1
|
Yong J, Song J. CaMKII activity and metabolic imbalance-related neurological diseases: Focus on vascular dysfunction, synaptic plasticity, amyloid beta accumulation, and lipid metabolism. Biomed Pharmacother 2024; 175:116688. [PMID: 38692060 DOI: 10.1016/j.biopha.2024.116688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/03/2024] Open
Abstract
Metabolic syndrome (MetS) is characterized by insulin resistance, hyperglycemia, excessive fat accumulation and dyslipidemia, and is known to be accompanied by neuropathological symptoms such as memory loss, anxiety, and depression. As the number of MetS patients is rapidly increasing globally, studies on the mechanisms of metabolic imbalance-related neuropathology are emerging as an important issue. Ca2+/calmodulin-dependent kinase II (CaMKII) is the main Ca2+ sensor and contributes to diverse intracellular signaling in peripheral organs and the central nervous system (CNS). CaMKII exerts diverse functions in cells, related to mechanisms such as RNA splicing, reactive oxygen species (ROS) generation, cytoskeleton, and protein-protein interactions. In the CNS, CaMKII regulates vascular function, neuronal circuits, neurotransmission, synaptic plasticity, amyloid beta toxicity, lipid metabolism, and mitochondrial function. Here, we review recent evidence for the role of CaMKII in neuropathologic issues associated with metabolic disorders.
Collapse
Affiliation(s)
- Jeongsik Yong
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun, Jeollanam-do, Republic of Korea.
| |
Collapse
|
2
|
Rigter PMF, de Konink C, Dunn MJ, Proietti Onori M, Humberson JB, Thomas M, Barnes C, Prada CE, Weaver KN, Ryan TD, Caluseriu O, Conway J, Calamaro E, Fong CT, Wuyts W, Meuwissen M, Hordijk E, Jonkers CN, Anderson L, Yuseinova B, Polonia S, Beysen D, Stark Z, Savva E, Poulton C, McKenzie F, Bhoj E, Bupp CP, Bézieau S, Mercier S, Blevins A, Wentzensen IM, Xia F, Rosenfeld JA, Hsieh TC, Krawitz PM, Elbracht M, Veenma DCM, Schulman H, Stratton MM, Küry S, van Woerden GM. Role of CAMK2D in neurodevelopment and associated conditions. Am J Hum Genet 2024; 111:364-382. [PMID: 38272033 PMCID: PMC10870144 DOI: 10.1016/j.ajhg.2023.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 12/04/2023] [Accepted: 12/12/2023] [Indexed: 01/27/2024] Open
Abstract
The calcium/calmodulin-dependent protein kinase type 2 (CAMK2) family consists of four different isozymes, encoded by four different genes-CAMK2A, CAMK2B, CAMK2G, and CAMK2D-of which the first three have been associated recently with neurodevelopmental disorders. CAMK2D is one of the major CAMK2 proteins expressed in the heart and has been associated with cardiac anomalies. Although this CAMK2 isoform is also known to be one of the major CAMK2 subtypes expressed during early brain development, it has never been linked with neurodevelopmental disorders until now. Here we show that CAMK2D plays an important role in neurodevelopment not only in mice but also in humans. We identified eight individuals harboring heterozygous variants in CAMK2D who display symptoms of intellectual disability, delayed speech, behavioral problems, and dilated cardiomyopathy. The majority of the variants tested lead to a gain of function (GoF), which appears to cause both neurological problems and dilated cardiomyopathy. In contrast, loss-of-function (LoF) variants appear to induce only neurological symptoms. Together, we describe a cohort of individuals with neurodevelopmental disorders and cardiac anomalies, harboring pathogenic variants in CAMK2D, confirming an important role for the CAMK2D isozyme in both heart and brain function.
Collapse
Affiliation(s)
- Pomme M F Rigter
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam 3015 GD, the Netherlands; ENCORE Expertise Centre for Neurodevelopmental Disorders, Erasmus Medical Center, Rotterdam 3015 GD, the Netherlands
| | - Charlotte de Konink
- ENCORE Expertise Centre for Neurodevelopmental Disorders, Erasmus Medical Center, Rotterdam 3015 GD, the Netherlands; Department of Neuroscience, Erasmus Medical Center, Rotterdam 3015 GD, the Netherlands
| | - Matthew J Dunn
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Martina Proietti Onori
- ENCORE Expertise Centre for Neurodevelopmental Disorders, Erasmus Medical Center, Rotterdam 3015 GD, the Netherlands; Department of Neuroscience, Erasmus Medical Center, Rotterdam 3015 GD, the Netherlands
| | - Jennifer B Humberson
- Pediatric Specialty Care, University of Virginia Health, Charlottesville, VA 22903, USA
| | - Matthew Thomas
- Division of Genetics, Department of Pediatrics, University of Virginia Children's, Charlottesville, VA 22903, USA
| | - Caitlin Barnes
- Division of Genetics, Department of Pediatrics, University of Virginia Children's, Charlottesville, VA 22903, USA
| | - Carlos E Prada
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Division of Genetics, Genomics, and Metabolism, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA; Fundacion Cardiovascular de Colombia, Bucaramanga, Colombia
| | - K Nicole Weaver
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Thomas D Ryan
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Oana Caluseriu
- Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2H7, Canada; Stollery Children's Hospital, Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2B7, Canada
| | - Jennifer Conway
- Stollery Children's Hospital, Department of Pediatrics, Division of Pediatric Cardiology, University of Alberta, Edmonton, AB T6G 2B7, Canada
| | - Emily Calamaro
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Chin-To Fong
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Wim Wuyts
- Department of Medical Genetics, University of Antwerp and University Hospital of Antwerp, 2650 Edegem, Belgium
| | - Marije Meuwissen
- Department of Medical Genetics, University of Antwerp and University Hospital of Antwerp, 2650 Edegem, Belgium
| | - Eva Hordijk
- Department of Neuroscience, Erasmus Medical Center, Rotterdam 3015 GD, the Netherlands
| | - Carsten N Jonkers
- Department of Neuroscience, Erasmus Medical Center, Rotterdam 3015 GD, the Netherlands
| | - Lucas Anderson
- Department of Neuroscience, Erasmus Medical Center, Rotterdam 3015 GD, the Netherlands
| | - Berfin Yuseinova
- Department of Neuroscience, Erasmus Medical Center, Rotterdam 3015 GD, the Netherlands
| | - Sarah Polonia
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam 3015 GD, the Netherlands
| | - Diane Beysen
- Department of Paediatric Neurology, University Hospital of Antwerp, 2650 Edegem, Belgium; Department of Translational Neurosciences, University of Antwerp, 2650 Edegem, Belgium
| | - Zornitza Stark
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia; Australian Genomics, Melbourne, VIC 3052, Australia
| | - Elena Savva
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
| | - Cathryn Poulton
- Genetic Services of Western Australia, King Edward Memorial Hospital, Perth, WA 6008, Australia
| | - Fiona McKenzie
- Genetic Services of Western Australia, King Edward Memorial Hospital, Perth, WA 6008, Australia; School of Paediatrics and Child Health, University of Western Australia, Perth, WA 6009, Australia
| | - Elizabeth Bhoj
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Caleb P Bupp
- Corewell Health & Helen DeVos Children's Hospital, Grand Rapids, MI 49503, USA
| | - Stéphane Bézieau
- Nantes Université, CHU Nantes, Service de Génétique Médicale, 44000 Nantes, France; Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, 44000 Nantes, France
| | - Sandra Mercier
- Nantes Université, CHU Nantes, Service de Génétique Médicale, 44000 Nantes, France; Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, 44000 Nantes, France
| | | | - Ingrid M Wentzensen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Fan Xia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Baylor Genetics Laboratories, Houston, TX 77021, USA
| | - Tzung-Chien Hsieh
- Institute for Genomic Statistics and Bioinformatics, University of Bonn, 53127 Bonn, Germany
| | - Peter M Krawitz
- Institute for Genomic Statistics and Bioinformatics, University of Bonn, 53127 Bonn, Germany
| | - Miriam Elbracht
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
| | - Danielle C M Veenma
- ENCORE Expertise Centre for Neurodevelopmental Disorders, Erasmus Medical Center, Rotterdam 3015 GD, the Netherlands; Sophia Children's Hospital, Erasmus Medical Center, Rotterdam 3015 CN, the Netherlands
| | - Howard Schulman
- Department of Neurobiology, Stanford University, School of Medicine, Stanford, CA 94305, USA; Panorama Research Institute, Sunnyvale, CA 94089, USA
| | - Margaret M Stratton
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Sébastien Küry
- Corewell Health & Helen DeVos Children's Hospital, Grand Rapids, MI 49503, USA; Nantes Université, CHU Nantes, Service de Génétique Médicale, 44000 Nantes, France.
| | - Geeske M van Woerden
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam 3015 GD, the Netherlands; ENCORE Expertise Centre for Neurodevelopmental Disorders, Erasmus Medical Center, Rotterdam 3015 GD, the Netherlands; Department of Neuroscience, Erasmus Medical Center, Rotterdam 3015 GD, the Netherlands.
| |
Collapse
|
3
|
Zhang W, Dong E, Zhang J, Zhang Y. CaMKII, 'jack of all trades' in inflammation during cardiac ischemia/reperfusion injury. J Mol Cell Cardiol 2023; 184:48-60. [PMID: 37813179 DOI: 10.1016/j.yjmcc.2023.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/11/2023]
Abstract
Myocardial infarction and revascularization cause cardiac ischemia/reperfusion (I/R) injury featuring cardiomyocyte death and inflammation. The Ca2+/calmodulin dependent protein kinase II (CaMKII) family are serine/ threonine protein kinases that are involved in I/R injury. CaMKII exists in four different isoforms, α, β, γ, and δ. In the heart, CaMKII-δ is the predominant isoform,with multiple splicing variants, such as δB, δC and δ9. During I/R, elevated intracellular Ca2+ concentrations and reactive oxygen species activate CaMKII. In this review, we summarized the regulation and function of CaMKII in multiple cell types including cardiomyocytes, endothelial cells, and macrophages during I/R. We conclude that CaMKII mediates inflammation in the microenvironment of the myocardium, resulting in cell dysfunction, elevated inflammation, and cell death. However, different CaMKII-δ variants exhibit distinct or even opposite functions. Therefore, reagents/approaches that selectively target specific CaMKII isoforms and variants are needed for evaluating and counteracting the exact role of CaMKII in I/R injury and developing effective treatments against I/R injury.
Collapse
Affiliation(s)
- Wenjia Zhang
- State Key Laboratory of Vascular Homeostasis and Remodeling, Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Erdan Dong
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China; Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing 100191, China; Haihe Laboratory of Cell Ecosystem, Beijing 100191, China
| | - Junxia Zhang
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China; Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing 100191, China; Haihe Laboratory of Cell Ecosystem, Beijing 100191, China.
| | - Yan Zhang
- State Key Laboratory of Vascular Homeostasis and Remodeling, Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China.
| |
Collapse
|
4
|
Montañés-Agudo P, Pinto YM, Creemers EE. Splicing factors in the heart: Uncovering shared and unique targets. J Mol Cell Cardiol 2023; 179:72-79. [PMID: 37059416 DOI: 10.1016/j.yjmcc.2023.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/29/2023] [Accepted: 04/09/2023] [Indexed: 04/16/2023]
Abstract
Alternative splicing generates specialized protein isoforms that allow the heart to adapt during development and disease. The recent discovery that mutations in the splicing factor RNA-binding protein 20 (RBM20) cause a severe form of familial dilated cardiomyopathy has sparked a great interest in alternative splicing in the field of cardiology. Since then, identification of splicing factors controlling alternative splicing in the heart has grown at a rapid pace. Despite the intriguing observation that a certain overlap exists between the targets of some splicing factors, an integrated and systematic analysis of their splicing networks is missing. Here, we compared the splicing networks of individual splicing factors by re-analyzing original RNA-sequencing data from eight previously published mouse models, in which a single splicing factor has been genetically deleted (i.e. HNRNPU, MBNL1/2, QKI, RBM20, RBM24, RBPMS, SRSF3, SRSF4). We show that key splicing events in Camk2d, Ryr2, Tpm1, Tpm2 and Pdlim5 require the combined action of the majority of these splicing factors. Additionally, we identified common targets and pathways among splicing factors, with the largest overlap between the splicing networks of MBNL, QKI and RBM24. We also re-analyzed a large-scale RNA-sequencing study on hearts of 128 heart failure patients. Here, we observed that MBNL1, QKI and RBM24 expression varied greatly. This variation in expression correlated with differential splicing of their downstream targets as found in mice, suggesting that aberrant splicing by MBNL1, QKI and RBM24 might contribute to the disease mechanism in heart failure.
Collapse
Affiliation(s)
- Pablo Montañés-Agudo
- Experimental Cardiology, Room K2-112, Amsterdam UMC Location University of Amsterdam, Meibergdreef 15, Amsterdam 1105AZ, the Netherlands.
| | - Yigal M Pinto
- Experimental Cardiology, Room K2-104, Amsterdam UMC, location University of Amsterdam, Meibergdreef 15, Amsterdam 1105AZ, the Netherlands.
| | - Esther E Creemers
- Experimental Cardiology, Room K2-104-2, Amsterdam UMC, Location University of Amsterdam, Meibergdreef 15, Amsterdam 1105AZ, the Netherlands.
| |
Collapse
|
5
|
Calcium/Calmodulin-Stimulated Protein Kinase II (CaMKII): Different Functional Outcomes from Activation, Depending on the Cellular Microenvironment. Cells 2023; 12:cells12030401. [PMID: 36766743 PMCID: PMC9913510 DOI: 10.3390/cells12030401] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/20/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Calcium/calmodulin-stimulated protein kinase II (CaMKII) is a family of broad substrate specificity serine (Ser)/threonine (Thr) protein kinases widely expressed in many tissues that is capable of mediating diverse functional responses depending on its cellular and molecular microenvironment. This review briefly summarises current knowledge on the structure and regulation of CaMKII and focuses on how the molecular environment, and interaction with binding partner proteins, can produce different populations of CaMKII in different cells, or in different subcellular locations within the same cell, and how these different populations of CaMKII can produce diverse functional responses to activation following an increase in intracellular calcium concentration. This review also explores the possibility that identifying and characterising the molecular interactions responsible for the molecular targeting of CaMKII in different cells in vivo, and identifying the sites on CaMKII and/or the binding proteins through which these interactions occur, could lead to the development of highly selective inhibitors of specific CaMKII-mediated functional responses in specific cells that would not affect CaMKII-mediated responses in other cells. This may result in the development of new pharmacological agents with therapeutic potential for many clinical conditions.
