1
|
Lee JI, Namkoong S. Stress granules dynamics: benefits in cancer. BMB Rep 2022; 55:577-586. [PMID: 36330685 PMCID: PMC9813431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/10/2022] [Accepted: 10/17/2022] [Indexed: 12/29/2022] Open
Abstract
Stress granules (SGs) are stress-induced subcellular compartments, which carry out a particular function to cope with stress. These granules protect cells from stress-related damage and cell death through dynamic sequestration of numerous ribonucleoproteins (RNPs) and signaling proteins, thereby promoting cell survival under both physiological and pathological condition. During tumorigenesis, cancer cells are repeatedly exposed to diverse stress stimuli from the tumor microenvironment, and the dynamics of SGs is often modulated due to the alteration of gene expression patterns in cancer cells, leading to tumor progression as well as resistance to anticancer treatment. In this mini review, we provide a brief discussion about our current understanding of the fundamental roles of SGs during physiological stress and the effect of dysregulated SGs on cancer cell fitness and cancer therapy. [BMB Reports 2022; 55(12): 577-586].
Collapse
Affiliation(s)
- Jeong In Lee
- Department of Biochemistry, Kangwon National University, Chuncheon 24341, Korea
| | - Sim Namkoong
- Department of Biochemistry, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
2
|
Lee JI, Namkoong S. Stress granules dynamics: benefits in cancer. BMB Rep 2022; 55:577-586. [PMID: 36330685 PMCID: PMC9813431 DOI: 10.5483/bmbrep.2022.55.12.141] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/10/2022] [Accepted: 10/17/2022] [Indexed: 07/30/2023] Open
Abstract
Stress granules (SGs) are stress-induced subcellular compartments, which carry out a particular function to cope with stress. These granules protect cells from stress-related damage and cell death through dynamic sequestration of numerous ribonucleoproteins (RNPs) and signaling proteins, thereby promoting cell survival under both physiological and pathological condition. During tumorigenesis, cancer cells are repeatedly exposed to diverse stress stimuli from the tumor microenvironment, and the dynamics of SGs is often modulated due to the alteration of gene expression patterns in cancer cells, leading to tumor progression as well as resistance to anticancer treatment. In this mini review, we provide a brief discussion about our current understanding of the fundamental roles of SGs during physiological stress and the effect of dysregulated SGs on cancer cell fitness and cancer therapy. [BMB Reports 2022; 55(12): 577-586].
Collapse
Affiliation(s)
- Jeong In Lee
- Department of Biochemistry, Kangwon National University, Chuncheon 24341, Korea
| | - Sim Namkoong
- Department of Biochemistry, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
3
|
Yang CW, Hsieh MH, Sun HJ, Teng SC. Nuclear envelope tethering inhibits the formation of ALT-associated PML bodies in ALT cells. Aging (Albany NY) 2021; 13:10490-10516. [PMID: 33820871 PMCID: PMC8064153 DOI: 10.18632/aging.202810] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 02/16/2021] [Indexed: 12/12/2022]
Abstract
Telomere length homeostasis is essential for maintaining genomic stability and cancer proliferation. Telomerase-negative cancer cells undergo recombination-mediated alternative lengthening of telomeres. Telomeres associate with the nuclear envelope through the shelterin RAP1 and nuclear envelope SUN1 proteins. However, how the associations between telomeres and the nuclear envelope affect the progression of telomere recombination is not understood. Here, we show that telomere anchorage might inhibit telomere-telomere recombination. SUN1 depletion stimulates the formation of alternative lengthening of telomeres-associated promyelocytic leukemia bodies in ALT cells. In contrast, overexpression of a telomere-nuclear envelope-tethering chimera protein, RAP1-SUN1, suppresses APB formation. Moreover, inhibition of this nuclear envelope attachment alleviates the requirement of TOP3α for resolving the supercoiling pressure during telomere recombination. A coimmunoprecipitation assay revealed that the SUN1 N-terminal nucleoplasmic domain interacts with the RAP1 middle coil domain, and phosphorylation-mimetic mutations in RAP1 inhibit this interaction. However, abolishing the RAP1-SUN1 interaction does not hinder APB formation, which hints at the existence of another SUN1-dependent telomere anchorage pathway. In summary, our results reveal an inhibitory role of telomere-nuclear envelope association in telomere-telomere recombination and imply the presence of redundant pathways for the telomere-nuclear envelope association in ALT cells.
Collapse
Affiliation(s)
- Chia-Wei Yang
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Meng-Hsun Hsieh
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Hao-Jhe Sun
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Shu-Chun Teng
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan.,Center of Precision Medicine, National Taiwan University, Taipei 10051, Taiwan
| |
Collapse
|
4
|
Cerqueira AV, Lemos B. Ribosomal DNA and the Nucleolus as Keystones of Nuclear Architecture, Organization, and Function. Trends Genet 2019; 35:710-723. [PMID: 31447250 DOI: 10.1016/j.tig.2019.07.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/23/2019] [Accepted: 07/25/2019] [Indexed: 12/12/2022]
Abstract
The multicopy ribosomal DNA (rDNA) array gives origin to the nucleolus, a large nonmembrane-bound organelle that occupies a substantial volume within the cell nucleus. The rDNA/nucleolus has emerged as a coordinating hub in which seemingly disparate cellular functions converge, and from which a variety of cellular and organismal phenotypes emerge. However, the role of the nucleolus as a determinant and organizer of nuclear architecture and other epigenetic states of the genome is not well understood. We discuss the role of rDNA and the nucleolus in nuclear organization and function - from nucleolus-associated domains (NADs) to the regulation of imprinted loci and X chromosome inactivation, as well as rDNA contact maps that anchor and position the rDNA relative to the rest of the genome. The influence of the nucleolus on nuclear organization undoubtedly modulates diverse biological processes from metabolism to cell proliferation, genome-wide gene expression, maintenance of epigenetic states, and aging.
