1
|
Kriegler M, Herrero S, Fischer R. Where to grow and where to go. Fungal Genet Biol 2025; 178:103983. [PMID: 40187481 DOI: 10.1016/j.fgb.2025.103983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/21/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
Filamentous fungi grow as very elongated tubular cells that extend by membrane extension and cell-wall biosynthesis. Membrane and enzyme delivery depend on secretory vesicles that travel along microtubules, accumulate in a structure called the Spitzenkörper and then move along actin cables towards the apical membrane. Whereas vesicle fusion and membrane insertion are well studied, less is known about the mechanisms with which the zones of vesicle fusion and hence the growth zones are defined. One mechanism by which polarity is established and maintained is the polar localization of cell-end marker proteins (CEMPs). They form multi-protein complexes with formin as F-actin polymerase. CEMP delivery depends on microtubules, and hence CEMPs coordinate the microtubule with the actin cytoskeleton. Actin filaments capture microtubule ends, and this positive feedback loop quickly establishes active growth sites. However, CEMP complexes are self-limiting, because fusing vesicles disturb local growth zones and Ca2+ influx pulses lead to F-actin disassembly. This model emerged from studies in Schizosaccharomyces pombe and Aspergillus nidulans. Surprisingly, deletion of CEMP-coding genes is not lethal. S. pombe mutants form T-shaped cells and A. nidulans germlings grow less straight. In comparison, CEMP-mutants had a strong phenotype in Arthrobotrys flagrans, a nematode-trapping fungus, which produces ring-like trapping structures. CEMP-mutants fail to form adhesive rings and instead form sticks. CEMP overexpression caused a hyperbranching phenotype. Hence, CEMPs are involved in polarity maintenance and play critical roles during modulations of polarity. Here, we are going to discuss the functions of CEMPs and their connections to other polarity determinants.
Collapse
Affiliation(s)
- Marius Kriegler
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Dept. of Microbiology, Fritz-Haber-Weg 4, D-76131 Karlsruhe, Germany
| | - Satur Herrero
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Dept. of Microbiology, Fritz-Haber-Weg 4, D-76131 Karlsruhe, Germany
| | - Reinhard Fischer
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Dept. of Microbiology, Fritz-Haber-Weg 4, D-76131 Karlsruhe, Germany.
| |
Collapse
|
2
|
Garcia P, Celador R, Edreira T, Sanchez Y. Rho1 and Rgf1 establish a new actin-dependent signal to determine growth poles in yeast independently of microtubules and the Tea1-Tea4 complex. PLoS Biol 2024; 22:e3002491. [PMID: 39509469 PMCID: PMC11602027 DOI: 10.1371/journal.pbio.3002491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 11/27/2024] [Accepted: 10/13/2024] [Indexed: 11/15/2024] Open
Abstract
Cellular asymmetry begins with the selection of a discrete point on the cell surface that triggers Rho-GTPases activation and localized assembly of the cytoskeleton to establish new growth zones. The cylindrical shape of fission yeast is organized by microtubules (MT) that deliver the landmark Tea1-Tea4 complex at the cell tips to define the growth poles. However, only a few tea1Δ cells mistaken the direction of growth, indicating that they manage to detect their growth sites. Here, we show that Rgf1 (Rho1-GEF) and Tea4 are components of the same complex and that Rgf1 activity toward Rho1 is required for strengthen Tea4 at the cell tips. Moreover, in cells lacking Tea1, selection of the correct growth site depends on Rgf1 and on a correctly polarized actin cytoskeleton, both necessary for Rho1 activation at the pole. We propose an actin-dependent mechanism driven by Rgf1-Rho1 that marks the poles independently of MTs and the Tea1-Tea4 complex.