Collapse
|
6
|
Reyes Gaido OE, Nkashama LJ, Schole KL, Wang Q, Umapathi P, Mesubi OO, Konstantinidis K, Luczak ED, Anderson ME. CaMKII as a Therapeutic Target in Cardiovascular Disease. Annu Rev Pharmacol Toxicol 2023; 63:249-272. [PMID: 35973713 PMCID: PMC11019858 DOI: 10.1146/annurev-pharmtox-051421-111814] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
CaMKII (the multifunctional Ca2+ and calmodulin-dependent protein kinase II) is a highly validated signal for promoting a variety of common diseases, particularly in the cardiovascular system. Despite substantial amounts of convincing preclinical data, CaMKII inhibitors have yet to emerge in clinical practice. Therapeutic inhibition is challenged by the diversity of CaMKII isoforms and splice variants and by physiological CaMKII activity that contributes to learning and memory. Thus, uncoupling the harmful and beneficial aspects of CaMKII will be paramount to developing effective therapies. In the last decade, several targeting strategies have emerged, including small molecules, peptides, and nucleotides, which hold promise in discriminating pathological from physiological CaMKII activity. Here we review the cellular and molecular biology of CaMKII, discuss its role in physiological and pathological signaling, and consider new findings and approaches for developing CaMKII therapeutics.
Collapse
Affiliation(s)
- Oscar E Reyes Gaido
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA;
| | | | - Kate L Schole
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA;
| | - Qinchuan Wang
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA;
| | - Priya Umapathi
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA;
| | - Olurotimi O Mesubi
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA;
| | - Klitos Konstantinidis
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA;
| | - Elizabeth D Luczak
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA;
| | - Mark E Anderson
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA;
- Departments of Physiology and Genetic Medicine and Program in Cellular and Molecular Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
7
|
Rigter PMF, de Konink C, van Woerden GM. Loss of CAMK2G affects intrinsic and motor behavior but has minimal impact on cognitive behavior. Front Neurosci 2023; 16:1086994. [PMID: 36685241 PMCID: PMC9853378 DOI: 10.3389/fnins.2022.1086994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/07/2022] [Indexed: 01/08/2023] Open
Abstract
Introduction The gamma subunit of calcium/calmodulin-dependent protein kinase 2 (CAMK2G) is expressed throughout the brain and is associated with neurodevelopmental disorders. Research on the role of CAMK2G is limited and attributes different functions to specific cell types. Methods To further expand on the role of CAMK2G in brain functioning, we performed extensive phenotypic characterization of a Camk2g knockout mouse. Results We found different CAMK2G isoforms that show a distinct spatial expression pattern in the brain. Additionally, based on our behavioral characterization, we conclude that CAMK2G plays a minor role in hippocampus-dependent learning and synaptic plasticity. Rather, we show that CAMK2G is required for motor function and that the loss of CAMK2G results in impaired nest-building and marble burying behavior, which are innate behaviors that are associated with impaired neurodevelopment. Discussion Taken together, our results provide evidence for a unique function of this specific CAMK2 isozyme in the brain and further support the role of CAMK2G in neurodevelopment.
Collapse
Affiliation(s)
- Pomme M. F. Rigter
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, Netherlands
- Erfelijke Neuro-Cognitieve Ontwikkelingsstoornissen, Expertise Centre for Neurodevelopmental Disorders, Erasmus Medical Center, Rotterdam, Netherlands
| | - Charlotte de Konink
- Erfelijke Neuro-Cognitieve Ontwikkelingsstoornissen, Expertise Centre for Neurodevelopmental Disorders, Erasmus Medical Center, Rotterdam, Netherlands
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | - Geeske M. van Woerden
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, Netherlands
- Erfelijke Neuro-Cognitieve Ontwikkelingsstoornissen, Expertise Centre for Neurodevelopmental Disorders, Erasmus Medical Center, Rotterdam, Netherlands
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
| |
Collapse
|
8
|
Roberts-Craig FT, Worthington LP, O’Hara SP, Erickson JR, Heather AK, Ashley Z. CaMKII Splice Variants in Vascular Smooth Muscle Cells: The Next Step or Redundancy? Int J Mol Sci 2022; 23:ijms23147916. [PMID: 35887264 PMCID: PMC9318135 DOI: 10.3390/ijms23147916] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 02/05/2023] Open
Abstract
Vascular smooth muscle cells (VSMCs) help to maintain the normal physiological contractility of arterial vessels to control blood pressure; they can also contribute to vascular disease such as atherosclerosis. Ca2+/calmodulin-dependent kinase II (CaMKII), a multifunctional enzyme with four isoforms and multiple alternative splice variants, contributes to numerous functions within VSMCs. The role of these isoforms has been widely studied across numerous tissue types; however, their functions are still largely unknown within the vasculature. Even more understudied is the role of the different splice variants of each isoform in such signaling pathways. This review evaluates the role of the different CaMKII splice variants in vascular pathological and physiological mechanisms, aiming to show the need for more research to highlight both the deleterious and protective functions of the various splice variants.
Collapse
Affiliation(s)
- Finn T. Roberts-Craig
- Department of Medicine, University of Otago, Dunedin 9016, New Zealand;
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand; (L.P.W.); (S.P.O.); (J.R.E.); (A.K.H.)
| | - Luke P. Worthington
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand; (L.P.W.); (S.P.O.); (J.R.E.); (A.K.H.)
- HeartOtago, University of Otago, Dunedin 9016, New Zealand
| | - Samuel P. O’Hara
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand; (L.P.W.); (S.P.O.); (J.R.E.); (A.K.H.)
- HeartOtago, University of Otago, Dunedin 9016, New Zealand
| | - Jeffrey R. Erickson
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand; (L.P.W.); (S.P.O.); (J.R.E.); (A.K.H.)
- HeartOtago, University of Otago, Dunedin 9016, New Zealand
| | - Alison K. Heather
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand; (L.P.W.); (S.P.O.); (J.R.E.); (A.K.H.)
- HeartOtago, University of Otago, Dunedin 9016, New Zealand
| | - Zoe Ashley
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand; (L.P.W.); (S.P.O.); (J.R.E.); (A.K.H.)
- HeartOtago, University of Otago, Dunedin 9016, New Zealand
- Correspondence: ; Tel.: +64-3-479-7646
| |
Collapse
|
9
|
D’Incal C, Broos J, Torfs T, Kooy RF, Vanden Berghe W. Towards Kinase Inhibitor Therapies for Fragile X Syndrome: Tweaking Twists in the Autism Spectrum Kinase Signaling Network. Cells 2022; 11:cells11081325. [PMID: 35456004 PMCID: PMC9029738 DOI: 10.3390/cells11081325] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/01/2022] [Accepted: 04/03/2022] [Indexed: 12/12/2022] Open
Abstract
Absence of the Fragile X Mental Retardation Protein (FMRP) causes autism spectrum disorders and intellectual disability, commonly referred to as the Fragile X syndrome. FMRP is a negative regulator of protein translation and is essential for neuronal development and synapse formation. FMRP is a target for several post-translational modifications (PTMs) such as phosphorylation and methylation, which tightly regulate its cellular functions. Studies have indicated the involvement of FMRP in a multitude of cellular pathways, and an absence of FMRP was shown to affect several neurotransmitter receptors, for example, the GABA receptor and intracellular signaling molecules such as Akt, ERK, mTOR, and GSK3. Interestingly, many of these molecules function as protein kinases or phosphatases and thus are potentially amendable by pharmacological treatment. Several treatments acting on these kinase-phosphatase systems have been shown to be successful in preclinical models; however, they have failed to convincingly show any improvements in clinical trials. In this review, we highlight the different protein kinase and phosphatase studies that have been performed in the Fragile X syndrome. In our opinion, some of the paradoxical study conclusions are potentially due to the lack of insight into integrative kinase signaling networks in the disease. Quantitative proteome analyses have been performed in several models for the FXS to determine global molecular processes in FXS. However, only one phosphoproteomics study has been carried out in Fmr1 knock-out mouse embryonic fibroblasts, and it showed dysfunctional protein kinase and phosphatase signaling hubs in the brain. This suggests that the further use of phosphoproteomics approaches in Fragile X syndrome holds promise for identifying novel targets for kinase inhibitor therapies.
Collapse
Affiliation(s)
- Claudio D’Incal
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, 2000 Antwerp, Belgium; (C.D.); (J.B.); (T.T.)
- Department of Medical Genetics, University of Antwerp, 2000 Antwerp, Belgium;
| | - Jitse Broos
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, 2000 Antwerp, Belgium; (C.D.); (J.B.); (T.T.)
| | - Thierry Torfs
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, 2000 Antwerp, Belgium; (C.D.); (J.B.); (T.T.)
| | - R. Frank Kooy
- Department of Medical Genetics, University of Antwerp, 2000 Antwerp, Belgium;
| | - Wim Vanden Berghe
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, 2000 Antwerp, Belgium; (C.D.); (J.B.); (T.T.)
- Correspondence: ; Tel.: +0032-(0)-32-652-657
| |
Collapse
|
10
|
Fujii H, Bito H. Deciphering Ca2+-controlled biochemical computation governing neural circuit dynamics via multiplex imaging. Neurosci Res 2022; 179:79-90. [DOI: 10.1016/j.neures.2022.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 12/25/2022]
|
11
|
Ca2+/Calmodulin-Dependent Protein Kinase II Inhibits Hepatitis B Virus Replication from cccDNA via AMPK Activation and AKT/mTOR Suppression. Microorganisms 2022; 10:microorganisms10030498. [PMID: 35336076 PMCID: PMC8950817 DOI: 10.3390/microorganisms10030498] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/21/2022] [Accepted: 02/21/2022] [Indexed: 11/16/2022] Open
Abstract
Ca2+/calmodulin-dependent protein kinase II (CaMKII), which is involved in the calcium signaling pathway, is an important regulator of cancer cell proliferation, motility, growth, and metastasis. The effects of CaMKII on hepatitis B virus (HBV) replication have never been evaluated. Here, we found that phosphorylated, active CaMKII is reduced during HBV replication. Similar to other members of the AMPK/AKT/mTOR signaling pathway associated with HBV replication, CaMKII, which is associated with this pathway, was found to be a novel regulator of HBV replication. Overexpression of CaMKII reduced the expression of covalently closed circular DNA (cccDNA), HBV RNAs, and replicative intermediate (RI) DNAs while activating AMPK and inhibiting the AKT/mTOR signaling pathway. Findings in HBx-deficient mutant-transfected HepG2 cells showed that the CaMKII-mediated AMPK/AKT/mTOR signaling pathway was independent of HBx. Moreover, AMPK overexpression reduced HBV cccDNA, RNAs, and RI DNAs through CaMKII activation. Although AMPK acts downstream of CaMKII, AMPK overexpression altered CaMKII phosphorylation, suggesting that CaMKII and AMPK form a positive feedback loop. These results demonstrate that HBV replication suppresses CaMKII activity, and that CaMKII upregulation suppresses HBV replication from cccDNA via AMPK and the AKT/mTOR signaling pathway. Thus, activation or overexpression of CaMKII may be a new therapeutic target against HBV infection.
Collapse
|
12
|
Identification and characterization of long non-coding RNA Carip in modulating spatial learning and memory. Cell Rep 2022; 38:110398. [PMID: 35196493 DOI: 10.1016/j.celrep.2022.110398] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 11/18/2021] [Accepted: 01/26/2022] [Indexed: 11/22/2022] Open
Abstract
CaMKII has long been known to be a key effector for synaptic plasticity. Recent studies have shown that a variety of modulators interact with the subunits of CaMKII to regulate the long-term potentiation (LTP) of hippocampal neurons. However, whether long non-coding RNAs modulate the activity of CaMKII and affect synaptic plasticity is still elusive. Here, we identify a previously uncharacterized long non-coding RNA Carip that functions as a scaffold, specifically interacts with CaMKIIβ, and regulates the phosphorylation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-d-aspartate (NMDA) receptor subunits in the hippocampus. The absence of Carip causes dysfunction of synaptic transmission and attenuates LTP in hippocampal CA3-CA1 synapses, which further leads to impairment of spatial learning and memory. In summary, our findings demonstrate that Carip modulates long-term synaptic plasticity by changing AMPA receptor and NMDA receptor activities, thereby affecting spatial learning and memory in mice.
