1
|
Lumbroso G, Cairo G, Lacefield S, Murray AW. The B-type cyclin Clb4 prevents meiosis I sister centromere separation in budding yeast. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.18.629243. [PMID: 39763826 PMCID: PMC11702657 DOI: 10.1101/2024.12.18.629243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Abstract
In meiosis, one round of DNA replication followed by two rounds of chromosome segregation halves the ploidy of the original cell. Accurate chromosome segregation in meiosis I depends on recombination between homologous chromosomes. Sister centromeres attach to the same spindle pole in this division and only segregate in meiosis II. We used budding yeast to select for mutations that produced viable spores in the absence of recombination. The most frequent mutations inactivated CLB4, which encodes one of four B-type cyclins. In two wild yeast isolates, Y55 and SK1, but not the W303 laboratory strain, deleting CLB4 causes premature sister centromere separation and segregation in meiosis I and frequent termination of meiosis after a single division, demonstrating a novel role for Clb4 in meiotic chromosome dynamics and meiotic progression. This role depends on the genetic background since meiosis in W303 is largely independent of CLB4.
Collapse
Affiliation(s)
- Gal Lumbroso
- Department of Molecular and Cellular Biology, Harvard University, Cambridge MA, USA
| | - Gisela Cairo
- Department of Biochemistry and Cell Biology, the Geisel School of Medicine at Dartmouth, Hanover NH, USA
| | - Soni Lacefield
- Department of Biochemistry and Cell Biology, the Geisel School of Medicine at Dartmouth, Hanover NH, USA
| | - Andrew W. Murray
- Department of Molecular and Cellular Biology, Harvard University, Cambridge MA, USA
| |
Collapse
|
2
|
Chen JS, Igarashi MG, Ren L, Hanna SM, Turner LA, McDonald NA, Beckley JR, Willet AH, Gould KL. The core spindle pole body scaffold Ppc89 links the pericentrin orthologue Pcp1 to the fission yeast spindle pole body via an evolutionarily conserved interface. Mol Biol Cell 2024; 35:ar112. [PMID: 38985524 PMCID: PMC11321043 DOI: 10.1091/mbc.e24-05-0220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024] Open
Abstract
Centrosomes and spindle pole bodies (SPBs) are important for mitotic spindle formation and serve as cellular signaling platforms. Although centrosomes and SPBs differ in morphology, many mechanistic insights into centrosome function have been gleaned from SPB studies. In the fission yeast Schizosaccharomyces pombe, the α-helical protein Ppc89, identified based on its interaction with the septation initiation network scaffold Sid4, comprises the SPB core. High-resolution imaging has suggested that SPB proteins assemble on the Ppc89 core during SPB duplication, but such interactions are undefined. Here, we define a connection between Ppc89 and the essential pericentrin Pcp1. Specifically, we found that a predicted third helix within Ppc89 binds the Pcp1 pericentrin-AKAP450 centrosomal targeting (PACT) domain complexed with calmodulin. Ppc89 helix 3 contains similarity to present in the N-terminus of Cep57 (PINC) motifs found in the centrosomal proteins fly SAS-6 and human Cep57 and also to the S. cerevisiae SPB protein Spc42. These motifs bind pericentrin-calmodulin complexes and AlphaFold2 models suggest a homologous complex assembles in all four organisms. Mutational analysis of the S. pombe complex supports the importance of Ppc89-Pcp1 binding interface in vivo. Our studies provide insight into the core architecture of the S. pombe SPB and suggest an evolutionarily conserved mechanism of scaffolding pericentrin-calmodulin complexes for mitotic spindle formation.
Collapse
Affiliation(s)
- Jun-Song Chen
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| | - Maya G. Igarashi
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| | - Liping Ren
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| | - Sarah M. Hanna
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| | - Lesley A. Turner
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| | - Nathan A. McDonald
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| | - Janel R. Beckley
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| | - Alaina H. Willet
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| | - Kathleen L. Gould
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| |
Collapse
|
3
|
Chuong HH, Evatt JM, Dawson DS. Dynamic Live Cell Imaging of Budding Yeast Meiosis. Methods Mol Biol 2024; 2818:161-169. [PMID: 39126473 DOI: 10.1007/978-1-0716-3906-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
For over a century, major advances in understanding meiosis have come from the use of microscopy-based methods. Studies using the budding yeast, Saccharomyces cerevisiae, have made important contributions to our understanding of meiosis because of the facility with which budding yeast can be manipulated as a genetic model organism. In contrast, imaging-based approaches with budding yeast have been constrained by the small size of its chromosomes. The advent of advances in fluorescent chromosome tagging techniques has made it possible to use yeast more effectively for imaging-based approaches as well. This protocol describes live cell imaging methods that can be used to monitor chromosome movements throughout meiosis in living yeast cells.
Collapse
Affiliation(s)
- Hoa H Chuong
- Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Jared M Evatt
- Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Department of Cell Biology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Dean S Dawson
- Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.
- Department of Cell Biology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA.
| |
Collapse
|
4
|
Seitz BC, Mucelli X, Majano M, Wallis Z, Dodge AC, Carmona C, Durant M, Maynard S, Huang LS. Meiosis II spindle disassembly requires two distinct pathways. Mol Biol Cell 2023; 34:ar98. [PMID: 37436806 PMCID: PMC10551701 DOI: 10.1091/mbc.e23-03-0096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/26/2023] [Accepted: 07/03/2023] [Indexed: 07/13/2023] Open
Abstract
During exit from meiosis II, cells undergo several structural rearrangements, including disassembly of the meiosis II spindles and cytokinesis. Each of these changes is regulated to ensure that they occur at the proper time. Previous studies have demonstrated that both SPS1, which encodes a STE20-family GCKIII kinase, and AMA1, which encodes a meiosis-specific activator of the Anaphase Promoting Complex, are required for both meiosis II spindle disassembly and cytokinesis in the budding yeast Saccharomyces cerevisiae. We examine the relationship between meiosis II spindle disassembly and cytokinesis and find that the meiosis II spindle disassembly failure in sps1Δ and ama1∆ cells is not the cause of the cytokinesis defect. We also see that the spindle disassembly defects in sps1Δ and ama1∆ cells are phenotypically distinct. We examined known microtubule-associated proteins Ase1, Cin8, and Bim1, and found that AMA1 is required for the proper loss of Ase1 and Cin8 on meiosis II spindles while SPS1 is required for Bim1 loss in meiosis II. Taken together, these data indicate that SPS1 and AMA1 promote distinct aspects of meiosis II spindle disassembly, and that both pathways are required for the successful completion of meiosis.
Collapse
Affiliation(s)
- Brian C. Seitz
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125
| | - Xheni Mucelli
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125
| | - Maira Majano
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125
| | - Zoey Wallis
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125
| | - Ashley C. Dodge
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125
| | - Catherine Carmona
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125
| | - Matthew Durant
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125
| | - Sharra Maynard
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125
| | - Linda S. Huang
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125
| |
Collapse
|
5
|
Gavade JN, Lacefield S. High-throughput genetic screening of meiotic commitment using fluorescence microscopy in Saccharomyces cerevisiae. STAR Protoc 2022; 3:101797. [PMID: 36325582 PMCID: PMC9619721 DOI: 10.1016/j.xpro.2022.101797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Simple genetic screens in budding yeast have identified many conserved meiotic regulators. However, the identification of genes involved in specific steps of meiosis may require a more complex genetic screen that allows visualization of meiosis. Here, we describe a high-throughput protocol using fluorescence microscopy to systematically screen an overexpression library to identify genes involved in meiotic commitment. We also explain how this protocol can be adapted for identifying proteins that function at different stages of meiosis. For complete details on the use and execution of this protocol, please refer to Gavade et al. (2022). Step-by-step protocol to identify budding yeast genes involved in meiotic commitment Protocol for high-throughput yeast transformations in 96-well plates Protocol for meiotic induction in 96-well plates Description of how to analyze meiotic cells using fluorescence microscopy
Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics.
Collapse
Affiliation(s)
- Janardan N Gavade
- Indiana University Bloomington, Department of Biology, Bloomington, IN 47405, USA.
| | - Soni Lacefield
- Indiana University Bloomington, Department of Biology, Bloomington, IN 47405, USA.
| |
Collapse
|
6
|
Akhuli D, Dhar A, Viji AS, Bhojappa B, Palani S. ALIBY: ALFA Nanobody-Based Toolkit for Imaging and Biochemistry in Yeast. mSphere 2022; 7:e0033322. [PMID: 36190134 PMCID: PMC9599267 DOI: 10.1128/msphere.00333-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/13/2022] [Indexed: 11/30/2022] Open
Abstract
Specialized epitope tags continue to be integral components of various biochemical and cell biological applications such as fluorescence microscopy, immunoblotting, immunoprecipitation, and protein purification. However, until recently, no single tag could offer this complete set of functionalities on its own. Here, we present a plasmid-based toolkit named ALIBY (ALFA toolkit for imaging and biochemistry in yeast) that provides a universal workflow to adopt the versatile ALFA tag/NbALFA system within the well-established model organism Saccharomyces cerevisiae. The kit comprises tagging plasmids for labeling a protein of interest with the ALFA tag and detection plasmids encoding fluorescent-protein-tagged NbALFA for live-cell imaging purposes. We demonstrate the suitability of ALIBY for visualizing the spatiotemporal localization of yeast proteins (i.e., the cytoskeleton, nucleus, centrosome, mitochondria, vacuole, endoplasmic reticulum, exocyst, and divisome) in live cells. Our approach has yielded an excellent signal-to-noise ratio without off-target effects or any effect on cell growth. In summary, our yeast-specific toolkit aims to simplify and further advance the live-cell imaging of differentially abundant yeast proteins while also being suitable for biochemical applications. IMPORTANCE In yeast research, conventional fluorescent protein tags and small epitope tags are widely used to study the spatiotemporal dynamics and activity of proteins. Although proven to be efficient, these tags lack the versatility for use across different cell biological and biochemical studies of a given protein of interest. Therefore, there is an urgent need for a unified platform for visualization and biochemical and functional analyses of proteins of interest in yeast. Here, we have engineered ALIBY, a plasmid-based toolkit that expands the benefits of the recently developed ALFA tag/NbALFA system to studies in the well-established model organism Saccharomyces cerevisiae. We demonstrate that ALIBY provides a simple and versatile strain construction workflow for long-duration live-cell imaging and biochemical applications in yeast.