Collapse
Affiliation(s)
- Patricia Garcia
- Instituto de Biología Funcional y Genómica (IBFG), CSIC/Universidad de Salamanca and Departamento de Microbiología y Genética, Universidad de Salamanca. C/ Zacarías González, Salamanca, Spain
| | - Ruben Celador
- Instituto de Biología Funcional y Genómica (IBFG), CSIC/Universidad de Salamanca and Departamento de Microbiología y Genética, Universidad de Salamanca. C/ Zacarías González, Salamanca, Spain
| | - Tomas Edreira
- Instituto de Biología Funcional y Genómica (IBFG), CSIC/Universidad de Salamanca and Departamento de Microbiología y Genética, Universidad de Salamanca. C/ Zacarías González, Salamanca, Spain
| | - Yolanda Sanchez
- Instituto de Biología Funcional y Genómica (IBFG), CSIC/Universidad de Salamanca and Departamento de Microbiología y Genética, Universidad de Salamanca. C/ Zacarías González, Salamanca, Spain
| |
Collapse
|
3
|
Ramos M, Martín-García R, Curto MÁ, Gómez-Delgado L, Moreno MB, Sato M, Portales E, Osumi M, Rincón SA, Pérez P, Ribas JC, Cortés JC. Fission yeast Bgs1 glucan synthase participates in the control of growth polarity and membrane traffic. iScience 2024; 27:110477. [PMID: 39156640 PMCID: PMC11326927 DOI: 10.1016/j.isci.2024.110477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/14/2024] [Accepted: 07/05/2024] [Indexed: 08/20/2024] Open
Abstract
Rod-shaped fission yeast grows through cell wall expansion at poles and septum, synthesized by essential glucan synthases. Bgs1 synthesizes the linear β(1,3)glucan of primary septum at cytokinesis. Linear β(1,3)glucan is also present in the wall poles, suggesting additional Bgs1 roles in growth polarity. Our study reveals an essential collaboration between Bgs1 and Tea1-Tea4, but not other polarity factors, in controlling growth polarity. Simultaneous absence of Bgs1 function and Tea1-Tea4 causes complete loss of growth polarity, spread of other glucan synthases, and spherical cell formation, indicating this defect is specifically due to linear β(1,3)glucan absence. Furthermore, linear β(1,3)glucan absence induces actin patches delocalization and sterols spread, which are ultimately responsible for the growth polarity loss without Tea1-Tea4. This suggests strong similarities in Bgs1 functions controlling actin structures during cytokinesis and polarized growth. Collectively, our findings unveil that cell wall β(1,3)glucan regulates polarized growth, like the equivalent extracellular matrix in neuronal cells.
Collapse
Affiliation(s)
- Mariona Ramos
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad de Salamanca, Salamanca, Spain
| | - Rebeca Martín-García
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad de Salamanca, Salamanca, Spain
| | - M. Ángeles Curto
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad de Salamanca, Salamanca, Spain
| | - Laura Gómez-Delgado
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad de Salamanca, Salamanca, Spain
| | - M. Belén Moreno
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad de Salamanca, Salamanca, Spain
| | - Mamiko Sato
- Laboratory of Electron Microscopy and Bio-imaging Center, Japan Women’s University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo, Japan
| | - Elvira Portales
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad de Salamanca, Salamanca, Spain
| | - Masako Osumi
- Laboratory of Electron Microscopy and Bio-imaging Center, Japan Women’s University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo, Japan
- Integrated Imaging Research Support (IIRS), Villa Royal Hirakawa 103, 1-7-5 Hirakawa-cho, Chiyoda-ku, Tokyo, Japan
| | - Sergio A. Rincón
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad de Salamanca, Salamanca, Spain
| | - Pilar Pérez
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad de Salamanca, Salamanca, Spain
| | - Juan C. Ribas
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad de Salamanca, Salamanca, Spain
| | - Juan C.G. Cortés
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
4
|
Meier SM, Steinmetz MO, Barral Y. Microtubule specialization by +TIP networks: from mechanisms to functional implications. Trends Biochem Sci 2024; 49:318-332. [PMID: 38350804 DOI: 10.1016/j.tibs.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/23/2023] [Accepted: 01/12/2024] [Indexed: 02/15/2024]
Abstract
To fulfill their actual cellular role, individual microtubules become functionally specialized through a broad range of mechanisms. The 'search and capture' model posits that microtubule dynamics and functions are specified by cellular targets that they capture (i.e., a posteriori), independently of the microtubule-organizing center (MTOC) they emerge from. However, work in budding yeast indicates that MTOCs may impart a functional identity to the microtubules they nucleate, a priori. Key effectors in this process are microtubule plus-end tracking proteins (+TIPs), which track microtubule tips to regulate their dynamics and facilitate their targeted interactions. In this review, we discuss potential mechanisms of a priori microtubule specialization, focusing on recent findings indicating that +TIP networks may undergo liquid biomolecular condensation in different cell types.
