1
|
Moir RD, Lavados C, Lee J, Willis IM. Functional characterization of Polr3a hypomyelinating leukodystrophy mutations in the S. cerevisiae homolog, RPC160. Gene 2020; 768:145259. [PMID: 33148458 DOI: 10.1016/j.gene.2020.145259] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/23/2020] [Accepted: 10/20/2020] [Indexed: 12/12/2022]
Abstract
Mutations in RNA polymerase III (Pol III) cause hypomeylinating leukodystrophy (HLD) and neurodegeneration in humans. POLR3A and POLR3B, the two largest Pol III subunits, together form the catalytic center and carry the majority of disease alleles. Disease-causing mutations include invariant and highly conserved residues that are predicted to negatively affect Pol III activity and decrease transcriptional output. A subset of HLD missense mutations in POLR3A cluster in the pore region that provides nucleotide access to the Pol III active site. These mutations were engineered at the corresponding positions in the Saccharomyces cerevisiae homolog, Rpc160, to evaluate their functional deficits. None of the mutations caused a growth or transcription phenotype in yeast. Each mutation was combined with a frequently occurring pore mutation, POLR3A G672E, which was also wild-type for growth and transcription. The double mutants showed a spectrum of phenotypes from wild-type to lethal, with only the least fit combinations showing an effect on Pol III transcription. In one slow-growing temperature-sensitive mutant the steady-state level of tRNAs was unaffected, however global tRNA synthesis was compromised, as was the synthesis of RPR1 and SNR52 RNAs. Affinity-purified mutant Pol III was broadly defective in both factor-independent and factor-dependent transcription in vitro across genes that represent the yeast Pol III transcriptome. Thus, the robustness of yeast Rpc160 to single Pol III leukodystrophy mutations in the pore domain can be overcome by a second mutation in the domain.
Collapse
Affiliation(s)
- Robyn D Moir
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Christian Lavados
- Graduate Program in Biomedical Science, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - JaeHoon Lee
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ian M Willis
- Departments of Biochemistry and Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
2
|
The Hsp70 homolog Ssb affects ribosome biogenesis via the TORC1-Sch9 signaling pathway. Nat Commun 2017; 8:937. [PMID: 29038496 PMCID: PMC5643326 DOI: 10.1038/s41467-017-00635-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 07/15/2017] [Indexed: 01/07/2023] Open
Abstract
The Hsp70 Ssb serves a dual role in de novo protein folding and ribosome biogenesis; however, the mechanism by which Ssb affects ribosome production is unclear. Here we establish that Ssb is causally linked to the regulation of ribosome biogenesis via the TORC1-Sch9 signaling pathway. Ssb is bound to Sch9 posttranslationally and required for the TORC1-dependent phosphorylation of Sch9 at T737. Also, Sch9 lacking phosphorylation at T737 displays significantly reduced kinase activity with respect to targets involved in the regulation of ribosome biogenesis. The absence of either Ssb or Sch9 causes enhanced ribosome aggregation. Particularly with respect to proper assembly of the small ribosomal subunit, SSB and SCH9 display strong positive genetic interaction. In combination, the data indicate that Ssb promotes ribosome biogenesis not only via cotranslational protein folding, but also posttranslationally via interaction with natively folded Sch9, facilitating access of the upstream kinase TORC1 to Sch9-T737.The yeast Hsp70 homolog Ssb is a chaperone that binds translating ribosomes where it is thought to function primarily by promoting nascent peptide folding. Here the authors find that the ribosome biogenesis defect associated with the loss of Ssb is attributable to a specific disruption in TORC1 signaling rather than defects in ribosomal protein folding.
Collapse
|
3
|
Espinar-Marchena FJ, Babiano R, Cruz J. Placeholder factors in ribosome biogenesis: please, pave my way. MICROBIAL CELL 2017; 4:144-168. [PMID: 28685141 PMCID: PMC5425277 DOI: 10.15698/mic2017.05.572] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The synthesis of cytoplasmic eukaryotic ribosomes is an extraordinarily energy-demanding cellular activity that occurs progressively from the nucleolus to the cytoplasm. In the nucleolus, precursor rRNAs associate with a myriad of trans-acting factors and some ribosomal proteins to form pre-ribosomal particles. These factors include snoRNPs, nucleases, ATPases, GTPases, RNA helicases, and a vast list of proteins with no predicted enzymatic activity. Their coordinate activity orchestrates in a spatiotemporal manner the modification and processing of precursor rRNAs, the rearrangement reactions required for the formation of productive RNA folding intermediates, the ordered assembly of the ribosomal proteins, and the export of pre-ribosomal particles to the cytoplasm; thus, providing speed, directionality and accuracy to the overall process of formation of translation-competent ribosomes. Here, we review a particular class of trans-acting factors known as "placeholders". Placeholder factors temporarily bind selected ribosomal sites until these have achieved a structural context that is appropriate for exchanging the placeholder with another site-specific binding factor. By this strategy, placeholders sterically prevent premature recruitment of subsequently binding factors, premature formation of structures, avoid possible folding traps, and act as molecular clocks that supervise the correct progression of pre-ribosomal particles into functional ribosomal subunits. We summarize the current understanding of those factors that delay the assembly of distinct ribosomal proteins or subsequently bind key sites in pre-ribosomal particles. We also discuss recurrent examples of RNA-protein and protein-protein mimicry between rRNAs and/or factors, which have clear functional implications for the ribosome biogenesis pathway.
Collapse
Affiliation(s)
- Francisco J Espinar-Marchena
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, and Departamento de Genética, Universidad de Sevilla, E-41013, Seville, Spain
| | - Reyes Babiano
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, and Departamento de Genética, Universidad de Sevilla, E-41013, Seville, Spain.,Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, and Departamento de Genética, Universidad de Sevilla, E-41013, Seville, Spain
| | - Jesús Cruz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, and Departamento de Genética, Universidad de Sevilla, E-41013, Seville, Spain
| |
Collapse
|
4
|
Sirri V, Jourdan N, Hernandez-Verdun D, Roussel P. Sharing the mitotic pre-ribosomal particles between daughter cells. J Cell Sci 2016; 129:1592-604. [DOI: 10.1242/jcs.180521] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 02/20/2016] [Indexed: 01/05/2023] Open
Abstract
Ribosome biogenesis is a fundamental multistep process initiated by the synthesis of 90S pre-ribosomal particles in the nucleoli of higher eukaryotes. Even though synthesis of ribosomes stops during mitosis while nucleoli disappear, mitotic pre-ribosomal particles persist as observed in prenucleolar bodies (PNBs) during telophase. To further understand the relationship between the nucleolus and the PNBs, the presence and the fate of the mitotic pre-ribosomal particles during cell division was investigated. We demonstrate that the recently synthesized 45S precursor ribosomal RNAs (pre-rRNAs) but also the 32S and 30S pre-rRNAs are maintained during mitosis and associated with the chromosome periphery together with pre-rRNA processing factors. Maturation of the mitotic pre-ribosomal particles, as assessed by the stability of the mitotic pre-rRNAs, is transiently arrested during mitosis by a cyclin-dependent kinase (CDK)1-cyclin B-dependent mechanism and may be restored by CDK inhibitor treatments. At the M/G1 transition, the resumption of mitotic pre-rRNA processing in PNBs does not induce the disappearance of PNBs that only occurs when functional nucleoli reform. Strikingly, during their maturation process, mitotic pre-rRNAs localize in reforming nucleoli.
Collapse
Affiliation(s)
- Valentina Sirri
- Univ. Paris Diderot, Unit of Functional and Adaptive Biology, UMR 8251 CNRS, 4 rue Marie-Andrée Lagroua Weill-Hallé, F-75205 Paris, France
| | - Nathalie Jourdan
- UPMC Univ. Paris 06, Institut de Biologie Paris Seine, UMR 8256 CNRS, 9 quai St Bernard, F-75252 Paris, France
| | - Danièle Hernandez-Verdun
- Univ. Paris Diderot, Institut Jacques Monod, UMR 7592 CNRS, 15 rue Hélène Brion, F‑75205 Paris, France
| | - Pascal Roussel
- Univ. Paris Diderot, Unit of Functional and Adaptive Biology, UMR 8251 CNRS, 4 rue Marie-Andrée Lagroua Weill-Hallé, F-75205 Paris, France
| |
Collapse
|
5
|
Acker J, Nguyen NTT, Vandamme M, Tavenet A, Briand-Suleau A, Conesa C. Sub1 and Maf1, two effectors of RNA polymerase III, are involved in the yeast quiescence cycle. PLoS One 2014; 9:e114587. [PMID: 25531541 PMCID: PMC4273968 DOI: 10.1371/journal.pone.0114587] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 11/11/2014] [Indexed: 12/30/2022] Open
Abstract
Sub1 and Maf1 exert an opposite effect on RNA polymerase III transcription interfering with different steps of the transcription cycle. In this study, we present evidence that Sub1 and Maf1 also exhibit an opposite role on yeast chronological life span. First, cells lacking Sub1 need more time than wild type to exit from resting and this lag in re-proliferation is correlated with a delay in transcriptional reactivation. Second, our data show that the capacity of the cells to properly establish a quiescent state is impaired in the absence of Sub1 resulting in a premature death that is dependent on the Ras/PKA and Tor1/Sch9 signalling pathways. On the other hand, we show that maf1Δ cells are long-lived mutant suggesting a connection between Pol III transcription and yeast longevity.
