist, raising the possibility of distinct functions for each isoform during development and in disease. Here, we provide an initial characterization of jitterbug (jbug), which encodes one of the two filamin-type proteins in Drosophila. We generate Jbug antiserum that recognizes all of the spliced forms and reveals differential expression of different Jbug isoforms during development, and a significant maternal contribution of Jbug protein. To reveal the function of Jbug isoforms, we create new genetic tools, including a null allele that deletes all isoforms, hypomorphic alleles that affect only a subset, and UAS lines for Gal4-driven expression of the major isoforms. Using these tools, we demonstrate that Jbug is required for viability and that specific isoforms are required in the formation of actin-rich protrusions including thoracic bristles in adults and ventral denticles in the embryo. We also show that specific isoforms of Jbug show differential localization within epithelia and that maternal and zygotic loss of jbug disrupts Crumbs (Crb) localization in several epithelial cell types.
Collapse
Affiliation(s)
- SeYeon Chung
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Thao Phuong Le
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Vishakha Vishwakarma
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Yim Ling Cheng
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Deborah J Andrew
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
21
|
Liu C, Tang W, Zhao H, Yang S, Ren Z, Li J, Chen Y, Zhao X, Xu D, Zhao Y, Shen C. The variants at FLNA and FLNB contribute to the susceptibility of hypertension and stroke with differentially expressed mRNA. THE PHARMACOGENOMICS JOURNAL 2021; 21:458-466. [PMID: 33649519 DOI: 10.1038/s41397-021-00222-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 01/18/2021] [Accepted: 02/02/2021] [Indexed: 01/31/2023]
Abstract
BACKGROUND Filamin A and filamin B were involved in vascular development and remodeling. Herein, it is important to explore the associations of FLNA and FLNB variants with hypertension and stroke. METHODS The associations of two single-nucleotide polymorphisms (SNPs) at FLNA and five SNPs at FLNB with hypertension and stroke were examined in two case-control studies and a cohort study in Chinese Han population. Risks were estimated as odds ratio (OR) and hazard ratio (HR) by Logistic and Cox regression analysis respectively. In addition, filamin B, FLNA and FLNB mRNA expression were measured. RESULTS In the case-control study of hypertension, FLNA rs2070816 (CT + TT vs. CC) and rs2070829 (CG + GG vs. CC) were significantly associated with hypertension in <55 years group (OR = 1.338, P = 0.018; OR = 1.615, P = 0.005) and FLNB rs839240 (AG + GG vs. AA) was significantly associated with hypertension in females (OR = 0.828, P = 0.041) and nonsmokers (OR = 0.829, P = 0.020). In the follow-up study, rs2070829 GG genotype carriers presented a higher risk of hypertension than CC/CG in males (HR = 1.737, P = 0.014) and smokers (HR = 1.949, P = 0.012). In the case-control study of stroke, FLNB rs1131356 variation was significantly associated with ischemic stroke (IS) and intracerebral hemorrhage (ICH), ORs of additive model were 1.342 and 1.451, with P values of 0.001 and 0.007. The FLNA transcript 2, FLNB transcript 3, transcript 4 mRNA, and filamin B expression levels were significantly different between IS cases and hypertension controls and among the genotypes of rs839240 in hypertensive individuals (P < 0.05). CONCLUSIONS Our findings support the genetic contribution of FLNA and FLNB to hypertension, and stroke with differentially mRNA expression.
Collapse
Affiliation(s)
- Chunlan Liu
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Wuzhuang Tang
- Department of Neurology, Affiliated Yixing People's Hospital of Jiangsu University, People's Hospital of Yixing City, Yixing, China
| | - Hailong Zhao
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Song Yang
- Department of Cardiology, Affiliated Yixing People's Hospital of Jiangsu University, People's Hospital of Yixing City, Yixing, China
| | - Zhanyun Ren
- Department of Neurology, Affiliated Yixing People's Hospital of Jiangsu University, People's Hospital of Yixing City, Yixing, China
| | - Jie Li
- Department of Neurology, Affiliated Yixing People's Hospital of Jiangsu University, People's Hospital of Yixing City, Yixing, China
| | - Yanchun Chen
- Department of Cardiology, Affiliated Yixing People's Hospital of Jiangsu University, People's Hospital of Yixing City, Yixing, China
| | - Xianghai Zhao
- Department of Cardiology, Affiliated Yixing People's Hospital of Jiangsu University, People's Hospital of Yixing City, Yixing, China
| | - Donghua Xu
- Department of Neurology, Affiliated Yixing People's Hospital of Jiangsu University, People's Hospital of Yixing City, Yixing, China
| | - Yanping Zhao
- Department of Neurology, Affiliated Yixing People's Hospital of Jiangsu University, People's Hospital of Yixing City, Yixing, China
| | - Chong Shen
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
22
|
Greiten JK, Kliewe F, Schnarre A, Artelt N, Schröder S, Rogge H, Amann K, Daniel C, Lindenmeyer MT, Cohen CD, Endlich K, Endlich N. The role of filamins in mechanically stressed podocytes. FASEB J 2021; 35:e21560. [PMID: 33860543 DOI: 10.1096/fj.202001179rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 02/26/2021] [Accepted: 03/15/2021] [Indexed: 11/11/2022]
Abstract
Glomerular hypertension induces mechanical load to podocytes, often resulting in podocyte detachment and the development of glomerulosclerosis. Although it is well known that podocytes are mechanosensitive, the mechanosensors and mechanotransducers are still unknown. Since filamin A, an actin-binding protein, is already described to be a mechanosensor and mechanotransducer, we hypothesized that filamins could be important for the outside-in signaling as well as the actin cytoskeleton of podocytes under mechanical stress. In this study, we demonstrate that filamin A is the main isoform of the filamin family that is expressed in cultured podocytes. Together with filamin B, filamin A was significantly up-regulated during mechanical stretch (3 days, 0.5 Hz, and 5% extension). To study the role of filamin A in cultured podocytes under mechanical stress, filamin A was knocked down (Flna KD) by specific siRNA. Additionally, we established a filamin A knockout podocyte cell line (Flna KO) by CRISPR/Cas9. Knockdown and knockout of filamin A influenced the expression of synaptopodin, a podocyte-specific protein, focal adhesions as well as the morphology of the actin cytoskeleton. Moreover, the cell motility of Flna KO podocytes was significantly increased. Since the knockout of filamin A has had no effect on cell adhesion of podocytes during mechanical stress, we simultaneously knocked down the expression of filamin A and B. Thereby, we observed a significant loss of podocytes during mechanical stress indicating a compensatory mechanism. Analyzing hypertensive mice kidneys as well as biopsies of patients suffering from diabetic nephropathy, we found an up-regulation of filamin A in podocytes in contrast to the control. In summary, filamin A and B mediate matrix-actin cytoskeleton interactions which are essential for the adaptation of cultured podocyte to mechanical stress.
Collapse
Affiliation(s)
- Jonas K Greiten
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Felix Kliewe
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Annabel Schnarre
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Nadine Artelt
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Sindy Schröder
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Henrik Rogge
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Kerstin Amann
- Department of Nephropathology, Friedrich-Alexander University (FAU) Erlangen-Nuremberg, Erlangen, Germany
| | - Christoph Daniel
- Department of Nephropathology, Friedrich-Alexander University (FAU) Erlangen-Nuremberg, Erlangen, Germany
| | - Maja T Lindenmeyer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Clemens D Cohen
- Nephrological Center, Medical Clinic and Policlinic IV, University of Munich, Munich, Germany
| | - Karlhans Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Nicole Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
23
|
Wade EM, Jenkins ZA, Morgan T, Gimenez G, Gibson H, Peng H, Sanchez Russo R, Skraban CM, Bedoukian E, Robertson SP. Exon skip-inducing variants in FLNA in an attenuated form of frontometaphyseal dysplasia. Am J Med Genet A 2021; 185:3675-3682. [PMID: 34272929 DOI: 10.1002/ajmg.a.62424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/31/2021] [Accepted: 06/25/2021] [Indexed: 12/21/2022]
Abstract
Pathogenic variation in the X-linked gene FLNA causes a wide range of human developmental phenotypes. Loss-of-function is usually male embryonic-lethal, and most commonly results in a neuronal migration disorder in affected females. Gain-of-function variants cause a spectrum of skeletal dysplasias that present with variable additional, often distinctive, soft-tissue anomalies in males and females. Here we present two, unrelated, male individuals with novel, intronic variants in FLNA that are predicted to be pathogenic. Their phenotypes are reminiscent of the gain-of-function spectrum without the skeletal manifestations. Most strikingly, they manifest urethral anomalies, cardiac malformations, and keloid scarring, all commonly encountered features of frontometaphyseal dysplasia. Both variants prevent inclusion of exon 40 into the FLNA transcript, predicting the in-frame deletion of 42 amino acids, however the abundance of FLNA protein was equivalent to that observed in healthy individuals. Loss of these 42 amino acids removes sites that mediate key FLNA functions, including binding of some ligands and phosphorylation. This phenotype further expands the spectrum of the FLNA filaminopathies.