Collapse
Affiliation(s)
- Sandro M Meier
- Institute of Biochemistry, Department of Biology, and Bringing Materials to Life Initiative, ETH Zürich, Switzerland; Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen, Switzerland; Bringing Materials to Life Initiative, ETH Zürich, Switzerland
| | - Michel O Steinmetz
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen, Switzerland; University of Basel, Biozentrum, CH-4056 Basel, Switzerland.
| | - Yves Barral
- Institute of Biochemistry, Department of Biology, and Bringing Materials to Life Initiative, ETH Zürich, Switzerland; Bringing Materials to Life Initiative, ETH Zürich, Switzerland.
| |
Collapse
|
5
|
Bellingham-Johnstun K, Thorn A, Belmonte JM, Laplante C. Microtubule competition and cell growth recenter the nucleus after anaphase in fission yeast. Mol Biol Cell 2023; 34:ar77. [PMID: 37099380 PMCID: PMC10398876 DOI: 10.1091/mbc.e23-01-0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 04/27/2023] Open
Abstract
Cells actively position their nuclei based on their activity. In fission yeast, microtubule-dependent nuclear centering is critical for symmetrical cell division. After spindle disassembly at the end of anaphase, the nucleus recenters over an ∼90-min period, approximately half of the duration of the cell cycle. Live-cell and simulation experiments support the cooperation of two distinct microtubule competition mechanisms in the slow recentering of the nucleus. First, a push-push mechanism acts from spindle disassembly to septation and involves the opposing actions of the mitotic spindle pole body microtubules that push the nucleus away from the ends of the cell, while a postanaphase array of microtubules baskets the nucleus and limits its migration toward the division plane. Second, a slow-and-grow mechanism slowly centers the nucleus in the newborn cell by a combination of microtubule competition and asymmetric cell growth. Our work underlines how intrinsic properties of microtubules differently impact nuclear positioning according to microtubule network organization and cell size.
Collapse
Affiliation(s)
- Kimberly Bellingham-Johnstun
- Molecular Biomedical Sciences Department, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607
- Quantitative and Computational Developmental Biology Cluster, North Carolina State University, Raleigh, NC 27607
| | - Annelise Thorn
- Molecular Biomedical Sciences Department, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607
- Quantitative and Computational Developmental Biology Cluster, North Carolina State University, Raleigh, NC 27607
| | - Julio M. Belmonte
- Quantitative and Computational Developmental Biology Cluster, North Carolina State University, Raleigh, NC 27607
- Physics Department, College of Sciences, North Carolina State University, Raleigh, NC 27607
| | - Caroline Laplante
- Molecular Biomedical Sciences Department, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607
- Quantitative and Computational Developmental Biology Cluster, North Carolina State University, Raleigh, NC 27607
| |
Collapse
|
6
|
Yoshida MW, Hakozaki M, Goshima G. Armadillo repeat-containing kinesin represents the versatile plus-end-directed transporter in Physcomitrella. NATURE PLANTS 2023; 9:733-748. [PMID: 37142749 DOI: 10.1038/s41477-023-01397-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 03/21/2023] [Indexed: 05/06/2023]
Abstract
Kinesin-1, also known as conventional kinesin, is widely used for microtubule plus-end-directed (anterograde) transport of various cargos in animal cells. However, a motor functionally equivalent to the conventional kinesin has not been identified in plants, which lack the kinesin-1 genes. Here we show that plant-specific armadillo repeat-containing kinesin (ARK) is the long sought-after versatile anterograde transporter in plants. In ARK mutants of the moss Physcomitrium patens, the anterograde motility of nuclei, chloroplasts, mitochondria and secretory vesicles was suppressed. Ectopic expression of non-motile or tail-deleted ARK did not restore organelle distribution. Another prominent macroscopic phenotype of ARK mutants was the suppression of cell tip growth. We showed that this defect was attributed to the mislocalization of actin regulators, including RopGEFs; expression and forced apical localization of RopGEF3 partially rescued the growth phenotype of the ARK mutant. The mutant phenotypes were partially rescued by ARK homologues in Arabidopsis thaliana, suggesting the conservation of ARK functions in plants.