Collapse
Affiliation(s)
- Joël Acker
- iBiTec-S CEA, FRE3377, Gif-sur-Yvette, France
- CNRS, FRE3377, Gif-sur-Yvette, France
- Université Paris-Sud, FRE3377, Gif-sur-Yvette, France
- * E-mail: (CC); (JA)
| | - Ngoc-Thuy-Trinh Nguyen
- iBiTec-S CEA, FRE3377, Gif-sur-Yvette, France
- CNRS, FRE3377, Gif-sur-Yvette, France
- Université Paris-Sud, FRE3377, Gif-sur-Yvette, France
| | - Marie Vandamme
- iBiTec-S CEA, FRE3377, Gif-sur-Yvette, France
- CNRS, FRE3377, Gif-sur-Yvette, France
- Université Paris-Sud, FRE3377, Gif-sur-Yvette, France
| | - Arounie Tavenet
- iBiTec-S CEA, FRE3377, Gif-sur-Yvette, France
- CNRS, FRE3377, Gif-sur-Yvette, France
- Université Paris-Sud, FRE3377, Gif-sur-Yvette, France
| | - Audrey Briand-Suleau
- iBiTec-S CEA, FRE3377, Gif-sur-Yvette, France
- CNRS, FRE3377, Gif-sur-Yvette, France
- Université Paris-Sud, FRE3377, Gif-sur-Yvette, France
| | - Christine Conesa
- iBiTec-S CEA, FRE3377, Gif-sur-Yvette, France
- CNRS, FRE3377, Gif-sur-Yvette, France
- Université Paris-Sud, FRE3377, Gif-sur-Yvette, France
- * E-mail: (CC); (JA)
| |
Collapse
|
6
|
Fernández-Pevida A, Kressler D, de la Cruz J. Processing of preribosomal RNA in Saccharomyces cerevisiae. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 6:191-209. [PMID: 25327757 DOI: 10.1002/wrna.1267] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 09/02/2014] [Accepted: 09/02/2014] [Indexed: 11/07/2022]
Abstract
Most, if not all RNAs, are transcribed as precursors that require processing to gain functionality. Ribosomal RNAs (rRNA) from all organisms undergo both exo- and endonucleolytic processing. Also, in all organisms, rRNA processing occurs inside large preribosomal particles and is coupled to nucleotide modification, folding of the precursor rRNA (pre-rRNA), and assembly of the ribosomal proteins (r-proteins). In this review, we focus on the processing pathway of pre-rRNAs of cytoplasmic ribosomes in the yeast Saccharomyces cerevisiae, without doubt, the organism where this pathway is best characterized. We summarize the current understanding of the rRNA maturation process, particularly focusing on the pre-rRNA processing sites, the enzymes responsible for the cleavage or trimming reactions and the different mechanisms that monitor and regulate the pathway. Strikingly, the overall order of the various processing steps is reasonably well conserved in eukaryotes, perhaps reflecting common principles for orchestrating the concomitant events of pre-rRNA processing and ribosome assembly.
Collapse
Affiliation(s)
- Antonio Fernández-Pevida
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain; Departamento de Genética, Universidad de Sevilla, Sevilla, Spain
| | | | | |
Collapse
|
7
|
Donati G, Peddigari S, Mercer CA, Thomas G. 5S ribosomal RNA is an essential component of a nascent ribosomal precursor complex that regulates the Hdm2-p53 checkpoint. Cell Rep 2013; 4:87-98. [PMID: 23831031 DOI: 10.1016/j.celrep.2013.05.045] [Citation(s) in RCA: 207] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 05/08/2013] [Accepted: 05/31/2013] [Indexed: 12/14/2022] Open
Abstract
Recently, we demonstrated that RPL5 and RPL11 act in a mutually dependent manner to inhibit Hdm2 and stabilize p53 following impaired ribosome biogenesis. Given that RPL5 and RPL11 form a preribosomal complex with noncoding 5S ribosomal RNA (rRNA) and the three have been implicated in the p53 response, we reasoned they may be part of an Hdm2-inhibitory complex. Here, we show that small interfering RNAs directed against 5S rRNA have no effect on total or nascent levels of the noncoding rRNA, though they prevent the reported Hdm4 inhibition of p53. To achieve efficient inhibition of 5S rRNA synthesis, we targeted TFIIIA, a specific RNA polymerase III cofactor, which, like depletion of either RPL5 or RPL11, did not induce p53. Instead, 5S rRNA acts in a dependent manner with RPL5 and RPL11 to inhibit Hdm2 and stabilize p53. Moreover, depletion of any one of the three components abolished the binding of the other two to Hdm2, explaining their common dependence. Finally, we demonstrate that the RPL5/RPL11/5S rRNA preribosomal complex is redirected from assembly into nascent 60S ribosomes to Hdm2 inhibition as a consequence of impaired ribosome biogenesis. Thus, the activation of the Hdm2-inhibitory complex is not a passive but a regulated event, whose potential role in tumor suppression has been recently noted.
Collapse
Affiliation(s)
- Giulio Donati
- Laboratory of Cancer Metabolism, ICO/IDIBELL, Hospital Duran i Reynals, Gran Via de l'Hospitalet, 199-08908 Hospitalet de Llobregat, Barcelona, Spain
| | | | | | | |
Collapse
|
8
|
Santos MCT, Goldfeder MB, Zanchin NIT, Oliveira CC. The essential nucleolar yeast protein Nop8p controls the exosome function during 60S ribosomal subunit maturation. PLoS One 2011; 6:e21686. [PMID: 21747919 PMCID: PMC3126838 DOI: 10.1371/journal.pone.0021686] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 06/08/2011] [Indexed: 11/19/2022] Open
Abstract
The yeast nucleolar protein Nop8p has previously been shown to interact with Nip7p and to be required for 60S ribosomal subunit formation. Although depletion of Nop8p in yeast cells leads to premature degradation of rRNAs, the biochemical mechanism responsible for this phenotype is still not known. In this work, we show that the Nop8p amino-terminal region mediates interaction with the 5.8S rRNA, while its carboxyl-terminal portion interacts with Nip7p and can partially complement the growth defect of the conditional mutant strain Δnop8/GAL::NOP8. Interestingly, Nop8p mediates association of Nip7p to pre-ribosomal particles. Nop8p also interacts with the exosome subunit Rrp6p and inhibits the complex activity in vitro, suggesting that the decrease in 60S ribosomal subunit levels detected upon depletion of Nop8p may result from degradation of pre-rRNAs by the exosome. These results strongly indicate that Nop8p may control the exosome function during pre-rRNA processing.
Collapse
Affiliation(s)
- Marcia C. T. Santos
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Mauricio B. Goldfeder
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Nilson I. T. Zanchin
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, São Paulo, Brazil
- Faculdade de Ciências Aplicadas, Universidade Estadual de Campinas, Limeira, São Paulo, Brazil
| | - Carla C. Oliveira
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
9
|
Ciganda M, Williams N. Eukaryotic 5S rRNA biogenesis. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 2:523-33. [PMID: 21957041 DOI: 10.1002/wrna.74] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The ribosome is a large complex containing both protein and RNA which must be assembled in a precise manner to allow proper functioning in the critical role of protein synthesis. 5S rRNA is the smallest of the RNA components of the ribosome, and although it has been studied for decades, we still do not have a clear understanding of its function within the complex ribosome machine. It is the only RNA species that binds ribosomal proteins prior to its assembly into the ribosome. Its transport into the nucleolus requires this interaction. Here we present an overview of some of the key findings concerning the structure and function of 5S rRNA and how its association with specific proteins impacts its localization and function.
Collapse
Affiliation(s)
- Martin Ciganda
- Department of Microbiology and Immunology, University at Buffalo, Buffalo, NY, USA
| | | |
Collapse
|
10
|
RNA content in the nucleolus alters p53 acetylation via MYBBP1A. EMBO J 2011; 30:1054-66. [PMID: 21297583 DOI: 10.1038/emboj.2011.23] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 01/11/2011] [Indexed: 12/23/2022] Open
Abstract
A number of external and internal insults disrupt nucleolar structure, and the resulting nucleolar stress stabilizes and activates p53. We show here that nucleolar disruption induces acetylation and accumulation of p53 without phosphorylation. We identified three nucleolar proteins, MYBBP1A, RPL5, and RPL11, involved in p53 acetylation and accumulation. MYBBP1A was tethered to the nucleolus through nucleolar RNA. When rRNA transcription was suppressed by nucleolar stress, MYBBP1A translocated to the nucleoplasm and facilitated p53-p300 interaction to enhance p53 acetylation. We also found that RPL5 and RPL11 were required for rRNA export from the nucleolus. Depletion of RPL5 or RPL11 blocked rRNA export and counteracted reduction of nucleolar RNA levels caused by inhibition of rRNA transcription. As a result, RPL5 or RPL11 depletion inhibited MYBBP1A translocation and p53 activation. Our observations indicated that a dynamic equilibrium between RNA generation and export regulated nucleolar RNA content. Perturbation of this balance by nucleolar stress altered the nucleolar RNA content and modulated p53 activity.