Collapse
Affiliation(s)
- Emma M Wade
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Zandra A Jenkins
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Tim Morgan
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Gregory Gimenez
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Hayley Gibson
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Hui Peng
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | | | - Cara M Skraban
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,The Roberts Individualized Medical Genetics Center, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Emma Bedoukian
- The Roberts Individualized Medical Genetics Center, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Stephen P Robertson
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| |
Collapse
|
24
|
Scheff DR, Redford SA, Lorpaiboon C, Majumdar S, Dinner AR, Gardel ML. Actin filament alignment causes mechanical hysteresis in cross-linked networks. SOFT MATTER 2021; 17:5499-5507. [PMID: 33989373 PMCID: PMC8192476 DOI: 10.1039/d1sm00412c] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Cells dynamically control their material properties through remodeling of the actin cytoskeleton, an assembly of cross-linked networks and bundles formed from the biopolymer actin. We recently found that cross-linked networks of actin filaments reconstituted in vitro can exhibit adaptive behavior and thus serve as a model system to understand the underlying mechanisms of mechanical adaptation of the cytoskeleton. In these networks, training, in the form of applied shear stress, can induce asymmetry in the nonlinear elasticity. Here, we explore control over this mechanical hysteresis by tuning the concentration and mechanical properties of cross-linking proteins in both experimental and simulated networks. We find that this effect depends on two conditions: the initial network must exhibit nonlinear strain stiffening, and filaments in the network must be able to reorient during training. Hysteresis depends strongly and non-monotonically on cross-linker concentration, with a peak at moderate concentrations. In contrast, at low concentrations, where the network does not strain stiffen, or at high concentrations, where filaments are less able to rearrange, there is little response to training. Additionally, we investigate the effect of changing cross-linker properties and find that longer or more flexible cross-linkers enhance hysteresis. Remarkably plotting hysteresis against alignment after training yields a single curve regardless of the physical properties or concentration of the cross-linkers.
Collapse
Affiliation(s)
- Danielle R Scheff
- James Franck Institute, University of Chicago, Chicago, IL 60637, USA. and Department of Physics, University of Chicago, Chicago, IL 60637, USA
| | - Steven A Redford
- Biophysical Sciences Graduate Program, University of Chicago, Chicago, IL 60637, USA and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
| | | | | | - Aaron R Dinner
- James Franck Institute, University of Chicago, Chicago, IL 60637, USA. and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA and Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Margaret L Gardel
- James Franck Institute, University of Chicago, Chicago, IL 60637, USA. and Department of Physics, University of Chicago, Chicago, IL 60637, USA and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA and Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
25
|
He G, Kan S, Xu S, Sun X, Li R, Shu W, Chen M. LXN deficiency regulates cytoskeleton remodelling by promoting proteolytic cleavage of Filamin A in vascular endothelial cells. J Cell Mol Med 2021; 25:6815-6827. [PMID: 34085389 PMCID: PMC8278077 DOI: 10.1111/jcmm.16685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/25/2021] [Accepted: 05/12/2021] [Indexed: 12/19/2022] Open
Abstract
Endothelial cells (ECs) respond to blood shear stress by changing their morphology is important for maintaining vascular homeostasis. Studies have documented a relationship between endothelial cell shape and the stress flow, and however, the mechanism underlying this cytoskeletal rearrangement due to shear stress remains uncertain. In this paper, we demonstrate that laminar shear stress (LSS) significantly reduces latexin (LXN) expression in ECs. By using siRNA and cell imaging, we demonstrated that LXN knockdown results in the morphologic change and F‐actin remodelling just like what LSS does in ECs. We further demonstrate that LXN interacts with Filamin A (FLNA) and regulates FLNA proteolytic cleavage and nuclei translocation. By constructing LXN‐/‐ mice and ApoE‐/‐LXN‐/‐ double knockout mice, we evaluated the effect of LXN knockout on aortic endothelium damage in mice. We found that LXN deficiency significantly improves vascular permeability, vasodilation and atherosclerosis in mice. Our findings provide confident evidence, for the first time, that LXN is a novel regulator for morphological maintenance of ECs, and LXN deficiency has a protective effect on vascular homeostasis. This provides new strategies and drug targets for the treatment of vascular diseases.
Collapse
Affiliation(s)
- Guozhang He
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin, China.,Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, China
| | - Shuang Kan
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin, China.,Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, China
| | - Shaohua Xu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin, China.,Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, China
| | - Xuchen Sun
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin, China.,Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, China
| | - Rong Li
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin, China.,Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, China
| | - Wei Shu
- College of Biotechnology, Guilin Medical University, Guilin, China
| | - Ming Chen
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin, China.,Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, China
| |
Collapse
|
26
|
Vasung L, Zhao C, Barkovich M, Rollins CK, Zhang J, Lepage C, Corcoran T, Velasco-Annis C, Yun HJ, Im K, Warfield SK, Evans AC, Huang H, Gholipour A, Grant PE. Association between Quantitative MR Markers of Cortical Evolving Organization and Gene Expression during Human Prenatal Brain Development. Cereb Cortex 2021; 31:3610-3621. [PMID: 33836056 PMCID: PMC8258434 DOI: 10.1093/cercor/bhab035] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 11/13/2022] Open
Abstract
The relationship between structural changes of the cerebral cortex revealed by Magnetic Resonance Imaging (MRI) and gene expression in the human fetal brain has not been explored. In this study, we aimed to test the hypothesis that relative regional thickness (a measure of cortical evolving organization) of fetal cortical compartments (cortical plate [CP] and subplate [SP]) is associated with expression levels of genes with known cortical phenotype. Mean regional SP/CP thickness ratios across age measured on in utero MRI of 25 healthy fetuses (20-33 gestational weeks [GWs]) were correlated with publicly available regional gene expression levels (23-24 GW fetuses). Larger SP/CP thickness ratios (more pronounced cortical evolving organization) was found in perisylvian regions. Furthermore, we found a significant association between SP/CP thickness ratio and expression levels of the FLNA gene (mutated in periventricular heterotopia, congenital heart disease, and vascular malformations). Further work is needed to identify early MRI biomarkers of gene expression that lead to abnormal cortical development.
Collapse
Affiliation(s)
- Lana Vasung
- The Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA 02115, USA.,Division of Newborn Medicine, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.,Intelligent Medical Imaging Research Group, Boston Children's Hospital, Boston, MA 02115, USA
| | - Chenying Zhao
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.,Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew Barkovich
- Department of Radiology, UCSF Benioff Children's Hospital, San Francisco, CA 94158, USA.,Department of Radiology & Biomedical Imaging, University of California, San Francisco, CA 94115, USA
| | - Caitlin K Rollins
- Intelligent Medical Imaging Research Group, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Neurology, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Jennings Zhang
- The Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA 02115, USA.,Division of Newborn Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Claude Lepage
- ACELab, McGill Centre for Integrative Neuroscience, McGill University, Montreal, QC H3A 2B4, Canada
| | - Teddy Corcoran
- Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Clemente Velasco-Annis
- Intelligent Medical Imaging Research Group, Boston Children's Hospital, Boston, MA 02115, USA.,Computational Radiology Laboratory, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Radiology, Boston Children's Hospital; and Harvard Medical School, Boston, MA 02115, USA
| | - Hyuk Jin Yun
- The Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA 02115, USA.,Division of Newborn Medicine, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Kiho Im
- The Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA 02115, USA.,Division of Newborn Medicine, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Simon Keith Warfield
- Computational Radiology Laboratory, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Radiology, Boston Children's Hospital; and Harvard Medical School, Boston, MA 02115, USA
| | - Alan Charles Evans
- ACELab, McGill Centre for Integrative Neuroscience, McGill University, Montreal, QC H3A 2B4, Canada
| | - Hao Huang
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.,Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ali Gholipour
- Intelligent Medical Imaging Research Group, Boston Children's Hospital, Boston, MA 02115, USA.,Computational Radiology Laboratory, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Radiology, Boston Children's Hospital; and Harvard Medical School, Boston, MA 02115, USA
| | - Patricia Ellen Grant
- The Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA 02115, USA.,Division of Newborn Medicine, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.,Department of Radiology, Boston Children's Hospital; and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
27
|
The Role of Z-disc Proteins in Myopathy and Cardiomyopathy. Int J Mol Sci 2021; 22:ijms22063058. [PMID: 33802723 PMCID: PMC8002584 DOI: 10.3390/ijms22063058] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/07/2021] [Accepted: 03/11/2021] [Indexed: 12/11/2022] Open
Abstract
The Z-disc acts as a protein-rich structure to tether thin filament in the contractile units, the sarcomeres, of striated muscle cells. Proteins found in the Z-disc are integral for maintaining the architecture of the sarcomere. They also enable it to function as a (bio-mechanical) signalling hub. Numerous proteins interact in the Z-disc to facilitate force transduction and intracellular signalling in both cardiac and skeletal muscle. This review will focus on six key Z-disc proteins: α-actinin 2, filamin C, myopalladin, myotilin, telethonin and Z-disc alternatively spliced PDZ-motif (ZASP), which have all been linked to myopathies and cardiomyopathies. We will summarise pathogenic variants identified in the six genes coding for these proteins and look at their involvement in myopathy and cardiomyopathy. Listing the Minor Allele Frequency (MAF) of these variants in the Genome Aggregation Database (GnomAD) version 3.1 will help to critically re-evaluate pathogenicity based on variant frequency in normal population cohorts.
Collapse
|
28
|
Walker M, Luo J, Pringle EW, Cantini M. ChondroGELesis: Hydrogels to harness the chondrogenic potential of stem cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 121:111822. [PMID: 33579465 DOI: 10.1016/j.msec.2020.111822] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 01/01/2023]
Abstract
The extracellular matrix is a highly complex microenvironment, whose various components converge to regulate cell fate. Hydrogels, as water-swollen polymer networks composed by synthetic or natural materials, are ideal candidates to create biologically active substrates that mimic these matrices and target cell behaviour for a desired tissue engineering application. Indeed, the ability to tune their mechanical, structural, and biochemical properties provides a framework to recapitulate native tissues. This review explores how hydrogels have been engineered to harness the chondrogenic response of stem cells for the repair of damaged cartilage tissue. The signalling processes involved in hydrogel-driven chondrogenesis are also discussed, identifying critical pathways that should be taken into account during hydrogel design.
