1
|
Tiku V, Fakih Z, Tatsuta T, Jung M, Rapaport D, Dimmer KS. Characterization of the putative yeast mitochondrial triacylglycerol lipase Tgl2. J Biol Chem 2025; 301:108217. [PMID: 39863106 PMCID: PMC11889585 DOI: 10.1016/j.jbc.2025.108217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Mitochondria derive the majority of their lipids from other organelles through contact sites. These lipids, primarily phosphoglycerolipids, are the main components of mitochondrial membranes. In the cell, neutral lipids like triacylglycerides (TAGs) are stored in lipid droplets, playing an important role in maintaining cellular health. Enzymes like lipases mobilize these TAGs according to cellular needs. Neutral lipids have not yet been reported to play an important role in mitochondria so the presence of a putative TAG lipase-Tgl2, in yeast mitochondria is surprising. Moreover, TGL2 and MCP2, a high-copy suppressor for ER mitochondria encounter structure deficient cells, display genetic interactions suggesting a potential link of both proteins to lipid metabolism. In this study, we characterize in detail Tgl2. We show that Tgl2 forms dimers through intermolecular disulfide bridges and a cysteine-dependent high molecular weight complex. Furthermore, we could identify the lipase motif and catalytic triad of Tgl2 through in silico comparison with other lipases. Mutating each of the three catalytically active residues resulted in variants that failed to rescue the growth phenotype of mcp2Δ tgl2Δ double deletion strain supporting the assumption that these residues are indeed essential for the protein's function. Additionally, we discovered that the catalytically active aspartate residue (D259) is important for protein stability. Steady state level analyses with unstable variants of Tgl2 led to the identification of Yme1 as the protease responsible for its quality control. Finally, we provide evidence that the overall increase in TAGs in cells lacking Mcp2 and Tgl2 originates from the mitochondria. Collectively, our study provides new insights into a key player in mitochondrial lipid homeostasis.
Collapse
Affiliation(s)
- Vitasta Tiku
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Zacharias Fakih
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | | | - Martin Jung
- Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| | - Doron Rapaport
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Kai Stefan Dimmer
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
2
|
Shapiro IM, Risbud MV, Landis WJ. Toward understanding the cellular control of vertebrate mineralization: The potential role of mitochondria. Bone 2024; 185:117112. [PMID: 38697384 PMCID: PMC11251007 DOI: 10.1016/j.bone.2024.117112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/17/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
This review examines the possible role of mitochondria in maintaining calcium and phosphate ion homeostasis and participating in the mineralization of bone, cartilage and other vertebrate hard tissues. The paper builds on the known structural features of mitochondria and the documented observations in these tissues that the organelles contain calcium phosphate granules. Such deposits in mitochondria putatively form to buffer excessively high cytosolic calcium ion concentrations and prevent metabolic deficits and even cell death. While mitochondria protect cytosolic enzyme systems through this buffering capacity, the accumulation of calcium ions by mitochondria promotes the activity of enzymes of the tricarboxylic acid (TCA/Krebs) cycle, increases oxidative phosphorylation and ATP synthesis, and leads to changes in intramitochondrial pH. These pH alterations influence ion solubility and possibly the transitions and composition in the mineral phase structure of the granules. Based on these considerations, mitochondria are proposed to support the mineralization process by providing a mobile store of calcium and phosphate ions, in smaller cluster or larger granule form, while maintaining critical cellular activities. The rise in the mitochondrial calcium level also increases the generation of citrate and other TCA cycle intermediates that contribute to cell function and the development of extracellular mineral. This paper suggests that another key role of the mitochondrion, along with the effects just noted, is to supply phosphate ions, derived from the breakdown of ATP, to endolysosomes and autophagic vesicles originating in the endoplasmic reticulum and Golgi and at the plasma membrane. These many separate but interdependent mitochondrial functions emphasize the critical importance of this organelle in the cellular control of vertebrate mineralization.
Collapse
Affiliation(s)
- Irving M Shapiro
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States of America.
| | - Makarand V Risbud
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - William J Landis
- Department of Preventive and Restorative Dental Sciences, School of Dentistry, University of California at San Francisco, San Francisco, CA, United States of America
| |
Collapse
|
3
|
Koch C, Lenhard S, Räschle M, Prescianotto-Baschong C, Spang A, Herrmann JM. The ER-SURF pathway uses ER-mitochondria contact sites for protein targeting to mitochondria. EMBO Rep 2024; 25:2071-2096. [PMID: 38565738 PMCID: PMC11014988 DOI: 10.1038/s44319-024-00113-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 04/04/2024] Open
Abstract
Most mitochondrial proteins are synthesized on cytosolic ribosomes and imported into mitochondria in a post-translational reaction. Mitochondrial precursor proteins which use the ER-SURF pathway employ the surface of the endoplasmic reticulum (ER) as an important sorting platform. How they reach the mitochondrial import machinery from the ER is not known. Here we show that mitochondrial contact sites play a crucial role in the ER-to-mitochondria transfer of precursor proteins. The ER mitochondria encounter structure (ERMES) and Tom70, together with Djp1 and Lam6, are part of two parallel and partially redundant ER-to-mitochondria delivery routes. When ER-to-mitochondria transfer is prevented by loss of these two contact sites, many precursors of mitochondrial inner membrane proteins are left stranded on the ER membrane, resulting in mitochondrial dysfunction. Our observations support an active role of the ER in mitochondrial protein biogenesis.
Collapse
Affiliation(s)
- Christian Koch
- Cell Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Svenja Lenhard
- Cell Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Markus Räschle
- Molecular Genetics, University of Kaiserslautern, Kaiserslautern, Germany
| | | | - Anne Spang
- Biozentrum, University of Basel, 4056, Basel, Switzerland
| | | |
Collapse
|
4
|
Hu X, Cai Y, Ji WK. Recent Advances on Synaptotagmin-Like Mitochondrial-Lipid Binding Protein Domain Containing Lipid Transfer Proteins. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2024; 7:25152564241273646. [PMID: 39139576 PMCID: PMC11320393 DOI: 10.1177/25152564241273646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 08/15/2024]
Abstract
The Synaptotagmin-like mitochondrial-lipid binding protein (SMP) domain is found in a group of ER-resident lipid transfer proteins that are recruited to membrane contact sites (MCSs) by adaptors. Deciphering the molecular basis underlying the recruitment of SMP proteins to specific MCS sheds light not only on their cellular localization but also on their biological functions at these sites. Here we summarize recent advances in SMP domain-containing lipid transfer proteins, focusing on a recent study showing the localization, regulation and cellular function of a specific SMP protein named testis expressed protein 2 (Tex2). TMEM55, a potential PIP phosphatase on late endosome/lysosomal (LE/lys) membranes, was identified as an adaptor that enables the recruitment of Tex2 to ER- LE/lys MCS. In addition, we have summarized several important questions about the regulation and physiological functions of Tex2 that remained unanswered.
Collapse
Affiliation(s)
- Xuewen Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Yirui Cai
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Wei-Ke Ji
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
- Cell Architecture Research Center; Huazhong University of Science and Technology, Wuhan, China
- Shenzhen Bay Laboratory, Shenzhen, China
| |
Collapse
|
5
|
Kučerová J, Zdrha A, Shinde A, Harant K, Hrdý I, Tachezy J. The divergent ER-mitochondria encounter structures (ERMES) are conserved in parabasalids but lost in several anaerobic lineages with hydrogenosomes. BMC Biol 2023; 21:259. [PMID: 37968591 PMCID: PMC10648710 DOI: 10.1186/s12915-023-01765-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/09/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND The endoplasmic reticulum (ER)-mitochondria membrane contact sites (MCS) are extensively studied in aerobic eukaryotes; however, little is known about MCS in anaerobes with reduced forms of mitochondria named hydrogenosomes. In several eukaryotic lineages, the direct physical tether between ER and the outer mitochondrial membrane is formed by ER-mitochondria encounter structure (ERMES). The complex consists of four core proteins (Mmm1, Mmm2, Mdm12, and Mdm10) which are involved in phospholipid trafficking. Here we investigated ERMES distribution in organisms bearing hydrogenosomes and employed Trichomonas vaginalis as a model to estimate ERMES cellular localization, structure, and function. RESULTS Homology searches revealed that Parabasalia-Anaeramoebae, anaerobic jakobids, and anaerobic fungi are lineages with hydrogenosomes that retain ERMES, while ERMES components were gradually lost in Fornicata, and are absent in Preaxostyla and Archamoebae. In T. vaginalis and other parabasalids, three ERMES components were found with the expansion of Mmm1. Immunofluorescence microscopy confirmed that Mmm1 localized in ER, while Mdm12 and Mmm2 were partially localized in hydrogenosomes. Pull-down assays and mass spectrometry of the ERMES components identified a parabasalid-specific Porin2 as a substitute for the Mdm10. ERMES modeling predicted a formation of a continuous hydrophobic tunnel of TvMmm1-TvMdm12-TvMmm2 that is anchored via Porin2 to the hydrogenosomal outer membrane. Phospholipid-ERMES docking and Mdm12-phospholipid dot-blot indicated that ERMES is involved in the transport of phosphatidylinositol phosphates. The absence of enzymes involved in hydrogenosomal phospholipid metabolism implies that ERMES is not involved in the exchange of substrates between ER and hydrogenosomes but in the unidirectional import of phospholipids into hydrogenosomal membranes. CONCLUSIONS Our investigation demonstrated that ERMES mediates ER-hydrogenosome interactions in parabasalid T. vaginalis, while the complex was lost in several other lineages with hydrogenosomes.
Collapse
Affiliation(s)
- Jitka Kučerová
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 25242, Vestec, Czech Republic
| | - Alois Zdrha
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 25242, Vestec, Czech Republic
| | - Abhishek Shinde
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 25242, Vestec, Czech Republic
| | - Karel Harant
- OMICS Proteomics Laboratory, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 25242, Vestec, Czech Republic
| | - Ivan Hrdý
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 25242, Vestec, Czech Republic
| | - Jan Tachezy
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 25242, Vestec, Czech Republic.
| |
Collapse
|
6
|
González-Rubio G, Martín H, Molina M. The Mitogen-Activated Protein Kinase Slt2 Promotes Asymmetric Cell Cycle Arrest and Reduces TORC1-Sch9 Signaling in Yeast Lacking the Protein Phosphatase Ptc1. Microbiol Spectr 2023; 11:e0524922. [PMID: 37042757 PMCID: PMC10269544 DOI: 10.1128/spectrum.05249-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/18/2023] [Indexed: 04/13/2023] Open
Abstract
Mitogen-activated protein kinase (MAPK) pathways regulate essential processes in eukaryotes. However, since uncontrolled activation of these cascades has deleterious effects, precise negative regulation of signaling flow through them, mainly executed by protein phosphatases, is crucial. Previous studies showed that the absence of Ptc1 protein phosphatase results in the upregulation of the MAPK of the cell wall integrity (CWI) pathway, Slt2, and numerous functional defects in Saccharomyces cerevisiae, including a failure to undergo cell separation under heat stress. In this study, we demonstrate that multibudded ptc1Δ cells also exhibit impaired mitochondrial inheritance and that excessive Slt2 kinase activity is responsible for their growth deficiency and daughter-specific G1 cell cycle arrest, as well as other physiological alterations, namely, mitochondrial hyperpolarization and reactive oxygen species (ROS) accumulation. We bring to light the fact that sustained Slt2 kinase activity inhibits signaling through the Sch9 branch of the TORC1 pathway in ptc1Δ cells, leading to increased autophagy. After cytokinesis, septin rings asymmetrically disassembled in ptc1Δ multibudded cells, abnormally remaining at the daughter cell side and eventually relocalizing at the daughter cell periphery, where they occasionally colocalized with the autophagic protein Atg9. Finally, we show that the inability of ptc1Δ cells to undergo cell separation is not due to a failure in the regulation of Ace2 and morphogenesis (RAM) pathway, since the transcription factor Ace2 correctly enters the daughter cell nuclei. However, the Ace2-regulated endochitinase Cts1 did not localize to the septum, preventing the proper degradation of this structure. IMPORTANCE This study provides further evidence that the cell cycle is regulated by complex signaling networks whose purpose is to guarantee a robust response to environmental threats. Using the S. cerevisiae eukaryotic model, we show that, under the stress conditions that activate the CWI MAPK pathway, the absence of the protein phosphatase Ptc1 renders Slt2 hyperactive, leading to numerous physiological alterations, including perturbed mitochondrial inheritance, oxidative stress, changes in septin dynamics, increased autophagy, TORC1-Sch9 inhibition, and ultimately cell cycle arrest and the failure of daughter cells to separate, likely due to the absence of key degradative enzymes at the septum. These results imply novel roles for the CWI pathway and unravel new cell cycle-regulatory controls that operate beyond the RAM pathway, arresting buds in G1 without compromising further division rounds in the mother cell.