Collapse
|
13
|
Wang P, Xu S, Xu J, Xin Y, Lu Y, Zhang H, Zhou B, Xu H, Sheu SS, Tian R, Wang W. Elevated MCU Expression by CaMKIIδB Limits Pathological Cardiac Remodeling. Circulation 2022; 145:1067-1083. [PMID: 35167328 PMCID: PMC8983595 DOI: 10.1161/circulationaha.121.055841] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: Calcium (Ca2+) is a key regulator of energy metabolism. Impaired Ca2+ homeostasis damages mitochondria, causing cardiomyocyte death, pathological hypertrophy, and heart failure. This study investigates the regulation and the role of the mitochondrial Ca2+ uniporter (MCU) in chronic stress-induced pathological cardiac remodeling. Methods: MCU knockout or transgenic mice were infused with isoproterenol (ISO, 10 mg/kg/day, 4 weeks). Cardiac hypertrophy and remodeling were evaluated by echocardiography and histology. Primary cultured rodent adult cardiomyocytes were treated with ISO (1 nM, 48 hr). Intracellular Ca2+ handling and cell death pathways were monitored. Adenovirus-mediated gene manipulations were used in vitro. Results: Chronic administration of the β-adrenergic receptor (β-AR) agonist ISO increased the levels of the MCU and the MCU complex in cardiac mitochondria, raising mitochondrial Ca2+ concentrations, in vivo and in vitro. ISO also upregulated MCU without affecting its regulatory proteins in adult cardiomyocytes. Interestingly, ISO-induced cardiac hypertrophy, fibrosis, contractile dysfunction, and cardiomyocyte death were exacerbated in global MCU knockout (KO) mice. Cardiomyocytes from KO mice or mice overexpressing a dominant negative MCU exhibited defective intracellular Ca2+ handling and activation of multiple cell death pathways. Conversely, cardiac-specific overexpression of MCU maintained intracellular Ca2+ homeostasis and contractility, suppressed cell death, and prevented ISO-induced heart hypertrophy. ISO upregulated MCU expression through activation of Ca2+/calmodulin kinase II δB (CaMKIIδB) and promotion of its nuclear translocation via calcineurin-mediated dephosphorylation at serine 332. Nuclear CaMKIIδB phosphorylated cAMP-response element binding protein (CREB), which bound the MCU promotor to enhance MCU gene transcription. Conclusions: The β-AR/CaMKIIδB/CREB pathway upregulates MCU gene expression in the heart. MCU upregulation is a compensatory mechanism that counteracts stress-induced pathological cardiac remodeling by preserving Ca2+ homeostasis and cardiomyocyte viability.
Collapse
Affiliation(s)
- Pei Wang
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA
| | - Shangcheng Xu
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA
| | - Jiqian Xu
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA
| | - Yanguo Xin
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA
| | - Yan Lu
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
| | - Huiliang Zhang
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
| | - Bo Zhou
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA
| | - Haodong Xu
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
| | - Shey-Shing Sheu
- Center for Translational Medicine, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - Rong Tian
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA
| | - Wang Wang
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
| |
Collapse
|
14
|
Taylor DF, Bishop DJ. Transcription Factor Movement and Exercise-Induced Mitochondrial Biogenesis in Human Skeletal Muscle: Current Knowledge and Future Perspectives. Int J Mol Sci 2022; 23:1517. [PMID: 35163441 PMCID: PMC8836245 DOI: 10.3390/ijms23031517] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 02/01/2023] Open
Abstract
In response to exercise, the oxidative capacity of mitochondria within skeletal muscle increases through the coordinated expression of mitochondrial proteins in a process termed mitochondrial biogenesis. Controlling the expression of mitochondrial proteins are transcription factors-a group of proteins that regulate messenger RNA transcription from DNA in the nucleus and mitochondria. To fulfil other functions or to limit gene expression, transcription factors are often localised away from DNA to different subcellular compartments and undergo rapid movement or accumulation only when required. Although many transcription factors involved in exercise-induced mitochondrial biogenesis have been identified, numerous conflicting findings and gaps exist within our knowledge of their subcellular movement. This review aims to summarise and provide a critical analysis of the published literature regarding the exercise-induced movement of transcription factors involved in mitochondria biogenesis in skeletal muscle.
Collapse
Affiliation(s)
| | - David J. Bishop
- Institute for Health and Sport (iHeS), Footscray Park, Victoria University, Melbourne 8001, Australia;
| |
Collapse
|
15
|
Zhang X, Connelly J, Levitan ES, Sun D, Wang JQ. Calcium/Calmodulin-Dependent Protein Kinase II in Cerebrovascular Diseases. Transl Stroke Res 2021; 12:513-529. [PMID: 33713030 PMCID: PMC8213567 DOI: 10.1007/s12975-021-00901-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/20/2020] [Accepted: 02/17/2021] [Indexed: 12/11/2022]
Abstract
Cerebrovascular disease is the most common life-threatening and debilitating condition that often leads to stroke. The multifunctional calcium/calmodulin-dependent protein kinase II (CaMKII) is a key Ca2+ sensor and an important signaling protein in a variety of biological systems within the brain, heart, and vasculature. In the brain, past stroke-related studies have been mainly focused on the role of CaMKII in ischemic stroke in neurons and established CaMKII as a major mediator of neuronal cell death induced by glutamate excitotoxicity and oxidative stress following ischemic stroke. However, with growing understanding of the importance of neurovascular interactions in cerebrovascular diseases, there are clearly gaps in our understanding of how CaMKII functions in the complex neurovascular biological processes and its contributions to cerebrovascular diseases. Additionally, emerging evidence demonstrates novel regulatory mechanisms of CaMKII and potential roles of the less-studied CaMKII isoforms in the ischemic brain, which has sparked renewed interests in this dynamic kinase family. This review discusses past findings and emerging evidence on CaMKII in several major cerebrovascular dysfunctions including ischemic stroke, hemorrhagic stroke, and vascular dementia, focusing on the unique roles played by CaMKII in the underlying biological processes of neuronal cell death, neuroinflammation, and endothelial barrier dysfunction triggered by stroke. We also highlight exciting new findings, promising therapeutic agents, and future perspectives for CaMKII in cerebrovascular systems.
Collapse
Affiliation(s)
- Xuejing Zhang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, E1354 BST, Pittsburgh, PA, USA
| | - Jaclyn Connelly
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, E1354 BST, Pittsburgh, PA, USA
| | - Edwin S Levitan
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, E1354 BST, Pittsburgh, PA, USA
| | - Dandan Sun
- Department of Neurology, Pittsburgh Institute For Neurodegenerative Diseases, University of Pittsburgh, 7016 Biomedical Science Tower-3, 3501 Fifth Ave., Pittsburgh, PA, 15260, USA.
| | - Jane Q Wang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, E1354 BST, Pittsburgh, PA, USA.
| |
Collapse
|
16
|
Akizuki K, Ono A, Xue H, Kameshita I, Ishida A, Sueyoshi N. Biochemical characterization of four splice variants of mouse Ca2+/calmodulin-dependent protein kinase Iδ. J Biochem 2021; 169:445-458. [PMID: 33417706 DOI: 10.1093/jb/mvaa117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/14/2020] [Indexed: 11/12/2022] Open
Abstract
Ca2+/calmodulin (CaM)-dependent protein kinase Iδ (CaMKIδ) is a Ser/Thr kinase that plays pivotal roles in Ca2+ signalling. CaMKIδ is activated by Ca2+/CaM-binding and phosphorylation at Thr180 by CaMK kinase (CaMKK). In this study, we characterized four splice variants of mouse CaMKIδ (mCaMKIδs: a, b, c and d) found by in silico analysis. Recombinant mCaMKIδs expressed in Escherichia coli were phosphorylated by CaMKK; however, only mCaMKIδ-a and c showed protein kinase activities towards myelin basic protein in vitro, with mCaMKIδ-b and mCaMKIδ-d being inactive. Although mCaMKIδ-a and mCaMKIδ-c underwent autophosphorylation in vitro, only mCaMKIδ-c underwent autophosphorylation in 293T cells. Site-directed mutagenesis showed that the autophosphorylation site is Ser349, which is found in the C-terminal region of only variants c and b (Ser324). Furthermore, phosphorylation of these sites (Ser324 and Ser349) in mCaMKIδ-b and c was more efficiently catalyzed by cAMP-dependent protein kinase in vitro and in cellulo as compared to the autophosphorylation of mCaMKIδ-c. Thus, variants of mCaMKIδ possess distinct properties in terms of kinase activities, autophosphorylation and phosphorylation by another kinase, suggesting that they play physiologically different roles in murine cells.
Collapse
Affiliation(s)
- Kazutoshi Akizuki
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki, Kagawa 761-0795, Japan.,Research Fellow of Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan.,Laboratory of Molecular Brain Science, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| | - Ayaka Ono
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki, Kagawa 761-0795, Japan
| | - Houcheng Xue
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki, Kagawa 761-0795, Japan
| | - Isamu Kameshita
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki, Kagawa 761-0795, Japan
| | - Atsuhiko Ishida
- Laboratory of Molecular Brain Science, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| | - Noriyuki Sueyoshi
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki, Kagawa 761-0795, Japan
| |
Collapse
|
17
|
Williams AL, Walton CB, Pinell B, Khadka VS, Dunn B, Lee K, Anagaran MCT, Avelar A, Shohet RV. Ischemic heart injury leads to HIF1-dependent differential splicing of CaMK2γ. Sci Rep 2021; 11:13116. [PMID: 34162925 PMCID: PMC8222303 DOI: 10.1038/s41598-021-92426-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 05/19/2021] [Indexed: 12/04/2022] Open
Abstract
Ischemic heart disease is a leading cause of heart failure and hypoxia inducible factor 1 (HIF1) is a key transcription factor in the response to hypoxic injury. Our lab has developed a mouse model in which a mutated, oxygen-stable form of HIF1α (HIF-PPN) can be inducibly expressed in cardiomyocytes. We observed rapid cardiac dilation and loss of contractility in these mice due to lower expression of excitation-contraction coupling genes and reduced calcium flux. As alternative splicing plays an underappreciated role in transcriptional regulation, we used RNA sequencing to search for splicing changes in calcium-handling genes of HIF-PPN hearts and compared them to previous sequencing data from a model of myocardial infarction (MI) to select for transcripts that are modified in a pathological setting. We found overlap between genes differentially expressed in HIF-PPN and post-MI mice (54/131 genes upregulated in HIF-PPN hearts at 1 day and/or 3 days post-MI, and 45/78 downregulated), as well as changes in alternative splicing. Interestingly, calcium/calmodulin dependent protein kinase II, gamma (CAMK2G) was alternatively spliced in both settings, with variant 1 (v1) substantially decreased compared to variants 2 (v2) and 3 (v3). These findings were also replicated in vitro when cells were transfected with HIF-PPN or exposed to hypoxia. Further analysis of CAMK2γ protein abundance revealed only v1 was detectable and substantially decreased up to 7 days post-MI. Rbfox1, a splicing factor of CAMK2G, was also decreased in HIF-PPN and post-MI hearts. Subcellular fractionation showed CAMK2γ v1 was found in the nuclear and cytoplasmic fractions, and abundance decreased in both fractions post-MI. Chromatin immunoprecipitation analysis of HIF1 in post-MI hearts also demonstrated direct HIF1 binding to CAMK2G. CaMK2 is a key transducer of calcium signals in both physiological and pathological settings. The predominantly expressed isoform in the heart, CaMK2δ, has been extensively studied in cardiac injury, but the specific role of CaMK2γ is not well defined. Our data suggest that loss of CaMK2γ after MI is HIF1-dependent and may play an important role in the heart's calcium signaling and transcriptional response to hypoxia.
Collapse
Affiliation(s)
- Allison Lesher Williams
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo St. BSB 311, Honolulu, HI, 96813, USA
| | - Chad B Walton
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo St. BSB 311, Honolulu, HI, 96813, USA
| | - Blake Pinell
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo St. BSB 311, Honolulu, HI, 96813, USA
| | - Vedbar S Khadka
- Bioinformatics Core, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Brandyn Dunn
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo St. BSB 311, Honolulu, HI, 96813, USA
| | - Katie Lee
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo St. BSB 311, Honolulu, HI, 96813, USA
| | - M C Therese Anagaran
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo St. BSB 311, Honolulu, HI, 96813, USA
| | - Abigail Avelar
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo St. BSB 311, Honolulu, HI, 96813, USA
| | - Ralph V Shohet
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo St. BSB 311, Honolulu, HI, 96813, USA.
| |
Collapse
|
18
|
Yang Y, Jiang K, Liu X, Qin M, Xiang Y. CaMKII in Regulation of Cell Death During Myocardial Reperfusion Injury. Front Mol Biosci 2021; 8:668129. [PMID: 34141722 PMCID: PMC8204011 DOI: 10.3389/fmolb.2021.668129] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/10/2021] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular disease is the leading cause of death worldwide. In spite of the mature managements of myocardial infarction (MI), post-MI reperfusion (I/R) injury results in high morbidity and mortality. Cardiomyocyte Ca2+ overload is a major factor of I/R injury, initiating a cascade of events contributing to cardiomyocyte death and myocardial dysfunction. Ca2+/calmodulin-dependent protein kinase II (CaMKII) plays a critical role in cardiomyocyte death response to I/R injury, whose activation is a key feature of myocardial I/R in causing intracellular mitochondrial swelling, endoplasmic reticulum (ER) Ca2+ leakage, abnormal myofilament contraction, and other adverse reactions. CaMKII is a multifunctional serine/threonine protein kinase, and CaMKIIδ, the dominant subtype in heart, has been widely studied in the activation, location, and related pathways of cardiomyocytes death, which has been considered as a potential targets for pharmacological inhibition. In this review, we summarize a brief overview of CaMKII with various posttranslational modifications and its properties in myocardial I/R injury. We focus on the molecular mechanism of CaMKII involved in regulation of cell death induced by myocardial I/R including necroptosis and pyroptosis of cardiomyocyte. Finally, we highlight that targeting CaMKII modifications and cell death involved pathways may provide new insights to understand the conversion of cardiomyocyte fate in the setting of myocardial I/R injury.
Collapse
Affiliation(s)
- Yingjie Yang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Kai Jiang
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xu Liu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Mu Qin
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yaozu Xiang
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|
19
|
Proietti Onori M, van Woerden GM. Role of calcium/calmodulin-dependent kinase 2 in neurodevelopmental disorders. Brain Res Bull 2021; 171:209-220. [PMID: 33774142 DOI: 10.1016/j.brainresbull.2021.03.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 01/28/2023]
Abstract
Neurodevelopmental disorders are a complex and heterogeneous group of neurological disorders characterized by their early-onset and estimated to affect more than 3% of children worldwide. The rapid advancement of sequencing technologies in the past years allowed the identification of hundreds of variants in several different genes causing neurodevelopmental disorders. Between those, new variants in the Calcium/calmodulin dependent protein kinase II (CAMK2) genes were recently linked to intellectual disability. Despite many years of research on CAMK2, this proves for the first time that this well-known and highly conserved molecule plays an important role in the human brain. In this review, we give an overview of the identified CAMK2 variants, and we speculate on potential mechanisms through which dysfunctions in CAMK2 result in neurodevelopmental disorders. Additionally, we discuss how the identification of CAMK2 variants might result in new exciting discoveries regarding the function of CAMK2 in the human brain.