Collapse
Affiliation(s)
- Dipayan Akhuli
- Department of Biochemistry, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Anubhav Dhar
- Department of Biochemistry, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Aileen Sara Viji
- Department of Biochemistry, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Bindu Bhojappa
- Department of Biochemistry, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Saravanan Palani
- Department of Biochemistry, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| |
Collapse
|
7
|
Rüthnick D, Vitale J, Neuner A, Schiebel E. The N-terminus of Sfi1 and yeast centrin Cdc31 provide the assembly site for a new spindle pole body. J Cell Biol 2021; 220:211743. [PMID: 33523111 PMCID: PMC7852455 DOI: 10.1083/jcb.202004196] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 11/20/2020] [Accepted: 12/18/2020] [Indexed: 12/31/2022] Open
Abstract
The spindle pole body (SPB) provides microtubule-organizing functions in yeast and duplicates exactly once per cell cycle. The first step in SPB duplication is the half-bridge to bridge conversion via the antiparallel dimerization of the centrin (Cdc31)-binding protein Sfi1 in anaphase. The bridge, which is anchored to the old SPB on the proximal end, exposes free Sfi1 N-termini (N-Sfi1) at its distal end. These free N-Sfi1 promote in G1 the assembly of the daughter SPB (dSPB) in a yet unclear manner. This study shows that N-Sfi1 including the first three Cdc31 binding sites interacts with the SPB components Spc29 and Spc42, triggering the assembly of the dSPB. Cdc31 binding to N-Sfi1 promotes Spc29 recruitment and is essential for satellite formation. Furthermore, phosphorylation of N-Sfi1 has an inhibitory effect and delays dSPB biogenesis until G1. Taking these data together, we provide an understanding of the initial steps in SPB assembly and describe a new function of Cdc31 in the recruitment of dSPB components.
Collapse
Affiliation(s)
- Diana Rüthnick
- Center for Molecular Biology, University of Heidelberg, German Cancer Research Center-Center for Molecular Biology Alliance, Heidelberg, Germany
| | - Jlenia Vitale
- Center for Molecular Biology, University of Heidelberg, German Cancer Research Center-Center for Molecular Biology Alliance, Heidelberg, Germany
| | - Annett Neuner
- Center for Molecular Biology, University of Heidelberg, German Cancer Research Center-Center for Molecular Biology Alliance, Heidelberg, Germany
| | - Elmar Schiebel
- Center for Molecular Biology, University of Heidelberg, German Cancer Research Center-Center for Molecular Biology Alliance, Heidelberg, Germany
| |
Collapse
|
8
|
Chen J, Xiong Z, Miller DE, Yu Z, McCroskey S, Bradford WD, Cavanaugh AM, Jaspersen SL. The role of gene dosage in budding yeast centrosome scaling and spontaneous diploidization. PLoS Genet 2020; 16:e1008911. [PMID: 33332348 PMCID: PMC7775121 DOI: 10.1371/journal.pgen.1008911] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 12/31/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022] Open
Abstract
Ploidy is the number of whole sets of chromosomes in a species. Ploidy is typically a stable cellular feature that is critical for survival. Polyploidization is a route recognized to increase gene dosage, improve fitness under stressful conditions and promote evolutionary diversity. However, the mechanism of regulation and maintenance of ploidy is not well characterized. Here, we examine the spontaneous diploidization associated with mutations in components of the Saccharomyces cerevisiae centrosome, known as the spindle pole body (SPB). Although SPB mutants are associated with defects in spindle formation, we show that two copies of the mutant in a haploid yeast favors diploidization in some cases, leading us to speculate that the increased gene dosage in diploids ‘rescues’ SPB duplication defects, allowing cells to successfully propagate with a stable diploid karyotype. This copy number-based rescue is linked to SPB scaling: certain SPB subcomplexes do not scale or only minimally scale with ploidy. We hypothesize that lesions in structures with incompatible allometries such as the centrosome may drive changes such as whole genome duplication, which have shaped the evolutionary landscape of many eukaryotes. Ploidy is the number of whole sets of chromosomes in a species. Most eukaryotes alternate between a diploid (two copy) and haploid (one copy) state during their life and sexual cycle. However, as part of normal human development, specific tissues increase their DNA content. This gain of entire sets of chromosomes is known as polyploidization, and it is observed in invertebrates, plants and fungi, as well. Polyploidy is thought to improve fitness under stressful conditions and promote evolutionary diversity, but how ploidy is determined is poorly understood. Here, we use budding yeast to investigate mechanisms underlying the ploidy of wild-type cells and specific mutants that affect the centrosome, a conserved structure involved in chromosome segregation during cell division. Our work suggests that different scaling relationships (allometry) between the genome and cellular structures underlies alterations in ploidy. Furthermore, mutations in cellular structures with incompatible allometric relationships with the genome may drive genomic changes such duplications, which are underly the evolution of many species including both yeasts and humans.
Collapse
Affiliation(s)
- Jingjing Chen
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Zhiyong Xiong
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Danny E. Miller
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Zulin Yu
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Scott McCroskey
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - William D. Bradford
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Ann M. Cavanaugh
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Sue L. Jaspersen
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- * E-mail:
| |
Collapse
|
9
|
Jaspersen SL. Anatomy of the fungal microtubule organizing center, the spindle pole body. Curr Opin Struct Biol 2020; 66:22-31. [PMID: 33113389 DOI: 10.1016/j.sbi.2020.09.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/14/2020] [Accepted: 09/19/2020] [Indexed: 12/21/2022]
Abstract
The fungal kingdom is large and diverse, representing extremes of ecology, life cycles and morphology. At a cellular level, the diversity among fungi is particularly apparent at the spindle pole body (SPB). This nuclear envelope embedded structure, which is essential for microtubule nucleation, shows dramatically different morphologies between different fungi. However, despite phenotypic diversity, many SPB components are conserved, suggesting commonalities in structure, function and duplication. Here, I review the organization of the most well-studied SPBs and describe how advances in genomics, genetics and cell biology have accelerated knowledge of SPB architecture in other fungi, providing insights into microtubule nucleation and other processes conserved across eukaryotes.
Collapse
Affiliation(s)
- Sue L Jaspersen
- Stowers Institute for Medical Research, Kansas City, MO 64110, United States; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, United States.
| |
Collapse
|
10
|
Drennan AC, Krishna S, Seeger MA, Andreas MP, Gardner JM, Sether EKR, Jaspersen SL, Rayment I. Structure and function of Spc42 coiled-coils in yeast centrosome assembly and duplication. Mol Biol Cell 2019; 30:1505-1522. [PMID: 30969903 PMCID: PMC6724696 DOI: 10.1091/mbc.e19-03-0167] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 04/05/2019] [Indexed: 11/12/2022] Open
Abstract
Centrosomes and spindle pole bodies (SPBs) are membraneless organelles whose duplication and assembly is necessary for bipolar mitotic spindle formation. The structural organization and functional roles of major proteins in these organelles can provide critical insights into cell division control. Spc42, a phosphoregulated protein with an N-terminal dimeric coiled-coil (DCC), assembles into a hexameric array at the budding yeast SPB core, where it functions as a scaffold for SPB assembly. Here, we present in vitro and in vivo data to elucidate the structural arrangement and biological roles of Spc42 elements. Crystal structures reveal details of two additional coiled-coils in Spc42: a central trimeric coiled-coil and a C-terminal antiparallel DCC. Contributions of the three Spc42 coiled-coils and adjacent undetermined regions to the formation of an ∼145 Å hexameric lattice in an in vitro lipid monolayer assay and to SPB duplication and assembly in vivo reveal structural and functional redundancy in Spc42 assembly. We propose an updated model that incorporates the inherent symmetry of these Spc42 elements into a lattice, and thereby establishes the observed sixfold symmetry. The implications of this model for the organization of the central SPB core layer are discussed.
Collapse
Affiliation(s)
- Amanda C. Drennan
- Department of Biochemistry, University of Wisconsin–Madison, WI 53706
| | | | - Mark A. Seeger
- Department of Biochemistry, University of Wisconsin–Madison, WI 53706
| | | | | | | | - Sue L. Jaspersen
- Stowers Institute for Medical Research, Kansas City, MO 64110
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Ivan Rayment
- Department of Biochemistry, University of Wisconsin–Madison, WI 53706
| |
Collapse
|
11
|
Münzner U, Klipp E, Krantz M. A comprehensive, mechanistically detailed, and executable model of the cell division cycle in Saccharomyces cerevisiae. Nat Commun 2019; 10:1308. [PMID: 30899000 PMCID: PMC6428898 DOI: 10.1038/s41467-019-08903-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 01/24/2019] [Indexed: 01/31/2023] Open
Abstract
Understanding how cellular functions emerge from the underlying molecular mechanisms is a key challenge in biology. This will require computational models, whose predictive power is expected to increase with coverage and precision of formulation. Genome-scale models revolutionised the metabolic field and made the first whole-cell model possible. However, the lack of genome-scale models of signalling networks blocks the development of eukaryotic whole-cell models. Here, we present a comprehensive mechanistic model of the molecular network that controls the cell division cycle in Saccharomyces cerevisiae. We use rxncon, the reaction-contingency language, to neutralise the scalability issues preventing formulation, visualisation and simulation of signalling networks at the genome-scale. We use parameter-free modelling to validate the network and to predict genotype-to-phenotype relationships down to residue resolution. This mechanistic genome-scale model offers a new perspective on eukaryotic cell cycle control, and opens up for similar models-and eventually whole-cell models-of human cells.
Collapse
Affiliation(s)
- Ulrike Münzner
- Humboldt-Universität zu Berlin, Institute of Biology, Theoretical Biophysics, Berlin, 10099, Germany
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Kyoto, 611-0011, Japan
| | - Edda Klipp
- Humboldt-Universität zu Berlin, Institute of Biology, Theoretical Biophysics, Berlin, 10099, Germany
| | - Marcus Krantz
- Humboldt-Universität zu Berlin, Institute of Biology, Theoretical Biophysics, Berlin, 10099, Germany.
| |
Collapse
|
12
|
Chen J, Gardner JM, Yu Z, Smith SE, McKinney S, Slaughter BD, Unruh JR, Jaspersen SL. Yeast centrosome components form a noncanonical LINC complex at the nuclear envelope insertion site. J Cell Biol 2019; 218:1478-1490. [PMID: 30862629 PMCID: PMC6504903 DOI: 10.1083/jcb.201809045] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/17/2019] [Accepted: 02/19/2019] [Indexed: 01/23/2023] Open
Abstract
How the nuclear envelope is remodeled to facilitate insertion of large protein complexes is poorly understood. Chen et al. use superresolution imaging with bimolecular fluorescence complementation to show that a novel noncanonical linker of nucleoskeleton and cytoskeleton (LINC) complex forms at sites of nuclear envelope fenestration in yeast. Bipolar spindle formation in yeast requires insertion of centrosomes (known as spindle pole bodies [SPBs]) into fenestrated regions of the nuclear envelope (NE). Using structured illumination microscopy and bimolecular fluorescence complementation, we map protein distribution at SPB fenestrae and interrogate protein–protein interactions with high spatial resolution. We find that the Sad1-UNC-84 (SUN) protein Mps3 forms a ring-like structure around the SPB, similar to toroids seen for components of the SPB insertion network (SPIN). Mps3 and the SPIN component Mps2 (a Klarsicht-ANC-1-Syne-1 domain [KASH]–like protein) form a novel noncanonical linker of nucleoskeleton and cytoskeleton (LINC) complex that is connected in both luminal and extraluminal domains at the site of SPB insertion. The LINC complex also controls the distribution of a soluble SPIN component Bbp1. Taken together, our work shows that Mps3 is a fifth SPIN component and suggests both direct and indirect roles for the LINC complex in NE remodeling.