Collapse
Affiliation(s)
- Gema González-Rubio
- Departamento de Microbiología y Parasitología. Facultad de Farmacia. Instituto Ramón y Cajal de Investigaciones Sanitarias, Universidad Complutense de Madrid, Madrid, Spain
| | - Humberto Martín
- Departamento de Microbiología y Parasitología. Facultad de Farmacia. Instituto Ramón y Cajal de Investigaciones Sanitarias, Universidad Complutense de Madrid, Madrid, Spain
| | - María Molina
- Departamento de Microbiología y Parasitología. Facultad de Farmacia. Instituto Ramón y Cajal de Investigaciones Sanitarias, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
7
|
Okamoto M, Nakano K, Takahashi-Nakaguchi A, Sasamoto K, Yamaguchi M, Teixeira MC, Chibana H. In Candida glabrata, ERMES Component GEM1 Controls Mitochondrial Morphology, mtROS, and Drug Efflux Pump Expression, Resulting in Azole Susceptibility. J Fungi (Basel) 2023; 9:jof9020240. [PMID: 36836353 PMCID: PMC9965728 DOI: 10.3390/jof9020240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/05/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
Mitochondrial dysfunction or morphological abnormalities in human pathogenic fungi are known to contribute to azole resistance; however, the underlying molecular mechanisms are unknown. In this study, we investigated the link between mitochondrial morphology and azole resistance in Candida glabrata, which is the second most common cause of human candidiasis worldwide. The ER-mitochondrial encounter structure (ERMES) complex is thought to play an important role in the mitochondrial dynamics necessary for mitochondria to maintain their function. Of the five components of the ERMES complex, deletion of GEM1 increased azole resistance. Gem1 is a GTPase that regulates the ERMES complex activity. Point mutations in GEM1 GTPase domains were sufficient to confer azole resistance. The cells lacking GEM1 displayed abnormalities in mitochondrial morphology, increased mtROS levels, and increased expression of azole drug efflux pumps encoded by CDR1 and CDR2. Interestingly, treatment with N-acetylcysteine (NAC), an antioxidant, reduced ROS production and the expression of CDR1 in Δgem1 cells. Altogether, the absence of Gem1 activity caused an increase in mitochondrial ROS concentration, leading to Pdr1-dependent upregulation of the drug efflux pump Cdr1, resulting in azole resistance.
Collapse
Affiliation(s)
- Michiyo Okamoto
- Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan
| | - Keiko Nakano
- Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan
| | | | - Kaname Sasamoto
- Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan
| | - Masashi Yamaguchi
- Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan
| | - Miguel Cacho Teixeira
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| | - Hiroji Chibana
- Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan
- Correspondence:
| |
Collapse
|
8
|
Kakimoto-Takeda Y, Kojima R, Shiino H, Shinmyo M, Kurokawa K, Nakano A, Endo T, Tamura Y. Dissociation of ERMES clusters plays a key role in attenuating the endoplasmic reticulum stress. iScience 2022; 25:105362. [PMID: 36339260 PMCID: PMC9626684 DOI: 10.1016/j.isci.2022.105362] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/24/2022] [Accepted: 10/12/2022] [Indexed: 11/27/2022] Open
Abstract
In yeast, ERMES, which mediates phospholipid transport between the ER and mitochondria, forms a limited number of oligomeric clusters at ER-mitochondria contact sites in a cell. Although the number of the ERMES clusters appears to be regulated to maintain proper inter-organelle phospholipid trafficking, its underlying mechanism and physiological relevance remain poorly understood. Here, we show that mitochondrial dynamics control the number of ERMES clusters. Moreover, we find that ER stress causes dissociation of the ERMES clusters independently of Ire1 and Hac1, canonical ER-stress response pathway components, leading to a delay in the phospholipid transport from the ER to mitochondria. Our biochemical and genetic analyses strongly suggest that the impaired phospholipid transport contributes to phospholipid accumulation in the ER, expanding the ER for ER stress attenuation. We thus propose that the ERMES dissociation constitutes an overlooked pathway of the ER stress response that operates in addition to the canonical Ire1/Hac1-dependent pathway. Mitochondrial fusion and division regulate the clustering of the ERMES complex ER stress leads to dissociation of the ERMES clusters independently of Ire1 and Hac1 The dissociated ERMES complexes have less activity in transporting phospholipids The defective phospholipid transport may cause the ER expansion to relieve ER stress
Collapse
Affiliation(s)
- Yuriko Kakimoto-Takeda
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, 2-2-2 Iidanishi, Yamagata 990-9585, Japan
| | - Rieko Kojima
- Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata 990-8560, Japan
| | - Hiroya Shiino
- Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata 990-8560, Japan
| | - Manatsu Shinmyo
- Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata 990-8560, Japan
| | - Kazuo Kurokawa
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Akihiko Nakano
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Toshiya Endo
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto 603-8555, Japan
- Institute for Protein Dynamics, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto 603-8555, Japan
| | - Yasushi Tamura
- Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata 990-8560, Japan
- Corresponding author
| |
Collapse
|
9
|
Liu J, Yang J. Mitochondria-associated membranes: A hub for neurodegenerative diseases. Biomed Pharmacother 2022; 149:112890. [PMID: 35367757 DOI: 10.1016/j.biopha.2022.112890] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 11/02/2022] Open
Abstract
In eukaryotic cells, organelles could coordinate complex mechanisms of signaling transduction metabolism and gene expression through their functional interactions. The functional domain between ER and mitochondria, called mitochondria-associated membranes (MAM), is closely associated with various physiological functions including intracellular lipid transport, Ca2+ transfer, mitochondria function maintenance, and autophagosome formation. In addition, more evidence suggests that MAM modulate cellular functions in health and disease. Studies have also demonstrated the association of MAM with numerous diseases, including neurodegenerative diseases, cancer, viral infection, obesity, and diabetes. In fact, recent evidence revealed a close relationship of MAM with Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), and other neurodegenerative diseases. In this view, elucidating the role of MAM in neurodegenerative diseases is particularly important. This review will focus the main tethering protein complexes of MAM and functions of MAM. Besides, the role of MAM in the regulation of neurodegenerative diseases and the potential molecular mechanisms is introduced to provide a new understanding of the pathogenesis of these diseases.
Collapse
Affiliation(s)
- Jinxuan Liu
- Department of Toxicology, School of Public Health, China Medical University, NO.77 Puhe road, Shenyang North New Area, Shenyang, 110122, People's Republic of China.
| | - Jinghua Yang
- Department of Toxicology, School of Public Health, China Medical University, NO.77 Puhe road, Shenyang North New Area, Shenyang, 110122, People's Republic of China.
| |
Collapse
|
10
|
Zhou J, Jung M, Dimmer KS, Rapaport D. The multi-factor modulated biogenesis of the mitochondrial multi-span protein Om14. J Biophys Biochem Cytol 2022; 221:213056. [PMID: 35262629 PMCID: PMC8916117 DOI: 10.1083/jcb.202112030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/26/2022] [Accepted: 02/03/2022] [Indexed: 12/14/2022] Open
Abstract
The mitochondrial outer membrane (MOM) harbors proteins that traverse the membrane via several helical segments and are called multi-span proteins. To obtain new insights into the biogenesis of these proteins, we utilized yeast mitochondria and the multi-span protein Om14. Testing different truncation variants, we show that while only the full-length protein contains all the information that assures perfect targeting specificity, shorter variants are targeted to mitochondria with compromised fidelity. Employing a specific insertion assay and various deletion strains, we show that proteins exposed to the cytosol do not contribute significantly to the biogenesis process. We further demonstrate that Mim1 and Porin support optimal membrane integration of Om14 but none of them are absolutely required. Unfolding of newly synthesized Om14, its optimal hydrophobicity, and higher fluidity of the membrane enhanced the import capacity of Om14. Collectively, these findings suggest that MOM multi-span proteins follow different biogenesis pathways in which proteinaceous elements and membrane behavior contribute to a variable extent to the combined efficiency.
Collapse
Affiliation(s)
- Jialin Zhou
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Martin Jung
- Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| | - Kai S Dimmer
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Doron Rapaport
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| |
Collapse
|
11
|
Koch C, Schuldiner M, Herrmann JM. ER-SURF: Riding the Endoplasmic Reticulum Surface to Mitochondria. Int J Mol Sci 2021; 22:9655. [PMID: 34502567 PMCID: PMC8432098 DOI: 10.3390/ijms22179655] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 08/29/2021] [Indexed: 02/08/2023] Open
Abstract
Most mitochondrial proteins are synthesized in the cytosol and targeted to the mitochondrial surface in a post-translational manner. The surface of the endoplasmic reticulum (ER) plays an active role in this targeting reaction. ER-associated chaperones interact with certain mitochondrial membrane protein precursors and transfer them onto receptor proteins of the mitochondrial surface in a process termed ER-SURF. ATP-driven proteins in the membranes of mitochondria (Msp1, ATAD1) and the ER (Spf1, P5A-ATPase) serve as extractors for the removal of mislocalized proteins. If the re-routing to mitochondria fails, precursors can be degraded by ER or mitochondria-associated degradation (ERAD or MAD respectively) in a proteasome-mediated reaction. This review summarizes the current knowledge about the cooperation of the ER and mitochondria in the targeting and quality control of mitochondrial precursor proteins.
Collapse
Affiliation(s)
- Christian Koch
- Cell Biology, University of Kaiserslautern, 67663 Kaiserslautern, Germany;
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel;
| | | |
Collapse
|
12
|
Gross LE, Klinger A, Spies N, Ernst T, Flinner N, Simm S, Ladig R, Bodensohn U, Schleiff E. Insertion of plastidic β-barrel proteins into the outer envelopes of plastids involves an intermembrane space intermediate formed with Toc75-V/OEP80. THE PLANT CELL 2021; 33:1657-1681. [PMID: 33624803 PMCID: PMC8254496 DOI: 10.1093/plcell/koab052] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
The insertion of organellar membrane proteins with the correct topology requires the following: First, the proteins must contain topogenic signals for translocation across and insertion into the membrane. Second, proteinaceous complexes in the cytoplasm, membrane, and lumen of organelles are required to drive this process. Many complexes required for the intracellular distribution of membrane proteins have been described, but the signals and components required for the insertion of plastidic β-barrel-type proteins into the outer membrane are largely unknown. The discovery of common principles is difficult, as only a few plastidic β-barrel proteins exist. Here, we provide evidence that the plastidic outer envelope β-barrel proteins OEP21, OEP24, and OEP37 from pea (Pisum sativum) and Arabidopsis thaliana contain information defining the topology of the protein. The information required for the translocation of pea proteins across the outer envelope membrane is present within the six N-terminal β-strands. This process requires the action of translocon of the outer chloroplast (TOC) membrane. After translocation into the intermembrane space, β-barrel proteins interact with TOC75-V, as exemplified by OEP37 and P39, and are integrated into the membrane. The membrane insertion of plastidic β-barrel proteins is affected by mutation of the last β-strand, suggesting that this strand contributes to the insertion signal. These findings shed light on the elements and complexes involved in plastidic β-barrel protein import.