Collapse
Affiliation(s)
- Matthew Walker
- Centre for the Cellular Microenvironment, James Watt School of Engineering, University of Glasgow, UK
| | - Jiajun Luo
- Centre for the Cellular Microenvironment, James Watt School of Engineering, University of Glasgow, UK
| | - Eonan William Pringle
- Centre for the Cellular Microenvironment, James Watt School of Engineering, University of Glasgow, UK
| | - Marco Cantini
- Centre for the Cellular Microenvironment, James Watt School of Engineering, University of Glasgow, UK.
| |
Collapse
|
29
|
Lamsoul I, Dupré L, Lutz PG. Molecular Tuning of Filamin A Activities in the Context of Adhesion and Migration. Front Cell Dev Biol 2020; 8:591323. [PMID: 33330471 PMCID: PMC7714767 DOI: 10.3389/fcell.2020.591323] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/05/2020] [Indexed: 01/08/2023] Open
Abstract
The dynamic organization of actin cytoskeleton meshworks relies on multiple actin-binding proteins endowed with distinct actin-remodeling activities. Filamin A is a large multi-domain scaffolding protein that cross-links actin filaments with orthogonal orientation in response to various stimuli. As such it plays key roles in the modulation of cell shape, cell motility, and differentiation throughout development and adult life. The essentiality and complexity of Filamin A is highlighted by mutations that lead to a variety of severe human disorders affecting multiple organs. One of the most conserved activity of Filamin A is to bridge the actin cytoskeleton to integrins, thereby maintaining the later in an inactive state. We here review the numerous mechanisms cells have developed to adjust Filamin A content and activity and focus on the function of Filamin A as a gatekeeper to integrin activation and associated adhesion and motility.
Collapse
Affiliation(s)
- Isabelle Lamsoul
- Centre de Physiopathologie de Toulouse Purpan, INSERM, CNRS, Université de Toulouse, UPS, Toulouse, France
| | - Loïc Dupré
- Centre de Physiopathologie de Toulouse Purpan, INSERM, CNRS, Université de Toulouse, UPS, Toulouse, France.,Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Pierre G Lutz
- Centre de Physiopathologie de Toulouse Purpan, INSERM, CNRS, Université de Toulouse, UPS, Toulouse, France
| |
Collapse
|
30
|
S. UK, Sankar S, Younes S, D. TK, Ahmad MN, Okashah SS, Kamaraj B, Al-Subaie AM, C. GPD, Zayed H. Deciphering the Role of Filamin B Calponin-Homology Domain in Causing the Larsen Syndrome, Boomerang Dysplasia, and Atelosteogenesis Type I Spectrum Disorders via a Computational Approach. Molecules 2020; 25:E5543. [PMID: 33255942 PMCID: PMC7730838 DOI: 10.3390/molecules25235543] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022] Open
Abstract
Filamins (FLN) are a family of actin-binding proteins involved in regulating the cytoskeleton and signaling phenomenon by developing a network with F-actin and FLN-binding partners. The FLN family comprises three conserved isoforms in mammals: FLNA, FLNB, and FLNC. FLNB is a multidomain monomer protein with domains containing an actin-binding N-terminal domain (ABD 1-242), encompassing two calponin-homology domains (assigned CH1 and CH2). Primary variants in FLNB mostly occur in the domain (CH2) and surrounding the hinge-1 region. The four autosomal dominant disorders that are associated with FLNB variants are Larsen syndrome, atelosteogenesis type I (AOI), atelosteogenesis type III (AOIII), and boomerang dysplasia (BD). Despite the intense clustering of FLNB variants contributing to the LS-AO-BD disorders, the genotype-phenotype correlation is still enigmatic. In silico prediction tools and molecular dynamics simulation (MDS) approaches have offered the potential for variant classification and pathogenicity predictions. We retrieved 285 FLNB missense variants from the UniProt, ClinVar, and HGMD databases in the current study. Of these, five and 39 variants were located in the CH1 and CH2 domains, respectively. These variants were subjected to various pathogenicity and stability prediction tools, evolutionary and conservation analyses, and biophysical and physicochemical properties analyses. Molecular dynamics simulation (MDS) was performed on the three candidate variants in the CH2 domain (W148R, F161C, and L171R) that were predicted to be the most pathogenic. The MDS analysis results showed that these three variants are highly compact compared to the native protein, suggesting that they could affect the protein on the structural and functional levels. The computational approach demonstrates the differences between the FLNB mutants and the wild type in a structural and functional context. Our findings expand our knowledge on the genotype-phenotype correlation in FLNB-related LS-AO-BD disorders on the molecular level, which may pave the way for optimizing drug therapy by integrating precision medicine.
Collapse
Affiliation(s)
- Udhaya Kumar S.
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India; (U.K.S.); (S.S.); (T.K.D.)
| | - Srivarshini Sankar
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India; (U.K.S.); (S.S.); (T.K.D.)
| | - Salma Younes
- Department of Biomedical Sciences, College of Health and Sciences, Qatar University, QU Health, Doha 2713, Qatar; (S.Y.); (M.N.A.); (S.S.O.)
| | - Thirumal Kumar D.
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India; (U.K.S.); (S.S.); (T.K.D.)
| | - Muneera Naseer Ahmad
- Department of Biomedical Sciences, College of Health and Sciences, Qatar University, QU Health, Doha 2713, Qatar; (S.Y.); (M.N.A.); (S.S.O.)
| | - Sarah Samer Okashah
- Department of Biomedical Sciences, College of Health and Sciences, Qatar University, QU Health, Doha 2713, Qatar; (S.Y.); (M.N.A.); (S.S.O.)
| | - Balu Kamaraj
- Department of Neuroscience Technology, College of Applied Medical Sciences in Jubail, Imam Abdulrahman Bin Faisal University, Jubail 35816, Saudi Arabia;
| | - Abeer Mohammed Al-Subaie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - George Priya Doss C.
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India; (U.K.S.); (S.S.); (T.K.D.)
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health and Sciences, Qatar University, QU Health, Doha 2713, Qatar; (S.Y.); (M.N.A.); (S.S.O.)
| |
Collapse
|
31
|
Kelley CA, Triplett O, Mallick S, Burkewitz K, Mair WB, Cram EJ. FLN-1/filamin is required to anchor the actomyosin cytoskeleton and for global organization of sub-cellular organelles in a contractile tissue. Cytoskeleton (Hoboken) 2020; 77:379-398. [PMID: 32969593 DOI: 10.1002/cm.21633] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/11/2020] [Accepted: 09/17/2020] [Indexed: 01/01/2023]
Abstract
Actomyosin networks are organized in space, direction, size, and connectivity to produce coordinated contractions across cells. We use the C. elegans spermatheca, a tube composed of contractile myoepithelial cells, to study how actomyosin structures are organized. FLN-1/filamin is required for the formation and stabilization of a regular array of parallel, contractile, actomyosin fibers in this tissue. Loss of fln-1 results in the detachment of actin fibers from the basal surface, which then accumulate along the cell junctions and are stabilized by spectrin. In addition, actin and myosin are captured at the nucleus by the linker of nucleoskeleton and cytoskeleton complex (LINC) complex, where they form large foci. Nuclear positioning and morphology, distribution of the endoplasmic reticulum and the mitochondrial network are also disrupted. These results demonstrate that filamin is required to prevent large actin bundle formation and detachment, to prevent excess nuclear localization of actin and myosin, and to ensure correct positioning of organelles.
Collapse
Affiliation(s)
- Charlotte A Kelley
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | - Olivia Triplett
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | - Samyukta Mallick
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | - Kristopher Burkewitz
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, Massachusetts, USA.,Department of Cell and Developmental Biology, Vanderbilt School of Medicine, Nashville, Tennessee, USA
| | - William B Mair
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Erin J Cram
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
32
|
Kim DH, Beckett JD, Nagpal V, Seman-Senderos MA, Gould RA, Creamer TJ, MacFarlane EG, Chen Y, Bedja D, Butcher JT, Mitzner W, Rouf R, Hata S, Warren DS, Dietz HC. Calpain 9 as a therapeutic target in TGFβ-induced mesenchymal transition and fibrosis. Sci Transl Med 2020; 11:11/501/eaau2814. [PMID: 31316008 DOI: 10.1126/scitranslmed.aau2814] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 01/14/2019] [Accepted: 06/05/2019] [Indexed: 12/26/2022]
Abstract
Fibrosis is a common pathologic outcome of chronic disease resulting in the replacement of normal tissue parenchyma with a collagen-rich extracellular matrix produced by myofibroblasts. Although the progenitor cell types and cellular programs giving rise to myofibroblasts through mesenchymal transition can vary between tissues and diseases, their contribution to fibrosis initiation, maintenance, and progression is thought to be pervasive. Here, we showed that the ability of transforming growth factor-β (TGFβ) to efficiently induce myofibroblast differentiation of cultured epithelial cells, endothelial cells, or quiescent fibroblasts is dependent on the induced expression and activity of dimeric calpains, a family of non-lysosomal cysteine proteases that regulate a variety of cellular events through posttranslational modification of diverse substrates. siRNA-based gene silencing demonstrated that TGFβ-induced mesenchymal transition of a murine breast epithelial cell line was dependent on induction of expression of calpain 9 (CAPN9), an isoform previously thought to be restricted to the gastrointestinal tract. Mice lacking functional CAPN9 owing to biallelic targeting of Capn9 were viable and fertile but showed overt protection from bleomycin-induced lung fibrosis, carbon tetrachloride-induced liver fibrosis, and angiotensin II-induced cardiac fibrosis and dysfunction. A predicted loss-of-function allele of CAPN9 is common in Southeast Asia, with the frequency of homozygosity matching the prediction of Hardy-Weinberg equilibrium. Together with the highly spatially restricted pattern of CAPN9 expression under physiologic circumstances and the heartiness of the murine knockout, these data provide a strong signature for tolerance of therapeutic strategies for fibrosis aimed at CAPN9 antagonism.