Collapse
Affiliation(s)
- Jingjing Chen
- Stowers Institute for Medical Research, Kansas City, MO
| | | | - Zulin Yu
- Stowers Institute for Medical Research, Kansas City, MO
| | - Sarah E Smith
- Stowers Institute for Medical Research, Kansas City, MO
| | - Sean McKinney
- Stowers Institute for Medical Research, Kansas City, MO
| | | | - Jay R Unruh
- Stowers Institute for Medical Research, Kansas City, MO
| | - Sue L Jaspersen
- Stowers Institute for Medical Research, Kansas City, MO .,Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS
| |
Collapse
|
13
|
Girke P, Seufert W. Compositional reorganization of the nucleolus in budding yeast mitosis. Mol Biol Cell 2019; 30:591-606. [PMID: 30625028 PMCID: PMC6589692 DOI: 10.1091/mbc.e18-08-0524] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 01/02/2019] [Accepted: 01/04/2019] [Indexed: 11/26/2022] Open
Abstract
The nucleolus is a membraneless organelle of the nucleus and the site of rRNA synthesis, maturation, and assembly into preribosomal particles. The nucleolus, organized around arrays of rRNA genes (rDNA), dissolves during prophase of mitosis in metazoans, when rDNA transcription ceases, and reforms in telophase, when rDNA transcription resumes. No such dissolution and reformation cycle exists in budding yeast, and the precise course of nucleolar segregation remains unclear. By quantitative live-cell imaging, we observed that the yeast nucleolus is reorganized in its protein composition during mitosis. Daughter cells received equal shares of preinitiation factors, which bind the RNA polymerase I promoter and the rDNA binding barrier protein Fob1, but only about one-third of RNA polymerase I and the processing factors Nop56 and Nsr1. The distribution bias was diminished in nonpolar chromosome segregation events observable in dyn1 mutants. Unequal distribution, however, was enhanced by defects in RNA polymerase I, suggesting that rDNA transcription supports nucleolar segregation. Indeed, quantification of pre-rRNA levels indicated ongoing rDNA transcription in yeast mitosis. These data, together with photobleaching experiments to measure nucleolar protein dynamics in anaphase, consolidate a model that explains the differential partitioning of nucleolar components in budding yeast mitosis.
Collapse
Affiliation(s)
- Philipp Girke
- Department of Genetics, University of Regensburg, D-93040 Regensburg, Germany
| | - Wolfgang Seufert
- Department of Genetics, University of Regensburg, D-93040 Regensburg, Germany
| |
Collapse
|
14
|
Jones MH, O'Toole ET, Fabritius AS, Muller EG, Meehl JB, Jaspersen SL, Winey M. Key phosphorylation events in Spc29 and Spc42 guide multiple steps of yeast centrosome duplication. Mol Biol Cell 2018; 29:2280-2291. [PMID: 30044722 PMCID: PMC6249810 DOI: 10.1091/mbc.e18-05-0296] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Phosphorylation modulates many cellular processes during cell cycle progression. The yeast centrosome (called the spindle pole body, SPB) is regulated by the protein kinases Mps1 and Cdc28/Cdk1 as it nucleates microtubules to separate chromosomes during mitosis. Previously we completed an SPB phosphoproteome, identifying 297 sites on 17 of the 18 SPB components. Here we describe mutagenic analysis of phosphorylation events on Spc29 and Spc42, two SPB core components that were shown in the phosphoproteome to be heavily phosphorylated. Mutagenesis at multiple sites in Spc29 and Spc42 suggests that much of the phosphorylation on these two proteins is not essential but enhances several steps of mitosis. Of the 65 sites examined on both proteins, phosphorylation of the Mps1 sites Spc29-T18 and Spc29-T240 was shown to be critical for function. Interestingly, these two sites primarily influence distinct successive steps; Spc29-T240 is important for the interaction of Spc29 with Spc42, likely during satellite formation, and Spc29-T18 facilitates insertion of the new SPB into the nuclear envelope and promotes anaphase spindle elongation. Phosphorylation sites within Cdk1 motifs affect function to varying degrees, but mutations only have significant effects in the presence of an MPS1 mutation, supporting a theme of coregulation by these two kinases.
Collapse
Affiliation(s)
- Michele Haltiner Jones
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309
| | - Eileen T O'Toole
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309
| | - Amy S Fabritius
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616
| | - Eric G Muller
- Department of Biochemistry, University of Washington, Seattle, WA 98195
| | - Janet B Meehl
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309
| | - Sue L Jaspersen
- Stowers Institute for Medical Research, Kansas City, MO 64110.,Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Mark Winey
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309
| |
Collapse
|
15
|
Oh Y, Schreiter JH, Okada H, Wloka C, Okada S, Yan D, Duan X, Bi E. Hof1 and Chs4 Interact via F-BAR Domain and Sel1-like Repeats to Control Extracellular Matrix Deposition during Cytokinesis. Curr Biol 2017; 27:2878-2886.e5. [PMID: 28918945 PMCID: PMC5658023 DOI: 10.1016/j.cub.2017.08.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/07/2017] [Accepted: 08/15/2017] [Indexed: 11/24/2022]
Abstract
Localized extracellular matrix (ECM) remodeling is thought to stabilize the cleavage furrow and maintain cell shape during cytokinesis [1-14]. This remodeling is spatiotemporally coordinated with a cytoskeletal structure pertaining to a kingdom of life, for example the FtsZ ring in bacteria [15], the phragmoplast in plants [16], and the actomyosin ring in fungi and animals [17, 18]. Although the cytoskeletal structures have been analyzed extensively, the mechanisms of ECM remodeling remain poorly understood. In the budding yeast Saccharomyces cerevisiae, ECM remodeling refers to sequential formations of the primary and secondary septa that are catalyzed by chitin synthase-II (Chs2) and chitin synthase-III (the catalytic subunit Chs3 and its activator Chs4), respectively [18, 19]. Surprisingly, both Chs2 and Chs3 are delivered to the division site at the onset of cytokinesis [6, 20]. What keeps Chs3 inactive until secondary septum formation remains unknown. Here, we show that Hof1 binds to the Sel1-like repeats (SLRs) of Chs4 via its F-BAR domain and inhibits Chs3-mediated chitin synthesis during cytokinesis. In addition, Hof1 is required for rapid accumulation as well as efficient removal of Chs4 at the division site. This study uncovers a mechanism by which Hof1 controls timely activation of Chs3 during cytokinesis and defines a novel interaction and function for the conserved F-BAR domain and SLR that are otherwise known for their abilities to bind membrane lipids [21, 22] and scaffold protein complex formation [23].
Collapse
Affiliation(s)
- Younghoon Oh
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA
| | - Jennifer H Schreiter
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA
| | - Hiroki Okada
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA
| | - Carsten Wloka
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA; Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AE Groningen, the Netherlands
| | - Satoshi Okada
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA; Department of Medical Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Di Yan
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA; Cleveland Clinic Lerner College of Medicine, Cleveland, OH 44195, USA
| | - Xudong Duan
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA
| | - Erfei Bi
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA.
| |
Collapse
|
16
|
Cavanaugh AM, Jaspersen SL. Big Lessons from Little Yeast: Budding and Fission Yeast Centrosome Structure, Duplication, and Function. Annu Rev Genet 2017; 51:361-383. [PMID: 28934593 DOI: 10.1146/annurev-genet-120116-024733] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Centrosomes are a functionally conserved feature of eukaryotic cells that play an important role in cell division. The conserved γ-tubulin complex organizes spindle and astral microtubules, which, in turn, separate replicated chromosomes accurately into daughter cells. Like DNA, centrosomes are duplicated once each cell cycle. Although in some cell types it is possible for cell division to occur in the absence of centrosomes, these divisions typically result in defects in chromosome number and stability. In single-celled organisms such as fungi, centrosomes [known as spindle pole bodies (SPBs)] are essential for cell division. SPBs also must be inserted into the membrane because fungi undergo a closed mitosis in which the nuclear envelope (NE) remains intact. This poorly understood process involves events similar or identical to those needed for de novo nuclear pore complex assembly. Here, we review how analysis of fungal SPBs has advanced our understanding of centrosomes and NE events.
Collapse
Affiliation(s)
- Ann M Cavanaugh
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA;
| | - Sue L Jaspersen
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA; .,Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| |
Collapse
|
17
|
Rüthnick D, Neuner A, Dietrich F, Kirrmaier D, Engel U, Knop M, Schiebel E. Characterization of spindle pole body duplication reveals a regulatory role for nuclear pore complexes. J Cell Biol 2017; 216:2425-2442. [PMID: 28659328 PMCID: PMC5551709 DOI: 10.1083/jcb.201612129] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 04/25/2017] [Accepted: 05/22/2017] [Indexed: 02/08/2023] Open
Abstract
The spindle pole body (SPB) of budding yeast duplicates once per cell cycle. In G1, the satellite, an SPB precursor, assembles next to the mother SPB (mSPB) on the cytoplasmic side of the nuclear envelope (NE). How the growing satellite subsequently inserts into the NE is an open question. To address this, we have uncoupled satellite growth from NE insertion. We show that the bridge structure that separates the mSPB from the satellite is a distance holder that prevents deleterious fusion of both structures. Binding of the γ-tubulin receptor Spc110 to the central plaque from within the nucleus is important for NE insertion of the new SPB. Moreover, we provide evidence that a nuclear pore complex associates with the duplicating SPB and helps to insert the SPB into the NE. After SPB insertion, membrane-associated proteins including the conserved Ndc1 encircle the SPB and retain it within the NE. Thus, uncoupling SPB growth from NE insertion unmasks functions of the duplication machinery.
Collapse
Affiliation(s)
- Diana Rüthnick
- Zentrum für Molekulare Biologie at the University of Heidelberg, German Cancer Research Center-Center for Molecular Biology Alliance, Heidelberg, Germany
| | - Annett Neuner
- Zentrum für Molekulare Biologie at the University of Heidelberg, German Cancer Research Center-Center for Molecular Biology Alliance, Heidelberg, Germany
| | - Franziska Dietrich
- Zentrum für Molekulare Biologie at the University of Heidelberg, German Cancer Research Center-Center for Molecular Biology Alliance, Heidelberg, Germany
| | - Daniel Kirrmaier
- Zentrum für Molekulare Biologie at the University of Heidelberg, German Cancer Research Center-Center for Molecular Biology Alliance, Heidelberg, Germany
| | - Ulrike Engel
- Nikon Imaging Center at the University of Heidelberg, Bioquant, Heidelberg, Germany
| | - Michael Knop
- Zentrum für Molekulare Biologie at the University of Heidelberg, German Cancer Research Center-Center for Molecular Biology Alliance, Heidelberg, Germany
| | - Elmar Schiebel
- Zentrum für Molekulare Biologie at the University of Heidelberg, German Cancer Research Center-Center for Molecular Biology Alliance, Heidelberg, Germany
| |
Collapse
|
18
|
Beach RR, Ricci-Tam C, Brennan CM, Moomau CA, Hsu PH, Hua B, Silberman RE, Springer M, Amon A. Aneuploidy Causes Non-genetic Individuality. Cell 2017; 169:229-242.e21. [PMID: 28388408 DOI: 10.1016/j.cell.2017.03.021] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 12/23/2016] [Accepted: 03/14/2017] [Indexed: 10/19/2022]
Abstract
Phenotypic variability is a hallmark of diseases involving chromosome gains and losses, such as Down syndrome and cancer. Allelic variances have been thought to be the sole cause of this heterogeneity. Here, we systematically examine the consequences of gaining and losing single or multiple chromosomes to show that the aneuploid state causes non-genetic phenotypic variability. Yeast cell populations harboring the same defined aneuploidy exhibit heterogeneity in cell-cycle progression and response to environmental perturbations. Variability increases with degree of aneuploidy and is partly due to gene copy number imbalances, suggesting that subtle changes in gene expression impact the robustness of biological networks and cause alternate behaviors when they occur across many genes. As inbred trisomic mice also exhibit variable phenotypes, we further propose that non-genetic individuality is a universal characteristic of the aneuploid state that may contribute to variability in presentation and treatment responses of diseases caused by aneuploidy.