Collapse
Affiliation(s)
- Lucia E Gross
- Department of Molecular Cell Biology of Plants, Goethe University, Max-von-Laue Str. 9; D-60438 Frankfurt, Germany
| | - Anna Klinger
- Department of Molecular Cell Biology of Plants, Goethe University, Max-von-Laue Str. 9; D-60438 Frankfurt, Germany
| | - Nicole Spies
- Department of Molecular Cell Biology of Plants, Goethe University, Max-von-Laue Str. 9; D-60438 Frankfurt, Germany
| | - Theresa Ernst
- Department of Molecular Cell Biology of Plants, Goethe University, Max-von-Laue Str. 9; D-60438 Frankfurt, Germany
| | - Nadine Flinner
- Department of Molecular Cell Biology of Plants, Goethe University, Max-von-Laue Str. 9; D-60438 Frankfurt, Germany
| | - Stefan Simm
- Department of Molecular Cell Biology of Plants, Goethe University, Max-von-Laue Str. 9; D-60438 Frankfurt, Germany
- Frankfurt Institute for Advanced Studies, D-60438 Frankfurt, Germany
| | - Roman Ladig
- Department of Molecular Cell Biology of Plants, Goethe University, Max-von-Laue Str. 9; D-60438 Frankfurt, Germany
| | - Uwe Bodensohn
- Department of Molecular Cell Biology of Plants, Goethe University, Max-von-Laue Str. 9; D-60438 Frankfurt, Germany
| | - Enrico Schleiff
- Department of Molecular Cell Biology of Plants, Goethe University, Max-von-Laue Str. 9; D-60438 Frankfurt, Germany
- Frankfurt Institute for Advanced Studies, D-60438 Frankfurt, Germany
| |
Collapse
|
13
|
Tamura Y, Kawano S, Endo T. Lipid homeostasis in mitochondria. Biol Chem 2021; 401:821-833. [PMID: 32229651 DOI: 10.1515/hsz-2020-0121] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/10/2020] [Indexed: 12/13/2022]
Abstract
Mitochondria are surrounded by the two membranes, the outer and inner membranes, whose lipid compositions are optimized for proper functions and structural organizations of mitochondria. Although a part of mitochondrial lipids including their characteristic lipids, phosphatidylethanolamine and cardiolipin, are synthesized within mitochondria, their precursor lipids and other lipids are transported from other organelles, mainly the ER. Mitochondrially synthesized lipids are re-distributed within mitochondria and to other organelles, as well. Recent studies pointed to the important roles of inter-organelle contact sites in lipid trafficking between different organelle membranes. Identification of Ups/PRELI proteins as lipid transfer proteins shuttling between the mitochondrial outer and inner membranes established a part of the molecular and structural basis of the still elusive intra-mitochondrial lipid trafficking.
Collapse
Affiliation(s)
- Yasushi Tamura
- Faculty of Science, Yamagata University, 1-4-12, Kojirakawa-machi, Yamagata, Yamagata 990-8560, Japan
| | - Shin Kawano
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto 603-8555, Japan
| | - Toshiya Endo
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto 603-8555, Japan.,Institute for Protein Dynamics, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto 603-8555, Japan
| |
Collapse
|
14
|
Chen L, Li Z, Zeng T, Zhang YH, Li H, Huang T, Cai YD. Predicting gene phenotype by multi-label multi-class model based on essential functional features. Mol Genet Genomics 2021; 296:905-918. [PMID: 33914130 DOI: 10.1007/s00438-021-01789-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/13/2021] [Indexed: 12/19/2022]
Abstract
Phenotype is one of the most significant concepts in genetics, which is used to describe all the characteristics of a research object that can be observed. Considering that phenotype reflects the integrated features of genotype and environment factors, it is hard to define phenotype characteristics, even difficult to predict unknown phenotypes. Restricted by current biological techniques, it is still quite expensive and time-consuming to obtain sufficient structural information of large-scale phenotype-associated genes/proteins. Various bioinformatics methods have been presented to solve such problem, and researchers have confirmed the efficacy and prediction accuracy of functional network-based prediction. But general functional descriptions have highly complicated inner structures for phenotype prediction. To further address this issue and improve the efficacy of phenotype prediction on more than ten kinds of phenotypes, we first extract functional enrichment features from GO and KEGG, and then use node2vec to learn functional embedding features of genes from a gene-gene network. All these features are analyzed by some feature selection methods (Boruta, minimum redundancy maximum relevance) to generate a feature list. Such list is fed into the incremental feature selection, incorporating some multi-label classifiers built by RAkEL and some classic base classifiers, to build an optimum multi-label multi-class classification model for phenotype prediction. According to recent researches, our method has indeed identified many literature-supported genes/proteins and their associated phenotypes, and even some candidate genes with re-assigned new phenotypes, which provide a new computational tool for the accurate and effective phenotypic prediction.
Collapse
Affiliation(s)
- Lei Chen
- School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China.,College of Information Engineering, Shanghai Maritime University, Shanghai, 201306, People's Republic of China
| | - Zhandong Li
- College of Food Engineering, Jilin Engineering Normal University, Changchun, 130052, People's Republic of China
| | - Tao Zeng
- CAS Key Laboratory of Computational Biology, Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, People's Republic of China
| | - Yu-Hang Zhang
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hao Li
- College of Food Engineering, Jilin Engineering Normal University, Changchun, 130052, People's Republic of China
| | - Tao Huang
- Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, People's Republic of China.
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China.
| |
Collapse
|
15
|
Diederichs KA, Buchanan SK, Botos I. Building Better Barrels - β-barrel Biogenesis and Insertion in Bacteria and Mitochondria. J Mol Biol 2021; 433:166894. [PMID: 33639212 PMCID: PMC8292188 DOI: 10.1016/j.jmb.2021.166894] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/18/2021] [Accepted: 02/18/2021] [Indexed: 01/20/2023]
Abstract
β-barrel proteins are folded and inserted into outer membranes by multi-subunit protein complexes that are conserved across different types of outer membranes. In Gram-negative bacteria this complex is the barrel-assembly machinery (BAM), in mitochondria it is the sorting and assembly machinery (SAM) complex, and in chloroplasts it is the outer envelope protein Oep80. Mitochondrial β-barrel precursor proteins are translocated from the cytoplasm to the intermembrane space by the translocase of the outer membrane (TOM) complex, and stabilized by molecular chaperones before interaction with the assembly machinery. Outer membrane bacterial BamA interacts with four periplasmic accessory proteins, whereas mitochondrial Sam50 interacts with two cytoplasmic accessory proteins. Despite these major architectural differences between BAM and SAM complexes, their core proteins, BamA and Sam50, seem to function the same way. Based on the new SAM complex structures, we propose that the mitochondrial β-barrel folding mechanism follows the budding model with barrel-switching aiding in the release of new barrels. We also built a new molecular model for Tom22 interacting with Sam37 to identify regions that could mediate TOM-SAM supercomplex formation.
Collapse
Affiliation(s)
- Kathryn A Diederichs
- Laboratory of Molecular Biology, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Susan K Buchanan
- Laboratory of Molecular Biology, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Istvan Botos
- Laboratory of Molecular Biology, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| |
Collapse
|
16
|
Rasul F, Zheng F, Dong F, He J, Liu L, Liu W, Cheema JY, Wei W, Fu C. Emr1 regulates the number of foci of the endoplasmic reticulum-mitochondria encounter structure complex. Nat Commun 2021; 12:521. [PMID: 33483504 PMCID: PMC7822926 DOI: 10.1038/s41467-020-20866-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 12/16/2020] [Indexed: 11/21/2022] Open
Abstract
The endoplasmic reticulum-mitochondria encounter structure (ERMES) complex creates contact sites between the endoplasmic reticulum and mitochondria, playing crucial roles in interorganelle communication, mitochondrial fission, mtDNA inheritance, lipid transfer, and autophagy. The mechanism regulating the number of ERMES foci within the cell remains unclear. Here, we demonstrate that the mitochondrial membrane protein Emr1 contributes to regulating the number of ERMES foci. We show that the absence of Emr1 significantly decreases the number of ERMES foci. Moreover, we find that Emr1 interacts with the ERMES core component Mdm12 and colocalizes with Mdm12 on mitochondria. Similar to ERMES mutant cells, cells lacking Emr1 display defective mitochondrial morphology and impaired mitochondrial segregation, which can be rescued by an artificial tether capable of linking the endoplasmic reticulum and mitochondria. We further demonstrate that the cytoplasmic region of Emr1 is required for regulating the number of ERMES foci. This work thus reveals a crucial regulatory protein necessary for ERMES functions and provides mechanistic insights into understanding the dynamic regulation of endoplasmic reticulum-mitochondria communication. Interorganelle membrane contact sites between the endoplasmic reticulum and mitochondria can be mediated with the ER-mitochondria encounter structure (ERMES) complex, though precise regulation is unclear. Here, the authors report that the number of ERMES foci is regulated by the previously uncharacterized mitochondrial membrane protein Emr1.
Collapse
Affiliation(s)
- Faiz Rasul
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, CAS Center for Excellence in Molecular Cell Sciences, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230027, Hefei, People's Republic of China
| | - Fan Zheng
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, CAS Center for Excellence in Molecular Cell Sciences, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230027, Hefei, People's Republic of China
| | - Fenfen Dong
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, CAS Center for Excellence in Molecular Cell Sciences, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230027, Hefei, People's Republic of China
| | - Jiajia He
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, CAS Center for Excellence in Molecular Cell Sciences, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230027, Hefei, People's Republic of China
| | - Ling Liu
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, CAS Center for Excellence in Molecular Cell Sciences, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230027, Hefei, People's Republic of China
| | - Wenyue Liu
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, CAS Center for Excellence in Molecular Cell Sciences, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230027, Hefei, People's Republic of China
| | - Javairia Yousuf Cheema
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, CAS Center for Excellence in Molecular Cell Sciences, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230027, Hefei, People's Republic of China
| | - Wenfan Wei
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, CAS Center for Excellence in Molecular Cell Sciences, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230027, Hefei, People's Republic of China.
| | - Chuanhai Fu
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, CAS Center for Excellence in Molecular Cell Sciences, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230027, Hefei, People's Republic of China.
| |
Collapse
|
17
|
Cheema JY, He J, Wei W, Fu C. The Endoplasmic Reticulum-Mitochondria Encounter Structure and its Regulatory Proteins. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2021; 4:25152564211064491. [PMID: 37366373 PMCID: PMC10243566 DOI: 10.1177/25152564211064491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
In fungi, the endoplasmic reticulum-mitochondria encounter structure (ERMES) is present between the endoplasmic reticulon (ER) and mitochondria to promote the formation of the ER-mitochondria contact sites. Four constitutive components (Mmm1, Mdm12, Mdm34, and Mdm10) assemble to form the ERMES complex while regulator proteins are required for regulating the organization and function of the ERMES complex. Multiple regulator proteins, including Gem1, Lam6, Tom7, and Emr1, of the ERMES complex, have been identified recently. In this review, we discuss the organization of the ERMES complex and the roles of the regulator proteins of the ERMES complex.
Collapse
Affiliation(s)
- Javairia Y. Cheema
- Ministry of Education Key Laboratory for Cellular
Dynamics, CAS Center for Excellence in Molecular Cell Sciences, Hefei National
Laboratory for Physical Sciences at the Microscale, School of Life Sciences,
Division of Life Sciences and Medicine, University of Science and Technology
of China, Hefei, P.R. China
| | - Jiajia He
- Ministry of Education Key Laboratory for Cellular
Dynamics, CAS Center for Excellence in Molecular Cell Sciences, Hefei National
Laboratory for Physical Sciences at the Microscale, School of Life Sciences,
Division of Life Sciences and Medicine, University of Science and Technology
of China, Hefei, P.R. China
| | - Wenfan Wei
- Ministry of Education Key Laboratory for Cellular
Dynamics, CAS Center for Excellence in Molecular Cell Sciences, Hefei National
Laboratory for Physical Sciences at the Microscale, School of Life Sciences,
Division of Life Sciences and Medicine, University of Science and Technology
of China, Hefei, P.R. China
| | - Chuanhai Fu
- Ministry of Education Key Laboratory for Cellular
Dynamics, CAS Center for Excellence in Molecular Cell Sciences, Hefei National
Laboratory for Physical Sciences at the Microscale, School of Life Sciences,
Division of Life Sciences and Medicine, University of Science and Technology
of China, Hefei, P.R. China
| |
Collapse
|
18
|
English AM, Schuler MH, Xiao T, Kornmann B, Shaw JM, Hughes AL. ER-mitochondria contacts promote mitochondrial-derived compartment biogenesis. J Biophys Biochem Cytol 2020; 219:211482. [PMID: 33090183 PMCID: PMC7588143 DOI: 10.1083/jcb.202002144] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/25/2020] [Accepted: 10/01/2020] [Indexed: 01/04/2023] Open
Abstract
Mitochondria are dynamic organelles with essential roles in signaling and metabolism. We recently identified a cellular structure called the mitochondrial-derived compartment (MDC) that is generated from mitochondria in response to amino acid overabundance stress. How cells form MDCs is unclear. Here, we show that MDCs are dynamic structures that form and stably persist at sites of contact between the ER and mitochondria. MDC biogenesis requires the ER-mitochondria encounter structure (ERMES) and the conserved GTPase Gem1, factors previously implicated in lipid exchange and membrane tethering at ER-mitochondria contacts. Interestingly, common genetic suppressors of abnormalities displayed by ERMES mutants exhibit distinct abilities to rescue MDC formation in ERMES-depleted strains and are incapable of rescuing MDC formation in cells lacking Gem1. Thus, the function of ERMES and Gem1 in MDC biogenesis may extend beyond their conventional role in maintaining mitochondrial phospholipid homeostasis. Overall, this study identifies an important function for ER-mitochondria contacts in the biogenesis of MDCs.