Collapse
|
11
|
Moore JB, Farrar JE, Arceci RJ, Liu JM, Ellis SR. Distinct ribosome maturation defects in yeast models of Diamond-Blackfan anemia and Shwachman-Diamond syndrome. Haematologica 2009; 95:57-64. [PMID: 19713223 DOI: 10.3324/haematol.2009.012450] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Diamond-Blackfan anemia and Shwachman-Diamond syndrome are inherited bone marrow failure syndromes linked to defects in ribosome synthesis. The purpose of this study was to determine whether yeast models for Diamond-Blackfan anemia and Shwachman-Diamond syndrome differed in the mechanism by which ribosome synthesis was affected. DESIGN AND METHODS Northern blotting, pulse-chase analysis, and polysome profiling were used to study ribosome synthesis in yeast models. Localization of 60S ribosomal subunits was assessed using RPL25eGFP. RESULTS Relative to wild-type controls, each disease model showed defects in 60S subunit maturation, but with distinct underlying mechanisms. In the model of Diamond-Blackfan anemia, 60S subunit maturation was disrupted at a relatively early stage with abortive complexes subject to rapid degradation. 5S ribosomal RNA, unlike other large subunit ribosomal RNA in this model, accumulated as an extra-ribosomal species. In contrast, subunit maturation in the Shwachman-Diamond syndrome model was affected at a later step, giving rise to relatively stable pre-60S particles with associated 5S ribosomal RNA retained in the nucleus. Conclusions These differences between the yeast Diamond-Blackfan anemia and Shwachman-Diamond syndrome models have implications for signaling mechanisms linking abortive ribosome assembly to cell fate decisions and may contribute to the divergent clinical presentations of Diamond-Blackfan anemia and Shwachman-Diamond syndrome.
Collapse
Affiliation(s)
- Joseph B Moore
- Department of Biochemistry, and Molecular Biology, University of Louisville, Louisville, Kentucky 40292, USA
| | | | | | | | | |
Collapse
|
12
|
Prohaska K, Williams N. Assembly of the Trypanosoma brucei 60S ribosomal subunit nuclear export complex requires trypanosome-specific proteins P34 and P37. EUKARYOTIC CELL 2009; 8:77-87. [PMID: 18723605 PMCID: PMC2620753 DOI: 10.1128/ec.00234-08] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Accepted: 08/14/2008] [Indexed: 12/30/2022]
Abstract
We previously identified two Trypanosoma brucei RNA binding proteins, P34 and P37, and determined that they are essential for proper ribosomal assembly in this organism. Loss of these proteins via RNA interference is lethal and causes a decrease in both 5S rRNA levels and formation of 80S ribosomes, concomitant with a decrease in total cellular protein synthesis. These data suggest that these proteins are involved at some point in the ribosomal biogenesis pathway. In the current study, we have performed subcellular fractionation in conjunction with immune capture experiments specific for 60S ribosomal proteins and accessory factors in order to determine when and where P34 and P37 are involved in the ribosomal biogenesis pathway. These studies demonstrate that P34 and P37 associate with the 60S ribosomal subunit at the stage of the nucleolar 90S particle and remain associated subsequent to nuclear export. In addition, P34 and P37 associate with conserved 60S ribosomal subunit nuclear export factors exportin 1 and Nmd3, suggesting that they are components of the 60S ribosomal subunit nuclear export complex in T. brucei. Most significantly, the pre-60S complex does not associate with exportin 1 or Nmd3 in the absence of P34 and P37. These results demonstrate that, although T. brucei 60S ribosomal subunits utilize a nuclear export complex similar to that described for other organisms, trypanosome-specific factors are essential to the process.
Collapse
Affiliation(s)
- Kimberly Prohaska
- Department of Microbiology and Immunology & Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, New York 14214, USA
| | | |
Collapse
|
13
|
Decatur WA, Schnare MN. Different mechanisms for pseudouridine formation in yeast 5S and 5.8S rRNAs. Mol Cell Biol 2008; 28:3089-100. [PMID: 18332121 PMCID: PMC2423156 DOI: 10.1128/mcb.01574-07] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Revised: 10/23/2007] [Accepted: 02/26/2008] [Indexed: 12/29/2022] Open
Abstract
The selection of sites for pseudouridylation in eukaryotic cytoplasmic rRNA occurs by the base pairing of the rRNA with specific guide sequences within the RNA components of box H/ACA small nucleolar ribonucleoproteins (snoRNPs). Forty-four of the 46 pseudouridines (Psis) in the cytoplasmic rRNA of Saccharomyces cerevisiae have been assigned to guide snoRNAs. Here, we examine the mechanism of Psi formation in 5S and 5.8S rRNA in which the unassigned Psis occur. We show that while the formation of the Psi in 5.8S rRNA is associated with snoRNP activity, the pseudouridylation of 5S rRNA is not. The position of the Psi in 5.8S rRNA is guided by snoRNA snR43 by using conserved sequence elements that also function to guide pseudouridylation elsewhere in the large-subunit rRNA; an internal stem-loop that is not part of typical yeast snoRNAs also is conserved in snR43. The multisubstrate synthase Pus7 catalyzes the formation of the Psi in 5S rRNA at a site that conforms to the 7-nucleotide consensus sequence present in other substrates of Pus7. The different mechanisms involved in 5S and 5.8S rRNA pseudouridylation, as well as the multiple specificities of the individual trans factors concerned, suggest possible roles in linking ribosome production to other processes, such as splicing and tRNA synthesis.
Collapse
MESH Headings
- Ascomycota/genetics
- Ascomycota/metabolism
- Base Sequence
- DNA Primers/genetics
- Gene Deletion
- Genes, Fungal
- Genetic Complementation Test
- Hydro-Lyases/genetics
- Hydro-Lyases/metabolism
- Microtubule-Associated Proteins/genetics
- Microtubule-Associated Proteins/metabolism
- Molecular Sequence Data
- Nucleic Acid Conformation
- Pseudouridine/metabolism
- RNA, Fungal/chemistry
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Ribosomal, 5.8S/chemistry
- RNA, Ribosomal, 5.8S/genetics
- RNA, Ribosomal, 5.8S/metabolism
- RNA, Ribosomal, 5S/chemistry
- RNA, Ribosomal, 5S/genetics
- RNA, Ribosomal, 5S/metabolism
- RNA, Small Nucleolar/genetics
- RNA, Small Nucleolar/metabolism
- Ribonucleoproteins, Small Nuclear/genetics
- Ribonucleoproteins, Small Nuclear/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/metabolism
- Sequence Homology, Nucleic Acid
- Spliceosomes/metabolism
Collapse
Affiliation(s)
- Wayne A Decatur
- Department of Biochemistry and Molecular Biology, 903 Lederle Graduate Research Tower, University of Massachusetts, Amherst, MA 01003, USA.
| | | |
Collapse
|
14
|
Hellman K, Prohaska K, Williams N. Trypanosoma brucei RNA binding proteins p34 and p37 mediate NOPP44/46 cellular localization via the exportin 1 nuclear export pathway. EUKARYOTIC CELL 2007; 6:2206-13. [PMID: 17921352 PMCID: PMC2168238 DOI: 10.1128/ec.00176-07] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Accepted: 09/21/2007] [Indexed: 11/20/2022]
Abstract
We have previously identified and characterized two novel nuclear RNA binding proteins, p34 and p37, which have been shown to interact with a family of nucleolar phosphoproteins, NOPP44/46, in Trypanosoma brucei. These proteins are nearly identical, the major difference being an 18-amino-acid insert in the N terminus of p37. In order to characterize the interaction between p34 and p37 and NOPP44/46, we have utilized an RNA interference (RNAi) cell line that specifically targets p34 and p37. Within these RNAi cells, we detected a disruption of a higher-molecular-weight complex containing NOPP44/46, as well as a dramatic increase in nuclear NOPP44/46 protein levels. We demonstrated that no change occurred in NOPP44/46 mRNA steady-state levels or stability, nor was there a change in cellular protein levels. These results led us to investigate whether p34 and p37 regulate NOPP44/46 cellular localization. Examination of the p34 and p37 amino acid sequences revealed a leucine-rich nuclear export signal, which interacts with the nuclear export factor exportin 1. Immune capture experiments demonstrated that p34, p37, and NOPP44/46 associate with exportin 1. When these experiments were performed with p34/p37 RNAi cells, NOPP44/46 no longer associated with exportin 1. Sequential immune capture experiments demonstrated that p34, p37, NOPP44/46, and exportin 1 exist in a common complex. Inhibiting exportin 1-mediated nuclear export led to an increase in nuclear NOPP44/46 proteins, indicating that they are exported from the nucleus via this pathway. Together, our results demonstrate that p34 and p37 regulate NOPP44/46 cellular localization by facilitating their association with exportin 1.