Collapse
Affiliation(s)
- David H Kim
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Cellular and Molecular Medicine Program, School of Medicine, Baltimore, MD 21205, USA
| | - James D Beckett
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Varun Nagpal
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Manuel A Seman-Senderos
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Cellular and Molecular Medicine Program, School of Medicine, Baltimore, MD 21205, USA
| | - Russell A Gould
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Tyler J Creamer
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Elena Gallo MacFarlane
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yichun Chen
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Djahida Bedja
- Department of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jonathan T Butcher
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Wayne Mitzner
- Department of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Rosanne Rouf
- Department of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shoji Hata
- Department of Advanced Science for Biomolecules, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Daniel S Warren
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Harry C Dietz
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. .,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
33
|
Ma HR, Cao L, Wang F, Cheng C, Jiang R, Zhou H, Xie Z, Wuermanbieke S, Qian Z. Filamin B extensively regulates transcription and alternative splicing, and is associated with apoptosis in HeLa cells. Oncol Rep 2020; 43:1536-1546. [PMID: 32323860 PMCID: PMC7108129 DOI: 10.3892/or.2020.7532] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 01/14/2020] [Indexed: 02/06/2023] Open
Abstract
Post-transcriptional mechanisms are an important approach in the treatment of cancer, and may also be hijacked by tumor cells to help adapt to the local microenvironment. Filamin B (FLNB), an actin-binding protein that provides crucial scaffolds for cell motility and signaling, has also been identified as an RNA-binding protein. Recent studies demonstrated that FLNB might play an important role, not only in skeletal development, but also in regulating tumorigenesis; however, the effects of dysregulated expression of FLNB at the molecular level are not clear. In the present study, RNA-sequencing was performed to analyze changes in overall transcriptional and alternative splicing between the knocked-down FLNB and the control in HeLa cells. Decreased FLNB levels resulted in significantly lower apoptosis compared with control cells. FLNB knockdown extensively regulated the expression of genes in cell apoptosis, tumorigenesis, metastases, transmembrane transport and cartilage development. Moreover, FLNB regulated alternative splicing of a large number of genes involved in ‘cell death’ and the ‘apoptotic process’. Some genes and alternative splicing related to skeletal development were enriched and regulated by FLNB. Reverse transcription-quantitative-PCR identified FLNB-regulated transcription and alternative splicing of genes, such as NLR family apoptosis inhibitory protein, interleukin 23 subunit α, metastasis associated lung adenocarcinoma transcript 1, phosphofurin acidic cluster sorting protein 2, bone morphogenetic protein 7, matrix metallopeptidase 13, collagen type II α 1 chain, fibroblast growth factor receptor 2 and vitamin D receptor. The present study is the first study, to the best of the authors’ knowledge, to provide transcriptome-wide analysis of differential gene expression and alternative splicing upon FLNB silencing. The present results suggested that FLNB may play an important regulatory role in cervical cancer cell apoptosis via regulation of transcription and alternative splicing, which provide insight for the current understanding of the mechanisms of FLNB-mediated gene regulation.
Collapse
Affiliation(s)
- Hai-Rong Ma
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Li Cao
- Department of Orthopaedics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Fei Wang
- Department of Orthopaedics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Chao Cheng
- ABLife BioBigData Institute, Wuhan, Hubei 430075, P.R. China
| | - Rendong Jiang
- Department of Orthopaedics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Haikang Zhou
- Department of Orthopaedics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Zhenzi Xie
- College of Life Sciences, HaiNan Normal University, Haikou, Hainan 571158, P.R. China
| | - Shalitanati Wuermanbieke
- Department of Orthopaedics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Zhenghao Qian
- Department of Orthopaedics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| |
Collapse
|
34
|
Vassallo P, Westbury SK, Mumford AD. FLNA variants associated with disorders of platelet number or function. Platelets 2020; 31:1097-1100. [PMID: 32299270 DOI: 10.1080/09537104.2020.1748587] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Pietro Vassallo
- School of Cellular and Molecular Medicine, University of Bristol , Bristol, UK
| | - Sarah K Westbury
- School of Cellular and Molecular Medicine, University of Bristol , Bristol, UK
| | - Andrew D Mumford
- School of Cellular and Molecular Medicine, University of Bristol , Bristol, UK
| |
Collapse
|
35
|
Structure and Function of Filamin C in the Muscle Z-Disc. Int J Mol Sci 2020; 21:ijms21082696. [PMID: 32295012 PMCID: PMC7216277 DOI: 10.3390/ijms21082696] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 12/22/2022] Open
Abstract
Filamin C (FLNC) is one of three filamin proteins (Filamin A (FLNA), Filamin B (FLNB), and FLNC) that cross-link actin filaments and interact with numerous binding partners. FLNC consists of a N-terminal actin-binding domain followed by 24 immunoglobulin-like repeats with two intervening calpain-sensitive hinges separating R15 and R16 (hinge 1) and R23 and R24 (hinge-2). The FLNC subunit is dimerized through R24 and calpain cleaves off the dimerization domain to regulate mobility of the FLNC subunit. FLNC is localized in the Z-disc due to the unique insertion of 82 amino acid residues in repeat 20 and necessary for normal Z-disc formation that connect sarcomeres. Since phosphorylation of FLNC by PKC diminishes the calpain sensitivity, assembly, and disassembly of the Z-disc may be regulated by phosphorylation of FLNC. Mutations of FLNC result in cardiomyopathy and muscle weakness. Although this review will focus on the current understanding of FLNC structure and functions in muscle, we will also discuss other filamins because they share high sequence similarity and are better characterized. We will also discuss a possible role of FLNC as a mechanosensor during muscle contraction.
Collapse
|
36
|
Wade EM, Halliday BJ, Jenkins ZA, O'Neill AC, Robertson SP. The X‐linked filaminopathies: Synergistic insights from clinical and molecular analysis. Hum Mutat 2020; 41:865-883. [DOI: 10.1002/humu.24002] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/30/2020] [Accepted: 02/24/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Emma M. Wade
- Department of Women's and Children's Health, Dunedin School of MedicineUniversity of Otago Dunedin New Zealand
| | - Benjamin J. Halliday
- Department of Women's and Children's Health, Dunedin School of MedicineUniversity of Otago Dunedin New Zealand
| | - Zandra A. Jenkins
- Department of Women's and Children's Health, Dunedin School of MedicineUniversity of Otago Dunedin New Zealand
| | - Adam C. O'Neill
- Department of Women's and Children's Health, Dunedin School of MedicineUniversity of Otago Dunedin New Zealand
| | - Stephen P. Robertson
- Department of Women's and Children's Health, Dunedin School of MedicineUniversity of Otago Dunedin New Zealand
| |
Collapse
|
37
|
Calpain suppresses cell growth and invasion of glioblastoma multiforme by producing the cleavage of filamin A. Int J Clin Oncol 2020; 25:1055-1066. [PMID: 32103382 DOI: 10.1007/s10147-020-01636-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 02/12/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Filamin A is the most widely expressed isoform of filamin in mammalian tissues. It can be hydrolyzed by Calpain, producing a 90-kDa carboxyl-terminal fragment (ABP90). Calpeptin is a chemical inhibitor of Calpain, which can inhibit this effect. It has been shown that ABP90 acts as a transcription factor which is involved in mediating cell signaling. However, the significance of ABP90 and its clinical signature with underlying mechanisms have not been well studied in glioblastoma multiforme (GBM). METHODS ABP90 protein was measured in 36 glioma patients by Western blot. Human GBM cell lines U87 and A172 were used to clarify the precise role of ABP90. CCK-8 assay was used to analyze the cell viability. Transwell invasion assay and wound healing assay were used to analyze the migration and invasion. Expression of matrix metalloproteinase 2/tissue inhibitors of metalloproteinase 2 (MMP2/TIMP2) protein was analyzed by Western blot. RESULTS ABP90 protein expression was lower in GBM tissues. The patients with low ABP90 protein expression had a shorter OS time (p = 0.046). After being treated with Calpain, the expression of ABP90 was upregulated, which led to a decline of cell viability, enhanced the efficacy of temozolomide and restrained the cell invasion. Calpeptin could inhibit the effect. The mechanism might be involved in the balance of MMP2/TIMP2. CONCLUSIONS Our present data suggest that ABP90 expression is a significant prognostic factor and may play an important role in cell viability, chemotherapeutic sensitivity and invasion of GBM.