Collapse
Affiliation(s)
- Rebecca R Beach
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Chiara Ricci-Tam
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Christopher M Brennan
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Christine A Moomau
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Pei-Hsin Hsu
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Bo Hua
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Rebecca E Silberman
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Michael Springer
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Angelika Amon
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
19
|
Meyer I, Peter T, Batsios P, Kuhnert O, Krüger-Genge A, Camurça C, Gräf R. CP39, CP75 and CP91 are major structural components of the Dictyostelium centrosome's core structure. Eur J Cell Biol 2017; 96:119-130. [PMID: 28104305 DOI: 10.1016/j.ejcb.2017.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/13/2016] [Accepted: 01/09/2017] [Indexed: 12/11/2022] Open
Abstract
The acentriolar Dictyostelium centrosome is a nucleus-associated body consisting of a core structure with three plaque-like layers, which are surrounded by a microtubule-nucleating corona. The core duplicates once per cell cycle at the G2/M transition, whereby its central layer disappears and the two outer layers form the mitotic spindle poles. Through proteomic analysis of isolated centrosomes, we have identified CP39 and CP75, two essential components of the core structure. Both proteins can be assigned to the central core layer as their centrosomal presence is correlated to the disappearance and reappearance of the central core layer in the course of centrosome duplication. Both proteins contain domains with centrosome-binding activity in their N- and C-terminal halves, whereby the respective N-terminal half is required for cell cycle-dependent regulation. CP39 is capable of self-interaction and GFP-CP39 overexpression elicited supernumerary microtubule-organizing centers and pre-centrosomal cytosolic clusters. Underexpression stopped cell growth and reversed the MTOC amplification phenotype. In contrast, in case of CP75 underexpression of the protein by RNAi treatment elicited supernumerary MTOCs. In addition, CP75RNAi affects correct chromosome segregation and causes co-depletion of CP39 and CP91, another central core layer component. CP39 and CP75 interact with each other directly in a yeast two-hybrid assay. Furthermore, CP39, CP75 and CP91 mutually interact in a proximity-dependent biotin identification (BioID) assay. Our data indicate that these three proteins are all required for proper centrosome biogenesis and make up the major structural components of core structure's central layer.
Collapse
Affiliation(s)
- Irene Meyer
- University of Potsdam, Institute for Biochemistry and Biology, Dept. of Cell Biology, Karl-Liebknecht-Straße 24-25, Haus 26, D-14476 Potsdam-Golm, Germany.
| | - Tatjana Peter
- University of Potsdam, Institute for Biochemistry and Biology, Dept. of Cell Biology, Karl-Liebknecht-Straße 24-25, Haus 26, D-14476 Potsdam-Golm, Germany
| | - Petros Batsios
- University of Potsdam, Institute for Biochemistry and Biology, Dept. of Cell Biology, Karl-Liebknecht-Straße 24-25, Haus 26, D-14476 Potsdam-Golm, Germany
| | - Oliver Kuhnert
- University of Potsdam, Institute for Biochemistry and Biology, Dept. of Cell Biology, Karl-Liebknecht-Straße 24-25, Haus 26, D-14476 Potsdam-Golm, Germany
| | - Anne Krüger-Genge
- University of Potsdam, Institute for Biochemistry and Biology, Dept. of Cell Biology, Karl-Liebknecht-Straße 24-25, Haus 26, D-14476 Potsdam-Golm, Germany
| | - Carl Camurça
- University of Potsdam, Institute for Biochemistry and Biology, Dept. of Cell Biology, Karl-Liebknecht-Straße 24-25, Haus 26, D-14476 Potsdam-Golm, Germany
| | - Ralph Gräf
- University of Potsdam, Institute for Biochemistry and Biology, Dept. of Cell Biology, Karl-Liebknecht-Straße 24-25, Haus 26, D-14476 Potsdam-Golm, Germany.
| |
Collapse
|
20
|
Burns S, Avena JS, Unruh JR, Yu Z, Smith SE, Slaughter BD, Winey M, Jaspersen SL. Structured illumination with particle averaging reveals novel roles for yeast centrosome components during duplication. eLife 2015; 4. [PMID: 26371506 PMCID: PMC4564689 DOI: 10.7554/elife.08586] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 08/11/2015] [Indexed: 01/23/2023] Open
Abstract
Duplication of the yeast centrosome (called the spindle pole body, SPB) is thought to occur through a series of discrete steps that culminate in insertion of the new SPB into the nuclear envelope (NE). To better understand this process, we developed a novel two-color structured illumination microscopy with single-particle averaging (SPA-SIM) approach to study the localization of all 18 SPB components during duplication using endogenously expressed fluorescent protein derivatives. The increased resolution and quantitative intensity information obtained using this method allowed us to demonstrate that SPB duplication begins by formation of an asymmetric Sfi1 filament at mitotic exit followed by Mps1-dependent assembly of a Spc29- and Spc42-dependent complex at its tip. Our observation that proteins involved in membrane insertion, such as Mps2, Bbp1, and Ndc1, also accumulate at the new SPB early in duplication suggests that SPB assembly and NE insertion are coupled events during SPB formation in wild-type cells. DOI:http://dx.doi.org/10.7554/eLife.08586.001 Cells divide to produce two new daughter cells that each contain the same genetic material. First, the DNA of the parent cell is copied, then it must be physically separated into the daughter cells by a structure made of filaments called microtubules. To ensure that the DNA is separated into two equal parts, the microtubules must emerge from two points in the cell, known as spindle poles. Each spindle pole is made of a group (or ‘complex’) of proteins and these have to be copied before the cell can divide. While we understand how DNA is copied, we do not know how cells copy proteins. The spindle pole in yeast—known as the spindle pole body—is an ideal model to study this problem because the proteins that form it have already been identified and it is easy to study yeast in the laboratory. Burns et al. developed a new method to study the spindle pole body using fluorescent protein tags and a sophisticated microscopy technique. The experiments mapped the positions of 18 proteins within the spindle pole body during its duplication. Some of these proteins enable the spindle pole to insert into the membrane that surrounds the cell's nucleus. Unexpectedly, Burns et al. observed that this set of proteins interact with the new spindle pole as it forms, instead of afterwards as was previously believed. Burns et al.'s findings suggest that the spindle pole body assembles into the membrane surrounding the nucleus at the same time as it is copied. The next challenges are to understand the details of how this works and to use the same method to study other large protein complexes in cells. Until now, highly detailed surveys of protein structures have been limited to a handful of proteins and conditions. The method developed by Burns et al. makes it possible to carry out studies that examine the movements of whole protein complexes during cell division. DOI:http://dx.doi.org/10.7554/eLife.08586.002
Collapse
Affiliation(s)
- Shannon Burns
- Stowers Institute for Medical Research, Kansas City, United States
| | - Jennifer S Avena
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, United States
| | - Jay R Unruh
- Stowers Institute for Medical Research, Kansas City, United States
| | - Zulin Yu
- Stowers Institute for Medical Research, Kansas City, United States
| | - Sarah E Smith
- Stowers Institute for Medical Research, Kansas City, United States
| | | | - Mark Winey
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, United States
| | - Sue L Jaspersen
- Stowers Institute for Medical Research, Kansas City, United States
| |
Collapse
|
21
|
Seybold C, Elserafy M, Rüthnick D, Ozboyaci M, Neuner A, Flottmann B, Heilemann M, Wade RC, Schiebel E. Kar1 binding to Sfi1 C-terminal regions anchors the SPB bridge to the nuclear envelope. J Cell Biol 2015; 209:843-61. [PMID: 26076691 PMCID: PMC4477856 DOI: 10.1083/jcb.201412050] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 05/20/2015] [Indexed: 11/22/2022] Open
Abstract
The yeast spindle pole body (SPB) is the functional equivalent of the mammalian centrosome. The half bridge is a SPB substructure on the nuclear envelope (NE), playing a key role in SPB duplication. Its cytoplasmic components are the membrane-anchored Kar1, the yeast centrin Cdc31, and the Cdc31-binding protein Sfi1. In G1, the half bridge expands into the bridge through Sfi1 C-terminal (Sfi1-CT) dimerization, the licensing step for SPB duplication. We exploited photo-activated localization microscopy (PALM) to show that Kar1 localizes in the bridge center. Binding assays revealed direct interaction between Kar1 and C-terminal Sfi1 fragments. kar1Δ cells whose viability was maintained by the dominant CDC31-16 showed an arched bridge, indicating Kar1's function in tethering Sfi1 to the NE. Cdc31-16 enhanced Cdc31-Cdc31 interactions between Sfi1-Cdc31 layers, as suggested by binding free energy calculations. In our model, Kar1 binding is restricted to Sfi1-CT and Sfi1 C-terminal centrin-binding repeats, and centrin and Kar1 provide cross-links, while Sfi1-CT stabilizes the bridge and ensures timely SPB separation.
Collapse
Affiliation(s)
- Christian Seybold
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Menattallah Elserafy
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Diana Rüthnick
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Musa Ozboyaci
- Heidelberg Institute for Theoretical Studies, 69118 Heidelberg, Germany Heidelberg Graduate School of Mathematical and Computational Methods for the Sciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Annett Neuner
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Benjamin Flottmann
- Institute for Anatomy and Cell Biology, Functional Neuroanatomy, Heidelberg University, 69120 Heidelberg, Germany Institute for Physical and Theoretical Chemistry, Johann-Wolfgang-Goethe-University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Mike Heilemann
- Institute for Anatomy and Cell Biology, Functional Neuroanatomy, Heidelberg University, 69120 Heidelberg, Germany Institute for Physical and Theoretical Chemistry, Johann-Wolfgang-Goethe-University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Rebecca C Wade
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany Heidelberg Institute for Theoretical Studies, 69118 Heidelberg, Germany Interdisciplinary Center for Scientific Computing, Heidelberg University, 69120 Heidelberg, Germany
| | - Elmar Schiebel
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| |
Collapse
|
22
|
Kilmartin JV. Lessons from yeast: the spindle pole body and the centrosome. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0456. [PMID: 25047610 DOI: 10.1098/rstb.2013.0456] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The yeast spindle pole body (SPB) is the functional equivalent of the centrosome. Most SPB components have been identified and their functions partly established. This involved a large variety of techniques which are described here, and the potential use of some of these in the centrosome field is highlighted. In particular, very useful structural information on the SPB was obtained from a reconstituted complex, the γ-tubulin complex, and also from a sub-particle, SPB cores, prepared by extraction of an enriched SPB preparation. The labelling of SPB proteins with GFP at the N or C termini, using GFP tags inserted into the genome, gave informative electron microscopy localization and fluorescence resonance energy transfer data. Examples are given of more precise functional data obtained by removing domains from one SPB protein, Spc110p, without affecting its essential function. Finally, a structural model for SPB duplication is described and the differences between SPB and centrosome duplication discussed.