Collapse
Affiliation(s)
- Amanda V Cerqueira
- Department of Environmental Health, Program in Molecular and Integrative Physiological Sciences, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Bernardo Lemos
- Department of Environmental Health, Program in Molecular and Integrative Physiological Sciences, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|
5
|
Vitamin D Deficiency: Effects on Oxidative Stress, Epigenetics, Gene Regulation, and Aging. BIOLOGY 2019; 8:biology8020030. [PMID: 31083546 PMCID: PMC6627346 DOI: 10.3390/biology8020030] [Citation(s) in RCA: 219] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 02/21/2019] [Accepted: 03/18/2019] [Indexed: 12/11/2022]
Abstract
Recent advances in vitamin D research indicate that this vitamin, a secosteroid hormone, has beneficial effects on several body systems other than the musculoskeletal system. Both 25 dihydroxy vitamin D [25(OH)2D] and its active hormonal form, 1,25-dihydroxyvitamin D [1,25(OH)2D] are essential for human physiological functions, including damping down inflammation and the excessive intracellular oxidative stresses. Vitamin D is one of the key controllers of systemic inflammation, oxidative stress and mitochondrial respiratory function, and thus, the aging process in humans. In turn, molecular and cellular actions form 1,25(OH)2D slow down oxidative stress, cell and tissue damage, and the aging process. On the other hand, hypovitaminosis D impairs mitochondrial functions, and enhances oxidative stress and systemic inflammation. The interaction of 1,25(OH)2D with its intracellular receptors modulates vitamin D–dependent gene transcription and activation of vitamin D-responsive elements, which triggers multiple second messenger systems. Thus, it is not surprising that hypovitaminosis D increases the incidence and severity of several age-related common diseases, such as metabolic disorders that are linked to oxidative stress. These include obesity, insulin resistance, type 2 diabetes, hypertension, pregnancy complications, memory disorders, osteoporosis, autoimmune diseases, certain cancers, and systemic inflammatory diseases. Vitamin D adequacy leads to less oxidative stress and improves mitochondrial and endocrine functions, reducing the risks of disorders, such as autoimmunity, infections, metabolic derangements, and impairment of DNA repair; all of this aids a healthy, graceful aging process. Vitamin D is also a potent anti-oxidant that facilitates balanced mitochondrial activities, preventing oxidative stress-related protein oxidation, lipid peroxidation, and DNA damage. New understandings of vitamin D-related advances in metabolomics, transcriptomics, epigenetics, in relation to its ability to control oxidative stress in conjunction with micronutrients, vitamins, and antioxidants, following normalization of serum 25(OH)D and tissue 1,25(OH)2D concentrations, likely to promise cost-effective better clinical outcomes in humans.
Collapse
|
6
|
Abstract
The nucleolus as site of ribosome biogenesis holds a pivotal role in cell metabolism. It is composed of ribosomal DNA (rDNA), which is present as tandem arrays located in nucleolus organizer regions (NORs). In interphase cells, rDNA can be found inside and adjacent to nucleoli and the location is indicative for transcriptional activity of ribosomal genes-inactive rDNA (outside) versus active one (inside). Moreover, the nucleolus itself acts as a spatial organizer of non-nucleolar chromatin. Microscopy-based approaches offer the possibility to explore the spatially distinct localization of the different DNA populations in relation to the nucleolar structure. Recent technical developments in microscopy and preparatory methods may further our understanding of the functional architecture of nucleoli. This review will attempt to summarize the current understanding of mammalian nucleolar chromatin organization as seen from a microscopist's perspective.
Collapse
Affiliation(s)
- Christian Schöfer
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstr. 17, 1090, Vienna, Austria.
| | - Klara Weipoltshammer
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstr. 17, 1090, Vienna, Austria
| |
Collapse
|
7
|
Abstract
Telomeres are obligatory chromosomal landmarks that demarcate the ends of linear chromosomes to distinguish them from broken ends and can also serve to organize the genome. In both budding and fission yeast, they cluster at the periphery of the nucleus, potentially to establish a compartment of silent chromatin. To gain insight into telomere organization in higher organisms, we investigated their distribution in interphase nuclei of Drosophila melanogaster. We focused on the syncytial blastoderm, an excellent developmental stage for live imaging due to the synchronous division of the nuclei at this time. We followed the EGFP-labeled telomeric protein HOAP in vivo and found that the 16 telomeres yield four to six foci per nucleus, indicative of clustering. Furthermore, we confirmed clustering in other somatic tissues. Importantly, we observed that HOAP signal intensity in the clusters increases in interphase, potentially due to loading of HOAP to newly replicated telomeres. To determine the rules governing clustering, we used in vivo imaging and fluorescence in situ hybridization to test several predictions. First, we inspected mutant embryos that develop as haploids and found that clustering is not mediated by associations between homologs. Second, we probed specifically for a telomere of novel sequence and found strong evidence against DNA sequence identity and homology as critical factors. Third, we ruled out predominance of intrachromosomal interactions by marking both ends of a chromosome. Based on these results, we propose that clustering is independent of sequence and is likely maintained by an as yet undetermined factor.
Collapse
|
8
|
Telomeres and the nucleus. Semin Cancer Biol 2012; 23:116-24. [PMID: 22330096 DOI: 10.1016/j.semcancer.2012.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 02/01/2012] [Accepted: 02/02/2012] [Indexed: 01/08/2023]
Abstract
Telomeres are crucial for the maintenance of genome stability through "capping" of chromosome ends to prevent their recognition as double-strand breaks, thus avoiding end-to-end fusions or illegitimate recombination [1-3]. Similar to other genomic regions, telomeres participate to the nuclear architecture while being highly mobile. The interaction of telomeres with nuclear domains or compartments greatly differs not only between organisms but also between cells within the same organism. It is also expected that biological processes like replication, repair or telomere elongation impact the distribution of chromosome extremities within the nucleus, as they probably do with other regions of the genome. Pathological processes such as cancer induce profound changes in the nuclear architecture, which also affects telomere dynamics and spatial organization. Here we will expose our present knowledge on the relationship between telomeres and nuclear architecture and on how this relationship is affected by normal or abnormal telomere metabolisms.