Collapse
Affiliation(s)
- Martina Proietti Onori
- Department of Neuroscience, Erasmus MC, Rotterdam, 3015 GD, the Netherlands; The ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, Rotterdam, 3015 GD, the Netherlands
| | - Geeske M van Woerden
- Department of Neuroscience, Erasmus MC, Rotterdam, 3015 GD, the Netherlands; The ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, Rotterdam, 3015 GD, the Netherlands.
| |
Collapse
|
20
|
Duran J, Nickel L, Estrada M, Backs J, van den Hoogenhof MMG. CaMKIIδ Splice Variants in the Healthy and Diseased Heart. Front Cell Dev Biol 2021; 9:644630. [PMID: 33777949 PMCID: PMC7991079 DOI: 10.3389/fcell.2021.644630] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/22/2021] [Indexed: 01/16/2023] Open
Abstract
RNA splicing has been recognized in recent years as a pivotal player in heart development and disease. The Ca2+/calmodulin dependent protein kinase II delta (CaMKIIδ) is a multifunctional Ser/Thr kinase family and generates at least 11 different splice variants through alternative splicing. This enzyme, which belongs to the CaMKII family, is the predominant family member in the heart and functions as a messenger toward adaptive or detrimental signaling in cardiomyocytes. Classically, the nuclear CaMKIIδB and cytoplasmic CaMKIIδC splice variants are described as mediators of arrhythmias, contractile function, Ca2+ handling, and gene transcription. Recent findings also put CaMKIIδA and CaMKIIδ9 as cardinal players in the global CaMKII response in the heart. In this review, we discuss and summarize the new insights into CaMKIIδ splice variants and their (proposed) functions, as well as CaMKII-engineered mouse phenotypes and cardiac dysfunction related to CaMKIIδ missplicing. We also discuss RNA splicing factors affecting CaMKII splicing. Finally, we discuss the translational perspective derived from these insights and future directions on CaMKIIδ splicing research in the healthy and diseased heart.
Collapse
Affiliation(s)
- Javier Duran
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Lennart Nickel
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Manuel Estrada
- Faculty of Medicine, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Johannes Backs
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Maarten M G van den Hoogenhof
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| |
Collapse
|
21
|
Jiang SJ, Wang W. Research progress on the role of CaMKII in heart disease. Am J Transl Res 2020; 12:7625-7639. [PMID: 33437349 PMCID: PMC7791482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/21/2020] [Indexed: 06/12/2023]
Abstract
In the heart, Ca2+ participates in electrical activity and myocardial contraction, which is closely related to the generation of action potential and excitation contraction coupling (ECC) and plays an important role in various signal cascades and regulates different physiological processes. In the Ca2+ related physiological activities, CaMKII is a key downstream regulator, involving autophosphorylation and post-translational modification, and plays an important role in the excitation contraction coupling and relaxation events of cardiomyocytes. This paper reviews the relationship between CaMKII and various substances in the pathological process of myocardial apoptosis and necrosis, myocardial hypertrophy and arrhythmia, and what roles it plays in the development of disease in complex networks. This paper also introduces the drugs targeting at CaMKII to treat heart disease.
Collapse
Affiliation(s)
- Shi-Jun Jiang
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, China
| | - Wei Wang
- Department of Cardiology, Affiliated Taihe Hospital of Hubei University of MedicineShiyan 442000, Hubei, China
| |
Collapse
|
22
|
Takano APC, Senger N, Barreto-Chaves MLM. The endocrinological component and signaling pathways associated to cardiac hypertrophy. Mol Cell Endocrinol 2020; 518:110972. [PMID: 32777452 DOI: 10.1016/j.mce.2020.110972] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 07/14/2020] [Accepted: 07/30/2020] [Indexed: 02/06/2023]
Abstract
Although myocardial growth corresponds to an adaptive response to maintain cardiac contractile function, the cardiac hypertrophy is a condition that occurs in many cardiovascular diseases and typically precedes the onset of heart failure. Different endocrine factors such as thyroid hormones, insulin, insulin-like growth factor 1 (IGF-1), angiotensin II (Ang II), endothelin (ET-1), catecholamines, estrogen, among others represent important stimuli to cardiomyocyte hypertrophy. Thus, numerous endocrine disorders manifested as changes in the local environment or multiple organ systems are especially important in the context of progression from cardiac hypertrophy to heart failure. Based on that information, this review summarizes experimental findings regarding the influence of such hormones upon signalling pathways associated with cardiac hypertrophy. Understanding mechanisms through which hormones differentially regulate cardiac hypertrophy could open ways to obtain therapeutic approaches that contribute to prevent or delay the onset of heart failure related to endocrine diseases.
Collapse
Affiliation(s)
| | - Nathalia Senger
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | | |
Collapse
|
23
|
Nassal D, Gratz D, Hund TJ. Challenges and Opportunities for Therapeutic Targeting of Calmodulin Kinase II in Heart. Front Pharmacol 2020; 11:35. [PMID: 32116711 PMCID: PMC7012788 DOI: 10.3389/fphar.2020.00035] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/14/2020] [Indexed: 12/19/2022] Open
Abstract
Heart failure remains a major health burden around the world. Despite great progress in delineation of molecular mechanisms underlying development of disease, standard therapy has not advanced at the same pace. The multifunctional signaling molecule Ca2+/calmodulin-dependent protein kinase II (CaMKII) has received considerable attention over recent years for its central role in maladaptive remodeling and arrhythmias in the setting of chronic disease. However, these basic science discoveries have yet to translate into new therapies for human patients. This review addresses both the promise and barriers to developing translational therapies that target CaMKII signaling to abrogate pathologic remodeling in the setting of chronic disease. Efforts in small molecule design are discussed, as well as alternative targeting approaches that exploit novel avenues for compound delivery and/or genetic approaches to affect cardiac CaMKII signaling. These alternative strategies provide hope for overcoming some of the challenges that have limited the development of new therapies.
Collapse
Affiliation(s)
- Drew Nassal
- The Frick Center for Heart Failure and Arrhythmia and Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Daniel Gratz
- The Frick Center for Heart Failure and Arrhythmia and Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States.,Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH, United States
| | - Thomas J Hund
- The Frick Center for Heart Failure and Arrhythmia and Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States.,Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH, United States.,Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
24
|
Bayer KU, Schulman H. CaM Kinase: Still Inspiring at 40. Neuron 2019; 103:380-394. [PMID: 31394063 DOI: 10.1016/j.neuron.2019.05.033] [Citation(s) in RCA: 219] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 02/12/2019] [Accepted: 05/21/2019] [Indexed: 01/07/2023]
Abstract
The Ca2+/calmodulin (CaM)-dependent protein kinase II (CaMKII) was touted as a memory molecule, even before its involvement in long-term potentiation (LTP) was shown. The enzyme has not disappointed, with subsequent demonstrations of remarkable structural and regulatory properties. Its neuronal functions now extend to long-term depression (LTD), and last year saw the first direct evidence for memory storage by CaMKII. Although CaMKII may have taken the spotlight, it is a member of a large family of diverse and interesting CaM kinases. Our aim is to place CaMKII in context of the other CaM kinases and then review certain aspects of this kinase that are of current interest.
Collapse
Affiliation(s)
- K Ulrich Bayer
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | | |
Collapse
|
25
|
Alishahi M, Ghaedrahmati F, Kolagar TA, Winlow W, Nikkar N, Farzaneh M, Khoshnam SE. Long non-coding RNAs and cell death following ischemic stroke. Metab Brain Dis 2019; 34:1243-1251. [PMID: 31055786 DOI: 10.1007/s11011-019-00423-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/21/2019] [Indexed: 01/02/2023]
Abstract
Stroke is a major cause of morbidity and mortality worldwide, and extensive efforts have focused on the improvement of therapeutic strategies to reduce cell death following ischemic stroke. Uncovering the cellular and molecular pathophysiological processes in ischemic stroke have been a top priority. Long noncoding RNAs (lncRNAs) are endogenous molecules that play key roles in the pathophysiology of cerebral ischemia, and involved in the neuronal cell death during ischemic stroke. In recent years, a bulk of aberrantly expressed lncRNAs have been screened out in ischemic stroke insulted animals. LncRNAs along with their targets could affect the genetic machinery at molecular levels, and exploring their functions and mechanisms may be a promising option for ischemic stroke treatment. In this review, we summarize the current knowledge for lncRNAs in ischemic stroke, focusing on the role of specific lncRNAs that may underlie cell death to find possible therapeutic targets.
Collapse
Affiliation(s)
- Masoumeh Alishahi
- Department of Biology, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | - Farhoodeh Ghaedrahmati
- Department of Immunology, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - William Winlow
- Dipartimento di Biologia, Università degli Studi di Napoli, Federico II, Via Cintia 26, 80126, Naples, Italy
- Honorary Research Fellow, Institute of Ageing and Chronic Diseases, University of Liverpool, The APEX building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Negin Nikkar
- Department of Biology, Faculty of Sciences, Alzahra University, Tehran, Iran
| | - Maryam Farzaneh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Seyed Esmaeil Khoshnam
- Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
26
|
Zalcman G, Federman N, Romano A. CaMKII Isoforms in Learning and Memory: Localization and Function. Front Mol Neurosci 2018; 11:445. [PMID: 30564099 PMCID: PMC6288437 DOI: 10.3389/fnmol.2018.00445] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 11/19/2018] [Indexed: 12/13/2022] Open
Abstract
Calcium/calmodulin-dependent protein kinase II (CaMKII) is a key protein kinase in neural plasticity and memory, as have been shown in several studies since the first evidence in long-term potentiation (LTP) 30 years ago. However, most of the studies were focused mainly in one of the four isoforms of this protein kinase, the CaMKIIα. Here we review the characteristics and the role of each of the four isoforms in learning, memory and neural plasticity, considering the well known local role of α and β isoforms in dendritic terminals as well as recent findings about the γ isoform as calcium signals transducers from synapse to nucleus and δ isoform as a kinase required for a more persistent memory trace.
Collapse
Affiliation(s)
- Gisela Zalcman
- Instituto de Fisiología, Biología Molecular y Neurociencias, Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.,Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Noel Federman
- Instituto de Fisiología, Biología Molecular y Neurociencias, Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.,Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Arturo Romano
- Instituto de Fisiología, Biología Molecular y Neurociencias, Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.,Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
27
|
Activation of CaMKIIδA promotes Ca 2+ leak from the sarcoplasmic reticulum in cardiomyocytes of chronic heart failure rats. Acta Pharmacol Sin 2018; 39:1604-1612. [PMID: 29900930 DOI: 10.1038/aps.2018.20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 02/19/2018] [Indexed: 12/14/2022]
Abstract
Activation of the Ca2+/calmodulin-dependent protein kinase II isoform δA (CaMKIIδA) disturbs intracellular Ca2+ homeostasis in cardiomyocytes during chronic heart failure (CHF). We hypothesized that upregulation of CaMKIIδA in cardiomyocytes might enhance Ca2+ leak from the sarcoplasmic reticulum (SR) via activation of phosphorylated ryanodine receptor type 2 (P-RyR2) and decrease Ca2+ uptake by inhibition of SR calcium ATPase 2a (SERCA2a). In this study, CHF was induced in rats by ligation of the left anterior descending coronary artery. We found that CHF caused an increase in the expression of CaMKIIδA and P-RyR2 in the left ventricle (LV). The role of CaMKIIδA in regulation of P-RyR2 was elucidated in cardiomyocytes isolated from neonatal rats in vitro. Hypoxia induced upregulation of CaMKIIδA and activation of P-RyR2 in the cardiomyocytes, which both were attenuated by knockdown of CaMKIIδA. Furthermore, we showed that knockdown of CaMKIIδA significantly decreased the Ca2+ leak from the SR elicited by hypoxia in the cardiomyocytes. In addition, CHF also induced a downregulation of SERCA2a in the LV of CHF rats. Knockdown of CaMKIIδA normalized hypoxia-induced downregulation of SERCA2a in cardiomyocytes in vitro. The results demonstrate that the inhibition of CaMKIIδA may improve cardiac function by preventing SR Ca2+ leak through downregulation of P-RyR2 and upregulation of SERCA2a expression in cardiomyocytes in CHF.
Collapse
|
28
|
van den Hoogenhof MM, Beqqali A, Amin AS, van der Made I, Aufiero S, Khan MA, Schumacher CA, Jansweijer JA, van Spaendonck-Zwarts KY, Remme CA, Backs J, Verkerk AO, Baartscheer A, Pinto YM, Creemers EE. RBM20 Mutations Induce an Arrhythmogenic Dilated Cardiomyopathy Related to Disturbed Calcium Handling. Circulation 2018; 138:1330-1342. [DOI: 10.1161/circulationaha.117.031947] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background:
Mutations in RBM20 (RNA-binding motif protein 20) cause a clinically aggressive form of dilated cardiomyopathy, with an increased risk of malignant ventricular arrhythmias. RBM20 is a splicing factor that targets multiple pivotal cardiac genes, such as Titin (TTN) and CAMK2D (calcium/calmodulin-dependent kinase II delta). Aberrant TTN splicing is thought to be the main determinant of RBM20-induced dilated cardiomyopathy, but is not likely to explain the increased risk of arrhythmias. Here, we investigated the extent to which RBM20 mutation carriers have an increased risk of arrhythmias and explore the underlying molecular mechanism.
Methods:
We compared clinical characteristics of RBM20 and TTN mutation carriers and used our previously generated Rbm20 knockout (KO) mice to investigate downstream effects of Rbm20-dependent splicing. Cellular electrophysiology and Ca
2+
measurements were performed on isolated cardiomyocytes from Rbm20 KO mice to determine the intracellular consequences of reduced Rbm20 levels.