Collapse
Affiliation(s)
- John V Kilmartin
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| |
Collapse
|
23
|
Abstract
The centrosome was discovered in the late 19th century when mitosis was first described. Long recognized as a key organelle of the spindle pole, its core component, the centriole, was realized more than 50 or so years later also to comprise the basal body of the cilium. Here, we chart the more recent acquisition of a molecular understanding of centrosome structure and function. The strategies for gaining such knowledge were quickly developed in the yeasts to decipher the structure and function of their distinctive spindle pole bodies. Only within the past decade have studies with model eukaryotes and cultured cells brought a similar degree of sophistication to our understanding of the centrosome duplication cycle and the multiple roles of this organelle and its component parts in cell division and signaling. Now as we begin to understand these functions in the context of development, the way is being opened up for studies of the roles of centrosomes in human disease.
Collapse
Affiliation(s)
- Jingyan Fu
- Cancer Research UK Cell Cycle Genetics Group, Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Iain M Hagan
- Cancer Research UK Manchester Institute, University of Manchester, Withington, Manchester M20 4BX, United Kingdom
| | - David M Glover
- Cancer Research UK Cell Cycle Genetics Group, Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| |
Collapse
|
24
|
Ring closure activates yeast γTuRC for species-specific microtubule nucleation. Nat Struct Mol Biol 2015; 22:132-7. [PMID: 25599398 PMCID: PMC4318760 DOI: 10.1038/nsmb.2953] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 12/12/2014] [Indexed: 12/23/2022]
Abstract
The γ-tubulin ring complex (γTuRC) is the primary microtubule nucleator in cells. γTuRC is assembled from repeating γ-tubulin small complex (γTuSC) subunits and is thought to function as a template by presenting a γ-tubulin ring that mimics microtubule geometry. However, a previous yeast γTuRC structure showed γTuSC in an open conformation that prevents matching to microtubule symmetry. By contrast, we show here that γ-tubulin complexes are in a closed conformation when attached to microtubules. To confirm the functional importance of the closed γTuSC ring, we trapped the closed state and determined its structure, showing that the γ-tubulin ring precisely matches microtubule symmetry and providing detailed insight into γTuRC architecture. Importantly, the closed state is a stronger nucleator, thus suggesting that this conformational switch may allosterically control γTuRC activity. Finally, we demonstrate that γTuRCs have a strong preference for tubulin from the same species.
Collapse
|
25
|
Elserafy M, Šarić M, Neuner A, Lin TC, Zhang W, Seybold C, Sivashanmugam L, Schiebel E. Molecular Mechanisms that Restrict Yeast Centrosome Duplication to One Event per Cell Cycle. Curr Biol 2014; 24:1456-66. [DOI: 10.1016/j.cub.2014.05.032] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 05/11/2014] [Accepted: 05/14/2014] [Indexed: 12/29/2022]
|
26
|
Lin TC, Neuner A, Schlosser YT, Scharf AND, Weber L, Schiebel E. Cell-cycle dependent phosphorylation of yeast pericentrin regulates γ-TuSC-mediated microtubule nucleation. eLife 2014; 3:e02208. [PMID: 24842996 PMCID: PMC4034690 DOI: 10.7554/elife.02208] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Budding yeast Spc110, a member of γ-tubulin complex receptor family (γ-TuCR), recruits γ-tubulin complexes to microtubule (MT) organizing centers (MTOCs). Biochemical studies suggest that Spc110 facilitates higher-order γ-tubulin complex assembly (Kollman et al., 2010). Nevertheless the molecular basis for this activity and the regulation are unclear. Here we show that Spc110 phosphorylated by Mps1 and Cdk1 activates γ-TuSC oligomerization and MT nucleation in a cell cycle dependent manner. Interaction between the N-terminus of the γ-TuSC subunit Spc98 and Spc110 is important for this activity. Besides the conserved CM1 motif in γ-TuCRs (Sawin et al., 2004), a second motif that we named Spc110/Pcp1 motif (SPM) is also important for MT nucleation. The activating Mps1 and Cdk1 sites lie between SPM and CM1 motifs. Most organisms have both SPM-CM1 (Spc110/Pcp1/PCNT) and CM1-only (Spc72/Mto1/Cnn/CDK5RAP2/myomegalin) types of γ-TuCRs. The two types of γ-TuCRs contain distinct but conserved C-terminal MTOC targeting domains. DOI:http://dx.doi.org/10.7554/eLife.02208.001 Microtubules are hollow structures made of proteins that have a central role in cell division and a variety of other important processes within cells. For a cell to divide successfully, the chromosomes containing the genetic information of the cell must be duplicated and then separated so that one copy of each chromosome ends up in each daughter cell. To separate the chromosomes, microtubules extend out from two structures called spindle pole bodies, which are found at either end of the cell, and pull one copy of each chromosome to opposite sides of the cell. Although the individual proteins that make up a microtubule can self-assemble into tubes, this occurs very slowly, so cells employ other molecules to speed up this process. In yeast cells, a protein called gamma-tubulin is recruited to the spindle pole body by the protein Spc110, where it combines with two other proteins to form a complex called the gamma-tubulin small complex. Several of these complexes then join together to form a ring, which probably acts as the platform that microtubules grow from. Recent observations suggested that Spc110 may help to construct this ring, but without revealing how. Now, Lin et al. reveal that Spc110 can regulate microtubule formation by controlling how several gamma-tubulin small complexes bind together, and have identified the exact section of Spc110 that interacts with the complexes. However, the Spc110 must become active before it can perform this role, and it is only activated during certain stages of cell division, through phosphorylation. The structures in Spc110 that bind to the gamma-tubulin small complex in yeast are also found in gamma-tubulin binding receptor proteins in human cells. The work of Lin et al. demonstrates that proteins that are assumed to have passive roles within cells, such as Spc110, often play more active roles instead. DOI:http://dx.doi.org/10.7554/eLife.02208.002
Collapse
Affiliation(s)
- Tien-Chen Lin
- Zentrum für Molekulare Biologie (ZMBH), Universität Heidelberg, Heidelberg, Germany The Hartmut Hoffmann-Berling International Graduate School, University of Heidelberg, Heidelberg, Germany
| | - Annett Neuner
- Zentrum für Molekulare Biologie (ZMBH), Universität Heidelberg, Heidelberg, Germany
| | - Yvonne T Schlosser
- Zentrum für Molekulare Biologie (ZMBH), Universität Heidelberg, Heidelberg, Germany
| | - Annette N D Scharf
- Zentrum für Molekulare Biologie (ZMBH), Universität Heidelberg, Heidelberg, Germany
| | - Lisa Weber
- Zentrum für Molekulare Biologie (ZMBH), Universität Heidelberg, Heidelberg, Germany
| | - Elmar Schiebel
- Zentrum für Molekulare Biologie (ZMBH), Universität Heidelberg, Heidelberg, Germany
| |
Collapse
|
27
|
Integrity and function of the Saccharomyces cerevisiae spindle pole body depends on connections between the membrane proteins Ndc1, Rtn1, and Yop1. Genetics 2012; 192:441-55. [PMID: 22798490 DOI: 10.1534/genetics.112.141465] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The nuclear envelope in Saccharomyces cerevisiae harbors two essential macromolecular protein assemblies: the nuclear pore complexes (NPCs) that enable nucleocytoplasmic transport, and the spindle pole bodies (SPBs) that mediate chromosome segregation. Previously, based on metazoan and budding yeast studies, we reported that reticulons and Yop1/DP1 play a role in the early steps of de novo NPC assembly. Here, we examined if Rtn1 and Yop1 are required for SPB function in S. cerevisiae. Electron microscopy of rtn1Δ yop1Δ cells revealed lobular abnormalities in SPB structure. Using an assay that monitors lateral expansion of the SPB central layer, we found that rtn1Δ yop1Δ SPBs had decreased connections to the NE compared to wild type, suggesting that SPBs are less stable in the NE. Furthermore, large budded rtn1Δ yop1Δ cells exhibited a high incidence of short mitotic spindles, which were frequently misoriented with respect to the mother-daughter axis. This correlated with cytoplasmic microtubule defects. We found that overexpression of the SPB insertion factors NDC1, MPS2, or BBP1 rescued the SPB defects observed in rtn1Δ yop1Δ cells. However, only overexpression of NDC1, which is also required for NPC biogenesis, rescued both the SPB and NPC associated defects. Rtn1 and Yop1 also physically interacted with Ndc1 and other NPC membrane proteins. We propose that NPC and SPB biogenesis are altered in cells lacking Rtn1 and Yop1 due to competition between these complexes for Ndc1, an essential common component of both NPCs and SPBs.
Collapse
|
28
|
Treusch S, Lindquist S. An intrinsically disordered yeast prion arrests the cell cycle by sequestering a spindle pole body component. ACTA ACUST UNITED AC 2012; 197:369-79. [PMID: 22529103 PMCID: PMC3341155 DOI: 10.1083/jcb.201108146] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intrinsically disordered proteins play causative roles in many human diseases. Their overexpression is toxic in many organisms, but the causes of toxicity are opaque. In this paper, we exploit yeast technologies to determine the root of toxicity for one such protein, the yeast prion Rnq1. This protein is profoundly toxic when overexpressed but only in cells carrying the endogenous Rnq1 protein in its [RNQ(+)] prion (amyloid) conformation. Surprisingly, toxicity was not caused by general proteotoxic stress. Rather, it involved a highly specific mitotic arrest mediated by the Mad2 cell cycle checkpoint. Monopolar spindles accumulated as a result of defective duplication of the yeast centrosome (spindle pole body [SPB]). This arose from selective Rnq1-mediated sequestration of the core SPB component Spc42 in the insoluble protein deposit (IPOD). Rnq1 does not normally participate in spindle pole dynamics, but it does assemble at the IPOD when aggregated. Our work illustrates how the promiscuous interactions of an intrinsically disordered protein can produce highly specific cellular toxicities through illicit, yet highly specific, interactions with the proteome.
Collapse
Affiliation(s)
- Sebastian Treusch
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | | |
Collapse
|
29
|
Hotz M, Leisner C, Chen D, Manatschal C, Wegleiter T, Ouellet J, Lindstrom D, Gottschling DE, Vogel J, Barral Y. Spindle pole bodies exploit the mitotic exit network in metaphase to drive their age-dependent segregation. Cell 2012; 148:958-72. [PMID: 22385961 PMCID: PMC3779431 DOI: 10.1016/j.cell.2012.01.041] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 10/18/2011] [Accepted: 01/30/2012] [Indexed: 11/19/2022]
Abstract
Like many asymmetrically dividing cells, budding yeast segregates mitotic spindle poles nonrandomly between mother and daughter cells. During metaphase, the spindle positioning protein Kar9 accumulates asymmetrically, localizing specifically to astral microtubules emanating from the old spindle pole body (SPB) and driving its segregation to the bud. Here, we show that the SPB component Nud1/centriolin acts through the mitotic exit network (MEN) to specify asymmetric SPB inheritance. In the absence of MEN signaling, Kar9 asymmetry is unstable and its preference for the old SPB is disrupted. Consistent with this, phosphorylation of Kar9 by the MEN kinases Dbf2 and Dbf20 is not required to break Kar9 symmetry but is instead required to maintain stable association of Kar9 with the old SPB throughout metaphase. We propose that MEN signaling links Kar9 regulation to SPB identity through biasing and stabilizing the age-insensitive, cyclin-B-dependent mechanism of symmetry breaking.