Collapse
Affiliation(s)
- Alyssa M. English
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT
| | - Max-Hinderk Schuler
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT
| | - Tianyao Xiao
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT
| | - Benoît Kornmann
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Janet M. Shaw
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT
| | - Adam L. Hughes
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT,Correspondence to Adam L. Hughes:
| |
Collapse
|
19
|
Bagamery LE, Justman QA, Garner EC, Murray AW. A Putative Bet-Hedging Strategy Buffers Budding Yeast against Environmental Instability. Curr Biol 2020; 30:4563-4578.e4. [PMID: 32976801 DOI: 10.1016/j.cub.2020.08.092] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/20/2020] [Accepted: 08/26/2020] [Indexed: 12/19/2022]
Abstract
To grow and divide, cells must extract resources from dynamic and unpredictable environments. Many organisms use different metabolic strategies for distinct contexts. Budding yeast can produce ATP from carbon sources by mechanisms that prioritize either speed (fermentation) or yield (respiration). Withdrawing glucose from exponentially growing cells reveals variability in their ability to switch from fermentation to respiration. We observe two subpopulations of glucose-starved cells: recoverers, which rapidly adapt and resume growth, and arresters, which enter a shock state characterized by deformation of many cellular structures, including mitochondria. These states are heritable, and on high glucose, arresters grow and divide faster than recoverers. Recoverers have a fitness advantage during a carbon source shift but are less fit in a constant, high-glucose environment, and we observe natural variation in the frequency of the two states across wild yeast strains. These experiments suggest that bet hedging has evolved in budding yeast.
Collapse
Affiliation(s)
- Laura E Bagamery
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | - Quincey A Justman
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | - Ethan C Garner
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA.
| | - Andrew W Murray
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA.
| |
Collapse
|
20
|
Kornmann B. The endoplasmic reticulum-mitochondria encounter structure: coordinating lipid metabolism across membranes. Biol Chem 2020; 401:811-820. [DOI: 10.1515/hsz-2020-0102] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 02/05/2020] [Indexed: 02/06/2023]
Abstract
AbstractEndosymbiosis, the beginning of a collaboration between an archaeon and a bacterium and a founding step in the evolution of eukaryotes, owes its success to the establishment of communication routes between the host and the symbiont to allow the exchange of metabolites. As far as lipids are concerned, it is the host that has learnt the symbiont’s language, as eukaryote lipids appear to have been borrowed from the bacterial symbiont. Mitochondria exchange lipids with the rest of the cell at membrane contact sites. In fungi, the endoplasmic reticulum-mitochondria encounter structure (ERMES) is one of the best understood membrane tethering complexes. Its discovery has yielded crucial insight into the mechanisms of intracellular lipid trafficking. Despite a wealth of data, our understanding of ERMES formation and its exact role(s) remains incomplete. Here, I endeavour to summarise our knowledge on the ERMES complex and to identify lingering gaps.
Collapse
Affiliation(s)
- Benoît Kornmann
- Department of Biochemistry, University of Oxford, South Parks Rd, Oxford OX1 3QU, UK
| |
Collapse
|
21
|
Martinez-Guzman O, Willoughby MM, Saini A, Dietz JV, Bohovych I, Medlock AE, Khalimonchuk O, Reddi AR. Mitochondrial-nuclear heme trafficking in budding yeast is regulated by GTPases that control mitochondrial dynamics and ER contact sites. J Cell Sci 2020; 133:jcs.237917. [PMID: 32265272 DOI: 10.1242/jcs.237917] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 03/24/2020] [Indexed: 12/20/2022] Open
Abstract
Heme is a cofactor and signaling molecule that is essential for much of aerobic life. All heme-dependent processes in eukaryotes require that heme is trafficked from its site of synthesis in the mitochondria to hemoproteins located throughout the cell. However, the mechanisms governing the mobilization of heme out of the mitochondria, and the spatio-temporal dynamics of these processes, are poorly understood. Here, using genetically encoded fluorescent heme sensors, we developed a live-cell assay to monitor heme distribution dynamics between the mitochondrial inner membrane, where heme is synthesized, and the mitochondrial matrix, cytosol and nucleus. Surprisingly, heme trafficking to the nucleus is ∼25% faster than to the cytosol or mitochondrial matrix, which have nearly identical heme trafficking dynamics, potentially supporting a role for heme as a mitochondrial-nuclear retrograde signal. Moreover, we discovered that the heme synthetic enzyme 5-aminolevulinic acid synthase (ALAS, also known as Hem1 in yeast), and GTPases in control of the mitochondrial dynamics machinery (Mgm1 and Dnm1) and ER contact sites (Gem1), regulate the flow of heme between the mitochondria and nucleus. Overall, our results indicate that there are parallel pathways for the distribution of bioavailable heme.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Osiris Martinez-Guzman
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Mathilda M Willoughby
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Arushi Saini
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Jonathan V Dietz
- Department of Biochemistry and Nebraska Redox Biology Center, University of Nebraska, Lincoln, NE 68588, USA
| | - Iryna Bohovych
- Department of Biochemistry and Nebraska Redox Biology Center, University of Nebraska, Lincoln, NE 68588, USA
| | - Amy E Medlock
- Department of Biochemistry and Molecular Biology, University of Georgia and Augusta University-University of Georgia Medical Partnership, Athens, GA 30602, USA
| | - Oleh Khalimonchuk
- Department of Biochemistry and Nebraska Redox Biology Center, University of Nebraska, Lincoln, NE 68588, USA.,Fred & Pamela Buffett Cancer Center, Omaha, NE 68198, USA
| | - Amit R Reddi
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA .,Parker Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA.,School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
22
|
Kundu D, Pasrija R. The ERMES (Endoplasmic Reticulum and Mitochondria Encounter Structures) mediated functions in fungi. Mitochondrion 2020; 52:89-99. [PMID: 32105794 DOI: 10.1016/j.mito.2020.02.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 12/21/2019] [Accepted: 02/21/2020] [Indexed: 01/01/2023]
Abstract
Cellular organelles are membrane-bound and provide a microenvironment for specific functions. A mitochondrion is a double membranous and dynamic organelle that undergoes numerous fusion/fission events, which depends on various cellular factors. However, it is still dependent on other organelles and requires both communications as well as the movement of physical metabolites between them. Mitochondria interact with different organelles counting lipid droplets (LD), peroxisomes, vacuoles, endoplasmic reticulum (ER) and plasma membrane (PM), etc. Apart from them, mitochondria maintain multiple interactions with ER including ERMES (Endoplasmic Reticulum and Mitochondria encounter structures). ERMES is actually a multi-protein complex, and imperative in the maintenance of mitochondrial morphology and its functions. Its disruption also compromises phospholipid exchange, drug resistance and pathogenicity. This assembly is reportedly unique to fungal systems and proposed as a target for development of new antifungal. In the light of separate reports across diverse fungal systems, we have summarised the information about its distribution and effect on mitochondrial fitness.
Collapse
Affiliation(s)
- Deepika Kundu
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Ritu Pasrija
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana, India.
| |
Collapse
|
23
|
Roumia AF, Theodoropoulou MC, Tsirigos KD, Nielsen H, Bagos PG. Landscape of Eukaryotic Transmembrane Beta Barrel Proteins. J Proteome Res 2020; 19:1209-1221. [PMID: 32008325 DOI: 10.1021/acs.jproteome.9b00740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Even though in the last few years several families of eukaryotic β-barrel outer membrane proteins have been discovered, their computational characterization and their annotation in public databases are far from complete. The PFAM database includes only very few characteristic profiles for these families, and in most cases, the profile hidden Markov models (pHMMs) have been trained using prokaryotic and eukaryotic proteins together. Here, we present for the first time a comprehensive computational analysis of eukaryotic transmembrane β-barrels. Twelve characteristic pHMMs were built, based on an extensive literature search, which can discriminate eukaryotic β-barrels from other classes of proteins (globular and bacterial β-barrel ones), as well as between mitochondrial and chloroplastic ones. We built eight novel profiles for the chloroplastic β-barrel families that are not present in the PFAM database and also updated the profile for the MDM10 family (PF12519) in the PFAM database and divide the porin family (PF01459) into two separate families, namely, VDAC and TOM40.
Collapse
Affiliation(s)
- Ahmed F Roumia
- Department of Computer Science and Biomedical Informatics, University of Thessaly, 35100 Lamia, Greece
| | | | - Konstantinos D Tsirigos
- Disease Systems Biology Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark.,Department of Health Technology, Section for Bioinformatics, Technical University of Denmark, DK-2800 Kgs Lyngby, Denmark
| | - Henrik Nielsen
- Department of Health Technology, Section for Bioinformatics, Technical University of Denmark, DK-2800 Kgs Lyngby, Denmark
| | - Pantelis G Bagos
- Department of Computer Science and Biomedical Informatics, University of Thessaly, 35100 Lamia, Greece
| |
Collapse
|
24
|
Heine KB, Hood WR. Mitochondrial behaviour, morphology, and animal performance. Biol Rev Camb Philos Soc 2020; 95:730-737. [PMID: 32022456 DOI: 10.1111/brv.12584] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 01/10/2020] [Accepted: 01/14/2020] [Indexed: 12/14/2022]
Abstract
We have a limited understanding of the proximate mechanisms that are responsible for the development of variation in animal performance and life-history strategies. Provided that components of an organism's successful life history - for example, mate competition, gestation, lactation, etc. - are energetically demanding, increased energy production within mitochondria is likely the foundation from which organisms are able to perform these tasks. Mitochondrial behaviour (positioning within the cell and communication between mitochondria) and morphology affect variation in energy production at the molecular, cellular, and organismal levels. Therefore, adaptations in mitochondrial behaviour and morphology that favour efficient energy production likely influence variation in animal performance. Previous work has linked greater proportions of inter-mitochondrial junctions and density of the inner mitochondrial membrane, among other traits, with increased energetic demand. Future research should focus on how inter-mitochondrial junctions and morphology of the inner mitochondrial membrane, in particular, influence animal performance in accordance with mitochondrial density, fission, and fusion.