Results:
Sustained ventricular arrhythmias were more frequent in human RBM20 mutation carriers than in TTN mutation carriers (44% versus 5%, respectively,
P
=0.006). Splicing events that affected Ca
2+
- and ion-handling genes were enriched in Rbm20 KO mice, most notably in the genes CamkIIδ and RyR2. Aberrant splicing of CamkIIδ in Rbm20 KO mice resulted in a remarkable shift of CamkIIδ toward the δ-A isoform that is known to activate the L-type Ca
2+
current (
I
Ca,L
). In line with this, we found an increased
I
Ca,L
, intracellular Ca
2+
overload and increased sarcoplasmic reticulum Ca
2+
content in Rbm20 KO myocytes. In addition, not only complete loss of Rbm20, but also heterozygous loss of Rbm20 increased spontaneous sarcoplasmic reticulum Ca
2+
releases, which could be attenuated by treatment with the
I
Ca,L
antagonist verapamil.
Conclusions:
We show that loss of Rbm20 disturbs Ca
2+
handling and leads to more proarrhythmic Ca
2+
releases from the sarcoplasmic reticulum. Patients that carry a pathogenic RBM20 mutation have more ventricular arrhythmias despite a similar left ventricular function, in comparison with patients with a TTN mutation. Our experimental data suggest that RBM20 mutation carriers may benefit from treatment with an
I
Ca,L
blocker to reduce their arrhythmia burden.
Collapse
Affiliation(s)
- Maarten M.G. van den Hoogenhof
- Department of Experimental Cardiology (M.M.G.v.d.H., A.B., A.S.A., I.v.d.M., S.A., M.A.F.K., C.A.S., J.A.J., C.A.R., A.o.V., A.B., Y.M.P., E.E.C.), Academic Medical Center, Amsterdam, The Netherlands
| | - Abdelaziz Beqqali
- Department of Experimental Cardiology (M.M.G.v.d.H., A.B., A.S.A., I.v.d.M., S.A., M.A.F.K., C.A.S., J.A.J., C.A.R., A.o.V., A.B., Y.M.P., E.E.C.), Academic Medical Center, Amsterdam, The Netherlands
| | - Ahmad S. Amin
- Department of Experimental Cardiology (M.M.G.v.d.H., A.B., A.S.A., I.v.d.M., S.A., M.A.F.K., C.A.S., J.A.J., C.A.R., A.o.V., A.B., Y.M.P., E.E.C.), Academic Medical Center, Amsterdam, The Netherlands
| | - Ingeborg van der Made
- Department of Experimental Cardiology (M.M.G.v.d.H., A.B., A.S.A., I.v.d.M., S.A., M.A.F.K., C.A.S., J.A.J., C.A.R., A.o.V., A.B., Y.M.P., E.E.C.), Academic Medical Center, Amsterdam, The Netherlands
| | - Simona Aufiero
- Department of Experimental Cardiology (M.M.G.v.d.H., A.B., A.S.A., I.v.d.M., S.A., M.A.F.K., C.A.S., J.A.J., C.A.R., A.o.V., A.B., Y.M.P., E.E.C.), Academic Medical Center, Amsterdam, The Netherlands
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics (S.A., M.A.F.K.), Academic Medical Center, Amsterdam, The Netherlands
| | - Mohsin A.F. Khan
- Department of Experimental Cardiology (M.M.G.v.d.H., A.B., A.S.A., I.v.d.M., S.A., M.A.F.K., C.A.S., J.A.J., C.A.R., A.o.V., A.B., Y.M.P., E.E.C.), Academic Medical Center, Amsterdam, The Netherlands
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics (S.A., M.A.F.K.), Academic Medical Center, Amsterdam, The Netherlands
| | - Cees A. Schumacher
- Department of Experimental Cardiology (M.M.G.v.d.H., A.B., A.S.A., I.v.d.M., S.A., M.A.F.K., C.A.S., J.A.J., C.A.R., A.o.V., A.B., Y.M.P., E.E.C.), Academic Medical Center, Amsterdam, The Netherlands
| | - Joeri A. Jansweijer
- Department of Experimental Cardiology (M.M.G.v.d.H., A.B., A.S.A., I.v.d.M., S.A., M.A.F.K., C.A.S., J.A.J., C.A.R., A.o.V., A.B., Y.M.P., E.E.C.), Academic Medical Center, Amsterdam, The Netherlands
| | | | - Carol Ann Remme
- Department of Experimental Cardiology (M.M.G.v.d.H., A.B., A.S.A., I.v.d.M., S.A., M.A.F.K., C.A.S., J.A.J., C.A.R., A.o.V., A.B., Y.M.P., E.E.C.), Academic Medical Center, Amsterdam, The Netherlands
| | - Johannes Backs
- Department of Molecular Cardiology and Epigenetics, Heidelberg University, Germany (J.B.)
| | - Arie O. Verkerk
- Department of Experimental Cardiology (M.M.G.v.d.H., A.B., A.S.A., I.v.d.M., S.A., M.A.F.K., C.A.S., J.A.J., C.A.R., A.o.V., A.B., Y.M.P., E.E.C.), Academic Medical Center, Amsterdam, The Netherlands
- Department of Medical Biology (A.o.V.), Academic Medical Center, Amsterdam, The Netherlands
| | - Antonius Baartscheer
- Department of Experimental Cardiology (M.M.G.v.d.H., A.B., A.S.A., I.v.d.M., S.A., M.A.F.K., C.A.S., J.A.J., C.A.R., A.o.V., A.B., Y.M.P., E.E.C.), Academic Medical Center, Amsterdam, The Netherlands
| | - Yigal M. Pinto
- Department of Experimental Cardiology (M.M.G.v.d.H., A.B., A.S.A., I.v.d.M., S.A., M.A.F.K., C.A.S., J.A.J., C.A.R., A.o.V., A.B., Y.M.P., E.E.C.), Academic Medical Center, Amsterdam, The Netherlands
| | - Esther E. Creemers
- Department of Experimental Cardiology (M.M.G.v.d.H., A.B., A.S.A., I.v.d.M., S.A., M.A.F.K., C.A.S., J.A.J., C.A.R., A.o.V., A.B., Y.M.P., E.E.C.), Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
29
|
Ye J, Das S, Roy A, Wei W, Huang H, Lorenz-Guertin JM, Xu Q, Jacob TC, Wang B, Sun D, Wang QJ. Ischemic Injury-Induced CaMKIIδ and CaMKIIγ Confer Neuroprotection Through the NF-κB Signaling Pathway. Mol Neurobiol 2018; 56:2123-2136. [PMID: 29992531 PMCID: PMC6394630 DOI: 10.1007/s12035-018-1198-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/26/2018] [Indexed: 12/13/2022]
Abstract
Ca2+/calmodulin-dependent protein kinase II (CaMKII) has long been implicated in neuronal injury caused by acute ischemia/reperfusion (I/R). However, its precise role and regulatory mechanisms remain obscure. Here, we investigated the role of the CaMKII family in neuronal survival during I/R. Our data indicated that CAMK2D/CaMKIIδ and CAMK2G/CaMKIIγ were selectively upregulated in a time-dependent manner at both transcriptional and protein levels after acute ischemia. Overexpression of CaMKIIδ promoted neuronal survival, while their depletion exacerbated ischemic neuronal death. Similar to CaMKIIδ, knockdown of CAMKIIγ resulted in significant neuronal death after I/R. We further identified CaMKIIδ2 as the subtype that is selectively induced by I/R in primary neurons. The induction of CaMKIIδ was controlled in part by a pair of long non-coding RNAs (lncRNAs), C2dat1 and C2dat2. C2dat2, similar to C2dat1, was upregulated by I/R and cooperated with C2dat1 to modulate CaMKIIδ expression. Knockdown of C2dat1/2 blocked OGD/R-induced CaMKIIδ expression and decreased neuronal survival but did not affect the levels of CaMKIIγ, indicating specific targeting of CAMK2D by C2dat1/2. Mechanistically, I/R-induced CaMKIIδ and CaMKIIγ caused the upregulation of IKKα/β and further activation of the NF-κB signaling pathway to protect neurons from ischemic damage. Genetically, downregulating p65 subunit of NF-κB in mice increased I/R-induced neuronal death by blocking the activity of CaMKII/IKK/IκBα/NF-κB signaling axis. In summary, CaMKIIδ and CaMKIIγ are novel I/R-induced genes that promote neuronal survival during ischemic injury. The upregulation of these CaMKII kinases led to activation of the NF-κB signaling pathway, which protects neurons from ischemic damage.
Collapse
Affiliation(s)
- Jing Ye
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, E1354 BST, Pittsburgh, PA, 15261, USA.,Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Sabyasachi Das
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, E1354 BST, Pittsburgh, PA, 15261, USA
| | - Adhiraj Roy
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, E1354 BST, Pittsburgh, PA, 15261, USA
| | - Wenzhong Wei
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Huachen Huang
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Neurology, The First affiliate Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Joshua Michael Lorenz-Guertin
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, E1354 BST, Pittsburgh, PA, 15261, USA
| | - Qian Xu
- China-UK-NYNU-RRes Joint Laboratory, Nanyang Normal University, Nanyang, People's Republic of China
| | - Tija C Jacob
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, E1354 BST, Pittsburgh, PA, 15261, USA
| | - Bing Wang
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Qiming Jane Wang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, E1354 BST, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
30
|
Beckendorf J, van den Hoogenhof MMG, Backs J. Physiological and unappreciated roles of CaMKII in the heart. Basic Res Cardiol 2018; 113:29. [PMID: 29905892 PMCID: PMC6003982 DOI: 10.1007/s00395-018-0688-8] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/11/2018] [Indexed: 12/27/2022]
Abstract
In the cardiomyocyte, CaMKII has been identified as a nodal influencer of excitation-contraction and also excitation-transcription coupling. Its activity can be regulated in response to changes in intracellular calcium content as well as after several post-translational modifications. Some of the effects mediated by CaMKII may be considered adaptive, while effects of sustained CaMKII activity may turn into the opposite and are detrimental to cardiac integrity and function. As such, CaMKII has long been noted as a promising target for pharmacological inhibition, but the ubiquitous nature of CaMKII has made it difficult to target CaMKII specifically where it is detrimental. In this review, we provide a brief overview of the physiological and pathophysiological properties of CaMKII signaling, but we focus on the physiological and adaptive functions of CaMKII. Furthermore, special consideration is given to the emerging role of CaMKII as a mediator of inflammatory processes in the heart.
Collapse
Affiliation(s)
- Jan Beckendorf
- Department for Molecular Cardiology and Epigenetics, University Hospital Heidelberg, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany.,Department for Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Maarten M G van den Hoogenhof
- Department for Molecular Cardiology and Epigenetics, University Hospital Heidelberg, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Johannes Backs
- Department for Molecular Cardiology and Epigenetics, University Hospital Heidelberg, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany. .,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany.
| |
Collapse
|
31
|
Analysis of the CaMKIIα and β splice-variant distribution among brain regions reveals isoform-specific differences in holoenzyme formation. Sci Rep 2018; 8:5448. [PMID: 29615706 PMCID: PMC5882894 DOI: 10.1038/s41598-018-23779-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/20/2018] [Indexed: 12/21/2022] Open
Abstract
Four CaMKII isoforms are encoded by distinct genes, and alternative splicing within the variable linker-region generates additional diversity. The α and β isoforms are largely brain-specific, where they mediate synaptic functions underlying learning, memory and cognition. Here, we determined the α and β splice-variant distribution among different mouse brain regions. Surprisingly, the nuclear variant αB was detected in all regions, and even dominated in hypothalamus and brain stem. For CaMKIIβ, the full-length variant dominated in most regions (with higher amounts of minor variants again seen in hypothalamus and brain stem). The mammalian but not fish CaMKIIβ gene lacks exon v3N that encodes the nuclear localization signal in αB, but contains three exons not found in the CaMKIIα gene (exons v1, v4, v5). While skipping of exons v1 and/or v5 generated the minor splice-variants β’, βe and βe’, essentially all transcripts contained exon v4. However, we instead detected another minor splice-variant (now termed βH), which lacks part of the hub domain that mediates formation of CaMKII holoenzymes. Surprisingly, in an optogenetic cellular assay of protein interactions, CaMKIIβH was impaired for binding to the β hub domain, but still bound CaMKIIα. This provides the first indication for isoform-specific differences in holoenzyme formation.
Collapse
|
32
|
Heidarinejad M, Nakamura H, Inoue T. Stimulation-induced changes in diffusion and structure of calmodulin and calmodulin-dependent protein kinase II proteins in neurons. Neurosci Res 2018; 136:13-32. [PMID: 29395358 DOI: 10.1016/j.neures.2018.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 01/11/2018] [Accepted: 01/11/2018] [Indexed: 11/28/2022]
Abstract
Calcium/calmodulin-dependent protein kinase II (CaMKII) and calmodulin (CaM) play essential roles in synaptic plasticity, which is an elementary process of learning and memory. In this study, fluorescence correlation spectroscopy (FCS) revealed diffusion properties of CaM, CaMKIIα and CaMKIIβ proteins in human embryonic kidney 293 (HEK293) cells and hippocampal neurons. A simultaneous multiple-point FCS recording system was developed on a random-access two-photon microscope, which facilitated efficient analysis of molecular dynamics in neuronal compartments. The diffusion of CaM in neurons was slower than that in HEK293 cells at rest, while the diffusion in stimulated neurons was accelerated and indistinguishable from that in HEK293 cells. This implied that activity-dependent binding partners of CaM exist in neurons, which slow down the diffusion at rest. Diffusion properties of CaMKIIα and β proteins implied that major populations of these proteins exist as holoenzymatic forms. Upon stimulation of neurons, the diffusion of CaMKIIα and β proteins became faster with reduced particle brightness, indicating drastic structural changes of the proteins such as dismissal from holoenzyme structure and further fragmentation.