Collapse
Affiliation(s)
- Manuel Hotz
- Institute of Biochemistry, Biology Department, ETH Zurich, 8093 Zurich, Switzerland
| | - Christian Leisner
- Institute of Biochemistry, Biology Department, ETH Zurich, 8093 Zurich, Switzerland
| | - Daici Chen
- Department of Biology, McGill University, Montreal, Quebec H3G 0B1, Canada
| | - Cristina Manatschal
- Institute of Biochemistry, Biology Department, ETH Zurich, 8093 Zurich, Switzerland
| | - Thomas Wegleiter
- Institute of Biochemistry, Biology Department, ETH Zurich, 8093 Zurich, Switzerland
| | - Jimmy Ouellet
- Institute of Biochemistry, Biology Department, ETH Zurich, 8093 Zurich, Switzerland
| | - Derek Lindstrom
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Dan E. Gottschling
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jackie Vogel
- Department of Biology, McGill University, Montreal, Quebec H3G 0B1, Canada
| | - Yves Barral
- Institute of Biochemistry, Biology Department, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
30
|
Shirk K, Jin H, Giddings TH, Winey M, Yu HG. The Aurora kinase Ipl1 is necessary for spindle pole body cohesion during budding yeast meiosis. J Cell Sci 2012; 124:2891-6. [PMID: 21878496 DOI: 10.1242/jcs.086652] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
In budding yeast, the microtubule-organizing center is called the spindle pole body (SPB) and shares structural components with the centriole, the central core of the animal centrosome. During meiotic interphase I, the SPB is duplicated when DNA replication takes place. Duplicated SPBs are linked and then separate to form a bipolar spindle required for homolog separation in meiosis I. During interphase II, SPBs are duplicated again, in the absence of DNA replication, to form four SPBs that establish two spindles for sister-chromatid separation in meiosis II. Here, we report that the Aurora kinase Ipl1, which is necessary for sister-chromatid cohesion, is also required for maintenance of a tight association between duplicated SPBs during meiosis, which we term SPB cohesion. Premature loss of cohesion leads to SPB overduplication and the formation of multipolar spindles. By contrast, the Polo-like kinase Cdc5 is necessary for SPB duplication and interacts antagonistically with Ipl1 at the meiotic SPB to ensure proper SPB separation. Our data suggest that Ipl1 coordinates SPB dynamics with the two chromosome segregation cycles during yeast meiosis.
Collapse
Affiliation(s)
- Katelan Shirk
- Department of Biological Science, The Florida State University, Tallahassee, FL 32306-4370, USA
| | | | | | | | | |
Collapse
|
31
|
Shui B, Ozer A, Zipfel W, Sahu N, Singh A, Lis JT, Shi H, Kotlikoff MI. RNA aptamers that functionally interact with green fluorescent protein and its derivatives. Nucleic Acids Res 2011; 40:e39. [PMID: 22189104 PMCID: PMC3300005 DOI: 10.1093/nar/gkr1264] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Green Fluorescent Protein (GFP) and related fluorescent proteins (FPs) have been widely used to tag proteins, allowing their expression and subcellular localization to be examined in real time in living cells and animals. Similar fluorescent methods are highly desirable to detect and track RNA and other biological molecules in living cells. For this purpose, we have developed a group of RNA aptamers that bind GFP and related proteins, which we term Fluorescent Protein-Binding Aptamers (FPBA). These aptamers bind GFP, YFP and CFP with low nanomolar affinity and binding decreases GFP fluorescence, whereas slightly augmenting YFP and CFP brightness. Aptamer binding results in an increase in the pKa of EGFP, decreasing the 475 nm excited green fluorescence at a given pH. We report the secondary structure of FPBA and the ability to synthesize functional multivalent dendrimers. FPBA expressed in live cells decreased GFP fluorescence in a valency-dependent manner, indicating that the RNA aptamers function within cells. The development of aptamers that bind fluorescent proteins with high affinity and alter their function, markedly expands their use in the study of biological pathways.
Collapse
Affiliation(s)
- Bo Shui
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Woodruff JB, Drubin DG, Barnes G. Spindle assembly requires complete disassembly of spindle remnants from the previous cell cycle. Mol Biol Cell 2011; 23:258-67. [PMID: 22090343 PMCID: PMC3258171 DOI: 10.1091/mbc.e11-08-0701] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Incomplete spindle disassembly causes lethality in budding yeast. We propose that spindle disassembly is required to reinitiate the spindle cycle during the subsequent mitosis by regenerating the nuclear pool of assembly-competent tubulin. Incomplete mitotic spindle disassembly causes lethality in budding yeast. To determine why spindle disassembly is required for cell viability, we used live-cell microscopy to analyze a double mutant strain containing a conditional mutant and a deletion mutant compromised for the kinesin-8 and anaphase-promoting complex-driven spindle-disassembly pathways (td-kip3 and doc1Δ, respectively). Under nonpermissive conditions, spindles in td-kip3 doc1Δ cells could break apart but could not disassemble completely. These cells could exit mitosis and undergo cell division. However, the daughter cells could not assemble functional, bipolar spindles in the ensuing mitosis. During the formation of these dysfunctional spindles, centrosome duplication and separation, as well as recruitment of key midzone-stabilizing proteins all appeared normal, but microtubule polymerization was nevertheless impaired and these spindles often collapsed. Introduction of free tubulin through episomal expression of α- and β-tubulin or introduction of a brief pulse of the microtubule-depolymerizing drug nocodazole allowed spindle assembly in these td-kip3 doc1Δ mutants. Therefore we propose that spindle disassembly is essential for regeneration of the intracellular pool of assembly-competent tubulin required for efficient spindle assembly during subsequent mitoses of daughter cells.
Collapse
Affiliation(s)
- Jeffrey B Woodruff
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
33
|
Friederichs JM, Ghosh S, Smoyer CJ, McCroskey S, Miller BD, Weaver KJ, Delventhal KM, Unruh J, Slaughter BD, Jaspersen SL. The SUN protein Mps3 is required for spindle pole body insertion into the nuclear membrane and nuclear envelope homeostasis. PLoS Genet 2011; 7:e1002365. [PMID: 22125491 PMCID: PMC3219597 DOI: 10.1371/journal.pgen.1002365] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 09/13/2011] [Indexed: 01/23/2023] Open
Abstract
The budding yeast spindle pole body (SPB) is anchored in the nuclear envelope so that it can simultaneously nucleate both nuclear and cytoplasmic microtubules. During SPB duplication, the newly formed SPB is inserted into the nuclear membrane. The mechanism of SPB insertion is poorly understood but likely involves the action of integral membrane proteins to mediate changes in the nuclear envelope itself, such as fusion of the inner and outer nuclear membranes. Analysis of the functional domains of the budding yeast SUN protein and SPB component Mps3 revealed that most regions are not essential for growth or SPB duplication under wild-type conditions. However, a novel dominant allele in the P-loop region, MPS3-G186K, displays defects in multiple steps in SPB duplication, including SPB insertion, indicating a previously unknown role for Mps3 in this step of SPB assembly. Characterization of the MPS3-G186K mutant by electron microscopy revealed severe over-proliferation of the inner nuclear membrane, which could be rescued by altering the characteristics of the nuclear envelope using both chemical and genetic methods. Lipid profiling revealed that cells lacking MPS3 contain abnormal amounts of certain types of polar and neutral lipids, and deletion or mutation of MPS3 can suppress growth defects associated with inhibition of sterol biosynthesis, suggesting that Mps3 directly affects lipid homeostasis. Therefore, we propose that Mps3 facilitates insertion of SPBs in the nuclear membrane by modulating nuclear envelope composition.
Collapse
Affiliation(s)
| | - Suman Ghosh
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Christine J. Smoyer
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Scott McCroskey
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Brandon D. Miller
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Kyle J. Weaver
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Kym M. Delventhal
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Jay Unruh
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Brian D. Slaughter
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Sue L. Jaspersen
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| |
Collapse
|
34
|
Lin TC, Gombos L, Neuner A, Sebastian D, Olsen JV, Hrle A, Benda C, Schiebel E. Phosphorylation of the yeast γ-tubulin Tub4 regulates microtubule function. PLoS One 2011; 6:e19700. [PMID: 21573187 PMCID: PMC3088709 DOI: 10.1371/journal.pone.0019700] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 04/11/2011] [Indexed: 01/10/2023] Open
Abstract
The yeast γ-tubulin Tub4 is assembled with Spc97 and Spc98 into the small Tub4 complex. The Tub4 complex binds via the receptor proteins Spc72 and Spc110 to the spindle pole body (SPB), the functional equivalent of the mammalian centrosome, where the Tub4 complex organizes cytoplasmic and nuclear microtubules. Little is known about the regulation of the Tub4 complex. Here, we isolated the Tub4 complex with the bound receptors from yeast cells. Analysis of the purified Tub4 complex by mass spectrometry identified more than 50 phosphorylation sites in Spc72, Spc97, Spc98, Spc110 and Tub4. To examine the functional relevance of the phosphorylation sites, phospho-mimicking and non-phosphorylatable mutations in Tub4, Spc97 and Spc98 were analyzed. Three phosphorylation sites in Tub4 were found to be critical for Tub4 stability and microtubule organization. One of the sites is highly conserved in γ-tubulins from yeast to human.
Collapse
Affiliation(s)
- Tien-chen Lin
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Allianz, Heidelberg, Germany
| | - Linda Gombos
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Allianz, Heidelberg, Germany
| | - Annett Neuner
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Allianz, Heidelberg, Germany
| | - Dominik Sebastian
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Allianz, Heidelberg, Germany
| | | | - Ajla Hrle
- MPI Biochemistry, Martinsried, Germany
| | | | - Elmar Schiebel
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Allianz, Heidelberg, Germany
| |
Collapse
|
35
|
Lambert JP, Fillingham J, Siahbazi M, Greenblatt J, Baetz K, Figeys D. Defining the budding yeast chromatin-associated interactome. Mol Syst Biol 2011; 6:448. [PMID: 21179020 PMCID: PMC3018163 DOI: 10.1038/msb.2010.104] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 11/05/2010] [Indexed: 11/09/2022] Open
Abstract
We previously reported a novel affinity purification (AP) method termed modified chromatin immunopurification (mChIP), which permits selective enrichment of DNA-bound proteins along with their associated protein network. In this study, we report a large-scale study of the protein network of 102 chromatin-related proteins from budding yeast that were analyzed by mChIP coupled to mass spectrometry. This effort resulted in the detection of 2966 high confidence protein associations with 724 distinct preys. mChIP resulted in significantly improved interaction coverage as compared with classical AP methodology for ∼75% of the baits tested. Furthermore, mChIP successfully identified novel binding partners for many lower abundance transcription factors that previously failed using conventional AP methodologies. mChIP was also used to perform targeted studies, particularly of Asf1 and its associated proteins, to allow for a understanding of the physical interplay between Asf1 and two other histone chaperones, Rtt106 and the HIR complex, to be gained.