Collapse
Affiliation(s)
- Kyle B Heine
- Department of Biological Sciences, Auburn University, 101 Rouse Life Sciences Building, Auburn, AL, 36849, U.S.A
| | - Wendy R Hood
- Department of Biological Sciences, Auburn University, 101 Rouse Life Sciences Building, Auburn, AL, 36849, U.S.A
| |
Collapse
|
25
|
Kuznetsov AV, Javadov S, Grimm M, Margreiter R, Ausserlechner MJ, Hagenbuchner J. Crosstalk between Mitochondria and Cytoskeleton in Cardiac Cells. Cells 2020; 9:cells9010222. [PMID: 31963121 PMCID: PMC7017221 DOI: 10.3390/cells9010222] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 12/28/2022] Open
Abstract
Elucidation of the mitochondrial regulatory mechanisms for the understanding of muscle bioenergetics and the role of mitochondria is a fundamental problem in cellular physiology and pathophysiology. The cytoskeleton (microtubules, intermediate filaments, microfilaments) plays a central role in the maintenance of mitochondrial shape, location, and motility. In addition, numerous interactions between cytoskeletal proteins and mitochondria can actively participate in the regulation of mitochondrial respiration and oxidative phosphorylation. In cardiac and skeletal muscles, mitochondrial positions are tightly fixed, providing their regular arrangement and numerous interactions with other cellular structures such as sarcoplasmic reticulum and cytoskeleton. This can involve association of cytoskeletal proteins with voltage-dependent anion channel (VDAC), thereby, governing the permeability of the outer mitochondrial membrane (OMM) to metabolites, and regulating cell energy metabolism. Cardiomyocytes and myocardial fibers demonstrate regular arrangement of tubulin beta-II isoform entirely co-localized with mitochondria, in contrast to other isoforms of tubulin. This observation suggests the participation of tubulin beta-II in the regulation of OMM permeability through interaction with VDAC. The OMM permeability is also regulated by the specific isoform of cytolinker protein plectin. This review summarizes and discusses previous studies on the role of cytoskeletal proteins in the regulation of energy metabolism and mitochondrial function, adenosine triphosphate (ATP) production, and energy transfer.
Collapse
Affiliation(s)
- Andrey V. Kuznetsov
- Cardiac Surgery Research Laboratory, Department of Cardiac Surgery, Innsbruck Medical University, 6020 Innsbruck, Austria;
- Department of Paediatrics I, Medical University of Innsbruck, 6020 Innsbruck, Austria;
- Correspondence: (A.V.K.); (J.H.); Tel.: +43-512-504-27815 (A.V.K.); +43-512-504-81578 (J.H.)
| | - Sabzali Javadov
- Department of Physiology, School of Medicine, University of Puerto Rico, San Juan, PR 00936-5067, USA;
| | - Michael Grimm
- Cardiac Surgery Research Laboratory, Department of Cardiac Surgery, Innsbruck Medical University, 6020 Innsbruck, Austria;
| | - Raimund Margreiter
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | | | - Judith Hagenbuchner
- Department of Paediatrics II, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Correspondence: (A.V.K.); (J.H.); Tel.: +43-512-504-27815 (A.V.K.); +43-512-504-81578 (J.H.)
| |
Collapse
|
26
|
Odendall F, Backes S, Tatsuta T, Weill U, Schuldiner M, Langer T, Herrmann JM, Rapaport D, Dimmer KS. The mitochondrial intermembrane space-facing proteins Mcp2 and Tgl2 are involved in yeast lipid metabolism. Mol Biol Cell 2019; 30:2681-2694. [PMID: 31483742 PMCID: PMC6761770 DOI: 10.1091/mbc.e19-03-0166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Mitochondria are unique organelles harboring two distinct membranes, the mitochondrial inner and outer membrane (MIM and MOM, respectively). Mitochondria comprise only a subset of metabolic pathways for the synthesis of membrane lipids; therefore most lipid species and their precursors have to be imported from other cellular compartments. One such import process is mediated by the ER mitochondria encounter structure (ERMES) complex. Both mitochondrial membranes surround the hydrophilic intermembrane space (IMS). Therefore, additional systems are required that shuttle lipids between the MIM and MOM. Recently, we identified the IMS protein Mcp2 as a high-copy suppressor for cells that lack a functional ERMES complex. To understand better how mitochondria facilitate transport and biogenesis of lipids, we searched for genetic interactions of this suppressor. We found that MCP2 has a negative genetic interaction with the gene TGL2 encoding a neutral lipid hydrolase. We show that this lipase is located in the intermembrane space of the mitochondrion and is imported via the Mia40 disulfide relay system. Furthermore, we show a positive genetic interaction of double deletion of MCP2 and PSD1, the gene encoding the enzyme that synthesizes the major amount of cellular phosphatidylethanolamine. Finally, we demonstrate that the nucleotide-binding motifs of the predicted atypical kinase Mcp2 are required for its proper function. Taken together, our data suggest that Mcp2 is involved in mitochondrial lipid metabolism and an increase of this involvement by overexpression suppresses loss of ERMES.
Collapse
Affiliation(s)
- Fenja Odendall
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany
| | - Sandra Backes
- Cell Biology, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Takashi Tatsuta
- Max Planck Institute for Biology of Ageing, 50931 Köln, Germany
| | - Uri Weill
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Thomas Langer
- Max Planck Institute for Biology of Ageing, 50931 Köln, Germany
| | | | - Doron Rapaport
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany
| | - Kai Stefan Dimmer
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
27
|
Esposito M, Hermann-Le Denmat S, Delahodde A. Contribution of ERMES subunits to mature peroxisome abundance. PLoS One 2019; 14:e0214287. [PMID: 30908556 PMCID: PMC6433259 DOI: 10.1371/journal.pone.0214287] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 03/11/2019] [Indexed: 11/26/2022] Open
Abstract
Eukaryotic organelles share different components and establish physical contacts to communicate throughout the cell. One of the best-recognized examples of such interplay is the metabolic cooperation and crosstalk between mitochondria and peroxisomes, both organelles being functionally and physically connected and linked to the endoplasmic reticulum (ER). In Saccharomyces cerevisiae, mitochondria are linked to the ER by the ERMES complex that facilitates inter-organelle calcium and phospholipid exchanges. Recently, peroxisome-mitochondria contact sites (PerMit) have been reported and among Permit tethers, one component of the ERMES complex (Mdm34) was shown to interact with the peroxin Pex11, suggesting that the ERMES complex or part of it may be involved in two membrane contact sites (ER-mitochondria and peroxisome- mitochondria). This opens the possibility of exchanges between these three membrane compartments. Here, we investigated in details the role of each ERMES subunit on peroxisome abundance. First, we confirmed previous studies from other groups showing that absence of Mdm10 or Mdm12 leads to an increased number of mature peroxisomes. Secondly, we showed that this is not simply due to respiratory function defect, mitochondrial DNA (mtDNA) loss or mitochondrial network alteration. Finally, we present evidence that the contribution of ERMES subunits Mdm10 and Mdm12 to peroxisome number involves two different mechanisms.
Collapse
Affiliation(s)
- Michela Esposito
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris‐Sud, Université Paris‐Saclay, Gif‐sur‐Yvette cedex, France
| | - Sylvie Hermann-Le Denmat
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris‐Sud, Université Paris‐Saclay, Gif‐sur‐Yvette cedex, France
- Ecole Normale Supérieure, PSL Research University, Paris, France
| | - Agnès Delahodde
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris‐Sud, Université Paris‐Saclay, Gif‐sur‐Yvette cedex, France
- * E-mail:
| |
Collapse
|
28
|
Légiot A, Céré C, Dupoiron T, Kaabouni M, Camougrand N, Manon S. Mitochondria-Associated Membranes (MAMs) are involved in Bax mitochondrial localization and cytochrome c release. MICROBIAL CELL 2019; 6:257-266. [PMID: 31114795 PMCID: PMC6506693 DOI: 10.15698/mic2019.05.678] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The distribution of the pro-apoptotic protein Bax in the outer mi-tochondrial membrane (OMM) is a central point of regulation of apoptosis. It is now widely recognized that parts of the endoplasmic reticulum (ER) are closely associated to the OMM, and are actively involved in different signaling processes. We addressed a possible role of these domains, called Mitochon-dria-Associated Membranes (MAMs) in Bax localization and function, by ex-pressing the human protein in a yeast mutant deleted of MDM34, a ERMES (ER-Mitochondria Encounter Structure) component. By affecting MAMs stabil-ity, the deletion of MDM34 altered Bax mitochondrial localization, and de-creased its capacity to release cytochrome c. Furthermore, the deletion of MDM34 decreased the size of an incompletely released, MAMs-associated pool of cytochrome c.
Collapse
Affiliation(s)
- Alexandre Légiot
- Institut de Biochimie et de Génétique Cellulaires, UMR 5095 CNRS & Université de Bordeaux, Campus Carreire, CS61390, 1 Rue Camille Saint-Saëns, 33077 Bordeaux, France
| | - Claire Céré
- Institut de Biochimie et de Génétique Cellulaires, UMR 5095 CNRS & Université de Bordeaux, Campus Carreire, CS61390, 1 Rue Camille Saint-Saëns, 33077 Bordeaux, France
| | - Thibaud Dupoiron
- Institut de Biochimie et de Génétique Cellulaires, UMR 5095 CNRS & Université de Bordeaux, Campus Carreire, CS61390, 1 Rue Camille Saint-Saëns, 33077 Bordeaux, France
| | - Mohamed Kaabouni
- Institut de Biochimie et de Génétique Cellulaires, UMR 5095 CNRS & Université de Bordeaux, Campus Carreire, CS61390, 1 Rue Camille Saint-Saëns, 33077 Bordeaux, France
| | - Nadine Camougrand
- Institut de Biochimie et de Génétique Cellulaires, UMR 5095 CNRS & Université de Bordeaux, Campus Carreire, CS61390, 1 Rue Camille Saint-Saëns, 33077 Bordeaux, France
| | - Stéphen Manon
- Institut de Biochimie et de Génétique Cellulaires, UMR 5095 CNRS & Université de Bordeaux, Campus Carreire, CS61390, 1 Rue Camille Saint-Saëns, 33077 Bordeaux, France
| |
Collapse
|
29
|
Tamura Y, Kawano S, Endo T. Organelle contact zones as sites for lipid transfer. J Biochem 2019; 165:115-123. [PMID: 30371789 DOI: 10.1093/jb/mvy088] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 10/26/2018] [Indexed: 01/06/2023] Open
Abstract
Since the 1950s, electron microscopic observations have suggested the existence of special regions where the distinct organelle membranes are closely apposed to each other, yet their molecular basis and functions have not been examined for a long time. Recent studies using yeast as a model organism identified multiple organelle-membrane tethering sites/factors, such as ERMES (ER-mitochondria encounter structure), NVJ (Nuclear-vacuole junction), vCLAMP (Vacuole and mitochondria patch) and MICOS (Mitochondrial contact site). Among them, ERMES is the best-characterized contact-site protein complex, which was found to function as not only an organelle-tethering factor but also a phospholipid transfer protein complex. In this review, we will discuss recent advances in the characterization of ERMES and other organelle contact zones, vCLAMP, NVJ and MICOS in yeast.
Collapse
Affiliation(s)
- Yasushi Tamura
- Department of Material and Biological Chemistry, Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata, Japan
| | - Shin Kawano
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto, Japan.,Research Center for Protein Dynamics, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto, Japan
| | - Toshiya Endo
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto, Japan.,Research Center for Protein Dynamics, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto, Japan
| |
Collapse
|
30
|
Martins VM, Fernandes TR, Lopes D, Afonso CB, Domingues MRM, Côrte-Real M, Sousa MJ. Contacts in Death: The Role of the ER-Mitochondria Axis in Acetic Acid-Induced Apoptosis in Yeast. J Mol Biol 2018; 431:273-288. [PMID: 30414966 DOI: 10.1016/j.jmb.2018.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/12/2018] [Accepted: 11/05/2018] [Indexed: 02/08/2023]
Abstract
Endoplasmic reticulum-mitochondria contact sites have been a subject of increasing scientific interest since the discovery that these structures are disrupted in several pathologies. Due to the emerging data that correlate endoplasmic reticulum-mitochondria contact sites function with known events of the apoptotic program, we aimed to dissect this interplay using our well-established model of acetic acid-induced apoptosis in Saccharomyces cerevisiae. Until recently, the only known tethering complex between ER and mitochondria in this organism was the ER-mitochondria encounter structure (ERMES). Following our results from a screening designed to identify genes whose deletion rendered cells with an altered sensitivity to acetic acid, we hypothesized that the ERMES complex could be involved in cell death mediated by this stressor. Herein we demonstrate that single ablation of the ERMES components Mdm10p, Mdm12p and Mdm34p increases the resistance of S. cerevisiae to acetic acid-induced apoptosis, which is associated with a prominent delay in the appearance of several apoptotic markers. Moreover, abrogation of Mdm10p or Mdm34p abolished cytochrome c release from mitochondria. Since these two proteins are embedded in the mitochondrial outer membrane, we propose that the ERMES complex plays a part in cytochrome c release, a key event of the apoptotic cascade. In all, these findings will aid in targeted therapies for diseases where apoptosis is disrupted, as well as assist in the development of acetic acid-resistant strains for industrial processes.