Collapse
|
9
|
Heride C, Ricoul M, Kiêu K, von Hase J, Guillemot V, Cremer C, Dubrana K, Sabatier L. Distance between homologous chromosomes results from chromosome positioning constraints. J Cell Sci 2010; 123:4063-75. [DOI: 10.1242/jcs.066498] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The organization of chromosomes is important for various biological processes and is involved in the formation of rearrangements often observed in cancer. In mammals, chromosomes are organized in territories that are radially positioned in the nucleus. However, it remains unclear whether chromosomes are organized relative to each other. Here, we examine the nuclear arrangement of 10 chromosomes in human epithelial cancer cells by three-dimensional FISH analysis. We show that their radial position correlates with the ratio of their gene density to chromosome size. We also observe that inter-homologue distances are generally larger than inter-heterologue distances. Using numerical simulations taking radial position constraints into account, we demonstrate that, for some chromosomes, radial position is enough to justify the inter-homologue distance, whereas for others additional constraints are involved. Among these constraints, we propose that nucleolar organizer regions participate in the internal positioning of the acrocentric chromosome HSA21, possibly through interactions with nucleoli. Maintaining distance between homologous chromosomes in human cells could participate in regulating genome stability and gene expression, both mechanisms that are key players in tumorigenesis.
Collapse
Affiliation(s)
- Claire Heride
- Laboratoire de Radiobiologie et d'Oncologie (LRO), Commissariat à l'Energie Atomique, 92 265 Fontenay-aux-Roses Cedex, France
| | - Michelle Ricoul
- Laboratoire de Radiobiologie et d'Oncologie (LRO), Commissariat à l'Energie Atomique, 92 265 Fontenay-aux-Roses Cedex, France
| | - Kien Kiêu
- UR 341 Mathématiques et Informatique Appliquées, INRA, 78 350 Jouy-en-Josas, France
| | - Johann von Hase
- Kirchhoff Institute for Physics, University of Heidelberg, 69 120 Heidelberg, Germany
| | - Vincent Guillemot
- Laboratoire d'Exploration Fonctionnelle des Génomes (LEFG), Commissariat à l'Energie Atomique, 91 057 Evry, France
| | - Christoph Cremer
- Kirchhoff Institute for Physics, University of Heidelberg, 69 120 Heidelberg, Germany
| | - Karine Dubrana
- Laboratoire de Radiobiologie et d'Oncologie (LRO), Commissariat à l'Energie Atomique, 92 265 Fontenay-aux-Roses Cedex, France
| | - Laure Sabatier
- Laboratoire de Radiobiologie et d'Oncologie (LRO), Commissariat à l'Energie Atomique, 92 265 Fontenay-aux-Roses Cedex, France
| |
Collapse
|
10
|
Uhlírová R, Horáková AH, Galiová G, Legartová S, Matula P, Fojtová M, Varecha M, Amrichová J, Vondrácek J, Kozubek S, Bártová E. SUV39h- and A-type lamin-dependent telomere nuclear rearrangement. J Cell Biochem 2010; 109:915-26. [PMID: 20069564 DOI: 10.1002/jcb.22466] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Telomeres are specialized chromatin structures that are situated at the end of linear chromosomes and play an important role in cell senescence and immortalization. Here, we investigated whether changes in histone signature influence the nuclear arrangement and positioning of telomeres. Analysis of mouse embryonic fibroblasts revealed that telomeres were organized into specific clusters that partially associated with centromeric clusters. This nuclear arrangement was influenced by deficiency of the histone methyltransferase SUV39h, LMNA deficiency, and the histone deacetylase inhibitor Trichostatin A (TSA). Similarly, nuclear radial distributions of telomeric clusters were preferentially influenced by TSA, which caused relocation of telomeres closer to the nuclear center. Telomeres also co-localized with promyelocytic leukemia bodies (PML). This association was increased by SUV39h deficiency and decreased by LMNA deficiency. These differences could be explained by differing levels of the telomerase subunit, TERT, in SUV39h- and LMNA-deficient fibroblasts. Taken together, our data show that SUV39h and A-type lamins likely play a key role in telomere maintenance and telomere nuclear architecture.
Collapse
Affiliation(s)
- Radka Uhlírová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, CZ-612 65 Brno, Czech Republic
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Stage DE, Eickbush TH. Maintenance of multiple lineages of R1 and R2 retrotransposable elements in the ribosomal RNA gene loci of Nasonia. INSECT MOLECULAR BIOLOGY 2010; 19 Suppl 1:37-48. [PMID: 20167016 DOI: 10.1111/j.1365-2583.2009.00949.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Sequencing reads from the Nasonia genome project were used to study the ribosomal RNA gene loci and the retrotransposons R1 and R2 that insert specifically into the 28S genes. Five highly divergent R1 and five highly divergent R2 families were identified in the three sequenced species, as well as a non-autonomous element that appears to use the retrotransposition machinery of R1. A duplication of the R1 target site within the spacer region of the rDNA units was also found to be extensively utilized by R1 elements. We document numerous instances where the R1 and R2 families appropriated parts of the retrotransposition machinery of other lineages and speculate that this enables rapid adaptation and the maintenance of multiple R1 and R2 families.