Collapse
Affiliation(s)
- Mari W Yoshida
- Department of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Maya Hakozaki
- Department of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Gohta Goshima
- Department of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan.
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, Toba, Japan.
| |
Collapse
|
7
|
Bellingham-Johnstun K, Thorn A, Belmonte J, Laplante C. Microtubule competition and cell growth recenter the nucleus after anaphase in fission yeast. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.31.526443. [PMID: 36778333 PMCID: PMC9915666 DOI: 10.1101/2023.01.31.526443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Cells actively position their nucleus based on their activity. In fission yeast, microtubule-dependent nuclear centering is critical for symmetrical cell division. After spindle disassembly at the end of anaphase, the nucleus recenters over a ~90 min period, approximately half of the duration of the cell cycle. Live cell and simulation experiments support the cooperation of two distinct mechanisms in the slow recentering of the nucleus. First, a push-push mechanism acts from spindle disassembly to septation and involves the opposing actions of the mitotic Spindle Pole Body microtubules that push the nucleus away from the ends of the cell while post-anaphase array of microtubules basket the nucleus and limit its migration toward the division plane. Second, a slow-and-grow mechanism finalizes nuclear centering in the newborn cell. In this mechanism, microtubule competition stalls the nucleus while asymmetric cell growth slowly centers it. Our work underlines how intrinsic properties of microtubules differently impact nuclear positioning according to microtubule network organization and cell size.
Collapse
|
8
|
Chacko LA, Mikus F, Ariotti N, Dey G, Ananthanarayanan V. Microtubule-mitochondrial attachment facilitates cell division symmetry and mitochondrial partitioning in fission yeast. J Cell Sci 2023; 136:286576. [PMID: 36633091 PMCID: PMC10112971 DOI: 10.1242/jcs.260705] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/29/2022] [Indexed: 01/13/2023] Open
Abstract
Association with microtubules inhibits the fission of mitochondria in Schizosaccharomyces pombe. Here, we show that this attachment of mitochondria to microtubules is an important cell-intrinsic factor in determining cell division symmetry. By comparing mutant cells that exhibited enhanced attachment and no attachment of mitochondria to microtubules (Dnm1Δ and Mmb1Δ, respectively), we show that microtubules in these mutants displayed aberrant dynamics compared to wild-type cells, which resulted in errors in nuclear positioning. This translated to cell division asymmetry in a significant proportion of both Dnm1Δ and Mmb1Δ cells. Asymmetric division in Dnm1Δ and Mmb1Δ cells resulted in unequal distribution of mitochondria, with the daughter cell that received more mitochondria growing faster than the other daughter cell. Taken together, we show the existence of homeostatic feedback controls between mitochondria and microtubules in fission yeast, which directly influence mitochondrial partitioning and, thereby, cell growth. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Leeba Ann Chacko
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru 560012, India
| | - Felix Mikus
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany.,Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, 69120 Heidelberg, Germany
| | - Nicholas Ariotti
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia
| | - Gautam Dey
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | | |
Collapse
|
9
|
Wang X, Zheng F, Yi YY, Wang GY, Hong LX, McCollum D, Fu C, Wang Y, Jin QW. Ubiquitination of CLIP-170 family protein restrains polarized growth upon DNA replication stress. Nat Commun 2022; 13:5565. [PMID: 36138017 PMCID: PMC9499959 DOI: 10.1038/s41467-022-33311-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 09/12/2022] [Indexed: 11/09/2022] Open
Abstract
Microtubules play a crucial role during the establishment and maintenance of cell polarity. In fission yeast cells, the microtubule plus-end tracking proteins (+TIPs) (including the CLIP-170 homologue Tip1) regulate microtubule dynamics and also transport polarity factors to the cell cortex. Here, we show that the E3 ubiquitin ligase Dma1 plays an unexpected role in controlling polarized growth through ubiquitinating Tip1. Dma1 colocalizes with Tip1 to cortical sites at cell ends, and is required for ubiquitination of Tip1. Although the absence of dma1+ does not cause apparent polar growth defects in vegetatively growing cells, Dma1-mediated Tip1 ubiquitination is required to restrain polar growth upon DNA replication stress. This mechanism is distinct from the previously recognized calcineurin-dependent inhibition of polarized growth. In this work, we establish a link between Dma1-mediated Tip1 ubiquitination and DNA replication or DNA damage checkpoint-dependent inhibition of polarized growth in fission yeast.