Collapse
Affiliation(s)
- Vítor M Martins
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Tânia R Fernandes
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Diana Lopes
- Mass Spectrometry Centre, Department of Chemistry & QOPNA, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; Department of Chemistry & CESAM & ECOMARE, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Catarina B Afonso
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Maria R M Domingues
- Mass Spectrometry Centre, Department of Chemistry & QOPNA, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; Department of Chemistry & CESAM & ECOMARE, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Manuela Côrte-Real
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Maria J Sousa
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
31
|
Sinzel M, Zeitler A, Dimmer KS. Interaction network of the mitochondrial outer membrane protein Mcp3. FEBS Lett 2018; 592:3210-3220. [PMID: 30192984 DOI: 10.1002/1873-3468.13243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/30/2018] [Accepted: 09/03/2018] [Indexed: 02/04/2023]
Abstract
Mitochondria are organelles containing two membranes that are distinct in composition and function. A role of the mitochondrial outer membrane (MOM) is to mediate contact of the organelle with the rest of the cell. In yeast, the MOM contains about 40 different integral proteins. Recently, we described the MOM protein Mcp3, which can serve as a multicopy suppressor of loss of ERMES complex that mediates mitochondria-endoplasmic reticulum contacts. To shed further light on the role of Mcp3 in the MOM, we analyzed its physical interaction with other proteins. We show that Mcp3 interacts with the MOM protein Om45 and the inner membrane protein Aim19. Our observations hint toward a potential involvement of Mcp3 in a structural and/or functional link between both mitochondrial membranes.
Collapse
Affiliation(s)
- Monika Sinzel
- Interfaculty Institute of Biochemistry, University of Tübingen, Germany
| | - Andreas Zeitler
- Interfaculty Institute of Biochemistry, University of Tübingen, Germany
| | - Kai S Dimmer
- Interfaculty Institute of Biochemistry, University of Tübingen, Germany
| |
Collapse
|
32
|
Kakimoto Y, Tashiro S, Kojima R, Morozumi Y, Endo T, Tamura Y. Visualizing multiple inter-organelle contact sites using the organelle-targeted split-GFP system. Sci Rep 2018; 8:6175. [PMID: 29670150 PMCID: PMC5906596 DOI: 10.1038/s41598-018-24466-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 04/04/2018] [Indexed: 12/18/2022] Open
Abstract
Functional integrity of eukaryotic organelles relies on direct physical contacts between distinct organelles. However, the entity of organelle-tethering factors is not well understood due to lack of means to analyze inter-organelle interactions in living cells. Here we evaluate the split-GFP system for visualizing organelle contact sites in vivo and show its advantages and disadvantages. We observed punctate GFP signals from the split-GFP fragments targeted to any pairs of organelles among the ER, mitochondria, peroxisomes, vacuole and lipid droplets in yeast cells, which suggests that these organelles form contact sites with multiple organelles simultaneously although it is difficult to rule out the possibilities that these organelle contacts sites are artificially formed by the irreversible associations of the split-GFP probes. Importantly, split-GFP signals in the overlapped regions of the ER and mitochondria were mainly co-localized with ERMES, an authentic ER-mitochondria tethering structure, suggesting that split-GFP assembly depends on the preexisting inter-organelle contact sites. We also confirmed that the split-GFP system can be applied to detection of the ER-mitochondria contact sites in HeLa cells. We thus propose that the split-GFP system is a potential tool to observe and analyze inter-organelle contact sites in living yeast and mammalian cells.
Collapse
Affiliation(s)
- Yuriko Kakimoto
- Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata, Yamagata, 990-8560, Japan
| | - Shinya Tashiro
- Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata, Yamagata, 990-8560, Japan
| | - Rieko Kojima
- Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata, Yamagata, 990-8560, Japan
| | - Yuki Morozumi
- Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata, Yamagata, 990-8560, Japan
| | - Toshiya Endo
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto, 603-8555, Japan
| | - Yasushi Tamura
- Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata, Yamagata, 990-8560, Japan.
| |
Collapse
|
33
|
Kawano S, Tamura Y, Kojima R, Bala S, Asai E, Michel AH, Kornmann B, Riezman I, Riezman H, Sakae Y, Okamoto Y, Endo T. Structure-function insights into direct lipid transfer between membranes by Mmm1-Mdm12 of ERMES. J Cell Biol 2017; 217:959-974. [PMID: 29279306 PMCID: PMC5839780 DOI: 10.1083/jcb.201704119] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 11/06/2017] [Accepted: 12/01/2017] [Indexed: 12/26/2022] Open
Abstract
The ER–mitochondrial encounter structure (ERMES) physically links ER and mitochondrial membranes in yeast, but it is unclear whether ERMES directly facilitates lipid exchange between these organelles. Kawano et al. reveal by reconstitution experiments that a complex of Mmm1–Mdm12, two core subunits of ERMES, functions as a minimal unit for lipid transfer between membranes. The endoplasmic reticulum (ER)–mitochondrial encounter structure (ERMES) physically links the membranes of the ER and mitochondria in yeast. Although the ER and mitochondria cooperate to synthesize glycerophospholipids, whether ERMES directly facilitates the lipid exchange between the two organelles remains controversial. Here, we compared the x-ray structures of an ERMES subunit Mdm12 from Kluyveromyces lactis with that of Mdm12 from Saccharomyces cerevisiae and found that both Mdm12 proteins possess a hydrophobic pocket for phospholipid binding. However in vitro lipid transfer assays showed that Mdm12 alone or an Mmm1 (another ERMES subunit) fusion protein exhibited only a weak lipid transfer activity between liposomes. In contrast, Mdm12 in a complex with Mmm1 mediated efficient lipid transfer between liposomes. Mutations in Mmm1 or Mdm12 impaired the lipid transfer activities of the Mdm12–Mmm1 complex and furthermore caused defective phosphatidylserine transport from the ER to mitochondrial membranes via ERMES in vitro. Therefore, the Mmm1–Mdm12 complex functions as a minimal unit that mediates lipid transfer between membranes.
Collapse
Affiliation(s)
- Shin Kawano
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan.,Japan Science and Technology Agency/Core Research for Evolutional Science and Technology, Kyoto Sangyo University, Kyoto, Japan.,Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Japan.,Japan Science and Technology Agency/Core Research for Evolutional Science and Technology, Nagoya University, Nagoya, Japan
| | - Yasushi Tamura
- Japan Science and Technology Agency/Core Research for Evolutional Science and Technology, Nagoya University, Nagoya, Japan.,Research Center for Materials Science, Nagoya University, Nagoya, Japan.,Department of Material and Biological Chemistry, Faculty of Science, Yamagata University, Yamagata, Japan
| | - Rieko Kojima
- Department of Material and Biological Chemistry, Faculty of Science, Yamagata University, Yamagata, Japan
| | - Siqin Bala
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Eri Asai
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Agnès H Michel
- Institute of Biochemistry, ETH Zürich, Zürich, Switzerland
| | | | - Isabelle Riezman
- Department of Biochemistry, National Centre of Competence in Research Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Howard Riezman
- Department of Biochemistry, National Centre of Competence in Research Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Yoshitake Sakae
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Yuko Okamoto
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Toshiya Endo
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan .,Japan Science and Technology Agency/Core Research for Evolutional Science and Technology, Kyoto Sangyo University, Kyoto, Japan.,Institute for Protein Dynamics, Kyoto Sangyo University, Kyoto, Japan.,Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Japan.,Japan Science and Technology Agency/Core Research for Evolutional Science and Technology, Nagoya University, Nagoya, Japan
| |
Collapse
|
34
|
Koch B, Tucey TM, Lo TL, Novakovic S, Boag P, Traven A. The Mitochondrial GTPase Gem1 Contributes to the Cell Wall Stress Response and Invasive Growth of Candida albicans. Front Microbiol 2017; 8:2555. [PMID: 29326680 PMCID: PMC5742345 DOI: 10.3389/fmicb.2017.02555] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/08/2017] [Indexed: 01/27/2023] Open
Abstract
The interactions of mitochondria with the endoplasmic reticulum (ER) are crucial for maintaining proper mitochondrial morphology, function and dynamics. This enables cells to utilize their mitochondria optimally for energy production and anabolism, and it further provides for metabolic control over developmental decisions. In fungi, a key mechanism by which ER and mitochondria interact is via a membrane tether, the protein complex ERMES (ER-Mitochondria Encounter Structure). In the model yeast Saccharomyces cerevisiae, the mitochondrial GTPase Gem1 interacts with ERMES, and it has been proposed to regulate its activity. Here we report on the first characterization of Gem1 in a human fungal pathogen. We show that in Candida albicans Gem1 has a dominant role in ensuring proper mitochondrial morphology, and our data is consistent with Gem1 working with ERMES in this role. Mitochondrial respiration and steady state cellular phospholipid homeostasis are not impacted by inactivation of GEM1 in C. albicans. There are two major virulence-related consequences of disrupting mitochondrial morphology by GEM1 inactivation: C. albicans becomes hypersusceptible to cell wall stress, and is unable to grow invasively. In the gem1Δ/Δ mutant, it is specifically the invasive capacity of hyphae that is compromised, not the ability to transition from yeast to hyphal morphology, and this phenotype is shared with ERMES mutants. As a consequence of the hyphal invasion defect, the gem1Δ/Δ mutant is drastically hypovirulent in the worm infection model. Activation of the mitogen activated protein (MAP) kinase Cek1 is reduced in the gem1Δ/Δ mutant, and this function could explain both the susceptibility to cell wall stress and lack of invasive growth. This result establishes a new, respiration-independent mechanism of mitochondrial control over stress signaling and hyphal functions in C. albicans. We propose that ER-mitochondria interactions and the ER-Mitochondria Organizing Network (ERMIONE) play important roles in adaptive responses in fungi, in particular cell surface-related mechanisms that drive invasive growth and stress responsive behaviors that support fungal pathogenicity.
Collapse
Affiliation(s)
- Barbara Koch
- Infection and Immunity Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Timothy M Tucey
- Infection and Immunity Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Tricia L Lo
- Infection and Immunity Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Stevan Novakovic
- Development and Stem Cells Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Peter Boag
- Development and Stem Cells Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Ana Traven
- Infection and Immunity Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
35
|
Straub SP, Stiller SB, Wiedemann N, Pfanner N. Dynamic organization of the mitochondrial protein import machinery. Biol Chem 2017; 397:1097-1114. [PMID: 27289000 DOI: 10.1515/hsz-2016-0145] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 05/17/2016] [Indexed: 01/12/2023]
Abstract
Mitochondria contain elaborate machineries for the import of precursor proteins from the cytosol. The translocase of the outer mitochondrial membrane (TOM) performs the initial import of precursor proteins and transfers the precursors to downstream translocases, including the presequence translocase and the carrier translocase of the inner membrane, the mitochondrial import and assembly machinery of the intermembrane space, and the sorting and assembly machinery of the outer membrane. Although the protein translocases can function as separate entities in vitro, recent studies revealed a close and dynamic cooperation of the protein import machineries to facilitate efficient transfer of precursor proteins in vivo. In addition, protein translocases were found to transiently interact with distinct machineries that function in the respiratory chain or in the maintenance of mitochondrial membrane architecture. Mitochondrial protein import is embedded in a regulatory network that ensures protein biogenesis, membrane dynamics, bioenergetic activity and quality control.