Collapse
|
38
|
Li Z, Xie Y, Xiao Q, Wang L. Terminal osseous dysplasia with pigmentary defects in a Chinese girl with the FLNA mutation: A case report and published work review. J Dermatol 2020; 47:295-299. [PMID: 31919883 DOI: 10.1111/1346-8138.15209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 12/03/2019] [Indexed: 02/05/2023]
Abstract
Terminal osseous dysplasia with pigmentary defects (TODPD) is an extremely rare X-linked dominant syndrome characterized by pigmentary skin defects, cutaneous digital fibromas and skeletal anomalies. Recent studies have identified that TODPD is caused by a unique variant, c.5217G>A (p.Val1724_Thr1739del), in the FLNA gene, which could in turn lead to the elastic fiber abnormality in TODPD. We herein present a rare case of TODPD in a Chinese girl due to an FLNA c.5217G>A heterozygous mutation, but the skin lesion biopsy showed that the elastic fibers were within normal limits in the dermis. A published work review of TODPD with the FLNA mutation from various origins is also included in this paper. To the best of our knowledge, this is the first report on TODPD with the FLNA mutation in China.
Collapse
Affiliation(s)
- Zhongtao Li
- Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu, China
| | - Yao Xie
- Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu, China
| | - Qiankun Xiao
- Department of Radiology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology, Chengdu, China
| | - Lin Wang
- Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
39
|
Pelclova D, Talacko P, Navratil T, Zamostna B, Fenclova Z, Vlckova S, Zakharov S. Can proteomics predict the prognosis in chronic dioxin intoxication? MONATSHEFTE FUR CHEMIE 2019. [DOI: 10.1007/s00706-019-02460-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
40
|
Mierke CT. The matrix environmental and cell mechanical properties regulate cell migration and contribute to the invasive phenotype of cancer cells. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2019; 82:064602. [PMID: 30947151 DOI: 10.1088/1361-6633/ab1628] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The minimal structural unit of a solid tumor is a single cell or a cellular compartment such as the nucleus. A closer look inside the cells reveals that there are functional compartments or even structural domains determining the overall properties of a cell such as the mechanical phenotype. The mechanical interaction of these living cells leads to the complex organization such as compartments, tissues and organs of organisms including mammals. In contrast to passive non-living materials, living cells actively respond to the mechanical perturbations occurring in their microenvironment during diseases such as fibrosis and cancer. The transformation of single cancer cells in highly aggressive and hence malignant cancer cells during malignant cancer progression encompasses the basement membrane crossing, the invasion of connective tissue, the stroma microenvironments and transbarrier migration, which all require the immediate interaction of the aggressive and invasive cancer cells with the surrounding extracellular matrix environment including normal embedded neighboring cells. All these steps of the metastatic pathway seem to involve mechanical interactions between cancer cells and their microenvironment. The pathology of cancer due to a broad heterogeneity of cancer types is still not fully understood. Hence it is necessary to reveal the signaling pathways such as mechanotransduction pathways that seem to be commonly involved in the development and establishment of the metastatic and mechanical phenotype in several carcinoma cells. We still do not know whether there exist distinct metastatic genes regulating the progression of tumors. These metastatic genes may then be activated either during the progression of cancer by themselves on their migration path or in earlier stages of oncogenesis through activated oncogenes or inactivated tumor suppressor genes, both of which promote the metastatic phenotype. In more detail, the adhesion of cancer cells to their surrounding stroma induces the generation of intracellular contraction forces that deform their microenvironments by alignment of fibers. The amplitude of these forces can adapt to the mechanical properties of the microenvironment. Moreover, the adhesion strength of cancer cells seems to determine whether a cancer cell is able to migrate through connective tissue or across barriers such as the basement membrane or endothelial cell linings of blood or lymph vessels in order to metastasize. In turn, exposure of adherent cancer cells to physical forces, such as shear flow in vessels or compression forces around tumors, reinforces cell adhesion, regulates cell contractility and restructures the ordering of the local stroma matrix that leads subsequently to secretion of crosslinking proteins or matrix degrading enzymes. Hence invasive cancer cells alter the mechanical properties of their microenvironment. From a mechanobiological point-of-view, the recognized physical signals are transduced into biochemical signaling events that guide cellular responses such as cancer progression after the malignant transition of cancer cells from an epithelial and non-motile phenotype to a mesenchymal and motile (invasive) phenotype providing cellular motility. This transition can also be described as the physical attempt to relate this cancer cell transitional behavior to a T1 phase transition such as the jamming to unjamming transition. During the invasion of cancer cells, cell adaptation occurs to mechanical alterations of the local stroma, such as enhanced stroma upon fibrosis, and therefore we need to uncover underlying mechano-coupling and mechano-regulating functional processes that reinforce the invasion of cancer cells. Moreover, these mechanisms may also be responsible for the awakening of dormant residual cancer cells within the microenvironment. Physicists were initially tempted to consider the steps of the cancer metastasis cascade as single events caused by a single mechanical alteration of the overall properties of the cancer cell. However, this general and simple view has been challenged by the finding that several mechanical properties of cancer cells and their microenvironment influence each other and continuously contribute to tumor growth and cancer progression. In addition, basement membrane crossing, cell invasion and transbarrier migration during cancer progression is explained in physical terms by applying physical principles on living cells regardless of their complexity and individual differences of cancer types. As a novel approach, the impact of the individual microenvironment surrounding cancer cells is also included. Moreover, new theories and models are still needed to understand why certain cancers are malignant and aggressive, while others stay still benign. However, due to the broad variety of cancer types, there may be various pathways solely suitable for specific cancer types and distinct steps in the process of cancer progression. In this review, physical concepts and hypotheses of cancer initiation and progression including cancer cell basement membrane crossing, invasion and transbarrier migration are presented and discussed from a biophysical point-of-view. In addition, the crosstalk between cancer cells and a chronically altered microenvironment, such as fibrosis, is discussed including the basic physical concepts of fibrosis and the cellular responses to mechanical stress caused by the mechanically altered microenvironment. Here, is highlighted how biophysical approaches, both experimentally and theoretically, have an impact on classical hallmarks of cancer and fibrosis and how they contribute to the understanding of the regulation of cancer and its progression by sensing and responding to the physical environmental properties through mechanotransduction processes. Finally, this review discusses various physical models of cell migration such as blebbing, nuclear piston, protrusive force and unjamming transition migration modes and how they contribute to cancer progression. Moreover, these cellular migration modes are influenced by microenvironmental perturbances such as fibrosis that can induce mechanical alterations in cancer cells, which in turn may impact the environment. Hence, the classical hallmarks of cancer need to be refined by including biomechanical properties of cells, cell clusters and tissues and their microenvironment to understand mechano-regulatory processes within cancer cells and the entire organism.
Collapse
|
41
|
Ignatieva EV, Yurchenko AA, Voevoda MI, Yudin NS. Exome-wide search and functional annotation of genes associated in patients with severe tick-borne encephalitis in a Russian population. BMC Med Genomics 2019; 12:61. [PMID: 31122248 PMCID: PMC6533173 DOI: 10.1186/s12920-019-0503-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Tick-borne encephalitis (TBE) is a viral infectious disease caused by tick-borne encephalitis virus (TBEV). TBEV infection is responsible for a variety of clinical manifestations ranging from mild fever to severe neurological illness. Genetic factors involved in the host response to TBEV that may potentially play a role in the severity of the disease are still poorly understood. In this study, using whole-exome sequencing, we aimed to identify genetic variants and genes associated with severe forms of TBE as well as biological pathways through which the identified variants may influence the severity of the disease. Results Whole-exome sequencing data analysis was performed on 22 Russian patients with severe forms of TBE and 17 Russian individuals from the control group. We identified 2407 candidate genes harboring rare, potentially pathogenic variants in exomes of patients with TBE and not containing any rare, potentially pathogenic variants in exomes of individuals from the control group. According to DAVID tool, this set of 2407 genes was enriched with genes involved in extracellular matrix proteoglycans pathway and genes encoding proteins located at the cell periphery. A total of 154 genes/proteins from these functional groups have been shown to be involved in protein-protein interactions (PPIs) with the known candidate genes/proteins extracted from TBEVHostDB database. By ranking these genes according to the number of rare harmful minor alleles, we identified two genes (MSR1 and LMO7), harboring five minor alleles, and three genes (FLNA, PALLD, PKD1) harboring four minor alleles. When considering genes harboring genetic variants associated with severe forms of TBE at the suggestive P-value < 0.01, 46 genes containing harmful variants were identified. Out of these 46 genes, eight (MAP4, WDFY4, ACTRT2, KLHL25, MAP2K3, MBD1, OR10J1, and OR2T34) were additionally found among genes containing rare pathogenic variants identified in patients with TBE; and five genes (WDFY4,ALK, MAP4, BNIPL, EPPK1) were found to encode proteins that are involved in PPIs with proteins encoded by genes from TBEVHostDB. Three genes out of five (MAP4, EPPK1, ALK) were found to encode proteins located at cell periphery. Conclusions Whole-exome sequencing followed by systems biology approach enabled to identify eight candidate genes (MAP4, WDFY4, ACTRT2, KLHL25, MAP2K3, MBD1, OR10J1, and OR2T34) that can potentially determine predisposition to severe forms of TBE. Analyses of the genetic risk factors for severe forms of TBE revealed a significant enrichment with genes controlling extracellular matrix proteoglycans pathway as well as genes encoding components of cell periphery. Electronic supplementary material The online version of this article (10.1186/s12920-019-0503-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elena V Ignatieva
- Laboratory of Evolutionary Bioinformatics and Theoretical Genetics, The Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia. .,Novosibirsk State University, Novosibirsk, 630090, Russia.