Collapse
Affiliation(s)
- Kristina Hellman
- Department of Microbiology and Immunology and The Witebsky Center for Microbial Pathogenesis and Immunology, 253 Biomedical Research Building, University at Buffalo, Buffalo, New York 14214, USA
| | | | | |
Collapse
|
15
|
Zhang J, Harnpicharnchai P, Jakovljevic J, Tang L, Guo Y, Oeffinger M, Rout MP, Hiley SL, Hughes T, Woolford JL. Assembly factors Rpf2 and Rrs1 recruit 5S rRNA and ribosomal proteins rpL5 and rpL11 into nascent ribosomes. Genes Dev 2007; 21:2580-92. [PMID: 17938242 PMCID: PMC2000323 DOI: 10.1101/gad.1569307] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Accepted: 08/21/2007] [Indexed: 12/31/2022]
Abstract
More than 170 proteins are necessary for assembly of ribosomes in eukaryotes. However, cofactors that function with each of these proteins, substrates on which they act, and the precise functions of assembly factors--e.g., recruiting other molecules into preribosomes or triggering structural rearrangements of pre-rRNPs--remain mostly unknown. Here we investigated the recruitment of two ribosomal proteins and 5S ribosomal RNA (rRNA) into nascent ribosomes. We identified a ribonucleoprotein neighborhood in preribosomes that contains two yeast ribosome assembly factors, Rpf2 and Rrs1, two ribosomal proteins, rpL5 and rpL11, and 5S rRNA. Interactions between each of these four proteins have been confirmed by binding assays in vitro. These molecules assemble into 90S preribosomal particles containing 35S rRNA precursor (pre-rRNA). Rpf2 and Rrs1 are required for recruiting rpL5, rpL11, and 5S rRNA into preribosomes. In the absence of association of these molecules with pre-rRNPs, processing of 27SB pre-rRNA is blocked. Consequently, the abortive 66S pre-rRNPs are prematurely released from the nucleolus to the nucleoplasm, and cannot be exported to the cytoplasm.
Collapse
MESH Headings
- Active Transport, Cell Nucleus
- GTP Phosphohydrolases
- Genes, Fungal
- Macromolecular Substances
- Models, Biological
- Models, Molecular
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- RNA Processing, Post-Transcriptional
- RNA, Fungal/chemistry
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Ribosomal, 5S/chemistry
- RNA, Ribosomal, 5S/genetics
- RNA, Ribosomal, 5S/metabolism
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Ribosomal Protein L10
- Ribosomal Proteins/chemistry
- Ribosomal Proteins/genetics
- Ribosomal Proteins/metabolism
- Ribosomes/genetics
- Ribosomes/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/metabolism
Collapse
Affiliation(s)
- Jingyu Zhang
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Piyanun Harnpicharnchai
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Jelena Jakovljevic
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Lan Tang
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Yurong Guo
- Division of Pulmonary and Critical Care Medicine, School of Medicine, John Hopkins University, Baltimore, Maryland 21224, USA
| | | | | | - Shawna L. Hiley
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Timothy Hughes
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - John L. Woolford
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| |
Collapse
|
16
|
Hellman KM, Ciganda M, Brown SV, Li J, Ruyechan W, Williams N. Two trypanosome-specific proteins are essential factors for 5S rRNA abundance and ribosomal assembly in Trypanosoma brucei. EUKARYOTIC CELL 2007; 6:1766-72. [PMID: 17715362 PMCID: PMC2043393 DOI: 10.1128/ec.00119-07] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Accepted: 08/14/2007] [Indexed: 11/20/2022]
Abstract
We have previously identified and characterized two novel nuclear RNA binding proteins, p34 and p37, which have been shown to bind 5S rRNA in Trypanosoma brucei. These two proteins are nearly identical, with one major difference, an 18-amino-acid insert in the N-terminal region of p37, as well as three minor single-amino-acid differences. Homologues to p34 and p37 have been found only in other trypanosomatids, suggesting that these proteins are unique to this ancient family. We have employed RNA interference (RNAi) studies in order to gain further insight into the interaction between p34 and p37 with 5S rRNA in T. brucei. In our p34/p37 RNAi cells, decreased expression of the p34 and p37 proteins led to morphological alterations, including loss of cell shape and vacuolation, as well as to growth arrest and ultimately to cell death. Disruption of a higher-molecular-weight complex containing 5S rRNA occurs as well as a dramatic decrease in 5S rRNA levels, suggesting that p34 and p37 serve to stabilize 5S rRNA. In addition, an accumulation of 60S ribosomal subunits was observed, accompanied by a significant decrease in overall protein synthesis within p34/p37 RNAi cells. Thus, the loss of the trypanosomatid-specific proteins p34 and p37 correlates with a diminution in 5S rRNA levels as well as a decrease in ribosome activity and an alteration in ribosome biogenesis.
Collapse
Affiliation(s)
- Kristina M Hellman
- Department of Microbiology and Immunology, University at Buffalo, Buffalo, NY 14214, USA
| | | | | | | | | | | |
Collapse
|
17
|
Fleurdépine S, Deragon JM, Devic M, Guilleminot J, Bousquet-Antonelli C. A bona fide La protein is required for embryogenesis in Arabidopsis thaliana. Nucleic Acids Res 2007; 35:3306-21. [PMID: 17459889 PMCID: PMC1904278 DOI: 10.1093/nar/gkm200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Revised: 03/21/2007] [Accepted: 03/21/2007] [Indexed: 01/28/2023] Open
Abstract
Searches in the Arabidopsis thaliana genome using the La motif as query revealed the presence of eight La or La-like proteins. Using structural and phylogenetic criteria, we identified two putative genuine La proteins (At32 and At79) and showed that both are expressed throughout plant development but at different levels and under different regulatory conditions. At32, but not At79, restores Saccharomyces cerevisiae La nuclear functions in non-coding RNAs biogenesis and is able to bind to plant 3'-UUU-OH RNAs. We conclude that these La nuclear functions are conserved in Arabidopsis and supported by At32, which we renamed as AtLa1. Consistently, AtLa1 is predominantly localized to the plant nucleoplasm and was also detected in the nucleolar cavity. The inactivation of AtLa1 in Arabidopsis leads to an embryonic-lethal phenotype with deficient embryos arrested at early globular stage of development. In addition, mutant embryonic cells display a nucleolar hypertrophy suggesting that AtLa1 is required for normal ribosome biogenesis. The identification of two distantly related proteins with all structural characteristics of genuine La proteins suggests that these factors evolved to a certain level of specialization in plants. This unprecedented situation provides a unique opportunity to dissect the very different aspects of this crucial cellular activity.
Collapse
Affiliation(s)
- Sophie Fleurdépine
- CNRS UMR6547 GEEM, Université Blaise Pascal, 63177 Aubière, France and CNRS UMR5096 LGDP, Université de Perpignan Via Domitia, 66860 Perpignan, France
| | - Jean-Marc Deragon
- CNRS UMR6547 GEEM, Université Blaise Pascal, 63177 Aubière, France and CNRS UMR5096 LGDP, Université de Perpignan Via Domitia, 66860 Perpignan, France
| | - Martine Devic
- CNRS UMR6547 GEEM, Université Blaise Pascal, 63177 Aubière, France and CNRS UMR5096 LGDP, Université de Perpignan Via Domitia, 66860 Perpignan, France
| | - Jocelyne Guilleminot
- CNRS UMR6547 GEEM, Université Blaise Pascal, 63177 Aubière, France and CNRS UMR5096 LGDP, Université de Perpignan Via Domitia, 66860 Perpignan, France
| | - Cécile Bousquet-Antonelli
- CNRS UMR6547 GEEM, Université Blaise Pascal, 63177 Aubière, France and CNRS UMR5096 LGDP, Université de Perpignan Via Domitia, 66860 Perpignan, France
| |
Collapse
|
18
|
Yao W, Roser D, Köhler A, Bradatsch B, Bassler J, Hurt E. Nuclear Export of Ribosomal 60S Subunits by the General mRNA Export Receptor Mex67-Mtr2. Mol Cell 2007; 26:51-62. [PMID: 17434126 DOI: 10.1016/j.molcel.2007.02.018] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Revised: 02/02/2007] [Accepted: 02/21/2007] [Indexed: 01/13/2023]
Abstract
The yeast Mex67-Mtr2 complex and its homologous metazoan counterpart TAP-p15 operate as nuclear export receptors by binding and translocating mRNA through the nuclear pore complexes. Here, we show how Mex67-Mtr2 can also function in the nuclear export of the ribosomal 60S subunit. Biochemical and genetic studies reveal a previously unrecognized interaction surface on the NTF2-like scaffold of the Mex67-Mtr2 heterodimer, which in vivo binds to pre-60S particles and in vitro can interact with 5S rRNA. Crucial structural requirements for this binding platform are loop insertions in the middle domain of Mex67 and Mtr2, which are absent from human TAP-p15. Notably, when the positively charged amino acids in the Mex67 loop are mutated, interaction of Mex67-Mtr2 with pre-60S particles and 5S rRNA is inhibited, and 60S subunits, but not mRNA, accumulate in the nucleus. Thus, the general mRNA exporter Mex67-Mtr2 contains a distinct electrostatic interaction surface for transporting 60S preribosomal cargo.