Collapse
Affiliation(s)
- D E Stage
- Biology Department, University of Rochester, Rochester, NY 14627, USA
| | | |
Collapse
|
12
|
De Vos WH, Hoebe RA, Joss GH, Haffmans W, Baatout S, Van Oostveldt P, Manders EMM. Controlled light exposure microscopy reveals dynamic telomere microterritories throughout the cell cycle. Cytometry A 2009; 75:428-39. [PMID: 19097172 DOI: 10.1002/cyto.a.20699] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Telomeres are complex end structures that confer functional integrity and positional stability to human chromosomes. Despite their critical importance, there is no clear view on telomere organization in cycling human cells and their dynamic behavior throughout the cell cycle. We investigated spatiotemporal organization of telomeres in living human ECV-304 cells stably expressing telomere binding proteins TRF1 and TRF2 fused to mCitrine using four dimensional microscopy. We thereby made use of controlled light exposure microscopy (CLEM), a novel technology that strongly reduces photodamage by limiting excitation in parts of the image where full exposure is not needed. We found that telomeres share small territories where they dynamically associate. These territories are preferentially positioned at the interface of chromatin domains. TRF1 and TRF2 are abundantly present in these territories but not firmly bound. At the onset of mitosis, the bulk of TRF protein dissociates from telomere regions, territories disintegrate and individual telomeres become faintly visible. The combination of stable cell lines, CLEM and cytometry proved essential in providing novel insights in compartment-based nuclear organization and may serve as a model approach for investigating telomere-driven genome-instability and studying long-term nuclear dynamics.
Collapse
Affiliation(s)
- Winnok H De Vos
- Department of Molecular Biotechnology, Faculty of Bio-engineering Sciences, Ghent University, Coupure links 653, Ghent 9000, Belgium.
| | | | | | | | | | | | | |
Collapse
|
13
|
|
14
|
Jegou T, Chung I, Heuvelman G, Wachsmuth M, Görisch SM, Greulich-Bode KM, Boukamp P, Lichter P, Rippe K. Dynamics of telomeres and promyelocytic leukemia nuclear bodies in a telomerase-negative human cell line. Mol Biol Cell 2009; 20:2070-82. [PMID: 19211845 PMCID: PMC2663922 DOI: 10.1091/mbc.e08-02-0108] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Revised: 12/15/2008] [Accepted: 02/03/2009] [Indexed: 02/04/2023] Open
Abstract
Telomerase-negative tumor cells maintain their telomeres via an alternative lengthening of telomeres (ALT) mechanism. This process involves the association of telomeres with promyelocytic leukemia nuclear bodies (PML-NBs). Here, the mobility of both telomeres and PML-NBs as well as their interactions were studied in human U2OS osteosarcoma cells, in which the ALT pathway is active. A U2OS cell line was constructed that had lac operator repeats stably integrated adjacent to the telomeres of chromosomes 6q, 11p, and 12q. By fluorescence microscopy of autofluorescent LacI repressor bound to the lacO arrays the telomere mobility during interphase was traced and correlated with the telomere repeat length. A confined diffusion model was derived that describes telomere dynamics in the nucleus on the time scale from seconds to hours. Two telomere groups were identified that differed with respect to the nuclear space accessible to them. Furthermore, translocations of PML-NBs relative to telomeres and their complexes with telomeres were evaluated. Based on these studies, a model is proposed in which the shortening of telomeres results in an increased mobility that could facilitate the formation of complexes between telomeres and PML-NBs.
Collapse
Affiliation(s)
- Thibaud Jegou
- *Research Group Genome Organization and Function
- BioQuant, 69120 Heidelberg, Germany; and
| | - Inn Chung
- *Research Group Genome Organization and Function
- BioQuant, 69120 Heidelberg, Germany; and
| | - Gerrit Heuvelman
- *Research Group Genome Organization and Function
- BioQuant, 69120 Heidelberg, Germany; and
| | - Malte Wachsmuth
- European Molecular Biology Laboratory, Cell Biology/Biophysics Unit, 69117 Heidelberg, Germany
| | | | - Karin M. Greulich-Bode
- Division of Genetics of Skin Carcinogenesis, Deutsches Krebsforschungszentrum, 69120 Heidelberg, Germany
| | - Petra Boukamp
- Division of Genetics of Skin Carcinogenesis, Deutsches Krebsforschungszentrum, 69120 Heidelberg, Germany
| | | | - Karsten Rippe
- *Research Group Genome Organization and Function
- BioQuant, 69120 Heidelberg, Germany; and
| |
Collapse
|
15
|
Rubtsov NB, Karamisheva TV, Minina YM, Zhdanova NS. Three-dimensional organization of interphase fibroblast nuclei in two closely related shrew species (Sorex granarius and Sorex araneus) differing in the structures of their chromosome termini. ACTA ACUST UNITED AC 2008. [DOI: 10.1134/s1990519x08030024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Tsai YT, Lin CI, Chen HK, Lee KM, Hsu CY, Yang SJ, Yeh NH. Chromatin tethering effects of hNopp140 are involved in the spatial organization of nucleolus and the rRNA gene transcription. J Biomed Sci 2008; 15:471-86. [PMID: 18253863 PMCID: PMC2440943 DOI: 10.1007/s11373-007-9226-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Accepted: 11/23/2007] [Indexed: 11/29/2022] Open
Abstract
The short arms of five human acrocentric chromosomes contain ribosomal gene (rDNA) clusters where numerous mini-nucleoli arise at the exit of mitosis. These small nucleoli tend to coalesce into one or a few large nucleoli during interphase by unknown mechanisms. Here, we demonstrate that the N- and C-terminal domains of a nucleolar protein, hNopp140, bound respectively to alpha-satellite arrays and rDNA clusters of acrocentric chromosomes for nucleolar formation. The central acidic-and-basic repeated domain of hNopp140, possessing a weak self-self interacting ability, was indispensable for hNopp140 to build up a nucleolar round-shaped structure. The N- or the C-terminally truncated hNopp140 caused nucleolar segregation and was able to alter locations of the rDNA transcription, as mediated by detaching the rDNA repeats from the acrocentric alpha-satellite arrays. Interestingly, an hNopp140 mutant, made by joining the N- and C-terminal domains but excluding the entire central repeated region, induced nucleolar disruption and global chromatin condensation. Furthermore, RNAi knockdown of hNopp140 resulted in dispersion of the rDNA and acrocentric alpha-satellite sequences away from nucleolus that was accompanied by rDNA transcriptional silence. Our findings indicate that hNopp140, a scaffold protein, is involved in the nucleolar assembly, fusion, and maintenance.