Collapse
Affiliation(s)
- Morteza Heidarinejad
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan.
| | - Hideki Nakamura
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan.
| | - Takafumi Inoue
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan.
| |
Collapse
|
33
|
Physiological and Pathological Roles of CaMKII-PP1 Signaling in the Brain. Int J Mol Sci 2017; 19:ijms19010020. [PMID: 29271887 PMCID: PMC5795971 DOI: 10.3390/ijms19010020] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 12/19/2017] [Accepted: 12/20/2017] [Indexed: 01/25/2023] Open
Abstract
Ca2+/calmodulin (CaM)-dependent protein kinase II (CaMKII), a multifunctional serine (Ser)/threonine (Thr) protein kinase, regulates diverse activities related to Ca2+-mediated neuronal plasticity in the brain, including synaptic activity and gene expression. Among its regulators, protein phosphatase-1 (PP1), a Ser/Thr phosphatase, appears to be critical in controlling CaMKII-dependent neuronal signaling. In postsynaptic densities (PSDs), CaMKII is required for hippocampal long-term potentiation (LTP), a cellular process correlated with learning and memory. In response to Ca2+ elevation during hippocampal LTP induction, CaMKIIα, an isoform that translocates from the cytosol to PSDs, is activated through autophosphorylation at Thr286, generating autonomous kinase activity and a prolonged Ca2+/CaM-bound state. Moreover, PP1 inhibition enhances Thr286 autophosphorylation of CaMKIIα during LTP induction. By contrast, CaMKII nuclear import is regulated by Ser332 phosphorylation state. CaMKIIδ3, a nuclear isoform, is dephosphorylated at Ser332 by PP1, promoting its nuclear translocation, where it regulates transcription. In this review, we summarize physio-pathological roles of CaMKII/PP1 signaling in neurons. CaMKII and PP1 crosstalk and regulation of gene expression is important for neuronal plasticity as well as survival and/or differentiation.
Collapse
|
34
|
Gray CB, Suetomi T, Xiang S, Mishra S, Blackwood EA, Glembotski CC, Miyamoto S, Westenbrink BD, Brown JH. CaMKIIδ subtypes differentially regulate infarct formation following ex vivo myocardial ischemia/reperfusion through NF-κB and TNF-α. J Mol Cell Cardiol 2017; 103:48-55. [PMID: 28077321 PMCID: PMC5564300 DOI: 10.1016/j.yjmcc.2017.01.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 01/04/2017] [Accepted: 01/05/2017] [Indexed: 02/08/2023]
Abstract
Deletion of Ca2+/calmodulin-dependent protein kinase II delta (CaMKIIδ) has been shown to protect against in vivo ischemia/reperfusion (I/R) injury. It remains unclear which CaMKIIδ isoforms and downstream mechanisms are responsible for the salutary effects of CaMKIIδ gene deletion. In this study we sought to compare the roles of the CaMKIIδB and CaMKIIδC subtypes and the mechanisms by which they contribute to ex vivo I/R damage. WT, CaMKIIδKO, and mice expressing only CaMKIIδB or δC were subjected to ex vivo global ischemia for 25min followed by reperfusion. Infarct formation was assessed at 60min reperfusion by triphenyl tetrazolium chloride (TTC) staining. Deletion of CaMKIIδ conferred significant protection from ex vivo I/R. Re-expression of CaMKIIδC in the CaMKIIδKO background reversed this effect and exacerbated myocardial damage and dysfunction following I/R, while re-expression of CaMKIIδB was protective. Selective activation of CaMKIIδC in response to I/R was evident in a subcellular fraction enriched for cytosolic/membrane proteins. Further studies demonstrated differential regulation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling and tumor necrosis factor alpha (TNF-α) expression by CaMKIIδB and CaMKIIδC. Selective activation of CaMKIIδC was also observed and associated with NF-κB activation in neonatal rat ventricular myocytes (NRVMs) subjected to oxidative stress. Pharmacological inhibition of NF-κB or TNF-α significantly ameliorated infarct formation in WT mice and those that re-express CaMKIIδC, demonstrating distinct roles for CaMKIIδ subtypes in I/R and implicating acute activation of CaMKIIδC and NF-κB in the pathogenesis of reperfusion injury.
Collapse
Affiliation(s)
- Charles B.B. Gray
- Department of Pharmacology, University of California San Diego, San
Diego, CA, USA
| | - Takeshi Suetomi
- Department of Pharmacology, University of California San Diego, San
Diego, CA, USA
| | - Sunny Xiang
- Department of Pharmacology, University of California San Diego, San
Diego, CA, USA
- In Vivo Pharmacological & Clinical Laboratory Services, The
Jackson Laboratory, Bar Harbor, ME, USA
| | | | - Erik A. Blackwood
- San Diego State University Heart Institute and the Department of
Biology, San Diego, CA, USA
| | | | - Shigeki Miyamoto
- Department of Pharmacology, University of California San Diego, San
Diego, CA, USA
| | - B. Daan Westenbrink
- Department of Pharmacology, University of California San Diego, San
Diego, CA, USA
- Department of Cardiology, University Medical Center Groningen,
University of Groningen, Groningen, The Netherlands
| | - Joan Heller Brown
- Department of Pharmacology, University of California San Diego, San
Diego, CA, USA
| |
Collapse
|
35
|
Saddouk FZ, Ginnan R, Singer HA. Ca 2+/Calmodulin-Dependent Protein Kinase II in Vascular Smooth Muscle. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 78:171-202. [PMID: 28212797 DOI: 10.1016/bs.apha.2016.08.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ca2+-dependent signaling pathways are central regulators of differentiated vascular smooth muscle (VSM) contractile function. In addition, Ca2+ signals regulate VSM gene transcription, proliferation, and migration of dedifferentiated or "synthetic" phenotype VSM cells. Synthetic phenotype VSM growth and hyperplasia are hallmarks of pervasive vascular diseases including hypertension, atherosclerosis, postangioplasty/in-stent restenosis, and vein graft failure. The serine/threonine protein kinase Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a ubiquitous mediator of intracellular Ca2+ signals. Its multifunctional nature, structural complexity, diversity of isoforms, and splice variants all characterize this protein kinase and make study of its activity and function challenging. The kinase has unique autoregulatory mechanisms, and emerging studies suggest that it can function to integrate Ca2+ and reactive oxygen/nitrogen species signaling. Differentiated VSM expresses primarily CaMKIIγ and -δ isoforms. CaMKIIγ isoform expression correlates closely with the differentiated phenotype, and some studies link its function to regulation of contractile activity and Ca2+ homeostasis. Conversely, synthetic phenotype VSM cells primarily express CaMKIIδ and substantial evidence links it to regulation of gene transcription, proliferation, and migration of VSM in vitro, and vascular hypertrophic and hyperplastic remodeling in vivo. CaMKIIδ and -γ isoforms have opposing functions at the level of cell cycle regulation, proliferation, and VSM hyperplasia in vivo. Isoform switching following vascular injury is a key step in promoting vascular remodeling. Recent availability of genetically engineered mice with smooth muscle deletion of specific isoforms and transgenics expressing an endogenous inhibitor protein (CAMK2N) has enabled a better understanding of CaMKII function in VSM and should facilitate future studies.
Collapse
Affiliation(s)
- F Z Saddouk
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, United States
| | - R Ginnan
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, United States
| | - H A Singer
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, United States.
| |
Collapse
|
36
|
Wang YY, Zhao R, Zhe H. The emerging role of CaMKII in cancer. Oncotarget 2016; 6:11725-34. [PMID: 25961153 PMCID: PMC4494900 DOI: 10.18632/oncotarget.3955] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 04/08/2015] [Indexed: 12/13/2022] Open
Abstract
Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a multifunctional serine/threonine kinases best known for its critical role in learning and memory. Recent studies suggested that high levels of CaMKII also expressed in variety of malignant diseases. In this review, we focus on the structure and biology properties of CaMKII, including the role of CaMKII in the regulation of cancer progression and therapy response. We also describe the role of CaMKII in the diagnosis of different kinds of cancer and recent progress in the development of CaMKII inhibitors. These data establishes CaMKII as a novel target whose modulation presents new opportunities for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Yan-yang Wang
- Department of Radiation Oncology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China.,Cancer Institute, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Ren Zhao
- Department of Radiation Oncology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China.,Cancer Institute, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Hong Zhe
- Department of Radiation Oncology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China.,Cancer Institute, Ningxia Medical University, Yinchuan, Ningxia, China
| |
Collapse
|
37
|
Mesubi OO, Anderson ME. Atrial remodelling in atrial fibrillation: CaMKII as a nodal proarrhythmic signal. Cardiovasc Res 2016; 109:542-57. [PMID: 26762270 DOI: 10.1093/cvr/cvw002] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/05/2016] [Indexed: 01/10/2023] Open
Abstract
CaMKII is a serine-threonine protein kinase that is abundant in myocardium. Emergent evidence suggests that CaMKII may play an important role in promoting atrial fibrillation (AF) by targeting a diverse array of proteins involved in membrane excitability, cell survival, calcium homeostasis, matrix remodelling, inflammation, and metabolism. Furthermore, CaMKII inhibition appears to protect against AF in animal models and correct proarrhythmic, defective intracellular Ca(2+) homeostasis in fibrillating human atrial cells. This review considers current concepts and evidence from animal and human studies on the role of CaMKII in AF.
Collapse
Affiliation(s)
- Olurotimi O Mesubi
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA Department of Medicine, The Johns Hopkins University School of Medicine, 1830 E. Monument Street, Suite 9026, Baltimore, MD 21287, USA
| | - Mark E Anderson
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA Department of Medicine, The Johns Hopkins University School of Medicine, 1830 E. Monument Street, Suite 9026, Baltimore, MD 21287, USA Department of Physiology and the Program in Cellular and Molecular Medicine, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
38
|
Saddouk FZ, Sun LY, Liu YF, Jiang M, Singer DV, Backs J, Van Riper D, Ginnan R, Schwarz JJ, Singer HA. Ca2+/calmodulin-dependent protein kinase II-γ (CaMKIIγ) negatively regulates vascular smooth muscle cell proliferation and vascular remodeling. FASEB J 2015; 30:1051-64. [PMID: 26567004 DOI: 10.1096/fj.15-279158] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 10/28/2015] [Indexed: 01/15/2023]
Abstract
Vascular smooth muscle (VSM) expresses calcium/calmodulin-dependent protein kinase II (CaMKII)-δ and -γ isoforms. CaMKIIδ promotes VSM proliferation and vascular remodeling. We tested CaMKIIγ function in vascular remodeling after injury. CaMKIIγ protein decreased 90% 14 d after balloon injury in rat carotid artery. Intraluminal transduction of adenovirus encoding CaMKIIγC rescued expression to 35% of uninjured controls, inhibited neointima formation (>70%), inhibited VSM proliferation (>60%), and increased expression of the cell-cycle inhibitor p21 (>2-fold). Comparable doses of CaMKIIδ2 adenovirus had no effect. Similar dynamics in CaMKIIγ mRNA and protein expression were observed in ligated mouse carotid arteries, correlating closely with expression of VSM differentiation markers. Targeted deletion of CaMKIIγ in smooth muscle resulted in a 20-fold increase in neointimal area, with a 3-fold increase in the cell proliferation index, no change in apoptosis, and a 60% decrease in p21 expression. In cultured VSM, CaMKIIγ overexpression induced p53 mRNA (1.7 fold) and protein (1.8-fold) expression; induced the p53 target gene p21 (3-fold); decreased VSM cell proliferation (>50%); and had no effect on expression of apoptosis markers. We conclude that regulated CaMKII isoform composition is an important determinant of the injury-induced vasculoproliferative response and that CaMKIIγ and -δ isoforms have nonequivalent, opposing functions.
Collapse
Affiliation(s)
- Fatima Z Saddouk
- *Center for Cardiovascular Sciences, Albany Medical College, Albany, New York, USA; and Department of Cardiology, Angiology and Pneumology, University of Heidelberg, Heidelberg, Germany
| | - Li-Yan Sun
- *Center for Cardiovascular Sciences, Albany Medical College, Albany, New York, USA; and Department of Cardiology, Angiology and Pneumology, University of Heidelberg, Heidelberg, Germany
| | - Yong Feng Liu
- *Center for Cardiovascular Sciences, Albany Medical College, Albany, New York, USA; and Department of Cardiology, Angiology and Pneumology, University of Heidelberg, Heidelberg, Germany
| | - Miao Jiang
- *Center for Cardiovascular Sciences, Albany Medical College, Albany, New York, USA; and Department of Cardiology, Angiology and Pneumology, University of Heidelberg, Heidelberg, Germany
| | - Diane V Singer
- *Center for Cardiovascular Sciences, Albany Medical College, Albany, New York, USA; and Department of Cardiology, Angiology and Pneumology, University of Heidelberg, Heidelberg, Germany
| | - Johannes Backs
- *Center for Cardiovascular Sciences, Albany Medical College, Albany, New York, USA; and Department of Cardiology, Angiology and Pneumology, University of Heidelberg, Heidelberg, Germany
| | - Dee Van Riper
- *Center for Cardiovascular Sciences, Albany Medical College, Albany, New York, USA; and Department of Cardiology, Angiology and Pneumology, University of Heidelberg, Heidelberg, Germany
| | - Roman Ginnan
- *Center for Cardiovascular Sciences, Albany Medical College, Albany, New York, USA; and Department of Cardiology, Angiology and Pneumology, University of Heidelberg, Heidelberg, Germany
| | - John J Schwarz
- *Center for Cardiovascular Sciences, Albany Medical College, Albany, New York, USA; and Department of Cardiology, Angiology and Pneumology, University of Heidelberg, Heidelberg, Germany
| | - Harold A Singer
- *Center for Cardiovascular Sciences, Albany Medical College, Albany, New York, USA; and Department of Cardiology, Angiology and Pneumology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
39
|
Quijada P, Hariharan N, Cubillo JD, Bala KM, Emathinger JM, Wang BJ, Ormachea L, Bers DM, Sussman MA, Poizat C. Nuclear Calcium/Calmodulin-dependent Protein Kinase II Signaling Enhances Cardiac Progenitor Cell Survival and Cardiac Lineage Commitment. J Biol Chem 2015; 290:25411-26. [PMID: 26324717 DOI: 10.1074/jbc.m115.657775] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Indexed: 12/13/2022] Open
Abstract
Ca(2+)/Calmodulin-dependent protein kinase II (CaMKII) signaling in the heart regulates cardiomyocyte contractility and growth in response to elevated intracellular Ca(2+). The δB isoform of CaMKII is the predominant nuclear splice variant in the adult heart and regulates cardiomyocyte hypertrophic gene expression by signaling to the histone deacetylase HDAC4. However, the role of CaMKIIδ in cardiac progenitor cells (CPCs) has not been previously explored. During post-natal growth endogenous CPCs display primarily cytosolic CaMKIIδ, which localizes to the nuclear compartment of CPCs after myocardial infarction injury. CPCs undergoing early differentiation in vitro increase levels of CaMKIIδB in the nuclear compartment where the kinase may contribute to the regulation of CPC commitment. CPCs modified with lentiviral-based constructs to overexpress CaMKIIδB (CPCeδB) have reduced proliferative rate compared with CPCs expressing eGFP alone (CPCe). Additionally, stable expression of CaMKIIδB promotes distinct morphological changes such as increased cell surface area and length of cells compared with CPCe. CPCeδB are resistant to oxidative stress induced by hydrogen peroxide (H2O2) relative to CPCe, whereas knockdown of CaMKIIδB resulted in an up-regulation of cell death and cellular senescence markers compared with scrambled treated controls. Dexamethasone (Dex) treatment increased mRNA and protein expression of cardiomyogenic markers cardiac troponin T and α-smooth muscle actin in CPCeδB compared with CPCe, suggesting increased differentiation. Therefore, CaMKIIδB may serve as a novel modulatory protein to enhance CPC survival and commitment into the cardiac and smooth muscle lineages.