Collapse
Affiliation(s)
- Wei Yao
- Biochemie-Zentrum der Universität Heidelberg, Im Neuenheimer Feld 328, D-69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
19
|
Raska I, Shaw PJ, Cmarko D. New Insights into Nucleolar Architecture and Activity. INTERNATIONAL REVIEW OF CYTOLOGY 2006; 255:177-235. [PMID: 17178467 DOI: 10.1016/s0074-7696(06)55004-1] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The nucleolus is the most obvious and clearly differentiated nuclear subcompartment. It is where ribosome biogenesis takes place and has been the subject of research over many decades. In recent years progress in our understanding of ribosome biogenesis has been rapid and is accelerating. This review discusses current understanding of how the biochemical processes of ribosome biosynthesis relate to an observable nucleolar structure. Emerging evidence is also described that points to other, unconventional roles for the nucleolus, particularly in the biogenesis of other RNA-containing cellular machinery, and in stress sensing and the control of cellular activity. Striking recent observations show that the nucleolus and its components are highly dynamic, and that the steady state structure observed by microscopical methods must be interpreted as the product of these dynamic processes. We still do not have detailed enough information to understand fully the organization and regulation of the various processes taking place in the nucleolus. However, the present power of light and electron microscopy (EM) techniques means that a description of nucleolar processes at the molecular level is now achievable, and the time is ripe for such an effort.
Collapse
Affiliation(s)
- Ivan Raska
- Institute of Cellular Biology and Pathology, First Faculty of Medicine, Charles University in Prague, Czech Republic
| | | | | |
Collapse
|
20
|
Nariai M, Tanaka T, Okada T, Shirai C, Horigome C, Mizuta K. Synergistic defect in 60S ribosomal subunit assembly caused by a mutation of Rrs1p, a ribosomal protein L11-binding protein, and 3'-extension of 5S rRNA in Saccharomyces cerevisiae. Nucleic Acids Res 2005; 33:4553-62. [PMID: 16100378 PMCID: PMC1185577 DOI: 10.1093/nar/gki772] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Rrs1p, a ribosomal protein L11-binding protein, has an essential role in biogenesis of 60S ribosomal subunits. We obtained conditionally synthetic lethal allele with the rrs1-5 mutation and determined that the mutation is in REX1, which encodes an exonuclease. The highly conserved leucine at 305 was substituted with tryptophan in rex1-1. The rex1-1 allele resulted in 3′-extended 5S rRNA. Polysome analysis revealed that rex1-1 and rrs1-5 caused a synergistic defect in the assembly of 60S ribosomal subunits. In vivo and in vitro binding assays indicate that Rrs1p interacts with the ribosomal protein L5–5S rRNA complex. The rrs1-5 mutation weakens the interaction between Rrs1p with both L5 and L11. These data suggest that the assembly of L5–5S rRNA on 60S ribosomal subunits coordinates with assembly of L11 via Rrs1p.
Collapse
Affiliation(s)
| | | | | | | | | | - Keiko Mizuta
- To whom correspondence should be addressed. Tel: +81 82 424 7923; Fax: +81 82 424 7923;
| |
Collapse
|
21
|
Nikitina TV, Tishchenko LI. RNA polymerase III transcription machinery: Structure and transcription regulation. Mol Biol 2005. [DOI: 10.1007/s11008-005-0024-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
Nagahama M, Hara Y, Seki A, Yamazoe T, Kawate Y, Shinohara T, Hatsuzawa K, Tani K, Tagaya M. NVL2 is a nucleolar AAA-ATPase that interacts with ribosomal protein L5 through its nucleolar localization sequence. Mol Biol Cell 2004; 15:5712-23. [PMID: 15469983 PMCID: PMC532049 DOI: 10.1091/mbc.e04-08-0692] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
NVL (nuclear VCP-like protein), a member of the AAA-ATPase family, is known to exist in two forms with N-terminal extensions of different lengths in mammalian cells. Here, we show that they are localized differently in the nucleus; NVL2, the major species, is mainly present in the nucleolus, whereas NVL1 is nucleoplasmic. Mutational analysis demonstrated the presence of two nuclear localization signals in NVL2, one of which is shared with NVL1. In addition, a nucleolar localization signal was found to exist in the N-terminal extra region of NVL2. The nucleolar localization signal is critical for interaction with ribosomal protein L5, which was identified as a specific interaction partner of NVL2 on yeast two-hybrid screening. The interaction of NVL2 with L5 is ATP-dependent and likely contributes to the nucleolar translocation of NVL2. The physiological implication of this interaction was suggested by the finding that a dominant negative NVL2 mutant inhibits ribosome biosynthesis, which is known to take place in the nucleolus.
Collapse
Affiliation(s)
- Masami Nagahama
- School of Life Science, Tokyo University of Pharmacy and Life Science, Hachioji, Tokyo 192-0392, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Horsey EW, Jakovljevic J, Miles TD, Harnpicharnchai P, Woolford JL. Role of the yeast Rrp1 protein in the dynamics of pre-ribosome maturation. RNA (NEW YORK, N.Y.) 2004; 10:813-27. [PMID: 15100437 PMCID: PMC1370572 DOI: 10.1261/rna.5255804] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2003] [Accepted: 02/02/2004] [Indexed: 05/19/2023]
Abstract
The Saccharomyces cerevisiae gene RRP1 encodes an essential, evolutionarily conserved protein necessary for biogenesis of 60S ribosomal subunits. Processing of 27S pre-ribosomal RNA to mature 25S rRNA is blocked and 60S subunits are deficient in the temperature-sensitive rrp1-1 mutant. We have used recent advances in proteomic analysis to examine in more detail the function of Rrp1p in ribosome biogenesis. We show that Rrp1p is a nucleolar protein associated with several distinct 66S pre-ribosomal particles. These pre-ribosomes contain ribosomal proteins plus at least 28 nonribosomal proteins necessary for production of 60S ribosomal subunits. Inactivation of Rrp1p inhibits processing of 27SA(3) to 27SB(S) pre-rRNA and of 27SB pre-rRNA to 7S plus 25.5S pre-rRNA. Thus, in the rrp1-1 mutant, 66S pre-ribosomal particles accumulate that contain 27SA(3) and 27SB(L) pre-ribosomal RNAs.
Collapse
Affiliation(s)
- Edward W Horsey
- Department of Biological Sciences, Carnegie Mellon University, 616 Mellon Institute, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | | | | | | | | |
Collapse
|
24
|
Harismendy O, Gendrel CG, Soularue P, Gidrol X, Sentenac A, Werner M, Lefebvre O. Genome-wide location of yeast RNA polymerase III transcription machinery. EMBO J 2003; 22:4738-47. [PMID: 12970186 PMCID: PMC212732 DOI: 10.1093/emboj/cdg466] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
RNA polymerase III (Pol III) transcribes a large set of genes encoding small untranslated RNAs like tRNAs, 5S rRNA, U6 snRNA or RPR1 RNA. To get a global view of class III (Pol III-transcribed) genes, the distribution of essential components of Pol III, TFIIIC and TFIIIB was mapped across the yeast genome. During active growth, most class III genes and few additional loci were targeted by TFIIIC, TFIIIB and Pol III, indicating that they were transcriptionally active. SNR52, which encodes a snoRNA, was identified as a new class III gene. During the late growth phase, TFIIIC remained bound to most class III genes while the recruitment of Pol III and, to a lesser extent, of TFIIIB was down regulated. This study fixes a reasonable upper bound to the number of class III genes in yeast and points to a global regulation at the level of Pol III and TFIIIB recruitment.
Collapse
Affiliation(s)
- Olivier Harismendy
- Service de Biochimie et de Génétique Moléculaire, Bâtiment 144, CEA/Saclay, 91191 Gif-sur-Yvette Cedex, France
| | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Ribosome synthesis is a highly complex and coordinated process that occurs not only in the nucleolus but also in the nucleoplasm and the cytoplasm of eukaryotic cells. Based on the protein composition of several ribosomal subunit precursors recently characterized in yeast, a total of more than 170 factors are predicted to participate in ribosome biogenesis and the list is still growing. So far the majority of ribosomal factors have been implicated in RNA maturation (nucleotide modification and processing). Recent advances gave insight into the process of ribosome export and assembly. Proteomic approaches have provided the first indications for a ribosome assembly pathway in eukaryotes and confirmed the dynamic character of the whole process.