Collapse
Affiliation(s)
- Yi-Tzang Tsai
- School of Life Science, Institute of Microbiology and Immunology, National Yang-Ming University, 155 Li-Nong Street Sec. 2, Taipei, 112, Taiwan
| | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Recent advances have demonstrated that placing genes in a specific nuclear context plays an important role in the regulation of coordinated gene expression, thus adding an additional level of complexity to the mechanisms of gene regulation. Differentiation processes are characterized by dynamic changes in gene activation and silencing. These alterations are often accompanied by gene relocations in relation to other genomic regions or to nuclear compartments. Unraveling of mechanisms and dynamics of chromatin positioning will thus expand our knowledge about cellular differentiation.
Collapse
Affiliation(s)
- Christian Schöfer
- Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstr. 17, 1090 Vienna, Austria.
| | | |
Collapse
|
18
|
Zhdanova NS, Minina JM, Karamisheva TV, Draskovic I, Rubtsov NB, Londoño-Vallejo JA. The very long telomeres in Sorex granarius (Soricidae, Eulipothyphla) contain ribosomal DNA. Chromosome Res 2007; 15:881-90. [PMID: 17899406 DOI: 10.1007/s10577-007-1170-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Revised: 08/03/2007] [Accepted: 08/03/2007] [Indexed: 01/13/2023]
Abstract
Two closely related shrew species, Sorex granarius and Sorex araneus, in which Robertsonian rearrangements have played a primary role in karyotype evolution, present very distinct telomere length patterns. S. granarius displays hyperlong telomeres specifically associated with the short arms of acrocentrics, whereas telomere lengths in S. araneus are rather short and homogenous. Using a combined approach of chromosome and fibre FISH, modified Q-FISH, 3D-FISH, Ag-NOR staining and TRF analysis, we carried out a comparative analysis of telomeric repeats and rDNA distribution on chromosome ends of Sorex granarius. Our results show that rDNA sequences forming active nuclear organizing regions are interspersed with the long telomere tracts of all short arms of acrocentrics. These observations suggest that the major rearrangements that gave rise to today's karyotype in S. granarius were accompanied by a profound reorganization of chromosome ends, which comprised extensive amplification of telomeric and rDNA repeats on the short arms of acrocentrics and finally contributed to the stabilization of telomeres. This is the first time that such telomeric structures have been observed in any mammalian species.
Collapse
Affiliation(s)
- Natalia S Zhdanova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | | | | | | | | | | |
Collapse
|
19
|
Bolzán AD, Bianchi MS. Telomeres, interstitial telomeric repeat sequences, and chromosomal aberrations. Mutat Res 2006; 612:189-214. [PMID: 16490380 DOI: 10.1016/j.mrrev.2005.12.003] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2005] [Revised: 12/29/2005] [Accepted: 12/30/2005] [Indexed: 11/18/2022]
Abstract
Telomeres are specialized nucleoproteic complexes localized at the physical ends of linear eukaryotic chromosomes that maintain their stability and integrity. The DNA component of telomeres is characterized by being a G-rich double stranded DNA composed by short fragments tandemly repeated with different sequences depending on the species considered. At the chromosome level, telomeres or, more properly, telomeric repeats--the DNA component of telomeres--can be detected either by using the fluorescence in situ hybridization (FISH) technique with a DNA or a peptide nucleic acid (PNA) (pan)telomeric probe, i.e., which identifies simultaneously all of the telomeres in a metaphase cell, or by the primed in situ labeling (PRINS) reaction using an oligonucleotide primer complementary to the telomeric DNA repeated sequence. Using these techniques, incomplete chromosome elements, acentric fragments, amplification and translocation of telomeric repeat sequences, telomeric associations and telomeric fusions can be identified. In addition, chromosome orientation (CO)-FISH allows to discriminate between the different types of telomeric fusions, namely telomere-telomere and telomere-DNA double strand break fusions and to detect recombination events at the telomere, i.e., telomeric sister-chromatid exchanges (T-SCE). In this review, we summarize our current knowledge of chromosomal aberrations involving telomeres and interstitial telomeric repeat sequences and their induction by physical and chemical mutagens. Since all of the studies on the induction of these types of aberrations were conducted in mammalian cells, the review will be focused on the chromosomal aberrations involving the TTAGGG sequence, i.e., the telomeric repeat sequence that "caps" the chromosomes of all vertebrate species.
Collapse
Affiliation(s)
- Alejandro D Bolzán
- Laboratorio de Citogenética y Mutagénesis, Instituto Multidisciplinario de Biología Celular (IMBICE), C.C. 403, 1900 La Plata, Argentina.
| | - Martha S Bianchi
- Laboratorio de Citogenética y Mutagénesis, Instituto Multidisciplinario de Biología Celular (IMBICE), C.C. 403, 1900 La Plata, Argentina
| |
Collapse
|
20
|
Jády BE, Richard P, Bertrand E, Kiss T. Cell cycle-dependent recruitment of telomerase RNA and Cajal bodies to human telomeres. Mol Biol Cell 2005; 17:944-54. [PMID: 16319170 PMCID: PMC1356602 DOI: 10.1091/mbc.e05-09-0904] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Telomerase is a ribonucleoprotein enzyme that counteracts replicative telomere erosion by adding telomeric sequence repeats onto chromosome ends. Despite its well-established role in telomere synthesis, telomerase has not yet been detected at telomeres. The RNA component of human telomerase (hTR) resides in the nucleoplasmic Cajal bodies (CBs) of interphase cancer cells. Here, in situ hybridization demonstrates that in human HeLa and Hep2 S phase cells, besides accumulating in CBs, hTR specifically concentrates at a few telomeres that also accumulate the TRF1 and TRF2 telomere marker proteins. Surprisingly, telomeres accumulating hTR exhibit a great accessibility for in situ oligonucleotide hybridization without chromatin denaturation, suggesting that they represent a structurally distinct, minor subset of HeLa telomeres. Moreover, we demonstrate that more than 25% of telomeres accumulating hTR colocalize with CBs. Time-lapse fluorescence microscopy demonstrates that CBs moving in the nucleoplasm of S phase cells transiently associate for 10-40 min with telomeres. Our data raise the intriguing possibility that CBs may deliver hTR to telomeres and/or may function in other aspects of telomere maintenance.