Collapse
Affiliation(s)
- Pearl Quijada
- From the Department of Biology, San Diego State University, San Diego, California 92182
| | - Nirmala Hariharan
- Department of Pharmacology, University of California at Davis, Davis, California 95616, and
| | - Jonathan D Cubillo
- From the Department of Biology, San Diego State University, San Diego, California 92182
| | - Kristin M Bala
- From the Department of Biology, San Diego State University, San Diego, California 92182
| | | | - Bingyan J Wang
- From the Department of Biology, San Diego State University, San Diego, California 92182
| | - Lucia Ormachea
- From the Department of Biology, San Diego State University, San Diego, California 92182
| | - Donald M Bers
- Department of Pharmacology, University of California at Davis, Davis, California 95616, and
| | - Mark A Sussman
- From the Department of Biology, San Diego State University, San Diego, California 92182
| | - Coralie Poizat
- From the Department of Biology, San Diego State University, San Diego, California 92182, Cardiovascular Research Program, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Kingdom of Saudi Arabia
| |
Collapse
|
40
|
Liao RJ, Tong LJ, Huang C, Cao WW, Wang YZ, Wang J, Chen XF, Zhu WZ, Zhang W. Rescue of cardiac failing and remodelling by inhibition of protein phosphatase 1γ is associated with suppression of the alternative splicing factor-mediated splicing of Ca2+/calmodulin-dependent protein kinase δ. Clin Exp Pharmacol Physiol 2015; 41:976-85. [PMID: 25224648 DOI: 10.1111/1440-1681.12308] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 08/24/2014] [Accepted: 08/31/2014] [Indexed: 11/25/2022]
Abstract
Our previous studies showed that protein phosphatase 1γ (PP1γ) exacerbates cardiomyocyte apoptosis through promotion of Ca(2+)/calmodulin-dependent protein kinase δ (CaMKIIδ) splicing. Here we determine the role of PP1γ in abdominal aorta constriction-induced hypertrophy and remodelling in rat hearts. Systolic blood pressure and echocardiographic measurements were used to evaluate the model of cardiac hypertrophy. Sirius red staining and invasive haemodynamic/cardiac index measurements were used to evaluate the effects of PP1γ or inhibitor 1 of PP1 transfection. Western blot, reverse transcription polymerase chain reaction and co-immunoprecipitation were applied to investigate the molecular mechanisms. Transfection of PP1γ increased the value of the heart mass index, left ventricular mass index and cardiac fibrosis, and simultaneously decreased the value of maximal left ventricular pressure increase and decline rate, ejection fraction, fractional shortening, and left ventricular end-diastolic pressure, as well as left ventricular systolic pressure. Transfection of inhibitor 1 of PP1, however, showed opposite effects on the aforementioned indexes. Overexpression of PP1γ potentiated CaMKIIδC production and decreased CaMKIIδB production in the hypertrophic heart. In contrast, inhibition of PP1γ re-balanced the CaMKIIδ splicing. Furthermore, CaMKII activity was found to be augmented or attenuated by PP1γ overexpression or inhibition, respectively. Further mechanistic studies showed that abdominal aorta constriction stress specifically increased the association of alternative splicing factor with PP1γ, but not with PP1β. Overexpression of PP1γ, but not inhibitor 1 of PP1, further potentiated this association. These results suggest that PP1γ alters the cardiac hypertrophy and remodelling likely through promotion of the alternative splicing factor-mediated splicing of CaMKIIδ.
Collapse
Affiliation(s)
- Ru-Jia Liao
- Department of Pharmacology, School of Medicine, Nantong University, Nantong, China
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Shioda N, Sawai M, Ishizuka Y, Shirao T, Fukunaga K. Nuclear Translocation of Calcium/Calmodulin-dependent Protein Kinase IIδ3 Promoted by Protein Phosphatase-1 Enhances Brain-derived Neurotrophic Factor Expression in Dopaminergic Neurons. J Biol Chem 2015; 290:21663-75. [PMID: 26163515 DOI: 10.1074/jbc.m115.664920] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Indexed: 02/05/2023] Open
Abstract
We have reported previously that dopamine D2 receptor stimulation activates calcium/calmodulin-dependent protein kinase II (CaMKII) δ3, a CaMKII nuclear isoform, increasing BDNF gene expression. However, the mechanisms underlying that activity remained unclear. Here we report that CaMKIIδ3 is dephosphorylated at Ser(332) by protein phosphatase 1 (PP1), promoting CaMKIIδ3 nuclear translocation. Neuro-2a cells transfected with CaMKIIδ3 showed cytoplasmic and nuclear staining, but the staining was predominantly nuclear when CaMKIIδ3 was coexpressed with PP1. Indeed, PP1 and CaMKIIδ3 coexpression significantly increased nuclear CaMKII activity and enhanced BDNF expression. In support of this idea, chronic administration of the dopamine D2 receptor partial agonist aripiprazole increased PP1 activity and promoted nuclear CaMKIIδ3 translocation and BDNF expression in the rat brain substantia nigra. Moreover, aripiprazole treatment enhanced neurite extension and inhibited cell death in cultured dopaminergic neurons, effects blocked by PP1γ knockdown. Taken together, nuclear translocation of CaMKIIδ3 following dephosphorylation at Ser(332) by PP1 likely accounts for BDNF expression and subsequent neurite extension and survival of dopaminergic neurons.
Collapse
Affiliation(s)
- Norifumi Shioda
- From the Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan and
| | - Masahiro Sawai
- From the Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan and
| | - Yuta Ishizuka
- the Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| | - Tomoaki Shirao
- the Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| | - Kohji Fukunaga
- From the Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan and
| |
Collapse
|
42
|
Mattiazzi A, Bassani RA, Escobar AL, Palomeque J, Valverde CA, Vila Petroff M, Bers DM. Chasing cardiac physiology and pathology down the CaMKII cascade. Am J Physiol Heart Circ Physiol 2015; 308:H1177-91. [PMID: 25747749 DOI: 10.1152/ajpheart.00007.2015] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 02/16/2015] [Indexed: 11/22/2022]
Abstract
Calcium dynamics is central in cardiac physiology, as the key event leading to the excitation-contraction coupling (ECC) and relaxation processes. The primary function of Ca(2+) in the heart is the control of mechanical activity developed by the myofibril contractile apparatus. This key role of Ca(2+) signaling explains the subtle and critical control of important events of ECC and relaxation, such as Ca(2+) influx and SR Ca(2+) release and uptake. The multifunctional Ca(2+)-calmodulin-dependent protein kinase II (CaMKII) is a signaling molecule that regulates a diverse array of proteins involved not only in ECC and relaxation but also in cell death, transcriptional activation of hypertrophy, inflammation, and arrhythmias. CaMKII activity is triggered by an increase in intracellular Ca(2+) levels. This activity can be sustained, creating molecular memory after the decline in Ca(2+) concentration, by autophosphorylation of the enzyme, as well as by oxidation, glycosylation, and nitrosylation at different sites of the regulatory domain of the kinase. CaMKII activity is enhanced in several cardiac diseases, altering the signaling pathways by which CaMKII regulates the different fundamental proteins involved in functional and transcriptional cardiac processes. Dysregulation of these pathways constitutes a central mechanism of various cardiac disease phenomena, like apoptosis and necrosis during ischemia/reperfusion injury, digitalis exposure, post-acidosis and heart failure arrhythmias, or cardiac hypertrophy. Here we summarize significant aspects of the molecular physiology of CaMKII and provide a conceptual framework for understanding the role of the CaMKII cascade on Ca(2+) regulation and dysregulation in cardiac health and disease.
Collapse
Affiliation(s)
- Alicia Mattiazzi
- Centro de Investigaciones Cardiovasculares, The National Scientific and Technical Research Council-La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina;
| | - Rosana A Bassani
- Centro de Engenharia Biomédica, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Ariel L Escobar
- Biological Engineering and Small Scale Technologies, School of Engineering, University of California, Merced, California; and
| | - Julieta Palomeque
- Centro de Investigaciones Cardiovasculares, The National Scientific and Technical Research Council-La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Carlos A Valverde
- Centro de Investigaciones Cardiovasculares, The National Scientific and Technical Research Council-La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Martín Vila Petroff
- Centro de Investigaciones Cardiovasculares, The National Scientific and Technical Research Council-La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Donald M Bers
- Department of Pharmacology, University of California Davis, Davis, California
| |
Collapse
|
43
|
Ma H, Li B, Tsien RW. Distinct roles of multiple isoforms of CaMKII in signaling to the nucleus. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1953-7. [PMID: 25700840 DOI: 10.1016/j.bbamcr.2015.02.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 02/05/2015] [Accepted: 02/08/2015] [Indexed: 12/26/2022]
Abstract
Long-lasting synaptic changes following information acquisition are critical steps for memory. In this process, long-term potentiation (LTP) is widely considered as one of the major cellular mechanisms modifying synaptic strength. It can be classified into early phase LTP (E-LTP) and late phase LTP (L-LTP) based on its duration. Using genetically modified mice, investigators have recognized the critical role of CaMKII in E-LTP and memory. However, its function in L-LTP, which is strongly dependent on gene transcription and protein synthesis, is still unclear. In this review, we discuss how different isoforms of CaMKII are coordinated to regulate gene expression in an activity-dependent manner, and thus contribute to L-LTP and memory. This article is part of a Special Issue entitled: 13th European Symposium on Calcium.
Collapse
Affiliation(s)
- Huan Ma
- NYU Neuroscience Institute, NYU Langone Medical Center, New York, NY 10016, USA.
| | - Boxing Li
- NYU Neuroscience Institute, NYU Langone Medical Center, New York, NY 10016, USA
| | - Richard W Tsien
- NYU Neuroscience Institute, NYU Langone Medical Center, New York, NY 10016, USA.
| |
Collapse
|
44
|
Eilers W, Jaspers RT, de Haan A, Ferrié C, Valdivieso P, Flück M. CaMKII content affects contractile, but not mitochondrial, characteristics in regenerating skeletal muscle. BMC PHYSIOLOGY 2014; 14:7. [PMID: 25515219 PMCID: PMC4277655 DOI: 10.1186/s12899-014-0007-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 10/23/2014] [Indexed: 11/21/2022]
Abstract
Background The multi-meric calcium/calmodulin-dependent protein kinase II (CaMKII) is the main CaMK in skeletal muscle and its expression increases with endurance training. CaMK family members are implicated in contraction-induced regulation of calcium handling, fast myosin type IIA expression and mitochondrial biogenesis. The objective of this study was to investigate the role of an increased CaMKII content for the expression of the contractile and mitochondrial phenotype in vivo. Towards this end we attempted to co-express alpha- and beta-CaMKII isoforms in skeletal muscle and characterised the effect on the contractile and mitochondrial phenotype. Results Fast-twitch muscle m. gastrocnemius (GM) and slow-twitch muscle m. soleus (SOL) of the right leg of 3-month old rats were transfected via electro-transfer of injected expression plasmids for native α/β CaMKII. Effects were identified from the comparison to control-transfected muscles of the contralateral leg and non-transfected muscles. α/β CaMKII content in muscle fibres was 4-5-fold increased 7 days after transfection. The transfection rate was more pronounced in SOL than GM muscle (i.e. 12.6 vs. 3.5%). The overexpressed α/β CaMKII was functional as shown through increased threonine 287 phosphorylation of β-CaMKII after isometric exercise and down-regulated transcripts COXI, COXIV, SDHB after high-intensity exercise in situ. α/β CaMKII overexpression under normal cage activity accelerated excitation-contraction coupling and relaxation in SOL muscle in association with increased SERCA2, ANXV and fast myosin type IIA/X content but did not affect mitochondrial protein content. These effects were observed on a background of regenerating muscle fibres. Conclusion Elevated CaMKII content promotes a slow-to-fast type fibre shift in regenerating muscle but is not sufficient to stimulate mitochondrial biogenesis in the absence of an endurance stimulus.