Collapse
Affiliation(s)
- Jean-Philippe Lambert
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
36
|
Caydasi AK, Kurtulmus B, Orrico MIL, Hofmann A, Ibrahim B, Pereira G. Elm1 kinase activates the spindle position checkpoint kinase Kin4. ACTA ACUST UNITED AC 2010; 190:975-89. [PMID: 20855503 PMCID: PMC3101594 DOI: 10.1083/jcb.201006151] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Elm1 phosphorylates a conserved residue within the Kin4 kinase domain to coordinate spindle position with cell cycle progression. Budding yeast asymmetric cell division relies upon the precise coordination of spindle orientation and cell cycle progression. The spindle position checkpoint (SPOC) is a surveillance mechanism that prevents cells with misoriented spindles from exiting mitosis. The cortical kinase Kin4 acts near the top of this network. How Kin4 kinase activity is regulated and maintained in respect to spindle positional cues remains to be established. Here, we show that the bud neck–associated kinase Elm1 participates in Kin4 activation and SPOC signaling by phosphorylating a conserved residue within the activation loop of Kin4. Blocking Elm1 function abolishes Kin4 kinase activity in vivo and eliminates the SPOC response to spindle misalignment. These findings establish a novel function for Elm1 in the coordination of spindle positioning with cell cycle progression via its control of Kin4.
Collapse
Affiliation(s)
- Ayse Koca Caydasi
- German Cancer Research Center, DKFZ-ZMBH Alliance, Molecular Biology of Centrosomes and Cilia, 69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
37
|
Araki Y, Gombos L, Migueleti SPS, Sivashanmugam L, Antony C, Schiebel E. N-terminal regions of Mps1 kinase determine functional bifurcation. ACTA ACUST UNITED AC 2010; 189:41-56. [PMID: 20368617 PMCID: PMC2854372 DOI: 10.1083/jcb.200910027] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Spindle pole body components Spc29 and Cdc31 are identified as targets of Mps1 kinase, which, when phosphorylated, regulate protein–protein interactions in the spindle pole body. Mps1 is a conserved kinase that in budding yeast functions in duplication of the spindle pole body (SPB), spindle checkpoint activation, and kinetochore biorientation. The identity of Mps1 targets and the subdomains that convey specificity remain largely unexplored. Using a novel combination of systematic deletion analysis and chemical biology, we identified two regions within the N terminus of Mps1 that are essential for either SPB duplication or kinetochore biorientation. Suppression analysis of the MPS1 mutants defective in SPB duplication and biochemical enrichment of Mps1 identified the essential SPB components Spc29 and the yeast centrin Cdc31 as Mps1 targets in SPB duplication. Our data suggest that phosphorylation of Spc29 by Mps1 in G1/S recruits the Mps2–Bbp1 complex to the newly formed SPB to facilitate its insertion into the nuclear envelope. Mps1 phosphorylation of Cdc31 at the conserved T110 residue controls substrate binding to Kar1 protein. These findings explain the multiple SPB duplication defects of mps1 mutants on a molecular level.
Collapse
Affiliation(s)
- Yasuhiro Araki
- Zentrum für Molekulare Biologie der Universität Heidelberg, Deutsches Krebsforschungszentrum-ZMBH Allianz, 69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
38
|
Schulz I, Erle A, Gräf R, Krüger A, Lohmeier H, Putzler S, Samereier M, Weidenthaler S. Identification and cell cycle-dependent localization of nine novel, genuine centrosomal components inDictyostelium discoideum. ACTA ACUST UNITED AC 2009; 66:915-28. [DOI: 10.1002/cm.20384] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
39
|
Holinger EP, Old WM, Giddings TH, Wong C, Yates JR, Winey M. Budding yeast centrosome duplication requires stabilization of Spc29 via Mps1-mediated phosphorylation. J Biol Chem 2009; 284:12949-55. [PMID: 19269975 DOI: 10.1074/jbc.m900088200] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein phosphorylation plays an important role in the regulation of centrosome duplication. In budding yeast, numerous lines of evidence suggest a requirement for multiple phosphorylation events on individual components of the centrosome to ensure their proper assembly and function. Here, we report the first example of a single phosphorylation event on a component of the yeast centrosome, or spindle pole body (SPB), that is required for SPB duplication and cell viability. This phosphorylation event is on the essential SPB component Spc29 at a conserved Thr residue, Thr(240). Mutation of Thr(240) to Ala is lethal at normal gene dosage, but an increased copy number of this mutant allele results in a conditional phenotype. Phosphorylation of Thr(240) was found to promote the stability of the protein in vivo and is catalyzed in vitro by the Mps1 kinase. Furthermore, the stability of newly synthesized Spc29 is reduced in a mutant strain with reduced Mps1 kinase activity. These results demonstrate the first evidence for a single phosphorylation event on an SPB component that is absolutely required for SPB duplication and suggest that the Mps1 kinase is responsible for this protein-stabilizing phosphorylation.
Collapse
Affiliation(s)
- Eric P Holinger
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309-0347, USA
| | | | | | | | | | | |
Collapse
|
40
|
Simmons Kovacs LA, Nelson CL, Haase SB. Intrinsic and cyclin-dependent kinase-dependent control of spindle pole body duplication in budding yeast. Mol Biol Cell 2008; 19:3243-53. [PMID: 18480404 DOI: 10.1091/mbc.e08-02-0148] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Centrosome duplication must be tightly controlled so that duplication occurs only once each cell cycle. Accumulation of multiple centrosomes can result in the assembly of a multipolar spindle and lead to chromosome mis-segregation and genomic instability. In metazoans, a centrosome-intrinsic mechanism prevents reduplication until centriole disengagement. Mitotic cyclin/cyclin-dependent kinases (CDKs) prevent reduplication of the budding yeast centrosome, called a spindle pole body (SPB), in late S-phase and G2/M, but the mechanism remains unclear. How SPB reduplication is prevented early in the cell cycle is also not understood. Here we show that, similar to metazoans, an SPB-intrinsic mechanism prevents reduplication early in the cell cycle. We also show that mitotic cyclins can inhibit SPB duplication when expressed before satellite assembly in early G1, but not later in G1, after the satellite had assembled. Moreover, electron microscopy revealed that SPBs do not assemble a satellite in cells expressing Clb2 in early G1. Finally, we demonstrate that Clb2 must localize to the cytoplasm in order to inhibit SPB duplication, suggesting the possibility for direct CDK inhibition of satellite components. These two mechanisms, intrinsic and extrinsic control by CDK, evoke two-step system that prevents SPB reduplication throughout the cell cycle.
Collapse
|
41
|
Melloy P, Shen S, White E, McIntosh JR, Rose MD. Nuclear fusion during yeast mating occurs by a three-step pathway. ACTA ACUST UNITED AC 2007; 179:659-70. [PMID: 18025302 PMCID: PMC2080914 DOI: 10.1083/jcb.200706151] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In Saccharomyces cerevisiae, mating culminates in nuclear fusion to produce a diploid zygote. Two models for nuclear fusion have been proposed: a one-step model in which the outer and inner nuclear membranes and the spindle pole bodies (SPBs) fuse simultaneously and a three-step model in which the three events occur separately. To differentiate between these models, we used electron tomography and time-lapse light microscopy of early stage wild-type zygotes. We observe two distinct SPBs in ∼80% of zygotes that contain fused nuclei, whereas we only see fused or partially fused SPBs in zygotes in which the site of nuclear envelope (NE) fusion is already dilated. This demonstrates that SPB fusion occurs after NE fusion. Time-lapse microscopy of zygotes containing fluorescent protein tags that localize to either the NE lumen or the nucleoplasm demonstrates that outer membrane fusion precedes inner membrane fusion. We conclude that nuclear fusion occurs by a three-step pathway.
Collapse
Affiliation(s)
- Patricia Melloy
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | | | | | | |
Collapse
|
42
|
Maekawa H, Priest C, Lechner J, Pereira G, Schiebel E. The yeast centrosome translates the positional information of the anaphase spindle into a cell cycle signal. ACTA ACUST UNITED AC 2007; 179:423-36. [PMID: 17967947 PMCID: PMC2064790 DOI: 10.1083/jcb.200705197] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The spindle orientation checkpoint (SPOC) of budding yeast delays mitotic exit when cytoplasmic microtubules (MTs) are defective, causing the spindle to become misaligned. Delay is achieved by maintaining the activity of the Bfa1-Bub2 guanosine triphosphatase-activating protein complex, an inhibitor of mitotic exit. In this study, we show that the spindle pole body (SPB) component Spc72, a transforming acidic coiled coil-like molecule that interacts with the gamma-tubulin complex, recruits Kin4 kinase to both SPBs when cytoplasmic MTs are defective. This allows Kin4 to phosphorylate the SPB-associated Bfa1, rendering it resistant to inactivation by Cdc5 polo kinase. Consistently, forced targeting of Kin4 to both SPBs delays mitotic exit even when the anaphase spindle is correctly aligned. Moreover, we present evidence that Spc72 has an additional function in SPOC regulation that is independent of the recruitment of Kin4. Thus, Spc72 provides a missing link between cytoplasmic MT function and components of the SPOC.
Collapse
Affiliation(s)
- Hiromi Maekawa
- Zentrum für Molekulare Biologie and 2Biochemie-Zentrum, Universität Heidelberg, 69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
43
|
Gordon O, Taxis C, Keller PJ, Benjak A, Stelzer EHK, Simchen G, Knop M. Nud1p, the yeast homolog of Centriolin, regulates spindle pole body inheritance in meiosis. EMBO J 2006; 25:3856-68. [PMID: 16888627 PMCID: PMC1553201 DOI: 10.1038/sj.emboj.7601254] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Accepted: 07/03/2006] [Indexed: 12/30/2022] Open
Abstract
Nud1p, a protein homologous to the mammalian centrosome and midbody component Centriolin, is a component of the budding yeast spindle pole body (SPB), with roles in anchorage of microtubules and regulation of the mitotic exit network during vegetative growth. Here we analyze the function of Nud1p during yeast meiosis. We find that a nud1-2 temperature-sensitive mutant has two meiosis-related defects that reflect genetically distinct functions of Nud1p. First, the mutation affects spore formation due to its late function during spore maturation. Second, and most important, the mutant loses its ability to distinguish between the ages of the four spindle pole bodies, which normally determine which SPB would be preferentially included in the mature spores. This affects the regulation of genome inheritance in starved meiotic cells and leads to the formation of random dyads instead of non-sister dyads under these conditions. Both functions of Nud1p are connected to the ability of Spc72p to bind to the outer plaque and half-bridge (via Kar1p) of the SPB.