Collapse
|
36
|
Ellenrieder L, Rampelt H, Becker T. Connection of Protein Transport and Organelle Contact Sites in Mitochondria. J Mol Biol 2017; 429:2148-2160. [DOI: 10.1016/j.jmb.2017.05.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/19/2017] [Accepted: 05/23/2017] [Indexed: 12/31/2022]
|
37
|
Xue Y, Schmollinger S, Attar N, Campos OA, Vogelauer M, Carey MF, Merchant SS, Kurdistani SK. Endoplasmic reticulum-mitochondria junction is required for iron homeostasis. J Biol Chem 2017. [PMID: 28637866 DOI: 10.1074/jbc.m117.784249] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The endoplasmic reticulum (ER)-mitochondria encounter structure (ERMES) is a protein complex that physically tethers the two organelles to each other and creates the physical basis for communication between them. ERMES functions in lipid exchange between the ER and mitochondria, protein import into mitochondria, and maintenance of mitochondrial morphology and genome. Here, we report that ERMES is also required for iron homeostasis. Loss of ERMES components activates an Aft1-dependent iron deficiency response even in iron-replete conditions, leading to accumulation of excess iron inside the cell. This function is independent of known ERMES roles in calcium regulation, phospholipid biosynthesis, or effects on mitochondrial morphology. A mutation in the vacuolar protein sorting 13 (VPS13) gene that rescues the glycolytic phenotype of ERMES mutants suppresses the iron deficiency response and iron accumulation. Our findings reveal that proper communication between the ER and mitochondria is required for appropriate maintenance of cellular iron levels.
Collapse
Affiliation(s)
- Yong Xue
- From the Department of Biological Chemistry.,Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Huaihai Institute of Technology, Lianyungang 222005, China
| | - Stefan Schmollinger
- Institute for Genomics and Proteomics, Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095 and
| | - Narsis Attar
- From the Department of Biological Chemistry.,Molecular Biology Institute, and
| | - Oscar A Campos
- From the Department of Biological Chemistry.,Molecular Biology Institute, and
| | | | - Michael F Carey
- From the Department of Biological Chemistry.,Molecular Biology Institute, and
| | - Sabeeha S Merchant
- Institute for Genomics and Proteomics, Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095 and
| | - Siavash K Kurdistani
- From the Department of Biological Chemistry, .,Molecular Biology Institute, and.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, and
| |
Collapse
|
38
|
Mitochondria-organelle contact sites: the plot thickens. Biochem Soc Trans 2017; 45:477-488. [PMID: 28408488 DOI: 10.1042/bst20160130] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 02/07/2017] [Accepted: 02/13/2017] [Indexed: 01/30/2023]
Abstract
Membrane contact sites (MCSs) are areas of close apposition between the membranes of two different organelles that enable non-vesicular transfer of ions and lipids. Recent studies reveal that mitochondria maintain contact sites with organelles other than the endoplasmic reticulum such as the vacuole, plasma membrane and peroxisomes. This review focuses on novel findings achieved mainly in yeast regarding tethers, function and regulation of mitochondria-organelle contact sites. The emerging network of MCSs linking virtually all cellular organelles is highly dynamic and integrated with cellular metabolism.
Collapse
|
39
|
Abstract
Mitochondria are essential organelles with numerous functions in cellular metabolism and homeostasis. Most of the >1,000 different mitochondrial proteins are synthesized as precursors in the cytosol and are imported into mitochondria by five transport pathways. The protein import machineries of the mitochondrial membranes and aqueous compartments reveal a remarkable variability of mechanisms for protein recognition, translocation, and sorting. The protein translocases do not operate as separate entities but are connected to each other and to machineries with functions in energetics, membrane organization, and quality control. Here, we discuss the versatility and dynamic organization of the mitochondrial protein import machineries. Elucidating the molecular mechanisms of mitochondrial protein translocation is crucial for understanding the integration of protein translocases into a large network that controls organelle biogenesis, function, and dynamics.
Collapse
Affiliation(s)
- Nils Wiedemann
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, and BIOSS Centre for Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany; ,
| | - Nikolaus Pfanner
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, and BIOSS Centre for Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany; ,
| |
Collapse
|
40
|
Tamura Y, Endo T. Role of Intra- and Inter-mitochondrial Membrane Contact Sites in Yeast Phospholipid Biogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 997:121-133. [PMID: 28815526 DOI: 10.1007/978-981-10-4567-7_9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Eukaryotic cells exhibit intracellular compartments called organelles wherein various specialized enzymatic reactions occur. Despite the specificity of the characteristic functions of organelles, recent studies have shown that distinct organelles physically connect and communicate with each other to maintain the integrity of their functions. In yeast, multiple inter- and intramitochondrial membrane contact sites (MCSs) were identified to date and were proposed to be involved in phospholipid biogenesis. In the present article, we focus on inter- and intra-organellar MCSs involving mitochondria and their tethering factors, such as the ERMES (endoplasmic reticulum (ER)-mitochondria encounter structure) complex and EMC (conserved ER membrane protein complex) between mitochondria and the ER, vCLAMP (vacuole and mitochondria patch) between mitochondria and vacuoles, and the MICOS (mitochondrial contact site) complex between the mitochondrial outer and inner membranes (MOM and MIM). All of these membrane-tethering factors were proposed to be involved in phospholipid biogenesis. Furthermore, the existence of functional interconnections among multiple organelle contact sites is suggested. In the present article, we summarize the latest discoveries in regard to MCSs and MCS-forming factors involving mitochondria and discuss their molecular functions, with particular focus on phospholipid metabolism in yeast.
Collapse
Affiliation(s)
- Yasushi Tamura
- Department of Material and Biological Chemistry, Faculty of Science, Yamagata University, Yamagata, 990-8560, Japan.
| | - Toshiya Endo
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto, 603-8555, Japan
| |
Collapse
|
41
|
Belgareh-Touzé N, Cavellini L, Cohen MM. Ubiquitination of ERMES components by the E3 ligase Rsp5 is involved in mitophagy. Autophagy 2016; 13:114-132. [PMID: 27846375 PMCID: PMC5240830 DOI: 10.1080/15548627.2016.1252889] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Mitochondria are dynamic organelles that undergo permanent fission and fusion events. These processes play an essential role in maintaining normal cellular function. In the yeast Saccharomyces cerevisiae, the endoplasmic reticulum-mitochondrial encounter structure (ERMES) is a marker of sites of mitochondrial division, but it is also involved in a plethora of other mitochondrial functions. However, it remains unclear how these different functions are regulated. We show here that Mdm34 and Mdm12, 2 components of ERMES, are ubiquitinated by the E3 ligase Rsp5. This ubiquitination is not involved in mitochondrial dynamics or in the distribution and turnover of ERMES. Nevertheless, the ubiquitination of Mdm34 and Mdm12 was required for efficient mitophagy. We thus report here the first identification of ubiquitinated substrates participating in yeast mitophagy.
Collapse
Affiliation(s)
- Naïma Belgareh-Touzé
- a UMR8226, CNRS/UPMC, Sorbonne Université, Institut de Biologie Physico-Chimique , Paris , France
| | - Laetitia Cavellini
- a UMR8226, CNRS/UPMC, Sorbonne Université, Institut de Biologie Physico-Chimique , Paris , France
| | - Mickael M Cohen
- a UMR8226, CNRS/UPMC, Sorbonne Université, Institut de Biologie Physico-Chimique , Paris , France
| |
Collapse
|
42
|
Ellenrieder L, Opaliński Ł, Becker L, Krüger V, Mirus O, Straub SP, Ebell K, Flinner N, Stiller SB, Guiard B, Meisinger C, Wiedemann N, Schleiff E, Wagner R, Pfanner N, Becker T. Separating mitochondrial protein assembly and endoplasmic reticulum tethering by selective coupling of Mdm10. Nat Commun 2016; 7:13021. [PMID: 27721450 PMCID: PMC5476798 DOI: 10.1038/ncomms13021] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 08/25/2016] [Indexed: 01/19/2023] Open
Abstract
The endoplasmic reticulum–mitochondria encounter structure (ERMES) connects the mitochondrial outer membrane with the ER. Multiple functions have been linked to ERMES, including maintenance of mitochondrial morphology, protein assembly and phospholipid homeostasis. Since the mitochondrial distribution and morphology protein Mdm10 is present in both ERMES and the mitochondrial sorting and assembly machinery (SAM), it is unknown how the ERMES functions are connected on a molecular level. Here we report that conserved surface areas on opposite sides of the Mdm10 β-barrel interact with SAM and ERMES, respectively. We generated point mutants to separate protein assembly (SAM) from morphology and phospholipid homeostasis (ERMES). Our study reveals that the β-barrel channel of Mdm10 serves different functions. Mdm10 promotes the biogenesis of α-helical and β-barrel proteins at SAM and functions as integral membrane anchor of ERMES, demonstrating that SAM-mediated protein assembly is distinct from ER-mitochondria contact sites. The protein Mdm10 is known to be present in the endoplasmic reticulum-mitochondria encounter structure (ERMES) and in mitochondrial sorting and assembly machinery (SAM). Here, the authors examine how this protein interacts with SAM and EMRES, showing that the SAM-mediated protein machinery is independent of ERMES.
Collapse
Affiliation(s)
- Lars Ellenrieder
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research, Faculty of Medicine, University of Freiburg, Freiburg D-79104, Germany.,Faculty of Biology, University of Freiburg, Freiburg D-79104, Germany
| | - Łukasz Opaliński
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research, Faculty of Medicine, University of Freiburg, Freiburg D-79104, Germany
| | - Lars Becker
- Division of Biophysics, School of Biology/Chemistry, University of Osnabrück, Osnabrück D-49034, Germany
| | - Vivien Krüger
- Division of Biophysics, School of Biology/Chemistry, University of Osnabrück, Osnabrück D-49034, Germany
| | - Oliver Mirus
- Molecular Cell Biology of Plants, University of Frankfurt, Frankfurt D-60438, Germany
| | - Sebastian P Straub
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research, Faculty of Medicine, University of Freiburg, Freiburg D-79104, Germany.,Faculty of Biology, University of Freiburg, Freiburg D-79104, Germany
| | - Katharina Ebell
- Division of Biophysics, School of Biology/Chemistry, University of Osnabrück, Osnabrück D-49034, Germany
| | - Nadine Flinner
- Molecular Cell Biology of Plants, University of Frankfurt, Frankfurt D-60438, Germany
| | - Sebastian B Stiller
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research, Faculty of Medicine, University of Freiburg, Freiburg D-79104, Germany
| | - Bernard Guiard
- Centre de Génétique Moléculaire, Centre National de la Recherche Scientifique, Gif-sur-Yvette 91190, France
| | - Chris Meisinger
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research, Faculty of Medicine, University of Freiburg, Freiburg D-79104, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg D-79104, Germany
| | - Nils Wiedemann
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research, Faculty of Medicine, University of Freiburg, Freiburg D-79104, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg D-79104, Germany
| | - Enrico Schleiff
- Molecular Cell Biology of Plants, University of Frankfurt, Frankfurt D-60438, Germany.,Buchmann Institute of Molecular Life Sciences, Cluster of Excellence Macromolecular Complexes, University of Frankfurt, Frankfurt D-60438, Germany
| | - Richard Wagner
- Division of Biophysics, School of Biology/Chemistry, University of Osnabrück, Osnabrück D-49034, Germany.,Life Sciences &Chemistry, Focus Area Health, Jacobs University Bremen, Bremen D-28759, Germany
| | - Nikolaus Pfanner
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research, Faculty of Medicine, University of Freiburg, Freiburg D-79104, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg D-79104, Germany
| | - Thomas Becker
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research, Faculty of Medicine, University of Freiburg, Freiburg D-79104, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg D-79104, Germany
| |
Collapse
|
43
|
Di Bartolomeo F, Wagner A, Daum G. Cell biology, physiology and enzymology of phosphatidylserine decarboxylase. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:25-38. [PMID: 27650064 DOI: 10.1016/j.bbalip.2016.09.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/02/2016] [Accepted: 09/10/2016] [Indexed: 12/17/2022]
Abstract
Phosphatidylethanolamine is one of the most abundant phospholipids whose major amounts are formed by phosphatidylserine decarboxylases (PSD). Here we provide a comprehensive description of different types of PSDs in the different kingdoms of life. In eukaryotes, type I PSDs are mitochondrial enzymes, whereas other PSDs are localized to other cellular compartments. We describe the role of mitochondrial Psd1 proteins, their function, enzymology, biogenesis, assembly into mitochondria and their contribution to phospholipid homeostasis in much detail. We also discuss briefly the cellular physiology and the enzymology of Psd2. This article is part of a Special Issue entitled: Lipids of Mitochondria edited by Guenther Daum.