Collapse
Affiliation(s)
- Wouter Eilers
- Institute for Biomedical Research into Human Movement and Health, Manchester Metropolitan University, John Dalton Building, Oxford Road, M1 5GD, Manchester, United Kingdom.
| | - Richard T Jaspers
- Laboratory for Myology, MOVE Research Institute Amsterdam, Faculty of Human Movement Sciences, VU University Amsterdam, Van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands.
| | - Arnold de Haan
- Institute for Biomedical Research into Human Movement and Health, Manchester Metropolitan University, John Dalton Building, Oxford Road, M1 5GD, Manchester, United Kingdom. .,Laboratory for Myology, MOVE Research Institute Amsterdam, Faculty of Human Movement Sciences, VU University Amsterdam, Van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands.
| | - Céline Ferrié
- Laboratory for Muscle Plasticity, Department of Orthopaedics, University of Zurich, Balgrist University Hospital, Forchstrasse 340, 8008, Zurich, Switzerland.
| | - Paola Valdivieso
- Laboratory for Muscle Plasticity, Department of Orthopaedics, University of Zurich, Balgrist University Hospital, Forchstrasse 340, 8008, Zurich, Switzerland.
| | - Martin Flück
- Institute for Biomedical Research into Human Movement and Health, Manchester Metropolitan University, John Dalton Building, Oxford Road, M1 5GD, Manchester, United Kingdom. .,Laboratory for Muscle Plasticity, Department of Orthopaedics, University of Zurich, Balgrist University Hospital, Forchstrasse 340, 8008, Zurich, Switzerland.
| |
Collapse
|
45
|
Hund TJ, Mohler PJ. Role of CaMKII in cardiac arrhythmias. Trends Cardiovasc Med 2014; 25:392-7. [PMID: 25577293 DOI: 10.1016/j.tcm.2014.12.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/01/2014] [Accepted: 12/01/2014] [Indexed: 11/30/2022]
Abstract
Protein phosphorylation is a central mechanism in vertebrates for the regulation of signaling. With regard to the cardiovascular system, phosphorylation of myocyte targets is critical for the regulation of excitation contraction coupling, metabolism, intracellular calcium regulation, mitochondrial activity, transcriptional regulation, and cytoskeletal dynamics. In fact, pathways that tune protein kinase signaling have been a mainstay for cardiovascular therapies for the past 60 years. The calcium/calmodulin-dependent protein kinase II (CaMKII) is a multifunctional serine/threonine kinase with numerous roles in human physiology. Dysfunction in CaMKII-based signaling has been linked with a host of cardiovascular phenotypes including heart failure and arrhythmia, and CaMKII levels are elevated in human and animal disease models of heart disease. While nearly a decade has been invested in targeting CaMKII for the treatment of heart failure and arrhythmia phenotypes, to date, approaches to target the molecule for antiarrhythmic benefit have been unsuccessful for reasons that are still not entirely clear, although (1) lack of compound specificity and (2) the multitude of downstream targets are likely contributing factors. This review will provide an update on current pathways regulated by CaMKII with the goal of illustrating potential upstream regulatory mechanisms and downstream targets that may be modulated for the prevention of cardiac electrical defects. While the review will cover multiple aspects of CaMKII dysfunction in cardiovascular disease, we have given special attention to the potential of CaMKII-associated late Na(+) current as a novel therapeutic target for cardiac arrhythmia.
Collapse
Affiliation(s)
- Thomas J Hund
- The Dorothy M. Davis Heart & Lung Research Institute, OH; Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH; Department of Biomedical Engineering, The Ohio State University College of Engineering, Columbus, OH
| | - Peter J Mohler
- The Dorothy M. Davis Heart & Lung Research Institute, OH; Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH; Department of Physiology & Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH.
| |
Collapse
|
46
|
Dai H, Jia G, Liu X, Liu Z, Wang H. Astragalus polysaccharide inhibits isoprenaline-induced cardiac hypertrophy via suppressing Ca²⁺-mediated calcineurin/NFATc3 and CaMKII signaling cascades. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 38:263-271. [PMID: 24975447 DOI: 10.1016/j.etap.2014.05.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 05/15/2014] [Accepted: 05/19/2014] [Indexed: 06/03/2023]
Abstract
Pathological cardiac hypertrophy induced by increased sympathetic drive can subsequently lead to congestive heart failure, which represents the major cause of morbidity and mortality worldwide. Astragalus polysaccharide (APS) is an active compound extracted from Chinese herb Astragalus membranaceus (AM), a frequently used "Qi-invigorating" herbal medicine in traditional medicine broadly used for the treatment of cardiovascular and other diseases. Currently, little is known about the effect of APS on cardiac hypertrophy. In the present study, we aimed to investigate its effect on cardiac hypertrophy and to clarify its possible mechanisms. In vitro cardiac hypertrophic model induced by isoprenaline (ISO) was employed to explore the anti-hypertrophic action of APS. We found that 10 μM ISO treatment for 48 h caused cultured cardiomyocytes to undergo significant increases in cell surface area, total protein content, protein synthesis as well as the expression of hypertrophic markers, including atrial natriuretic peptide (ANP) and B-type natriuretic peptide (BNP), which were effectively inhibited by APS in a dose dependent manner. Moreover, we found that APS pretreatment alleviated the augment of intracellular free calcium during cardiac hypertrophy induced by ISO. Our further study revealed that the upregulated expression of calcineurin, translocation of nuclear factor of activated T cells, cytoplasmic 3 (NFATc3) into nucleus and activation of calmodulin kinase II (reflected by p-CaMKII) were dose dependently suppressed by the application of APS. According to this research, APS exerted its anti-hypertrophic action via inhibiting Ca(2+)-mediated calcineurin/NFATc3 and CaMKII signaling cascades, which provided new insights into the application of APS to the therapy of heart diseases.
Collapse
Affiliation(s)
- Hongliang Dai
- School of Nursing, Liaoning Medical University, Jinzhou 121001, Liaoning Province, PR China
| | - Guizhi Jia
- Department of Biochemistry and Molecular Biology, Liaoning Medical University, Jinzhou 121001, Liaoning Province, PR China
| | - Xin Liu
- First Affiliated Hospital, Liaoning Medical University, Jinzhou 121001, Liaoning Province, PR China
| | - Zhining Liu
- First Affiliated Hospital, Liaoning Medical University, Jinzhou 121001, Liaoning Province, PR China
| | - Hongxin Wang
- Department of Pharmacology, Liaoning Medical University, Jinzhou 121001, Liaoning Province, PR China.
| |
Collapse
|
47
|
Gray CBB, Heller Brown J. CaMKIIdelta subtypes: localization and function. Front Pharmacol 2014; 5:15. [PMID: 24575042 PMCID: PMC3920101 DOI: 10.3389/fphar.2014.00015] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Accepted: 01/25/2014] [Indexed: 12/28/2022] Open
Abstract
In this review we discuss the localization and function of the known subtypes of calcium/calmodulin dependent protein kinase IIδ (CaMKIIδ) and their role in cardiac physiology and pathophysiology. The CaMKII holoenzyme is comprised of multiple subunits that are encoded by four different genes called CaMKIIα, β, γ, and δ. While these four genes have a high degree of sequence homology, they are expressed in different tissues. CaMKIIα and β are expressed in neuronal tissue while γ and δ are present throughout the body, including in the heart. Both CaMKIIγ and δ are alternatively spliced in the heart to generate multiple subtypes. CaMKIIδ is the predominant cardiac isoform and is alternatively spliced in the heart to generate the CaMKIIδB subtype or the slightly less abundant δC subtype. The CaMKIIδB mRNA sequence contains a 33bp insert not present in δC that codes for an 11-amino acid nuclear localization sequence. This review focuses on the localization and function of the CaMKIIδ subtypes δB and δC and the role of these subtypes in arrhythmias, contractile dysfunction, gene transcription, and the regulation of Ca2+ handling.
Collapse
Affiliation(s)
- Charles B B Gray
- Department of Pharmacology, University of California at San Diego, San Diego CA, USA ; Biomedical Sciences Graduate Program, University of California at SanDiego, SanDiego CA, USA
| | - Joan Heller Brown
- Department of Pharmacology, University of California at San Diego, San Diego CA, USA
| |
Collapse
|
48
|
Huang C, Cao W, Liao R, Wang J, Wang Y, Tong L, Chen X, Zhu W, Zhang W. PP1γ functionally augments the alternative splicing of CaMKIIδ through interaction with ASF. Am J Physiol Cell Physiol 2014; 306:C167-77. [DOI: 10.1152/ajpcell.00145.2013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protein phosphatase 1 (PP1) and Ca2+/calmodulin-dependent protein kinase δ (CaMKIIδ) are upregulated in heart disorders. Alternative splicing factor (ASF), a major splice factor for CaMKIIδ splicing, can be regulated by both protein kinase and phosphatase. Here we determine the role of PP1 isoforms in ASF-mediated splicing of CaMKIIδ in cells. We found that 1) PP1γ, but not α or β isoform, enhanced the splicing of CaMKIIδ in HEK293T cells; 2) PP1γ promoted the function of ASF, evidenced by the existence of ASF-PP1γ association as well as the PP1γ overexpression- or silencing-mediated change in CaMKIIδ splicing in ASF-transfected HEK293T cells; 3) CaMKIIδ splicing was promoted by overexpression of PP1γ and impaired by application of PP1 inhibitor 1 (I1PP1) or pharmacological inhibitor tautomycetin in primary cardiomyocytes; 4) CaMKIIδ splicing and enhancement of ASF-PP1γ association induced by oxygen-glucose deprivation followed by reperfusion (OGD/R) were potentiated by overexpression of PP1γ and suppressed by inhibition of PP1γ with I1PP1 or tautomycetin in primary cardiomyocytes; 5) functionally, overexpression and inhibition of PP1γ, respectively, potentiated or suppressed the apoptosis and Bax/Bcl-2 ratio, which were associated with the enhanced activity of CaMKII in OGD/R-stimulated cardiomyocytes; and 6) CaMKII was required for the OGD/R induced- and PP1γ exacerbated-apoptosis of cardiomyocytes, evidenced by a specific inhibitor of CaMKII KN93, but not its structural analog KN92, attenuating the apoptosis and Bax/Bcl-2 ratio in OGD/R and PP1γ-treated cells. In conclusion, our results show that PP1γ promotes the alternative splicing of CaMKIIδ through its interacting with ASF, exacerbating OGD/R-triggered apoptosis in primary cardiomyocytes.
Collapse
Affiliation(s)
- Chao Huang
- Department of Pharmacology, School of Medicine, Nantong University, Nantong, China
| | - Wenwen Cao
- Department of Pharmacology, School of Medicine, Nantong University, Nantong, China
| | - Rujia Liao
- Department of Pharmacology, School of Medicine, Nantong University, Nantong, China
| | - Jia Wang
- Department of Pharmacology, School of Medicine, Nantong University, Nantong, China
| | - Yuzhe Wang
- Department of Pharmacology, School of Medicine, Nantong University, Nantong, China
| | - Lijuan Tong
- Department of Pharmacology, School of Medicine, Nantong University, Nantong, China
| | - Xiangfan Chen
- Department of Pharmacology, School of Medicine, Nantong University, Nantong, China
| | - Weizhong Zhu
- Cardiovascular Research Center, School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Wei Zhang
- Department of Pharmacology, School of Medicine, Nantong University, Nantong, China
| |
Collapse
|
49
|
Liu Y, Sun LY, Singer DV, Ginnan R, Singer HA. CaMKIIδ-dependent inhibition of cAMP-response element-binding protein activity in vascular smooth muscle. J Biol Chem 2013; 288:33519-33529. [PMID: 24106266 DOI: 10.1074/jbc.m113.490870] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
One transcription factor mediator of Ca(2+)-signals is cAMP response element-binding protein (CREB). CREB expression and/or activity negatively correlates with vascular smooth muscle (VSM) cell proliferation and migration. Multifunctional Ca(2+)/calmodulin-dependent protein kinases, including CaMKII, have been demonstrated to regulate CREB activity through both positive and negative phosphorylation events in vitro, but the function of CaMKII as a proximal regulator of CREB in intact cell systems, including VSM, is not clear. In this study, we used gain- and loss-of-function approaches to determine the function of CaMKIIδ in regulating CREB phosphorylation, localization, and activity in VSM. Overexpression of constitutively active CaMKIIδ specifically increased CREB phosphorylation on Ser(142) and silencing CaMKIIδ expression by siRNA or blocking endogenous CaMKII activity with KN93 abolished thrombin- or ionomycin-induced CREB phosphorylation on Ser(142) without affecting Ser(133) phosphorylation. CREB-Ser(142) phosphorylation correlated with transient nucleocytoplasmic translocation of CREB. Thrombin-induced CREB promoter activity, CREB binding to Sik1 and Rgs2 promoters, and Sik1/Rgs2 transcription were enhanced by a kinase-negative CaMKIIδ2 (K43A) mutant and inhibited by a constitutively active (T287D) mutant. Taken together, these studies establish negative regulation of CREB activity by endogenous CaMKIIδ-dependent CREB-Ser(142) phosphorylation and suggest a potential mechanism for CaMKIIδ/CREB signaling in modulating proliferation and migration in VSM cells.
Collapse
Affiliation(s)
- Yongfeng Liu
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208
| | - Li-Yan Sun
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208
| | - Diane V Singer
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208
| | - Roman Ginnan
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208
| | - Harold A Singer
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208.
| |
Collapse
|
50
|
Xiao P, Zhou XL, Zhang HX, Xiong K, Teng Y, Huang XJ, Cao R, Wang Y, Liu HL. Characterization of the nuclear localization signal of the mouse TET3 protein. Biochem Biophys Res Commun 2013; 439:373-7. [PMID: 23998935 DOI: 10.1016/j.bbrc.2013.08.075] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 08/23/2013] [Indexed: 11/18/2022]
Abstract
DNA demethylation is associated with gene activation and is mediated by a family of ten-eleven translocation (TET) dioxygenase. The TET3 protein is a 1668-amino-acid DNA demethylase that is predicted to possess five nuclear localization signals (NLSs). In this paper, we used a series of green fluorescent protein-tagged and mutation constructs to identify a conserved NLS (KKRK) embedded between amino acid 1615 and 1618 of mouse TET3. The KKRK sequence facilitates the cytoplasmic protein's translocation into the nucleus. Additionally TET3 may be imported into the nucleus by importin-α and importin-β.
Collapse
Affiliation(s)
- Peng Xiao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|