Collapse
Affiliation(s)
- Beáta E Jády
- Laboratoire de Biologie Moléculaire Eucaryote du CNRS, UMR5099, IFR109, 31062 Toulouse, France
| | | | | | | |
Collapse
|
21
|
Foster HA, Bridger JM. The genome and the nucleus: a marriage made by evolution. Genome organisation and nuclear architecture. Chromosoma 2005; 114:212-29. [PMID: 16133352 DOI: 10.1007/s00412-005-0016-6] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2005] [Revised: 06/29/2005] [Accepted: 07/04/2005] [Indexed: 01/15/2023]
Abstract
Genomes are housed within cell nuclei as individual chromosome territories. Nuclei contain several architectural structures that interact and influence the genome. In this review, we discuss how the genome may be organised within its nuclear environment with the position of chromosomes inside nuclei being either influenced by gene density or by chromosomes size. We compare interphase genome organisation in diverse species and reveal similarities and differences between evolutionary divergent organisms. Genome organisation is also discussed with relevance to regulation of gene expression, development and differentiation and asks whether large movements of whole chromosomes are really observed during differentiation. Literature and data describing alterations to genome organisation in disease are also discussed. Further, the nuclear structures that are involved in genome function are described, with reference to what happens to the genome when these structures contain protein from mutant genes as in the laminopathies.
Collapse
Affiliation(s)
- Helen A Foster
- Laboratory of Nuclear and Genomic Health, Cell and Chromosome Biology Group, Division of Biosciences, School of Health Sciences and Social Care, Brunel University, Uxbridge UB8 3PH, UK
| | | |
Collapse
|
22
|
Tolstonog GV, Li G, Shoeman RL, Traub P. Interaction in vitro of type III intermediate filament proteins with higher order structures of single-stranded DNA, particularly with G-quadruplex DNA. DNA Cell Biol 2005; 24:85-110. [PMID: 15699629 DOI: 10.1089/dna.2005.24.85] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cytoplasmic intermediate filament (cIF) proteins interact strongly with single-stranded (ss) DNAs and RNAs, particularly with G-rich sequences. To test the hypothesis that this interaction depends on special nucleotide sequences and, possibly, higher order structures of ssDNA, a random mixture of mouse genomic ssDNA fragments generated by a novel "whole ssDNA genome PCR" technique via RNA intermediates was subjected to three rounds of affinity binding to in vitro reconstituted vimentin IFs at physiological ionic strength with intermediate PCR amplification of the bound ssDNA segments. Nucleotide sequence and computer folding analysis of the vimentin-selected fragments revealed an enrichment in microsatellites, predominantly of the (GT)n type, telomere DNA, and C/T-rich sequences, most of which, however, were incapable of folding into stable stem-loop structures. Because G-rich sequences were underrepresented in the vimentin-bound fraction, it had to be assumed that such sequences require intramolecular folding or lateral assembly into multistrand structures to be able to stably interact with vimentin, but that this requirement was inadequately fulfilled under the conditions of the selection experiment. For that reason, the few vimentin-selected G-rich ssDNA fragments and a number of telomere models were analyzed for their capacity to form inter- and intramolecular Gquadruplexes (G4 DNAs) under optimized conditions and to interact as such with vimentin and its type III relatives, glial fibrillary acidic protein, and desmin. Band shift assays indeed demonstrated differential binding of the cIF proteins to parallel four-stranded G4 DNAs and, with lower affinity, to bimolecular G'2 and unimolecular G'4 DNA configurations, whereby the transition regions from four- to single-strandedness played an additional role in the binding reaction. In this respect, the binding activity of cIF proteins was comparable with that toward other noncanonical DNA structures, like ds/ss DNA forks, triplex DNA, four-way junction DNA and Z-DNA, which also involve configurational transitions in their interaction with the filament proteins. Association of the cIF proteins with the corresponding nonfolded G-rich ssDNAs was negligible. Considering the almost universal involvement of ssDNA regions and G-quadruplexes in nuclear processes, including DNA transcription and recombination as well as telomere maintenance and dynamics, it is plausible to presume that cIF proteins as complementary constituents of the nuclear matrix participate in the cell- and tissue-specific regulation of these processes.
Collapse
|
23
|
Tam R, Smith KP, Lawrence JB. The 4q subtelomere harboring the FSHD locus is specifically anchored with peripheral heterochromatin unlike most human telomeres. ACTA ACUST UNITED AC 2004; 167:269-79. [PMID: 15504910 PMCID: PMC2172553 DOI: 10.1083/jcb.200403128] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This paper investigates the nuclear localization of human telomeres and, specifically, the 4q35 subtelomere mutated in facioscapulohumeral dystrophy (FSHD). FSHD is a common muscular dystrophy that has been linked to contraction of D4Z4 tandem repeats, widely postulated to affect distant gene expression. Most human telomeres, such as 17q and 17p, avoid the nuclear periphery to reside within the internal, euchromatic compartment. In contrast, 4q35 localizes at the peripheral heterochromatin with 4p more internal, generating a reproducible chromosome orientation that we relate to gene expression profiles. Studies of hybrid and translocation cell lines indicate this localization is inherent to the distal tip of 4q. Investigation of heterozygous FSHD myoblasts demonstrated no significant displacement of the mutant allele from the nuclear periphery. However, consistent association of the pathogenic D4Z4 locus with the heterochromatic compartment supports a potential role in regulating the heterochromatic state and makes a telomere positioning effect more likely. Furthermore, D4Z4 repeats on other chromosomes also frequently organize with the heterochromatic compartment at the nuclear or nucleolar periphery, demonstrating a commonality among chromosomes harboring this subtelomere repeat family.