Collapse
|
26
|
Mathieu O, Yukawa Y, Prieto JL, Vaillant I, Sugiura M, Tourmente S. Identification and characterization of transcription factor IIIA and ribosomal protein L5 from Arabidopsis thaliana. Nucleic Acids Res 2003; 31:2424-33. [PMID: 12711688 PMCID: PMC154221 DOI: 10.1093/nar/gkg335] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Thus far, no transcription factor IIIA (TFIIIA) from higher plants has been cloned and characterized. We have cloned and characterized TFIIIA and ribosomal protein L5 from Arabidopsis thaliana. Primary sequence comparison revealed a high divergence of AtTFIIIA and a relatively high conservation of AtL5 when compared with other organisms. The AtTFIIIA cDNA encodes a protein with nine Cys(2)-His(2)-type zinc fingers, a 23 amino acid spacer between fingers 1 and 2, a 66 amino acid spacer between fingers 4 and 5, and a 50 amino acid non-finger C-terminal tail. Aside from the amino acids required for proper zinc finger folding, AtTFIIIA is highly divergent from other known TFIIIAs. AtTFIIIA can bind 5S rDNA, as well as 5S rRNA, and efficiently stimulates the transcription of an Arabidopsis 5S rRNA gene in vitro. AtL5 identity was confirmed by demonstrating that this protein binds to 5S rRNA but not to 5S rDNA. Protoplast transient expression assays with green fluorescent protein fusion proteins revealed that AtTFIIIA is absent from the cytoplasm and concentrated at several nuclear foci including the nucleolus. AtL5 protein accumulates in the nucleus, especially in the nucleolus, and is also present in the cytoplasm.
Collapse
Affiliation(s)
- Olivier Mathieu
- UMR CNRS 6547 BIOMOVE, Université Blaise Pascal, 24 Avenue des Landais, 63177 Aubière Cedex, France
| | | | | | | | | | | |
Collapse
|
27
|
Wehner KA, Baserga SJ. The sigma(70)-like motif: a eukaryotic RNA binding domain unique to a superfamily of proteins required for ribosome biogenesis. Mol Cell 2002; 9:329-39. [PMID: 11864606 DOI: 10.1016/s1097-2765(02)00438-0] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Little is understood about the role of nucleolar RNA binding proteins in ribosome biogenesis, although there is a clear need for them based on the strict folding requirements of the pre-rRNA. We have identified a superfamily of RNA binding proteins whose members are required for different stages of ribosome biogenesis. The Imp4 superfamily is composed of five individual families (Imp4, Rpf1, Rpf2, Brx1, and Ssf) that all possess the sigma(70)-like motif, a eukaryotic RNA binding domain with prokaryotic origins. The Imp4 superfamily members associate with RNAs that are consistent with their distinct roles in ribosome biogenesis and suggest the mechanisms by which they function.
Collapse
Affiliation(s)
- Karen A Wehner
- Yale University School of Medicine, Department of Genetics, New Haven, CT 06520, USA
| | | |
Collapse
|
28
|
Pitula J, Ruyechan WT, Williams N. Two novel RNA binding proteins from Trypanosoma brucei are associated with 5S rRNA. Biochem Biophys Res Commun 2002; 290:569-76. [PMID: 11779210 DOI: 10.1006/bbrc.2001.6226] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously reported the identification of two closely related RNA binding proteins from Trypanosoma brucei which we have termed p34 and p37. The predicted primary structures of the two proteins are highly homologous with one major difference, an 18-amino-acid insert in the N-terminal region of p37. These two proteins have been localized to the nucleus based on immunofluorescence microscopy. To gain insight into their function, we have utilized UV crosslinking, coimmunoprecipitation, and sucrose density gradients to identify T. brucei RNA species that associate with p34 and p37. These experiments have demonstrated a specific interaction of both p34 and p37 with the 5S ribosomal RNA and indicate that other RNA species are unlikely to be specifically bound. This suggests a role for p34 and p37 in the import and/or assembly pathway of T. brucei 5S rRNA in ribosome biogenesis.
Collapse
Affiliation(s)
- Joseph Pitula
- Department of Microbiology, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | | | | |
Collapse
|
29
|
Olson MOJ, Hingorani K, Szebeni A. Conventional and nonconventional roles of the nucleolus. INTERNATIONAL REVIEW OF CYTOLOGY 2002; 219:199-266. [PMID: 12211630 PMCID: PMC7133188 DOI: 10.1016/s0074-7696(02)19014-0] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
As the most prominent of subnuclear structures, the nucleolus has a well-established role in ribosomal subunit assembly. Additional nucleolar functions, not related to ribosome biogenesis, have been discovered within the last decade. Built around multiple copies of the genes for preribosomal RNA (rDNA), nucleolar structure is largely dependent on the process of ribosome assembly. The nucleolus is disassembled during mitosis at which time preribosomal RNA transcription and processing are suppressed; it is reassembled at the end of mitosis in part from components preserved from the previous cell cycle. Expression of preribosomal RNA (pre-rRNA) is regulated by the silencing of individual rDNA genes via alterations in chromatin structure or by controlling RNA polymerase I initiation complex formation. Preribosomal RNA processing and posttranscriptional modifications are guided by a multitude of small nucleolar RNAs. Nearly completed ribosomal subunits are exported to the cytoplasm by an established nuclear export system with the aid of specialized adapter molecules. Some preribosomal and nucleolar components are transiently localized in Cajal bodies, presumably for modification or assembly. The nonconventional functions of nucleolus include roles in viral infections, nuclear export, sequestration of regulatory molecules, modification of small RNAs, RNP assembly, and control of aging, although some of these functions are not well established. Additional progress in defining the mechanisms of each step in ribosome biogenesis as well as clarification of the precise role of the nucleolus in nonconventional activities is expected in the next decade.
Collapse
Affiliation(s)
- Mark O J Olson
- Department of Biochemistry, University of Mississippi Medical Center, Jackson 39216, USA
| | | | | |
Collapse
|
30
|
Gleizes PE, Noaillac-Depeyre J, Léger-Silvestre I, Teulières F, Dauxois JY, Pommet D, Azum-Gelade MC, Gas N. Ultrastructural localization of rRNA shows defective nuclear export of preribosomes in mutants of the Nup82p complex. J Cell Biol 2001; 155:923-36. [PMID: 11739405 PMCID: PMC2150900 DOI: 10.1083/jcb.200108142] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To study the nuclear export of preribosomes, ribosomal RNAs were detected by in situ hybridization using fluorescence and EM, in the yeast Saccharomyces cerevisiae. In wild-type cells, semiquantitative analysis shows that the distributions of pre-40S and pre-60S particles in the nucleolus and the nucleoplasm are distinct, indicating uncoordinated transport of the two subunits within the nucleus. In cells defective for the activity of the GTPase Gsp1p/Ran, ribosomal precursors accumulate in the whole nucleus. This phenotype is reproduced with pre-60S particles in cells defective in pre-rRNA processing, whereas pre-40S particles only accumulate in the nucleolus, suggesting a tight control of the exit of the small subunit from the nucleolus. Examination of nucleoporin mutants reveals that preribosome nuclear export requires the Nup82p-Nup159p-Nsp1p complex. In contrast, mutations in the nucleoporins forming the Nup84p complex yield very mild or no nuclear accumulation of preribosome. Interestingly, domains of Nup159p required for mRNP trafficking are not necessary for preribosome export. Furthermore, the RNA helicase Dbp5p and the protein Gle1p, which interact with Nup159p and are involved in mRNP trafficking, are dispensable for ribosomal transport. Thus, the Nup82p-Nup159p-Nsp1p nucleoporin complex is part of the nuclear export pathways of preribosomes and mRNPs, but with distinct functions in these two processes.
Collapse
Affiliation(s)
- P E Gleizes
- Laboratoire de Biologie Moléculaire Eucaryote, Centre Nationale de la Recherche Scientifique and Université Paul Sabatier, 31062 Toulouse cedex, France.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Smith MW, Meskauskas A, Wang P, Sergiev PV, Dinman JD. Saturation mutagenesis of 5S rRNA in Saccharomyces cerevisiae. Mol Cell Biol 2001; 21:8264-75. [PMID: 11713264 PMCID: PMC99992 DOI: 10.1128/mcb.21.24.8264-8275.2001] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
rRNAs are the central players in the reactions catalyzed by ribosomes, and the individual rRNAs are actively involved in different ribosome functions. Our previous demonstration that yeast 5S rRNA mutants (called mof9) can impact translational reading frame maintenance showed an unexpected function for this ubiquitous biomolecule. At the time, however, the highly repetitive nature of the genes encoding rRNAs precluded more detailed genetic and molecular analyses. A new genetic system allows all 5S rRNAs in the cell to be transcribed from a small, easily manipulated plasmid. The system is also amenable for the study of the other rRNAs, and provides an ideal genetic platform for detailed structural and functional studies. Saturation mutagenesis reveals regions of 5S rRNA that are required for cell viability, translational accuracy, and virus propagation. Unexpectedly, very few lethal alleles were identified, demonstrating the resilience of this molecule. Superimposition of genetic phenotypes on a physical map of 5S rRNA reveals the existence of phenotypic clusters of mutants, suggesting that specific regions of 5S rRNA are important for specific functions. Mapping these mutants onto the Haloarcula marismortui large subunit reveals that these clusters occur at important points of physical interaction between 5S rRNA and the different functional centers of the ribosome. Our analyses lead us to propose that one of the major functions of 5S rRNA may be to enhance translational fidelity by acting as a physical transducer of information between all of the different functional centers of the ribosome.