Collapse
Affiliation(s)
- Francesca Di Bartolomeo
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, A-8010 Graz, Austria
| | - Ariane Wagner
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, A-8010 Graz, Austria
| | - Günther Daum
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, A-8010 Graz, Austria.
| |
Collapse
|
44
|
Kojima R, Kajiura S, Sesaki H, Endo T, Tamura Y. Identification of multi-copy suppressors for endoplasmic reticulum-mitochondria tethering proteins in Saccharomyces cerevisiae. FEBS Lett 2016; 590:3061-70. [PMID: 27531107 DOI: 10.1002/1873-3468.12358] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 07/16/2016] [Accepted: 08/09/2016] [Indexed: 11/08/2022]
Abstract
In yeast, the endoplasmic reticulum (ER)-mitochondria encounter structure (ERMES) tethers the ER to mitochondria, but its primary function remains unclear. To gain insight into ERMES functions, we screened multi-copy suppressors of the growth-defective phenotype of mmm1∆ cells, which lack a core component of ERMES, and identified MCP1, MGA2, SPT23, and YGR250C (termed RIE1). Spt23 and Mga2 are homologous transcription factors known to activate transcription of the OLE1 gene, which encodes the fatty acid ∆9 desaturase. We found that Ole1 partially relieves the growth defects of ERMES-lacking cells, thus uncovering a relationship between fatty acid metabolism and ERMES functions.
Collapse
Affiliation(s)
- Rieko Kojima
- Department of Chemistry, Graduate School of Science, Nagoya University, Japan.,Department of Material and Biological Science, Faculty of Science, Yamagata University, Japan
| | - Shu Kajiura
- Department of Chemistry, Graduate School of Science, Nagoya University, Japan
| | - Hiromi Sesaki
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Toshiya Endo
- Department of Chemistry, Graduate School of Science, Nagoya University, Japan. .,Faculty of Life Sciences, Kyoto Sangyo University, Japan. .,JST/CREST, Kyoto Sangyo University, Japan.
| | - Yasushi Tamura
- Department of Material and Biological Science, Faculty of Science, Yamagata University, Japan. .,Research Center for Materials Science, Nagoya University, Japan.
| |
Collapse
|
45
|
Fernández-Murray JP, McMaster CR. Lipid synthesis and membrane contact sites: a crossroads for cellular physiology. J Lipid Res 2016; 57:1789-1805. [PMID: 27521373 DOI: 10.1194/jlr.r070920] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Indexed: 12/17/2022] Open
Abstract
Membrane contact sites (MCSs) are regions of close apposition between different organelles that contribute to the functional integration of compartmentalized cellular processes. In recent years, we have gained insight into the molecular architecture of several contact sites, as well as into the regulatory mechanisms that underlie their roles in cell physiology. We provide an overview of two selected topics where lipid metabolism intersects with MCSs and organelle dynamics. First, the role of phosphatidic acid phosphatase, Pah1, the yeast homolog of metazoan lipin, toward the synthesis of triacylglycerol is outlined in connection with the seipin complex, Fld1/Ldb16, and lipid droplet formation. Second, we recapitulate the different contact sites connecting mitochondria and the endomembrane system and emphasize their contribution to phospholipid synthesis and their coordinated regulation. A comprehensive view is emerging where the multiplicity of contact sites connecting different cellular compartments together with lipid transfer proteins functioning at more than one MCS allow for functional redundancy and cross-regulation.
Collapse
|
46
|
Smethurst DGJ, Cooper KF. ER fatalities-The role of ER-mitochondrial contact sites in yeast life and death decisions. Mech Ageing Dev 2016; 161:225-233. [PMID: 27507669 DOI: 10.1016/j.mad.2016.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/22/2016] [Accepted: 07/19/2016] [Indexed: 12/22/2022]
Abstract
Following extracellular stress signals, all eukaryotic cells choose whether to elicit a pro-survival or pro-death response. The decision over which path to take is governed by the severity and duration of the damage. In response to mild stress, pro-survival programs are initiated (unfolded protein response, autophagy, mitophagy) whereas severe or chronic stress forces the cell to abandon these adaptive programs and shift towards regulated cell death to remove irreversibly damaged cells. Both pro-survival and pro-death programs involve regulated communication between the endoplasmic reticulum (ER) and mitochondria. In yeast, recent data suggest this inter-organelle contact is facilitated by the endoplasmic reticulum mitochondria encounter structure (ERMES). These membrane contacts are not only important for the exchange of cellular signals, but also play a role in mitochondrial tethering during mitophagy, mitochondrial fission and mitochondrial inheritance. This review focuses on recent findings in yeast that shed light on how ER-mitochondrial communication mediates critical cell fate decisions.
Collapse
Affiliation(s)
- Daniel G J Smethurst
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford, NJ, 08055 USA
| | - Katrina F Cooper
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford, NJ, 08055 USA.
| |
Collapse
|
47
|
Dimmer KS, Rapaport D. Mitochondrial contact sites as platforms for phospholipid exchange. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:69-80. [PMID: 27477677 DOI: 10.1016/j.bbalip.2016.07.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/21/2016] [Accepted: 07/22/2016] [Indexed: 12/15/2022]
Abstract
Mitochondria are unique organelles that contain their own - although strongly reduced - genome, and are surrounded by two membranes. While most cellular phospholipid biosynthesis takes place in the ER, mitochondria harbor the whole spectrum of glycerophospholipids common to biological membranes. Mitochondria also contribute to overall phospholipid biosynthesis in cells by producing phosphatidylethanolamine, phosphatidylglycerol, and cardiolipin. Considering these features, it is not surprising that mitochondria maintain highly active exchange of phospholipids with other cellular compartments. In this contribution we describe the transport of phospholipids between mitochondria and other organelles, and discuss recent developments in our understanding of the molecular functions of the protein complexes that mediate these processes. This article is part of a Special Issue entitled: Lipids of Mitochondria edited by Guenther Daum.
Collapse
Affiliation(s)
- Kai Stefan Dimmer
- Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Str. 4, 72076 Tübingen, Germany.
| | - Doron Rapaport
- Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Str. 4, 72076 Tübingen, Germany
| |
Collapse
|
48
|
Outer membrane protein functions as integrator of protein import and DNA inheritance in mitochondria. Proc Natl Acad Sci U S A 2016; 113:E4467-75. [PMID: 27436903 DOI: 10.1073/pnas.1605497113] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Trypanosomatids are one of the earliest diverging eukaryotes that have fully functional mitochondria. pATOM36 is a trypanosomatid-specific essential mitochondrial outer membrane protein that has been implicated in protein import. Changes in the mitochondrial proteome induced by ablation of pATOM36 and in vitro assays show that pATOM36 is required for the assembly of the archaic translocase of the outer membrane (ATOM), the functional analog of the TOM complex in other organisms. Reciprocal pull-down experiments and immunofluorescence analyses demonstrate that a fraction of pATOM36 interacts and colocalizes with TAC65, a previously uncharacterized essential component of the tripartite attachment complex (TAC). The TAC links the single-unit mitochondrial genome to the basal body of the flagellum and mediates the segregation of the replicated mitochondrial genomes. RNAi experiments show that pATOM36, in line with its dual localization, is not only essential for ATOM complex assembly but also for segregation of the replicated mitochondrial genomes. However, the two functions are distinct, as a truncated version of pATOM36 lacking the 75 C-terminal amino acids can rescue kinetoplast DNA missegregation but not the lack of ATOM complex assembly. Thus, pATOM36 has a dual function and integrates mitochondrial protein import with mitochondrial DNA inheritance.
Collapse
|
49
|
The Endoplasmic Reticulum-Mitochondrion Tether ERMES Orchestrates Fungal Immune Evasion, Illuminating Inflammasome Responses to Hyphal Signals. mSphere 2016; 1:mSphere00074-16. [PMID: 27303738 PMCID: PMC4888881 DOI: 10.1128/msphere.00074-16] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 04/26/2016] [Indexed: 01/01/2023] Open
Abstract
The pathogenic yeast Candida albicans escapes macrophages by triggering NLRP3 inflammasome-dependent host cell death (pyroptosis). Pyroptosis is inflammatory and must be tightly regulated by host and microbe, but the mechanism is incompletely defined. We characterized the C. albicans endoplasmic reticulum (ER)-mitochondrion tether ERMES and show that the ERMES mmm1 mutant is severely crippled in killing macrophages despite hyphal formation and normal phagocytosis and survival. To understand dynamic inflammasome responses to Candida with high spatiotemporal resolution, we established live-cell imaging for parallel detection of inflammasome activation and pyroptosis at the single-cell level. This showed that the inflammasome response to mmm1 mutant hyphae is delayed by 10 h, after which an exacerbated activation occurs. The NLRP3 inhibitor MCC950 inhibited inflammasome activation and pyroptosis by C. albicans, including exacerbated inflammasome activation by the mmm1 mutant. At the cell biology level, inactivation of ERMES led to a rapid collapse of mitochondrial tubular morphology, slow growth and hyphal elongation at host temperature, and reduced exposed 1,3-β-glucan in hyphal populations. Our data suggest that inflammasome activation by C. albicans requires a signal threshold dependent on hyphal elongation and cell wall remodeling, which could fine-tune the response relative to the level of danger posed by C. albicans. The phenotypes of the ERMES mutant and the lack of conservation in animals suggest that ERMES is a promising antifungal drug target. Our data further indicate that NLRP3 inhibition by MCC950 could modulate C. albicans-induced inflammation. IMPORTANCE The yeast Candida albicans causes human infections that have mortality rates approaching 50%. The key to developing improved therapeutics is to understand the host-pathogen interface. A critical interaction is that with macrophages: intracellular Candida triggers the NLRP3/caspase-1 inflammasome for escape through lytic host cell death, but this also activates antifungal responses. To better understand how the inflammasome response to Candida is fine-tuned, we established live-cell imaging of inflammasome activation at single-cell resolution, coupled with analysis of the fungal ERMES complex, a mitochondrial regulator that lacks human homologs. We show that ERMES mediates Candida escape via inflammasome-dependent processes, and our data suggest that inflammasome activation is controlled by the level of hyphal growth and exposure of cell wall components as a proxy for severity of danger. Our study provides the most detailed dynamic analysis of inflammasome responses to a fungal pathogen so far and establishes promising pathogen- and host-derived therapeutic strategies.
Collapse
|
50
|
Sinzel M, Tan T, Wendling P, Kalbacher H, Özbalci C, Chelius X, Westermann B, Brügger B, Rapaport D, Dimmer KS. Mcp3 is a novel mitochondrial outer membrane protein that follows a unique IMP-dependent biogenesis pathway. EMBO Rep 2016; 17:965-81. [PMID: 27226123 DOI: 10.15252/embr.201541273] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 04/26/2016] [Indexed: 11/09/2022] Open
Abstract
Mitochondria are separated from the remainder of the eukaryotic cell by the mitochondrial outer membrane (MOM). The MOM plays an important role in different transport processes like lipid trafficking and protein import. In yeast, the ER-mitochondria encounter structure (ERMES) has a central, but poorly defined role in both activities. To understand the functions of the ERMES, we searched for suppressors of the deficiency of one of its components, Mdm10, and identified a novel mitochondrial protein that we named Mdm10 complementing protein 3 (Mcp3). Mcp3 partially rescues a variety of ERMES-related phenotypes. We further demonstrate that Mcp3 is an integral protein of the MOM that follows a unique import pathway. It is recognized initially by the import receptor Tom70 and then crosses the MOM via the translocase of the outer membrane. Mcp3 is next relayed to the TIM23 translocase at the inner membrane, gets processed by the inner membrane peptidase (IMP) and finally integrates into the MOM. Hence, Mcp3 follows a novel biogenesis route where a MOM protein is processed by a peptidase of the inner membrane.
Collapse
Affiliation(s)
- Monika Sinzel
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Tao Tan
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Philipp Wendling
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Hubert Kalbacher
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Cagakan Özbalci
- Heidelberg University Biochemistry Center, Heidelberg, Germany
| | - Xenia Chelius
- Cell Biology, University of Bayreuth, Bayreuth, Germany
| | | | - Britta Brügger
- Heidelberg University Biochemistry Center, Heidelberg, Germany
| | - Doron Rapaport
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Kai Stefan Dimmer
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| |
Collapse
|