Collapse
Affiliation(s)
- Xi Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Fan Zheng
- School of Life Sciences, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Yuan-Yuan Yi
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Gao-Yuan Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Li-Xin Hong
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Dannel McCollum
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Chuanhai Fu
- School of Life Sciences, University of Science and Technology of China, Hefei, 230026, Anhui, China.
| | - Yamei Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China.
| | - Quan-Wen Jin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China.
| |
Collapse
|
10
|
A Kinesin Vdkin2 Required for Vacuole Formation, Mycelium Growth, and Penetration Structure Formation of Verticillium dahliae. J Fungi (Basel) 2022; 8:jof8040391. [PMID: 35448622 PMCID: PMC9030024 DOI: 10.3390/jof8040391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 12/18/2022] Open
Abstract
The soil-borne vascular fungus Verticillium dahliae infects hundreds of dicotyledonous plants, causing severe wilt diseases. During the initial colonization, V. dahliae develops a penetration peg to enable infection of cotton roots. In some phytopathogenic fungi, vacuoles play a critical role in normal formation of the infection structure. Kinesin 2 protein is associated with vacuole formation in Ustilago maydis. To identify the function of vacuoles in the V. dahliae infection structure, we identified VdKin2, an ortholog of kinesin 2, in V. dahliae and investigated its function through gene knockout. VdKin2 mutants showed severe defects in virulence and were suppressed during initial infection and root colonization based on observation of green fluorescent protein-labeled V. dahliae. We also found that deletion of VdKin2 compromised penetration peg formation and the derived septin neck. Disruption strains were viable and showed normal microsclerotia formation, whereas mycelium growth and conidial production were reduced, with shorter and more branched hyphae. Furthermore, the VdKin2 mutant, unlike wild-type V. dahliae, lacked a large basal vacuole, accompanied by a failure to generate concentrated lipid droplets. Taken together, VdKin2 regulates vacuole formation by V. dahliae, which is required for conidiation, mycelium growth, and penetration structure formation during initial plant root infection.
Collapse
|
11
|
Raudaskoski M. Kinesin Motors in the Filamentous Basidiomycetes in Light of the Schizophyllum commune Genome. J Fungi (Basel) 2022; 8:jof8030294. [PMID: 35330296 PMCID: PMC8950801 DOI: 10.3390/jof8030294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/03/2022] [Accepted: 03/08/2022] [Indexed: 12/10/2022] Open
Abstract
Kinesins are essential motor molecules of the microtubule cytoskeleton. All eukaryotic organisms have several genes encoding kinesin proteins, which are necessary for various cell biological functions. During the vegetative growth of filamentous basidiomycetes, the apical cells of long leading hyphae have microtubules extending toward the tip. The reciprocal exchange and migration of nuclei between haploid hyphae at mating is also dependent on cytoskeletal structures, including the microtubules and their motor molecules. In dikaryotic hyphae, resulting from a compatible mating, the nuclear location, synchronous nuclear division, and extensive nuclear separation at telophase are microtubule-dependent processes that involve unidentified molecular motors. The genome of Schizophyllum commune is analyzed as an example of a species belonging to the Basidiomycota subclass, Agaricomycetes. In this subclass, the investigation of cell biology is restricted to a few species. Instead, the whole genome sequences of several species are now available. The analyses of the mating type genes and the genes necessary for fruiting body formation or wood degrading enzymes in several genomes of Agaricomycetes have shown that they are controlled by comparable systems. This supports the idea that the genes regulating the cell biological process in a model fungus, such as the genes encoding kinesin motor molecules, are also functional in other filamentous Agaricomycetes.