Collapse
Affiliation(s)
- M W Smith
- Department of Molecular Genetics and Microbiology, Rutgers University and University of Medicine and Dentistry of New Jersey, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | | | | | | | | |
Collapse
|
32
|
Kaser A, Bogengruber E, Hallegger M, Doppler E, Lepperdinger G, Jantsch M, Breitenbach M, Kreil G. Brix from xenopus laevis and brx1p from yeast define a new family of proteins involved in the biogenesis of large ribosomal subunits. Biol Chem 2001; 382:1637-47. [PMID: 11843177 DOI: 10.1515/bc.2001.199] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A clone was isolated from a cDNA library from early embryos of Xenopus laevis that codes for a highly charged protein containing 339 amino acids. Two putative nuclear localization signals could be identified in its sequence, but no other known motifs or domains. Closely related ORFs are present in the genomes of man, C. elegans, yeast and Arabidopsis. A fusion protein with GFP expressed in HeLa cells or Xenopus oocytes was found to be localized in the nucleolus and coiled (Cajal) bodies. Moreover, immunoprecipitation experiments demonstrated that the new Xenopus protein interacts with 5S, 5.8S and 28S RNAs of large ribosomal subunits. The name Brix (biogenesis of ribosomes in Xenopus) is proposed for this protein and the corresponding gene. In Saccharomyces cerevisiae, the essential gene YOL077c, now named BRX1, codes for the Brix homolog, which is also localized in the nucleolus. Depletion of Brx1 p in a conditional yeast mutant leads to defects in rRNA processing, and a block in the assembly of large ribosomal subunits.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Blotting, Northern
- Cell Nucleolus/ultrastructure
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- Fluorescent Antibody Technique
- HeLa Cells
- Humans
- Molecular Sequence Data
- Precipitin Tests
- RNA, Ribosomal, 28S/chemistry
- RNA, Ribosomal, 28S/genetics
- RNA, Ribosomal, 5.8S/chemistry
- RNA, Ribosomal, 5.8S/genetics
- RNA, Ribosomal, 5S/chemistry
- RNA, Ribosomal, 5S/genetics
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Ribosomal Proteins/biosynthesis
- Ribosomal Proteins/genetics
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/metabolism
- Sequence Homology, Amino Acid
- Xenopus laevis/genetics
- Xenopus laevis/metabolism
Collapse
Affiliation(s)
- A Kaser
- Institute of Molecular Biology, Austrian Academy of Sciences, Salzburg
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Pluta K, Lefebvre O, Martin NC, Smagowicz WJ, Stanford DR, Ellis SR, Hopper AK, Sentenac A, Boguta M. Maf1p, a negative effector of RNA polymerase III in Saccharomyces cerevisiae. Mol Cell Biol 2001; 21:5031-40. [PMID: 11438659 PMCID: PMC87229 DOI: 10.1128/mcb.21.15.5031-5040.2001] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although yeast RNA polymerase III (Pol III) and the auxiliary factors TFIIIC and TFIIIB are well characterized, the mechanisms of class III gene regulation are poorly understood. Previous studies identified MAF1, a gene that affects tRNA suppressor efficiency and interacts genetically with Pol III. We show here that tRNA levels are elevated in maf1 mutant cells. In keeping with the higher levels of tRNA observed in vivo, the in vitro rate of Pol III RNA synthesis is significantly increased in maf1 cell extracts. Mutations in the RPC160 gene encoding the largest subunit of Pol III which reduce tRNA levels were identified as suppressors of the maf1 growth defect. Interestingly, Maf1p is located in the nucleus and coimmunopurifies with epitope-tagged RNA Pol III. These results indicate that Maf1p acts as a negative effector of Pol III synthesis. This potential regulator of Pol III transcription is likely conserved since orthologs of Maf1p are present in other eukaryotes, including humans.
Collapse
Affiliation(s)
- K Pluta
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02 106 Warsaw, Poland
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Gadal O, Strauß D, Braspenning J, Hoepfner D, Petfalski E, Philippsen P, Tollervey D, Hurt E. A nuclear AAA-type ATPase (Rix7p) is required for biogenesis and nuclear export of 60S ribosomal subunits. EMBO J 2001; 20:3695-704. [PMID: 11447111 PMCID: PMC125552 DOI: 10.1093/emboj/20.14.3695] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2001] [Revised: 05/25/2001] [Accepted: 05/29/2001] [Indexed: 11/13/2022] Open
Abstract
Ribosomal precursor particles are assembled in the nucleolus before export into the cytoplasm. Using a visual assay for nuclear accumulation of 60S subunits, we have isolated several conditional-lethal strains with defects in ribosomal export (rix mutants). Here we report the characterization of a mutation in an essential gene, RIX7, which encodes a novel member of the AAA ATPase superfamily. The rix7-1 temperature-sensitive allele carries a point mutation that causes defects in pre-rRNA processing, biogenesis of 60S ribosomal subunits, and their subsequent export into the cytoplasm. Rix7p, which associates with 60S ribosomal precursor particles, localizes throughout the nucleus in exponentially growing cells, but concentrates in the nucleolus in stationary phase cells. When cells resume growth upon shift to fresh medium, Rix7p-green fluorescent protein exhibits a transient perinuclear location. We propose that a nuclear AAA ATPase is required for restructuring nucleoplasmic 60S pre-ribosomal particles to make them competent for nuclear export.
Collapse
Affiliation(s)
| | | | | | - Dominic Hoepfner
- BZH, Biochemie-Zentrum Heidelberg, Im Neuenheimer Feld 328, D-69120 Heidelberg, Germany,
Biozentrum der Universität Basel, Klingelbergstraße 70, CH-4056 Basel, Switzerland and Institute of Cell and Molecular Biology, University of Edinburgh, Swann Building, King’s Buildings, Edinburgh EH9 3JR, UK Corresponding author e-mail:
| | - Elisabeth Petfalski
- BZH, Biochemie-Zentrum Heidelberg, Im Neuenheimer Feld 328, D-69120 Heidelberg, Germany,
Biozentrum der Universität Basel, Klingelbergstraße 70, CH-4056 Basel, Switzerland and Institute of Cell and Molecular Biology, University of Edinburgh, Swann Building, King’s Buildings, Edinburgh EH9 3JR, UK Corresponding author e-mail:
| | - Peter Philippsen
- BZH, Biochemie-Zentrum Heidelberg, Im Neuenheimer Feld 328, D-69120 Heidelberg, Germany,
Biozentrum der Universität Basel, Klingelbergstraße 70, CH-4056 Basel, Switzerland and Institute of Cell and Molecular Biology, University of Edinburgh, Swann Building, King’s Buildings, Edinburgh EH9 3JR, UK Corresponding author e-mail:
| | - David Tollervey
- BZH, Biochemie-Zentrum Heidelberg, Im Neuenheimer Feld 328, D-69120 Heidelberg, Germany,
Biozentrum der Universität Basel, Klingelbergstraße 70, CH-4056 Basel, Switzerland and Institute of Cell and Molecular Biology, University of Edinburgh, Swann Building, King’s Buildings, Edinburgh EH9 3JR, UK Corresponding author e-mail:
| | - Ed Hurt
- BZH, Biochemie-Zentrum Heidelberg, Im Neuenheimer Feld 328, D-69120 Heidelberg, Germany,
Biozentrum der Universität Basel, Klingelbergstraße 70, CH-4056 Basel, Switzerland and Institute of Cell and Molecular Biology, University of Edinburgh, Swann Building, King’s Buildings, Edinburgh EH9 3JR, UK Corresponding author e-mail:
| |
Collapse
|
35
|
Lin E, Lin SW, Lin A. The participation of 5S rRNA in the co-translational formation of a eukaryotic 5S ribonucleoprotein complex. Nucleic Acids Res 2001; 29:2510-6. [PMID: 11410658 PMCID: PMC55736 DOI: 10.1093/nar/29.12.2510] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The eukaryotic ribosomal 5S RNA-protein complex (5S rRNP) is formed by a co-translational event that requires 5S rRNA binding to the nascent peptide chain of eukaryotic ribosomal protein L5. Binding between 5S rRNA and the nascent chain is specific: neither the 5S rRNA nor the nascent chain of L5 protein can be substituted by other RNAs or other ribosomal proteins. The region responsible for binding 5S rRNA is located at positions 35-50 with amino acid sequence RLVIQDIKNKYNTPKYRM. Eukaryotic 5S rRNA binds a nascent chain having this sequence, but such binding is not substantive enough to form a 5S-associated RNP complex, suggesting that 5S rRNA binding to the nascent chain is amino acid sequence dependent and that formation of the 5S rRNP complex is L5 protein specific. Microinjection of 5S rRNP complex into the cytoplasm of Xenopus oocytes results in both an increase in the initial rate and also in the extent of net nuclear import of L5. This suggests that the 5S rRNP complex enhances nuclear transport of L5. We propose that 5S rRNA plays a chaperone-like role in folding of the nascent chain of L5 and directs L5 into a 5S rRNP complex for nuclear entry.