Collapse
Affiliation(s)
- Oren Gordon
- Department of Genetics, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | | | | | | | | | |
Collapse
|
44
|
Rosenberg JA, Tomlin GC, McDonald WH, Snydsman BE, Muller EG, Yates JR, Gould KL. Ppc89 links multiple proteins, including the septation initiation network, to the core of the fission yeast spindle-pole body. Mol Biol Cell 2006; 17:3793-805. [PMID: 16775007 PMCID: PMC1593159 DOI: 10.1091/mbc.e06-01-0039] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The spindle-pole body (SPB), the yeast analog of the centrosome, serves as the major microtubule (MT) organizing center in the yeast cell. In addition to this central function, the SPB organizes and concentrates proteins required for proper coordination between the nuclear-division cycle and cytokinesis. For example, the Schizosaccharomyces pombe septation-initiation network (SIN), which is responsible for initiating actomyosin ring constriction and septation, is assembled at the SPB through its two scaffolding components, Sid4 and Cdc11. In an effort to identify novel SIN interactors, we purified Cdc11 and identified by mass spectrometry a previously uncharacterized protein associated with it, Ppc89. Ppc89 localizes constitutively to the SPB and interacts directly with Sid4. A fusion between the N-terminal 300 amino acids of Sid4 and a SPB targeting domain of Ppc89 supplies the essential function of Sid4 in anchoring the SIN. ppc89Delta cells are inviable and exhibit defects in SPB integrity, and hence in spindle formation, chromosome segregation, and SIN localization. Ppc89 overproduction is lethal, resulting primarily in a G2 arrest accompanied by massive enlargement of the SPB and increased SPB MT nucleation. These results suggest a fundamental role for Ppc89 in organization of the S. pombe SPB.
Collapse
Affiliation(s)
- Joshua A. Rosenberg
- *Howard Hughes Medical Institute and Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Gregory C. Tomlin
- *Howard Hughes Medical Institute and Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | | | - Brian E. Snydsman
- Department of Biochemistry, University of Washington, Seattle, WA 98195
| | - Eric G. Muller
- Department of Biochemistry, University of Washington, Seattle, WA 98195
| | - John R. Yates
- The Scripps Research Institute, La Jolla, CA 92037; and
| | - Kathleen L. Gould
- *Howard Hughes Medical Institute and Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
45
|
Connolly JE, Engebrecht J. The Arf-GTPase-activating protein Gcs1p is essential for sporulation and regulates the phospholipase D Spo14p. EUKARYOTIC CELL 2006; 5:112-24. [PMID: 16400173 PMCID: PMC1360266 DOI: 10.1128/ec.5.1.112-124.2006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
SPO14, encoding the major Saccharomyces cerevisiae phospholipase D (PLD), is essential for sporulation and mediates synthesis of the new membrane that encompasses the haploid nuclei that arise through meiotic divisions. PLD catalyzes the hydrolysis of phosphatidylcholine to phosphatidic acid (PA) and choline. PA stimulates Arf-GTPase-activating proteins (Arf-GAPs), which are involved in membrane trafficking events and actin cytoskeletal function. To determine if Spo14p-generated PA mediates its biological response through Arf-GAPs, we analyzed the sporulation efficiencies of cells deleted for each of the five known and potential yeast Arf-GAPs. Only gcs1delta mutants display a sporulation defect similar to that of spo14 mutants: cells deleted for GCS1 initiate the sporulation program but are defective in synthesis of the prospore membrane. Endosome-to-vacuole transport is also impaired in gcs1delta cells during sporulation. Furthermore, Arf-GAP catalytic activity, but not the pleckstrin homology domain, is required for both prospore membrane formation and endosome-to-vacuole trafficking. An examination of Gcs1p-green fluorescent protein revealed that it is a soluble protein. Interestingly, cells deleted for GCS1 have reduced levels of Spo14p-generated PA. Taken together, these results indicate that GCS1 is essential for sporulation and suggest that GCS1 positively regulates SPO14.
Collapse
Affiliation(s)
- Jaime E Connolly
- Molecular and Cellular Pharmacology, Graduate Program, State University of New York at Stony Brook, 11794-8651, USA
| | | |
Collapse
|
46
|
Taxis C, Keller P, Kavagiou Z, Jensen LJ, Colombelli J, Bork P, Stelzer EHK, Knop M. Spore number control and breeding in Saccharomyces cerevisiae: a key role for a self-organizing system. J Cell Biol 2005; 171:627-40. [PMID: 16286509 PMCID: PMC2171547 DOI: 10.1083/jcb.200507168] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Accepted: 10/19/2005] [Indexed: 12/17/2022] Open
Abstract
Spindle pole bodies (SPBs) provide a structural basis for genome inheritance and spore formation during meiosis in yeast. Upon carbon source limitation during sporulation, the number of haploid spores formed per cell is reduced. We show that precise spore number control (SNC) fulfills two functions. SNC maximizes the production of spores (1-4) that are formed by a single cell. This is regulated by the concentration of three structural meiotic SPB components, which is dependent on available amounts of carbon source. Using experiments and computer simulation, we show that the molecular mechanism relies on a self-organizing system, which is able to generate particular patterns (different numbers of spores) in dependency on one single stimulus (gradually increasing amounts of SPB constituents). We also show that SNC enhances intratetrad mating, whereby maximal amounts of germinated spores are able to return to a diploid lifestyle without intermediary mitotic division. This is beneficial for the immediate fitness of the population of postmeiotic cells.
Collapse
Affiliation(s)
- Christof Taxis
- The European Molecular Biology Laboratory, D-69117 Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Wei H, Kaznessis Y. Inferring gene regulatory relationships by combining target-target pattern recognition and regulator-specific motif examination. Biotechnol Bioeng 2005; 89:53-77. [PMID: 15540196 DOI: 10.1002/bit.20305] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although microarray data have been successfully used for gene clustering and classification, the use of time series microarray data for constructing gene regulatory networks remains a particularly difficult task. The challenge lies in reliably inferring regulatory relationships from datasets that normally possess a large number of genes and a limited number of time points. In addition to the numerical challenge, the enormous complexity and dynamic properties of gene expression regulation also impede the progress of inferring gene regulatory relationships. Based on the accepted model of the relationship between regulator and target genes, we developed a new approach for inferring gene regulatory relationships by combining target-target pattern recognition and examination of regulator-specific binding sites in the promoter regions of putative target genes. Pattern recognition was accomplished in two steps: A first algorithm was used to search for the genes that share expression profile similarities with known target genes (KTGs) of each investigated regulator. The selected genes were further filtered by examining for the presence of regulator-specific binding sites in their promoter regions. As we implemented our approach to 18 yeast regulator genes and their known target genes, we discovered 267 new regulatory relationships, among which 15% are rediscovered, experimentally validated ones. Of the discovered target genes, 36.1% have the same or similar functions to a KTG of the regulator. An even larger number of inferred genes fall in the biological context and regulatory scope of their regulators. Since the regulatory relationships are inferred from pattern recognition between target-target genes, the method we present is especially suitable for inferring gene regulatory relationships in which there is a time delay between the expression of regulating and target genes.
Collapse
Affiliation(s)
- Hairong Wei
- Department of Chemical Engineering and Material Sciences, and Digital Technology Center, University of Minnesota, 421 Washington Avenue SE, Minneapolis, MN 55455, USA
| | | |
Collapse
|
48
|
Kitagaki H, Ito K, Shimoi H. A temperature-sensitive dcw1 mutant of Saccharomyces cerevisiae is cell cycle arrested with small buds which have aberrant cell walls. EUKARYOTIC CELL 2005; 3:1297-306. [PMID: 15470258 PMCID: PMC522616 DOI: 10.1128/ec.3.5.1297-1306.2004] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Dcw1p and Dfg5p in Saccharomyces cerevisiae are homologous proteins that were previously shown to be involved in cell wall biogenesis and to be essential for growth. Dcw1p was found to be a glycosylphosphatidylinositol-anchored membrane protein. To investigate the roles of these proteins in cell wall biogenesis and cell growth, we constructed mutant alleles of DCW1 by random mutagenesis, introduced them into a Deltadcw1 Deltadfg5 background, and isolated a temperature-sensitive mutant, DC61 (dcw1-3 Deltadfg5). When DC61 cells were incubated at 37 degrees C, most cells had small buds, with areas less than 20% of those of the mother cells. This result indicates that DC61 cells arrest growth with small buds at 37 degrees C. At 37 degrees C, fewer DC61 cells had 1N DNA content and most of them still had a single nucleus located apart from the bud neck. In addition, in DC61 cells incubated at 37 degrees C, bipolar spindles were not formed. These results indicate that DC61 cells, when incubated at 37 degrees C, are cell cycle arrested after DNA replication and prior to the separation of spindle pole bodies. The small buds of DC61 accumulated chitin in the bud cortex, and some of them were lysed, which indicates that they had aberrant cell walls. A temperature-sensitive dfg5 mutant, DF66 (Deltadcw1 dfg5-29), showed similar phenotypes. DCW1 and DFG5 mRNA levels peaked in the G1 and S phases, respectively. These results indicate that Dcw1p and Dfg5p are involved in bud formation through their involvement in biogenesis of the bud cell wall.
Collapse
Affiliation(s)
- Hiroshi Kitagaki
- National Research Institute of Brewing, 3-7-1, Kagamiyama, Higashihiroshima, Hiroshima, Japan 739-0046
| | | | | |
Collapse
|
49
|
Melloy PG, Holloway SL. Changes in the localization of the Saccharomyces cerevisiae anaphase-promoting complex upon microtubule depolymerization and spindle checkpoint activation. Genetics 2005; 167:1079-94. [PMID: 15280225 PMCID: PMC1470941 DOI: 10.1534/genetics.103.025478] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The anaphase-promoting complex/cyclosome (APC/C) is an E3 ubiquitin ligase in the ubiquitin-mediated proteolysis pathway (UMP). To understand how the APC/C was targeted to its substrates, we performed a detailed analysis of one of the APC/C components, Cdc23p. In live cells, Cdc23-GFP localized to punctate nuclear spots surrounded by homogenous nuclear signal throughout the cell cycle. These punctate spots colocalized with two outer kinetochore proteins, Slk19p and Okp1p, but not with the spindle pole body protein, Spc42p. In late anaphase, the Cdc23-GFP was also visualized along the length of the mitotic spindle. We hypothesized that spindle checkpoint activation may affect the APC/C nuclear spot localization. Localization of Cdc23-GFP was disrupted upon nocodazole treatment in the kinetochore mutant okp1-5 and in the cdc20-1 mutant. Cdc23-GFP nuclear spot localization was not affected in the ndc10-1 mutant, which is defective in spindle checkpoint function. Additional studies using a mad2Delta strain revealed a microtubule dependency of Cdc23-GFP spot localization, whether or not the checkpoint response was activated. On the basis of these data, we conclude that Cdc23p localization was dependent on microtubules and was affected by specific types of kinetochore disruption.
Collapse
Affiliation(s)
- Patricia G Melloy
- Biology Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | |
Collapse
|
50
|
Abstract
Nucleation of microtubules by eukaryotic microtubule organizing centers (MTOCs) is required for a variety of functions, including chromosome segregation during mitosis and meiosis, cytokinesis, fertilization, cellular morphogenesis, cell motility, and intracellular trafficking. Analysis of MTOCs from different organisms shows that the structure of these organelles is widely varied even though they all share the function of microtubule nucleation. Despite their morphological diversity, many components and regulators of MTOCs, as well as principles in their assembly, seem to be conserved. This review focuses on one of the best-characterized MTOCs, the budding yeast spindle pole body (SPB). We review what is known about its structure, protein composition, duplication, regulation, and functions. In addition, we discuss how studies of the yeast SPB have aided investigation of other MTOCs, most notably the centrosome of animal cells.
Collapse
Affiliation(s)
- Sue L Jaspersen
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309-0347, USA.
| | | |
Collapse
|