Collapse
Affiliation(s)
- Marjatta Raudaskoski
- Molecular Plant Biology, Department of Life Technologies, University of Turku, 20014 Turku, Finland
| |
Collapse
|
12
|
Qu Y, Cao H, Huang P, Wang J, Liu X, Lu J, Lin FC. A kelch domain cell end protein, PoTea1, mediates cell polarization during appressorium morphogenesis in Pyricularia oryzae. Microbiol Res 2022; 259:126999. [DOI: 10.1016/j.micres.2022.126999] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 02/08/2022] [Accepted: 02/27/2022] [Indexed: 01/01/2023]
|
13
|
Chesnel F, Couturier A, Alusse A, Gagné JP, Poirier GG, Jean D, Boisvert FM, Hascoet P, Paillard L, Arlot-Bonnemains Y, Le Goff X. The prefoldin complex stabilizes the von Hippel-Lindau protein against aggregation and degradation. PLoS Genet 2020; 16:e1009183. [PMID: 33137104 PMCID: PMC7660911 DOI: 10.1371/journal.pgen.1009183] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 11/12/2020] [Accepted: 10/07/2020] [Indexed: 11/18/2022] Open
Abstract
Loss of von Hippel-Lindau protein pVHL function promotes VHL diseases, including sporadic and inherited clear cell Renal Cell Carcinoma (ccRCC). Mechanisms controlling pVHL function and regulation, including folding and stability, remain elusive. Here, we have identified the conserved cochaperone prefoldin complex in a screen for pVHL interactors. The prefoldin complex delivers non-native proteins to the chaperonin T-complex-protein-1-ring (TRiC) or Cytosolic Chaperonin containing TCP-1 (CCT) to assist folding of newly synthesized polypeptides. The pVHL-prefoldin interaction was confirmed in human cells and prefoldin knock-down reduced pVHL expression levels. Furthermore, when pVHL was expressed in Schizosaccharomyces pombe, all prefoldin mutants promoted its aggregation. We mapped the interaction of prefoldin with pVHL at the exon2-exon3 junction encoded region. Low levels of the PFDN3 prefoldin subunit were associated with poor survival in ccRCC patients harboring VHL mutations. Our results link the prefoldin complex with pVHL folding and this may impact VHL diseases progression.
Collapse
Affiliation(s)
- Franck Chesnel
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes)—UMR 6290, France
| | - Anne Couturier
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes)—UMR 6290, France
| | - Adrien Alusse
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes)—UMR 6290, France
| | - Jean-Philippe Gagné
- Department of Molecular Biology, Medical Biochemistry and Pathology; Université Laval, Québec City, Québec, Canada
- CHU de Québec Research Center, CHUL Pavilion, Oncology Axis, Québec City, Québec, Canada
| | - Guy G. Poirier
- Department of Molecular Biology, Medical Biochemistry and Pathology; Université Laval, Québec City, Québec, Canada
- CHU de Québec Research Center, CHUL Pavilion, Oncology Axis, Québec City, Québec, Canada
| | - Dominique Jean
- Department of Anatomy and Cell Biology, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | | | - Pauline Hascoet
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes)—UMR 6290, France
| | - Luc Paillard
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes)—UMR 6290, France
| | - Yannick Arlot-Bonnemains
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes)—UMR 6290, France
- * E-mail: (YA-B); (XLG)
| | - Xavier Le Goff
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes)—UMR 6290, France
- * E-mail: (YA-B); (XLG)
| |
Collapse
|
14
|
Kashiwazaki J, Yoneda Y, Mutoh T, Arai R, Yoshida M, Mabuchi I. A unique kinesin-like protein, Klp8, is involved in mitosis and cell morphology through microtubule stabilization. Cytoskeleton (Hoboken) 2019; 76:355-367. [PMID: 31276301 DOI: 10.1002/cm.21551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/23/2019] [Accepted: 07/01/2019] [Indexed: 11/10/2022]
Abstract
Kinesins are microtubule (MT)-based motors involved in various cellular functions including intracellular transport of vesicles and organelles, and dynamics of chromosomes during cell division. The fission yeast Schizosaccharomyces pombe expresses nine kinesin-like proteins (klps). Klp8 is one of them and has not been characterized yet though it has been reported to localize at the division site. Here, we studied function and localization of Klp8 in S. pombe cells. The gene klp8+ was not essential for both viability and cytoskeletal organization. Klp8-YFP was concentrated as medial cortical dots during interphase, and organized into a ring at the division site during mitosis. The Klp8 ring seemed to be localized in the space between the actomyosin contractile ring and the plasma membrane. The Klp8 ring shrank as cytokinesis proceeded. In klp8-deleted (Δ) cells, the speed of spindle elongation during anaphase B was slowed down. Overproduction of Klp8 caused bent or elongated cells, in which MTs were abnormally elongated and less dynamic than those in normal cells. Deletion of klp8+ gene suppressed the delay in mitotic entry in blt1Δ cells. These results suggest that Klp8 is involved in mitosis and cell morphology through MT stabilization.