Collapse
Affiliation(s)
- Rose Tam
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | | |
Collapse
|
24
|
Molenaar C, Wiesmeijer K, Verwoerd NP, Khazen S, Eils R, Tanke HJ, Dirks RW. Visualizing telomere dynamics in living mammalian cells using PNA probes. EMBO J 2004; 22:6631-41. [PMID: 14657034 PMCID: PMC291828 DOI: 10.1093/emboj/cdg633] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Chromosome ends are protected from degradation by the presence of the highly repetitive hexanucleotide sequence of TTAGGG and associated proteins. These so-called telomeric complexes are suggested to play an important role in establishing a functional nuclear chromatin organization. Using peptide nucleic acid (PNA) probes, we studied the dynamic behavior of telomeric DNA repeats in living human osteosarcoma U2OS cells. A fluorescent cy3-labeled PNA probe was introduced in living cells by glass bead loading and was shown to specifically associate with telomeric DNA shortly afterwards. Telomere dynamics were imaged for several hours using digital fluorescence microscopy. While the majority of telomeres revealed constrained diffusive movement, individual telomeres in a human cell nucleus showed significant directional movements. Also, a subfraction of telomeres were shown to associate and dissociate, suggesting that in vivo telomere clusters are not stable but dynamic structures. Furthermore, telomeres were shown to associate with promyelocytic leukemia (PML) bodies in a dynamic manner.
Collapse
Affiliation(s)
- Chris Molenaar
- Department of Molecular Cell Biology, Leiden University Medical Center, 2333 AL Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
25
|
Amrichová J, Lukásová E, Kozubek S, Kozubek M. Nuclear and territorial topography of chromosome telomeres in human lymphocytes. Exp Cell Res 2003; 289:11-26. [PMID: 12941600 DOI: 10.1016/s0014-4827(03)00208-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Nuclear and territorial positioning of p- and q-telomeres and centromeres of chromosomes 3, 8, 9, 13, and 19 were studied by repeated fluorescence in situ hybridization, high-resolution cytometry, and three-dimensional image analysis in human blood lymphocytes before and after stimulation. Telomeres were found on the opposite side of the territories as compared with the centromeres for all chromosome territories investigated. Mutual distances between telomeres of submetacentric chromosomes were very short, usually shorter than centromere-to-telomere distances, which means that the chromosome territory is nonrandomly folded. Telomeres are, on average, much nearer to the center of the cell nucleus than centromeres; q-telomeres were found, on average, more centrally localized as compared with p-telomeres. Consequently, we directly showed that chromosome territories in the cell nucleus are (1) polar and (2) partially oriented in cell nuclei. The distributions of genetic elements relative to chromosome territories (territorial distributions) can be either narrower or broader than their nuclear distributions, which reflects the degree of adhesion of an element to the territory or to the nucleus. We found no tethering of heterologous telomeres of chromosomes 8, 9, and 19. In contrast, both pairs of homologous telomeres of chromosome 19 (but not in other chromosomes) are tethered (associated) very frequently.
Collapse
MESH Headings
- Cell Compartmentation/genetics
- Cell Nucleus/genetics
- Cell Nucleus/ultrastructure
- Cell Polarity/genetics
- Centromere/genetics
- Chromosomes/genetics
- Chromosomes/ultrastructure
- Chromosomes, Human, Pair 13/genetics
- Chromosomes, Human, Pair 13/ultrastructure
- Chromosomes, Human, Pair 19/genetics
- Chromosomes, Human, Pair 19/ultrastructure
- Chromosomes, Human, Pair 3/genetics
- Chromosomes, Human, Pair 3/ultrastructure
- Chromosomes, Human, Pair 8/genetics
- Chromosomes, Human, Pair 8/ultrastructure
- Chromosomes, Human, Pair 9/genetics
- Chromosomes, Human, Pair 9/ultrastructure
- Humans
- Interphase/genetics
- Lymphocytes/cytology
- Lymphocytes/physiology
- Telomere/genetics
- Telomere/ultrastructure
Collapse
Affiliation(s)
- Jana Amrichová
- Laboratory of Optical Microscopy, Faculty of Informatics, Masaryk University, Botanická 68a, 602 00, Brno, Czech Republic
| | | | | | | |
Collapse
|
26
|
Loidl J. Chromosomes of the budding yeast Saccharomyces cerevisiae. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 222:141-96. [PMID: 12503849 DOI: 10.1016/s0074-7696(02)22014-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The mitotic chromosomes of the baker's yeast, Saccharomyces cerevisiae, cannot be visualized by standard cytological methods. Only the study of meiotic bivalents and the synaptonemal complex and the visualization of chromosome-sized DNA molecules on pulsed-field gels have provided some insight into chromosome structure and behavior. More recently, advanced techniques such as in situ hybridization, the illumination of chromosomal loci by GFP-tagged DNA-binding proteins, and immunostaining of chromosomal proteins have promoted our knowledge about yeast chromosomes. These novel cytological approaches in combination with the yeast's advanced biochemistry and genetics have produced a great wealth of information on the interplay between molecular and cytological processes and have strengthened the role of yeast as a leading cell biological model organism. Recent cytological studies have revealed much about the chromosomal organization in interphase nuclei and have contributed significantly to our current understanding of chromosome condensation, sister chromatid cohesion, and centromere orientation in mitosis. Moreover, important details about the biochemistry and ultrastructure of meiotic pairing and recombination have been revealed by combined cytological and molecular approaches. This article covers several aspects of yeast chromosome structure, including their organization within interphase nuclei and their behavior during mitosis and meiosis.