| | - Andrey A Yurchenko
- Laboratory of Infectious Disease Genomics, The Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Mikhail I Voevoda
- Novosibirsk State University, Novosibirsk, 630090, Russia.,Research Institute of Internal and Preventive Medicine-Branch of Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, 630004, Russia
| | - Nikolay S Yudin
- Laboratory of Infectious Disease Genomics, The Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.,Novosibirsk State University, Novosibirsk, 630090, Russia
| |
Collapse
|
42
|
Panigrahi GK, Praharaj PP, Kittaka H, Mridha AR, Black OM, Singh R, Mercer R, van Bokhoven A, Torkko KC, Agarwal C, Agarwal R, Abd Elmageed ZY, Yadav H, Mishra SK, Deep G. Exosome proteomic analyses identify inflammatory phenotype and novel biomarkers in African American prostate cancer patients. Cancer Med 2019; 8:1110-1123. [PMID: 30623593 PMCID: PMC6434210 DOI: 10.1002/cam4.1885] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/18/2018] [Accepted: 10/30/2018] [Indexed: 12/27/2022] Open
Abstract
African American men face a stark prostate cancer (PCa)-related health disparity, with the highest incidence and mortality rates compared to other races. Additional and innovative measures are warranted to reduce this health disparity. Here, we focused on the identification of a novel serum exosome-based "protein signature" for potential use in the early detection and better prognosis of PCa in African American men. Nanoparticle tracking analyses showed that compared to healthy individuals, exosome concentration (number/ml) was increased by ~3.2-fold (P ˂ 0.05) in the sera of African American men with PCa. Mass spectrometry-based proteomic analysis of serum exosomes identified seven unique and fifty-five overlapping proteins (up- or downregulated) in African Americans with PCa compared to healthy African Americans. Furthermore, ingenuity pathway analyses identified the inflammatory acute-phase response signaling as the top pathway associated with proteins loaded in exosomes from African American PCa patients. Interestingly, African American PCa E006AA-hT cells secreted exosomes strongly induced a proinflammatory M2-phenotype in macrophages and showed calcium response on sensory neurons, suggesting a neuroinflammatory response. Additionally, proteomic analyses showed that the protein Isoform 2 of Filamin A has higher loading (2.6-fold) in exosomes from African Americans with PCa, but a lesser loading (0.6-fold) was observed in exosomes from Caucasian men with PCa compared to race-matched healthy individuals. Interestingly, TCGA and Taylor's dataset as well as IHC analyses of PCa tissue showed a lower Filamin A expression in tissues of PCa patients compared with normal subjects. Overall, these results support the usefulness of serum exosomes to noninvasively detect inflammatory phenotype and to discover novel biomarkers associated with PCa in African American men.
Collapse
Affiliation(s)
- Gati K Panigrahi
- Cancer Biology Department, Wake Forest Baptist Medical Center, Winston-Salem, North Carolina
| | - Prakash P Praharaj
- Cancer Biology Department, Wake Forest Baptist Medical Center, Winston-Salem, North Carolina
| | - Hiroki Kittaka
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, NC State University, Raleigh, North Carolina
| | - Asit R Mridha
- Cancer Biology Department, Wake Forest Baptist Medical Center, Winston-Salem, North Carolina
| | - Olen M Black
- Cancer Biology Department, Wake Forest Baptist Medical Center, Winston-Salem, North Carolina
| | - Rakesh Singh
- Translational Science Laboratory, College of Medicine, Florida State University, Tallahassee, Florida
| | - Roger Mercer
- Translational Science Laboratory, College of Medicine, Florida State University, Tallahassee, Florida
| | - Adrie van Bokhoven
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Kathleen C Torkko
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Chapla Agarwal
- School of Pharmacy, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Rajesh Agarwal
- School of Pharmacy, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Zakaria Y Abd Elmageed
- Department of Pharmaceutical Sciences, Texas A&M Rangel College of Pharmacy, College Station, Texas
| | - Hariom Yadav
- Department of Internal Medicine-Molecular Medicine and Department of Microbiology and Immunology, Wake Forest Baptist Medical Center, Winston-Salem, North Carolina
| | - Santosh K Mishra
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, NC State University, Raleigh, North Carolina
| | - Gagan Deep
- Cancer Biology Department, Wake Forest Baptist Medical Center, Winston-Salem, North Carolina.,Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, North Carolina.,Department of Urology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
43
|
Salian S, Shukla A, Shah H, Bhat SN, Bhat VR, Nampoothiri S, Shenoy R, Phadke SR, Hariharan SV, Girisha KM. Seven additional families with spondylocarpotarsal synostosis syndrome with novel biallelic deleterious variants in FLNB. Clin Genet 2018; 94:159-164. [PMID: 29566257 DOI: 10.1111/cge.13252] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/15/2018] [Accepted: 03/17/2018] [Indexed: 02/01/2023]
Abstract
The location and/or type of variants in FLNB result in a spectrum of osteochondrodysplasias ranging from mild forms, like spondylocarpotarsal synostosis syndrome and Larsen syndrome, to severe perinatal lethal forms, such as atelosteogenesis I and III and Boomerang dysplasia. Spondylocarpotarsal synostosis syndrome is characterized by disproportionate short stature, vertebral anomalies and fusion of carpal and tarsal bones. Biallelic loss-of-function variants in FLNB are known to cause spondylocarpotarsal synostosis syndrome and 9 families and 9 pathogenic variants have been reported so far. We report clinical features of 10 additional patients from 7 families with spondylocarpotarsal synostosis syndrome due to 7 novel deleterious variants in FLNB, thus expanding the clinical and molecular repertoire of spondylocarpotarsal synostosis syndrome. Our report validates key clinical (fused thoracic vertebrae and carpal and tarsal coalition) and molecular (truncating variants in FLNB) characteristics of this condition.
Collapse
Affiliation(s)
- S Salian
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - A Shukla
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - H Shah
- Department of Orthopedics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - S N Bhat
- Department of Orthopedics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - V R Bhat
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - S Nampoothiri
- Department of Pediatric Genetics, Amrita Institute of Medical Sciences and Research Centre, Cochin, Kerala, India
| | - R Shenoy
- Department of Pediatrics, KS Hegde Medical Academy, Mangalore, Karnataka, India
| | - S R Phadke
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - S V Hariharan
- Department of Pediatrics, Sree Avittom Thirunal Hospital, Government Medical College, Trivandrum, Kerala, India
| | - K M Girisha
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
44
|
Li Y, Sun Y, Sun F, Hua R, Li C, Chen L, Guo D, Mu J. Mechanisms and Effects on HBV Replication of the Interaction between HBV Core Protein and Cellular Filamin B. Virol Sin 2018; 33:162-172. [PMID: 29594956 DOI: 10.1007/s12250-018-0023-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/12/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) infection is one of the major problems that threatens global health. There have been many studies on HBV, but the relationship between HBV and host factors is largely unexplored and more studies are needed to clarify these interactions. Filamin B is an actin-binding protein that acts as a cytoskeleton protein, and it is involved in cell development and several signaling pathways. In this study, we showed that filamin B interacted with HBV core protein, and the interaction promoted HBV replication. The interaction between filamin B and core protein was observed in HEK 293T, Huh7 and HepG2 cell lines by co-immunoprecipitation and co-localization immnofluoresence. Overexpression of filamin B increased the levels of HBV total RNAs and pre-genome RNA (pgRNA), and improved the secretion level of hepatitis B surface antigen (HBsAg) and hepatitis B e antigen (HBeAg). In contrast, filamin B knockdown inhibited HBV replication, decreased the level of HBV total RNAs and pgRNA, and reduced the secretion level of HBsAg and HBeAg. In addition, we found that filamin B and core protein may interact with each other via four blocks of argentine residues at the C-terminus of core protein. In conclusion, we identify filamin B as a novel host factor that can interact with core protein to promote HBV replication in hepatocytes. Our study provides new insights into the relationship between HBV and host factors and may provide new strategies for the treatment of HBV infection.
Collapse
Affiliation(s)
- Yilin Li
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Yishuang Sun
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Fuyun Sun
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Rong Hua
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Chenlin Li
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Lang Chen
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Deyin Guo
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China. .,School of Basic Medicine (Shenzhen), Sun Yat-sen University, Guangzhou, 510081, China.
| | - Jingfang Mu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|
45
|
Donadon M, Di Tommaso L, Soldani C, Franceschini B, Terrone A, Mimmo A, Vitali E, Roncalli M, Lania A, Torzilli G. Filamin A expression predicts early recurrence of hepatocellular carcinoma after hepatectomy. Liver Int 2018; 38:303-311. [PMID: 28727243 DOI: 10.1111/liv.13522] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 07/14/2017] [Indexed: 01/19/2023]
Abstract
BACKGROUND & AIMS Recurrence of hepatocellular carcinoma (HCC) after hepatectomy is very high. A predictive marker of early recurrence (ER) capable of personalizing follow-up and developing a new target therapy would be beneficial. The overexpression of Filamin-A (FLNA), a cytoskeleton protein with scaffolding properties, has recently been associated with progression in tumours. The aim of this study was to test the expression of FLNA in a cohort of patients operated for HCC. METHODS A retrospective cohort of patients who underwent hepatic resection at Humanitas Clinical and Research Center between January 2004 and December 2014 was analysed. FLNA was tested, using a tissue microarray, in the HCC and in the surrounding tissues. The endpoint was the role of FLNA expression in predicting ER of HCC after hepatectomy. Analyses were performed following the REMARK guidelines. RESULTS A total of 113 patients were considered. FLNA was expressed only in the tumoral tissue. Several variables, including T stage, tumour number, tumour size, type of viral hepatitis, type of hepatectomy and intra and peritumoral immune-reactivity to FLNA were significantly associated with ER by univariate analysis. With multivariate analysis, only T stage (HR=2.108; P=.002), tumour number (HR=1.586; P=.023), intra-tumoral (HR=2.672; P<.001) and peritumoral immune-reactivity to FLNA (HR=2.569; P<.001), significantly correlated with ER. The logistic regression analysis revealed that advanced T stage (OR=2.985; P=.001), HCV-infection (OR=1.219; P=.008) and advanced tumour grading (OR=2.781; P=.002) were associated with intratumoral FLNA immune-reactivity. CONCLUSIONS FLNA expression predicts recurrence of HCC after hepatectomy. This finding provides important insights that would help physicians to personalize follow-up strategies.