Collapse
Affiliation(s)
- E Lin
- Institute of Genetics, National Yang-Ming University, Shih-Pai, Taipei, Taiwan, Republic of China
| | | | | |
Collapse
|
36
|
Briand JF, Navarro F, Gadal O, Thuriaux P. Cross talk between tRNA and rRNA synthesis in Saccharomyces cerevisiae. Mol Cell Biol 2001; 21:189-95. [PMID: 11113194 PMCID: PMC88793 DOI: 10.1128/mcb.21.1.189-195.2001] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2000] [Accepted: 10/09/2000] [Indexed: 11/20/2022] Open
Abstract
Temperature-sensitive RNA polymerase III (rpc160-112 and rpc160-270) mutants were analyzed for the synthesis of tRNAs and rRNAs in vivo, using a double-isotopic-labeling technique in which cells are pulse-labeled with [(33)P]orthophosphate and coextracted with [(3)H]uracil-labeled wild-type cells. Individual RNA species were monitored by Northern blot hybridization or amplified by reverse transcription. These mutants impaired the synthesis of RNA polymerase III transcripts with little or no influence on mRNA synthesis but also largely turned off the formation of the 25S, 18S, and 5.8S mature rRNA species derived from the common 35S transcript produced by RNA polymerase I. In the rpc160-270 mutant, this parallel inhibition of tRNA and rRNA synthesis also occurred at the permissive temperature (25 degrees C) and correlated with an accumulation of 20S pre-rRNA. In the rpc160-112 mutant, inhibition of rRNA synthesis and the accumulation of 20S pre-rRNA were found only at 37 degrees C. The steady-state rRNA/tRNA ratio of these mutants reflected their tRNA and rRNA synthesis pattern: the rpc160-112 mutant had the threefold shortage in tRNA expected from its preferential defect in tRNA synthesis at 25 degrees C, whereas rpc160-270 cells completely adjusted their rRNA/tRNA ratio down to a wild-type level, consistent with the tight coupling of tRNA and rRNA synthesis in vivo. Finally, an RNA polymerase I (rpa190-2) mutant grown at the permissive temperature had an enhanced level of pre-tRNA, suggesting the existence of a physiological coupling between rRNA synthesis and pre-tRNA processing.
Collapse
Affiliation(s)
- J F Briand
- Service de Biochimie et Génétique Moléculaire, CEA-Saclay, F-91191 Gif Sur Yvette Cedex, France
| | | | | | | |
Collapse
|
37
|
Strezoska Z, Pestov DG, Lau LF. Bop1 is a mouse WD40 repeat nucleolar protein involved in 28S and 5. 8S RRNA processing and 60S ribosome biogenesis. Mol Cell Biol 2000; 20:5516-28. [PMID: 10891491 PMCID: PMC86002 DOI: 10.1128/mcb.20.15.5516-5528.2000] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We have identified and characterized a novel mouse protein, Bop1, which contains WD40 repeats and is highly conserved through evolution. bop1 is ubiquitously expressed in all mouse tissues examined and is upregulated during mid-G(1) in serum-stimulated fibroblasts. Immunofluorescence analysis shows that Bop1 is localized predominantly to the nucleolus. In sucrose density gradients, Bop1 from nuclear extracts cosediments with the 50S-80S ribonucleoprotein particles that contain the 32S rRNA precursor. RNase A treatment disrupts these particles and releases Bop1 into a low-molecular-weight fraction. A mutant form of Bop1, Bop1Delta, which lacks 231 amino acids in the N- terminus, is colocalized with wild-type Bop1 in the nucleolus and in ribonucleoprotein complexes. Expression of Bop1Delta leads to cell growth arrest in the G(1) phase and results in a specific inhibition of the synthesis of the 28S and 5.8S rRNAs without affecting 18S rRNA formation. Pulse-chase analyses show that Bop1Delta expression results in a partial inhibition in the conversion of the 36S to the 32S pre-rRNA and a complete inhibition of the processing of the 32S pre-rRNA to form the mature 28S and 5.8S rRNAs. Concomitant with these defects in rRNA processing, expression of Bop1Delta in mouse cells leads to a deficit in the cytosolic 60S ribosomal subunits. These studies thus identify Bop1 as a novel, nonribosomal mammalian protein that plays a key role in the formation of the mature 28S and 5.8S rRNAs and in the biogenesis of the 60S ribosomal subunit.
Collapse
MESH Headings
- Animals
- Cell Nucleolus/metabolism
- Fungal Proteins/genetics
- Fungal Proteins/metabolism
- Mice
- Mutation
- RNA Precursors/metabolism
- RNA Processing, Post-Transcriptional
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Ribosomal, 28S/genetics
- RNA, Ribosomal, 28S/metabolism
- RNA, Ribosomal, 5.8S/genetics
- RNA, Ribosomal, 5.8S/metabolism
- Repetitive Sequences, Amino Acid
- Ribonucleoproteins/genetics
- Ribonucleoproteins/metabolism
- Ribosomal Proteins/genetics
- Ribosomal Proteins/metabolism
- Ribosomes/genetics
- Ribosomes/metabolism
- Saccharomyces cerevisiae Proteins
Collapse
Affiliation(s)
- Z Strezoska
- Department of Molecular Genetics, University of Illinois at Chicago College of Medicine, Chicago, Illinois 60607-7170, USA
| | | | | |
Collapse
|
38
|
Abstract
Compartmentalization has long been known to have a key role in regulation of cellular processes. By keeping enzymes and regulatory complexes in compartments where the delivery of substrate or exit of product is controlled, competing reactions can occur simultaneously in different parts of the cell. Moreover, spatial confinement facilitates the working of molecules participating in reaction chains and is crucial for coupling unfavourable with energetically favourable chemical reactions. Although in many cases intracellular compartmentalization relies on boundaries imposed by membranes, several non-membrane-bounded compartments exist in eukaryotic cells. One of these, the nucleolus, has recently attracted much attention. The emerging view is that molecular confinement in the nucleolus actively contributes to the control of cellular survival and proliferation.
Collapse
Affiliation(s)
- M Carmo-Fonseca
- Institute of Histology and Embryology, Faculty of Medicine, University of Lisbon, Av. Prof. Egas Moniz 1649-028 Lisbon, Portugal.
| | | | | |
Collapse
|
39
|
Fath S, Milkereit P, Podtelejnikov AV, Bischler N, Schultz P, Bier M, Mann M, Tschochner H. Association of yeast RNA polymerase I with a nucleolar substructure active in rRNA synthesis and processing. J Cell Biol 2000; 149:575-90. [PMID: 10791972 PMCID: PMC2174860 DOI: 10.1083/jcb.149.3.575] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A novel ribonucleoprotein complex enriched in nucleolar proteins was purified from yeast extracts and constituents were identified by mass spectrometry. When isolated from rapidly growing cells, the assembly contained ribonucleic acid (RNA) polymerase (pol) I, and some of its transcription factors like TATA-binding protein (TBP), Rrn3p, Rrn5p, Rrn7p, and Reb1p along with rRNA processing factors, like Nop1p, Cbf5p, Nhp2p, and Rrp5p. The small nucleolar RNAs (snoRNAs) U3, U14, and MRP were also found to be associated with the complex, which supports accurate transcription, termination, and pseudouridylation of rRNA. Formation of the complex did not depend on pol I, and the complex could efficiently recruit exogenous pol I into active ribosomal DNA (rDNA) transcription units. Visualization of the complex by electron microscopy and immunogold labeling revealed a characteristic cluster-forming network of nonuniform size containing nucleolar proteins like Nop1p and Fpr3p and attached pol I. Our results support the idea that a functional nucleolar subdomain formed independently of the state of rDNA transcription may serve as a scaffold for coordinated rRNA synthesis and processing.
Collapse
Affiliation(s)
- S Fath
- Biochemie-Zentrum Heidelberg, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Affiliation(s)
- T Pederson
- Department of Biochemistry, University of Massachusetts Medical School, Worcester, Massachussetts 01605, USA.
| | | |
Collapse
|
41
|
Ferri ML, Peyroche G, Siaut M, Lefebvre O, Carles C, Conesa C, Sentenac A. A novel subunit of yeast RNA polymerase III interacts with the TFIIB-related domain of TFIIIB70. Mol Cell Biol 2000; 20:488-95. [PMID: 10611227 PMCID: PMC85110 DOI: 10.1128/mcb.20.2.488-495.2000] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
There is limited information on how eukaryotic RNA polymerases (Pol) recognize their cognate preinitiation complex. We have characterized a polypeptide copurifying with yeast Pol III. This protein, C17, was found to be homologous to a mammalian protein described as a hormone receptor. Deletion of the corresponding gene, RPC17, was lethal and its regulated extinction caused a selective defect in transcription of class III genes in vivo. Two-hybrid and coimmunoprecipitation experiments indicated that C17 interacts with two Pol III subunits, one of which, C31, is important for the initiation reaction. C17 also interacted with TFIIIB70, the TFIIB-related component of TFIIIB. The interaction domain was found to be in the N-terminal, TFIIB-like half of TFIIIB70, downstream of the zinc ribbon and first imperfect repeat. Although Pol II similarly interacts with TFIIB, it is notable that C17 has no similarity to any Pol II subunit. The data indicate that C17 is a novel specific subunit of Pol III which participates together with C34 in the recruitment of Pol III by the preinitiation complex.
Collapse
Affiliation(s)
- M L Ferri
- Service de Biochimie et de Génétique Moléculaire, CEA/Saclay, F-91191 Gif-sur-Yvette Cedex, France
| | | | | | | | | | | | | |
Collapse
|