Collapse
Affiliation(s)
- Josef Loidl
- Institute of Botany, University of Vienna, A-1030 Vienna, Austria
| |
Collapse
|
27
|
Tolstonog GV, Sabasch M, Traub P. Cytoplasmic intermediate filaments are stably associated with nuclear matrices and potentially modulate their DNA-binding function. DNA Cell Biol 2002; 21:213-39. [PMID: 12015898 DOI: 10.1089/10445490252925459] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The tight association of cytoplasmic intermediate filaments (cIFs) with the nucleus and the isolation of crosslinkage products of vimentin with genomic DNA fragments, including nuclear matrix attachment regions (MARs) from proliferating fibroblasts, point to a participation of cIFs in nuclear activities. To test the possibility that cIFs are complementary nuclear matrix elements, the nuclei of a series of cultured cells were subjected to the Li-diiodosalicylate (LIS) extraction protocol developed for the preparation of nuclear matrices and analyzed by immunofluorescence microscopy and immunoblotting with antibodies directed against lamin B and cIF proteins. When nuclei released from hypotonically swollen L929 suspension cells in the presence of digitonin or Triton X-100 were exposed to such strong shearing forces that a considerable number were totally disrupted, a thin, discontinuous layer of vimentin IFs remained tenaciously adhering to still intact nuclei, in apparent coalignment with the nuclear lamina. Even in broken nuclei, the distribution of vimentin followed that of lamin B in areas where the lamina still appeared intact. The same retention of vimentin together with desmin and glial IFs was observed on the nuclei isolated from differentiating C2C12 myoblast and U333 glioma cells, respectively. Nuclei from epithelial cells shed their residual perinuclear IF layers as coherent cytoskeletal ghosts, except for small fractions of vimentin and cytokeratin IFs, which remained in a dot-to cap-like arrangement on the nuclear surface, in apparent codistribution with lamin B. LIS extraction did not bring about a reduction in the cIF protein contents of such nuclei upon their transformation into nuclear matrices. Moreover, in whole mount preparations of mouse embryo fibroblasts, DNA/chromatin emerging from nuclei during LIS extraction mechanically and chemically cleaned the nuclear surface and perinuclear area from loosely anchored cytoplasmic material with the production of broad, IF-free annular spaces, but left substantial fractions of the vimentin IFs in tight association with the nuclear surface. Accordingly, double-immunogold electron microscopy of fixed and permeabilized fibroblasts disclosed a close neighborhood of vimentin IFs and lamin B, with a minimal distance between the nanogold particles of ca. 30 nm. These data indicate an extremely solid interconnection of cIFs with structural elements of the nuclear matrix, and make them, together with their susceptibility to crosslinkage to MARs and other genomic DNA sequences under native conditions, complementary or even integral constituents of the karyoskeleton.
Collapse
|
28
|
Schwarzacher HG, Mosgoeller W. Ribosome biogenesis in man: current views on nucleolar structures and function. CYTOGENETICS AND CELL GENETICS 2001; 91:243-52. [PMID: 11173865 DOI: 10.1159/000056853] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Nucleoli develop when preribosomes are synthesized at the chromosomal nucleolar organizer regions. Typically they consist of at least three nucleolar subcompartments, the fibrillar center (FC), the dense fibrillar component (DF), and the granular component (GC). The understanding of the functional arrangements of these subcompartments relates to aspects in cell biology, pathology, and virus research. In the present review morphological studies are discussed in the light of molecular findings. The available data confirm the hypothesis that rDNA transcription is connected with the DF but not necessarily with the presence of an FC. Within the DF, rDNA transcription is restricted to foci, possibly representing single transcribing genes. FCs may serve to store inactive transcription factors, to initiate rDNA transcription, and may provide structural support for transcription. The GC can be interpreted as a collection of maturing preribosomes. More recently the nucleolar subcompartments were focused on in the context of virus research and tumor biology.
Collapse
|
29
|
Cowan CR, Carlton PM, Cande WZ. The polar arrangement of telomeres in interphase and meiosis. Rabl organization and the bouquet. PLANT PHYSIOLOGY 2001; 125:532-8. [PMID: 11161011 PMCID: PMC1539364 DOI: 10.1104/pp.125.2.532] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Affiliation(s)
- C R Cowan
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
| | | | | |
Collapse
|
30
|
Nagele RG, Velasco AQ, Anderson WJ, McMahon DJ, Thomson Z, Fazekas J, Wind K, Lee H. Telomere associations in interphase nuclei: possible role in maintenance of interphase chromosome topology. J Cell Sci 2001; 114:377-88. [PMID: 11148139 DOI: 10.1242/jcs.114.2.377] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The relative sizes of individual telomeres in cultured human cells under conditions of cell cycling, replicative quiescence, cell transformation and immortalization were determined using quantitative fluorescence in situ hybridization (Q-FISH) with a telomere-specific peptide nucleic acid (PNA) probe. Results obtained from analysis of telomere length profiles (TLPs), which display the distribution of relative telomere lengths for individual cells, confirmed telomere length heterogeneity at the single cell level and proportional shortening of telomere length during replicative aging of virus-transformed cells. TLPs also revealed that some telomeric ends of chromosomes are so closely juxtaposed within interphase nuclei that their fluorescent signals appear as a single spot. These telomeric associations (TAs) were far more prevalent in interphase nuclei of noncycling normal and virus-transformed cells than in their cycling counterparts. The number of interphase TAs per nucleus observed in late-passage E6/E7-transformed cells did not increase during progression to crisis, suggesting that telomere shortening does not increase the frequency of interphase TAs. Furthermore, interphase TAs were rarely observed in rapidly cycling, telomerase-positive, immortalized cells that exhibit somewhat shortened, but stabilized, telomere length through the activity of telomerase. Our overall results suggest that the number of interphase TAs is dependent more on whether or not cells are cycling than on telomere length, with TAs being most prominent in the nuclei of replicatively quiescent cells in which nonrandom (even preferred) chromosome spatial arrangements have been observed. We propose that interphase TAs may play a role in the generation and/or maintenance of nuclear architecture and chromosome positional stability in interphase nuclei, especially in cells with a prolonged G(1)/G(0) phase and possibly in terminally differentiated cells.
Collapse
Affiliation(s)
- R G Nagele
- Department of Molecular Biology, University of Medicine and Dentistry of New Jersey - School of Osteopathic Medicine, Stratford, New Jersey 08084, USA.
| | | | | | | | | | | | | | | |
Collapse
|