Collapse
Affiliation(s)
- Matteo Donadon
- Department of Hepatobiliary and General Surgery, Humanitas Clinical and Research Center, Humanitas University, Milan, Italy
| | - Luca Di Tommaso
- Department of Pathology, Humanitas Clinical and Research Center, Humanitas University, Milan, Italy
- Department of Biomedical Sciences, Humanitas Clinical and Research Center, Humanitas University, Milan, Italy
| | - Cristiana Soldani
- Department of Hepatobiliary and General Surgery, Humanitas Clinical and Research Center, Humanitas University, Milan, Italy
| | - Barbara Franceschini
- Department of Hepatobiliary and General Surgery, Humanitas Clinical and Research Center, Humanitas University, Milan, Italy
| | - Alfonso Terrone
- Department of Hepatobiliary and General Surgery, Humanitas Clinical and Research Center, Humanitas University, Milan, Italy
| | - Antonio Mimmo
- Department of Hepatobiliary and General Surgery, Humanitas Clinical and Research Center, Humanitas University, Milan, Italy
| | - Eleonora Vitali
- Department of Endocrinology, Humanitas Clinical and Research Center, Humanitas University, Milan, Italy
| | - Massimo Roncalli
- Department of Pathology, Humanitas Clinical and Research Center, Humanitas University, Milan, Italy
- Department of Biomedical Sciences, Humanitas Clinical and Research Center, Humanitas University, Milan, Italy
| | - Andrea Lania
- Department of Biomedical Sciences, Humanitas Clinical and Research Center, Humanitas University, Milan, Italy
- Department of Endocrinology, Humanitas Clinical and Research Center, Humanitas University, Milan, Italy
| | - Guido Torzilli
- Department of Hepatobiliary and General Surgery, Humanitas Clinical and Research Center, Humanitas University, Milan, Italy
- Department of Biomedical Sciences, Humanitas Clinical and Research Center, Humanitas University, Milan, Italy
| |
Collapse
|
46
|
Métais A, Lamsoul I, Melet A, Uttenweiler-Joseph S, Poincloux R, Stefanovic S, Valière A, Gonzalez de Peredo A, Stella A, Burlet-Schiltz O, Zaffran S, Lutz PG, Moog-Lutz C. Asb2α-Filamin A Axis Is Essential for Actin Cytoskeleton Remodeling During Heart Development. Circ Res 2018; 122:e34-e48. [PMID: 29374072 DOI: 10.1161/circresaha.117.312015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 01/18/2018] [Accepted: 01/24/2018] [Indexed: 11/16/2022]
Abstract
RATIONALE Heart development involves differentiation of cardiac progenitors and assembly of the contractile sarcomere apparatus of cardiomyocytes. However, little is known about the mechanisms that regulate actin cytoskeleton remodeling during cardiac cell differentiation. OBJECTIVE The Asb2α (Ankyrin repeat-containing protein with a suppressor of cytokine signaling box 2) CRL5 (cullin 5 RING E3 ubiquitin ligase) triggers polyubiquitylation and subsequent degradation by the proteasome of FLNs (filamins). Here, we investigate the role of Asb2α in heart development and its mechanisms of action. METHODS AND RESULTS Using Asb2 knockout embryos, we show that Asb2 is an essential gene, critical to heart morphogenesis and function, although its loss does not interfere with the overall patterning of the embryonic heart tube. We show that the Asb2α E3 ubiquitin ligase controls Flna stability in immature cardiomyocytes. Importantly, Asb2α-mediated degradation of the actin-binding protein Flna marks a previously unrecognized intermediate step in cardiac cell differentiation characterized by cell shape changes and actin cytoskeleton remodeling. We further establish that in the absence of Asb2α, myofibrils are disorganized and that heartbeats are inefficient, leading to embryonic lethality in mice. CONCLUSIONS These findings identify Asb2α as an unsuspected key regulator of cardiac cell differentiation and shed light on the molecular and cellular mechanisms determining the onset of myocardial cell architecture and its link with early cardiac function. Although Flna is known to play roles in cytoskeleton organization and to be required for heart function, this study now reveals that its degradation mediated by Asb2α ensures essential functions in differentiating cardiac progenitors.
Collapse
Affiliation(s)
- Arnaud Métais
- From the Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, France (A. Métais, I.L., A. Melet, S.U.-J., R.P., A.V., A.G.d.P., A.S., O.B.-S., P.G.L., C.M.-L.); CNRS UMR8601, Université Paris Descartes, France (A. Melet); and Aix Marseille Univ, INSERM, MMG, France (S.S., S.Z.)
| | - Isabelle Lamsoul
- From the Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, France (A. Métais, I.L., A. Melet, S.U.-J., R.P., A.V., A.G.d.P., A.S., O.B.-S., P.G.L., C.M.-L.); CNRS UMR8601, Université Paris Descartes, France (A. Melet); and Aix Marseille Univ, INSERM, MMG, France (S.S., S.Z.)
| | - Armelle Melet
- From the Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, France (A. Métais, I.L., A. Melet, S.U.-J., R.P., A.V., A.G.d.P., A.S., O.B.-S., P.G.L., C.M.-L.); CNRS UMR8601, Université Paris Descartes, France (A. Melet); and Aix Marseille Univ, INSERM, MMG, France (S.S., S.Z.)
| | - Sandrine Uttenweiler-Joseph
- From the Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, France (A. Métais, I.L., A. Melet, S.U.-J., R.P., A.V., A.G.d.P., A.S., O.B.-S., P.G.L., C.M.-L.); CNRS UMR8601, Université Paris Descartes, France (A. Melet); and Aix Marseille Univ, INSERM, MMG, France (S.S., S.Z.)
| | - Renaud Poincloux
- From the Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, France (A. Métais, I.L., A. Melet, S.U.-J., R.P., A.V., A.G.d.P., A.S., O.B.-S., P.G.L., C.M.-L.); CNRS UMR8601, Université Paris Descartes, France (A. Melet); and Aix Marseille Univ, INSERM, MMG, France (S.S., S.Z.)
| | - Sonia Stefanovic
- From the Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, France (A. Métais, I.L., A. Melet, S.U.-J., R.P., A.V., A.G.d.P., A.S., O.B.-S., P.G.L., C.M.-L.); CNRS UMR8601, Université Paris Descartes, France (A. Melet); and Aix Marseille Univ, INSERM, MMG, France (S.S., S.Z.)
| | - Amélie Valière
- From the Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, France (A. Métais, I.L., A. Melet, S.U.-J., R.P., A.V., A.G.d.P., A.S., O.B.-S., P.G.L., C.M.-L.); CNRS UMR8601, Université Paris Descartes, France (A. Melet); and Aix Marseille Univ, INSERM, MMG, France (S.S., S.Z.)
| | - Anne Gonzalez de Peredo
- From the Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, France (A. Métais, I.L., A. Melet, S.U.-J., R.P., A.V., A.G.d.P., A.S., O.B.-S., P.G.L., C.M.-L.); CNRS UMR8601, Université Paris Descartes, France (A. Melet); and Aix Marseille Univ, INSERM, MMG, France (S.S., S.Z.)
| | - Alexandre Stella
- From the Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, France (A. Métais, I.L., A. Melet, S.U.-J., R.P., A.V., A.G.d.P., A.S., O.B.-S., P.G.L., C.M.-L.); CNRS UMR8601, Université Paris Descartes, France (A. Melet); and Aix Marseille Univ, INSERM, MMG, France (S.S., S.Z.)
| | - Odile Burlet-Schiltz
- From the Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, France (A. Métais, I.L., A. Melet, S.U.-J., R.P., A.V., A.G.d.P., A.S., O.B.-S., P.G.L., C.M.-L.); CNRS UMR8601, Université Paris Descartes, France (A. Melet); and Aix Marseille Univ, INSERM, MMG, France (S.S., S.Z.)
| | - Stéphane Zaffran
- From the Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, France (A. Métais, I.L., A. Melet, S.U.-J., R.P., A.V., A.G.d.P., A.S., O.B.-S., P.G.L., C.M.-L.); CNRS UMR8601, Université Paris Descartes, France (A. Melet); and Aix Marseille Univ, INSERM, MMG, France (S.S., S.Z.)
| | - Pierre G Lutz
- From the Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, France (A. Métais, I.L., A. Melet, S.U.-J., R.P., A.V., A.G.d.P., A.S., O.B.-S., P.G.L., C.M.-L.); CNRS UMR8601, Université Paris Descartes, France (A. Melet); and Aix Marseille Univ, INSERM, MMG, France (S.S., S.Z.).
| | - Christel Moog-Lutz
- From the Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, France (A. Métais, I.L., A. Melet, S.U.-J., R.P., A.V., A.G.d.P., A.S., O.B.-S., P.G.L., C.M.-L.); CNRS UMR8601, Université Paris Descartes, France (A. Melet); and Aix Marseille Univ, INSERM, MMG, France (S.S., S.Z.).
| |
Collapse
|
47
|
Xu Q, Wu N, Cui L, Wu Z, Qiu G. Filamin B: The next hotspot in skeletal research? J Genet Genomics 2017; 44:335-342. [PMID: 28739045 DOI: 10.1016/j.jgg.2017.04.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/15/2017] [Accepted: 04/12/2017] [Indexed: 12/19/2022]
Abstract
Filamin B (FLNB) is a large dimeric actin-binding protein which crosslinks actin cytoskeleton filaments into a dynamic structure. Up to present, pathogenic mutations in FLNB are solely found to cause skeletal deformities, indicating the important role of FLNB in skeletal development. FLNB-related disorders are classified as spondylocarpotarsal synostosis (SCT), Larsen syndrome (LS), atelosteogenesis (AO), boomerang dysplasia (BD), and isolated congenital talipes equinovarus, presenting with scoliosis, short-limbed dwarfism, clubfoot, joint dislocation and other unique skeletal abnormalities. Several mechanisms of FLNB mutations causing skeletal malformations have been proposed, including delay of ossification in long bone growth plate, reduction of bone mineral density (BMD), dysregulation of muscle differentiation, ossification of intervertebral disc (IVD), disturbance of proliferation, differentiation and apoptosis in chondrocytes, impairment of angiogenesis, and hypomotility of osteoblast, chondrocyte and fibroblast. Interventions on FLNB-related diseases require prenatal surveillance by sonography, gene testing in high-risk carriers, and proper orthosis or orthopedic surgeries to correct malformations including scoliosis, cervical spine instability, large joint dislocation, and clubfoot. Gene and cell therapies for FLNB-related diseases are also promising but require further studies.
Collapse
Affiliation(s)
- Qiming Xu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Nan Wu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China; Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing 100730, China; Medical Research Center of Orthopaedics, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Lijia Cui
- Peking Union Medical College Hospital, Beijing 100730, China; School of Medicine, Tsinghua University, Beijing 100084, China
| | - Zhihong Wu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing 100730, China; Medical Research Center of Orthopaedics, Chinese Academy of Medical Sciences, Beijing 100730, China; Department of Central Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Guixing Qiu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China; Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing 100730, China; Medical Research Center of Orthopaedics, Chinese Academy of Medical Sciences, Beijing 100730, China.
| |
Collapse
|
48
|
Hu J, Lu J, Goyal A, Wong T, Lian G, Zhang J, Hecht JL, Feng Y, Sheen VL. Opposing FlnA and FlnB interactions regulate RhoA activation in guiding dynamic actin stress fiber formation and cell spreading. Hum Mol Genet 2017; 26:1294-1304. [PMID: 28175289 DOI: 10.1093/hmg/ddx047] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/02/2017] [Indexed: 12/26/2022] Open
Abstract
Filamins are a family of actin-binding proteins responsible for diverse biological functions in the context of regulating actin dynamics and vesicle trafficking. Disruption of these proteins has been implicated in multiple human developmental disorders. To investigate the roles of different filamin isoforms, we focused on FlnA and FlnB interactions in the cartilage growth plate, since mutations in both molecules cause chondrodysplasias. Current studies show that FlnA and FlnB share a common function in stabilizing the actin cytoskeleton, they physically interact in the cytoplasm of chondrocytes, and loss of FlnA enhances FlnB expression of chondrocytes in the growth plate (and vice versa), suggesting compensation. Prolonged FlnB loss, however, promotes actin-stress fiber formation following plating onto an integrin activating substrate whereas FlnA inhibition leads to decreased actin formation. FlnA more strongly binds RhoA, although both filamins overlap with RhoA expression in the cell cytoplasm. FlnA promotes RhoA activation whereas FlnB indirectly inhibits this pathway. Moreover, FlnA loss leads to diminished expression of β1-integrin, whereas FlnB loss promotes integrin expression. Finally, fibronectin mediated integrin activation has been shown to activate RhoA and activated RhoA leads to stress fiber formation and cell spreading. Fibronectin stimulation in null FlnA cells impairs enhanced spreading whereas FlnB inhibited cells show enhanced spreading. While filamins serve a primary static function in stabilization of the actin cytoskeleton, these studies are the first to demonstrate a dynamic and antagonistic relationship between different filamin isoforms in the dynamic regulation of integrin expression, RhoGTPase activity and actin stress fiber remodeling.
Collapse
Affiliation(s)
- Jianjun Hu
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA
| | - Jie Lu
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA
| | - Akshay Goyal
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA
| | - Timothy Wong
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA
| | - Gewei Lian
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA
| | - Jingping Zhang
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA
| | - Jonathan L Hecht
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA
| | - Yuanyi Feng
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Volney L Sheen
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
49
|
Montgomery DS, Yu L, Ghazi ZM, Thai TL, Al-Khalili O, Ma HP, Eaton DC, Alli AA. ENaC activity is regulated by calpain-2 proteolysis of MARCKS proteins. Am J Physiol Cell Physiol 2017; 313:C42-C53. [PMID: 28468944 PMCID: PMC5538800 DOI: 10.1152/ajpcell.00244.2016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 04/13/2017] [Accepted: 04/15/2017] [Indexed: 12/27/2022]
Abstract
We previously demonstrated a role for the myristoylated alanine-rich C kinase substrate (MARCKS) to serve as an adaptor protein in the anionic phospholipid phosphate-dependent regulation of the epithelial sodium channel (ENaC). Both MARCKS and ENaC are regulated by proteolysis. Calpains are a family of ubiquitously expressed intracellular Ca2+-dependent cysteine proteases involved in signal transduction. Here we examine the role of calpain-2 in regulating MARCKS and ENaC in cultured renal epithelial cells and in the mouse kidney. Using recombinant fusion proteins, we show that MARCKS, but not the ENaC subunits, are a substrate of calpain-2 in the presence of Ca2+ Pharmacological inhibition of calpain-2 alters MARCKS protein expression in light-density sucrose gradient fractions from cell lysates of mouse cortical collecting duct cells. Calpain-dependent cleaved products of MARCKS are detectable in cultured renal cells. Ca2+ mobilization and calpain-2 inhibition decrease the association between ENaC and MARCKS. The inhibition of calpain-2 reduces ENaC activity as demonstrated by single-channel patch-clamp recordings and transepithelial current measurements. These results suggest that calpain-2 proteolysis of MARCKS promotes its interaction with lipids and ENaC at the plasma membrane to allow for the phosphatidylinositol 4,5-bisphosphate (PIP2)-dependent regulation of ENaC activity in the kidney.
Collapse
Affiliation(s)
- Darrice S Montgomery
- Department of Physiology and Functional Genomics and Department of Medicine Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - Ling Yu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China; and
| | - Zinah M Ghazi
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia
| | - Tiffany L Thai
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia
| | - Otor Al-Khalili
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia
| | - He-Ping Ma
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia
| | - Douglas C Eaton
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia
| | - Abdel A Alli
- Department of Physiology and Functional Genomics and Department of Medicine Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida;
| |
Collapse
|
50
|
Jiang J, Kao CY, Papoutsakis ET. How do megakaryocytic microparticles target and deliver cargo to alter the fate of hematopoietic stem cells? J Control Release 2016; 247:1-18. [PMID: 28024915 DOI: 10.1016/j.jconrel.2016.12.021] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 12/13/2016] [Accepted: 12/20/2016] [Indexed: 12/18/2022]
Abstract
Megakaryocytic microparticles (MkMPs), the most abundant MPs in circulation, can induce the differentiation of hematopoietic stem and progenitor cells (HSPCs) into functional megakaryocytes. This MkMP capability could be explored for applications in transfusion medicine but also for delivery of nucleic acids and other molecules to HSPCs for targeted molecular therapy. Understanding how MkMPs target, deliver cargo and alter the fate of HSPCs is important for exploring such applications. We show that MkMPs, which are distinct from Mk exosomes (MkExos), target HSPCs with high specificity since they have no effect on other ontologically or physiologically related cells, namely mesenchymal stem cells, endothelial cells or granulocytes. The outcome is also specific: only cells of the megakaryocytic lineage are generated. Observation of intact fluorescently-tagged MkMPs inside HSPCs demonstrates endocytosis as one mechanism of cargo delivery. Fluorescent labeling and scanning electron microscopy (SEM) imaging show that direct fusion of MkMPs into HSPCs is also engaged in cargo delivery. SEM imaging detailed the membrane-fusion process in four stages leading to full adsorption of MkMPs into HSPCs. Furthermore, macropinocytosis and lipid raft-mediated were shown here as mechanisms of MkMP uptake by HSPC. In contrast, the ontologically related platelet-derived MPs (PMPs) cannot be taken up by HSPCs although they bind to and induce HSPC aggregation. We show that platelet-like thrombin activation is apparently responsible for the different biological effects of MkMPs versus PMPs on HSPCs. We show that HSPC uropods are the preferential site for MkMP binding, and that CD54 (ICAM-1), CD11b, CD18 and CD43, localized on HSPC uropods, are involved in MkMP binding to HSPCs. Finally, we show that MkMP RNA is largely responsible for HSPC programming into Mk differentiation.
Collapse
Affiliation(s)
- Jinlin Jiang
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, United States; Delaware Biotechnology Institute, University of Delaware, Newark, DE, United States
| | - Chen-Yuan Kao
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, United States; Delaware Biotechnology Institute, University of Delaware, Newark, DE, United States
| | - Eleftherios T Papoutsakis
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, United States; Delaware Biotechnology Institute, University of Delaware, Newark, DE, United States; Department of Biological Sciences, University of Delaware, Newark, DE, United States.
| |
Collapse
|