Collapse
Affiliation(s)
- Jun Kashiwazaki
- Department of Life Science, Gakushuin University, Tokyo, Japan
| | - Yumi Yoneda
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Tadashi Mutoh
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Ritsuko Arai
- Chemical Genetics Laboratory, RIKEN, Wako, Japan
| | - Minoru Yoshida
- Chemical Genetics Laboratory, RIKEN, Wako, Japan.,CREST Research Project, Japan Science and Technology Corporation, Wako, Japan
| | - Issei Mabuchi
- Department of Life Science, Gakushuin University, Tokyo, Japan.,Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
15
|
Winters L, Ban I, Prelogović M, Kalinina I, Pavin N, Tolić IM. Pivoting of microtubules driven by minus-end-directed motors leads to spindle assembly. BMC Biol 2019; 17:42. [PMID: 31122217 PMCID: PMC6533735 DOI: 10.1186/s12915-019-0656-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 04/16/2019] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND At the beginning of mitosis, the cell forms a spindle made of microtubules and associated proteins to segregate chromosomes. An important part of spindle architecture is a set of antiparallel microtubule bundles connecting the spindle poles. A key question is how microtubules extending at arbitrary angles form an antiparallel interpolar bundle. RESULTS Here, we show in fission yeast that microtubules meet at an oblique angle and subsequently rotate into antiparallel alignment. Our live-cell imaging approach provides a direct observation of interpolar bundle formation. By combining experiments with theory, we show that microtubules from each pole search for those from the opposite pole by performing random angular movement. Upon contact, two microtubules slide sideways along each other in a directed manner towards the antiparallel configuration. We introduce the contour length of microtubules as a measure of activity of motors that drive microtubule sliding, which we used together with observation of Cut7/kinesin-5 motors and our theory to reveal the minus-end-directed motility of this motor in vivo. CONCLUSION Random rotational motion helps microtubules from the opposite poles to find each other and subsequent accumulation of motors allows them to generate forces that drive interpolar bundle formation.
Collapse
Affiliation(s)
- Lora Winters
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307, Dresden, Germany
| | - Ivana Ban
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička cesta 32, 10000, Zagreb, Croatia
| | - Marcel Prelogović
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička cesta 32, 10000, Zagreb, Croatia
| | - Iana Kalinina
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307, Dresden, Germany
| | - Nenad Pavin
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička cesta 32, 10000, Zagreb, Croatia.
| | - Iva M Tolić
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307, Dresden, Germany.
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia.
| |
Collapse
|
16
|
Mehta K, Chacko LA, Chug MK, Jhunjhunwala S, Ananthanarayanan V. Association of mitochondria with microtubules inhibits mitochondrial fission by precluding assembly of the fission protein Dnm1. J Biol Chem 2019; 294:3385-3396. [PMID: 30602572 DOI: 10.1074/jbc.ra118.006799] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/27/2018] [Indexed: 11/06/2022] Open
Abstract
Mitochondria are organized as tubular networks in the cell and undergo fission and fusion. Although several of the molecular players involved in mediating mitochondrial dynamics have been identified, the precise cellular cues that initiate mitochondrial fission or fusion remain largely unknown. In fission yeast (Schizosaccharomyces pombe), mitochondria are organized along microtubule bundles. Here, we employed deletions of kinesin-like proteins to perturb microtubule dynamics and used high-resolution and time-lapse fluorescence microscopy, revealing that mitochondrial lengths mimic microtubule lengths. Furthermore, we determined that compared with WT cells, mutant cells with long microtubules exhibit fewer mitochondria, and mutant cells with short microtubules have an increased number of mitochondria because of reduced mitochondrial fission in the former and elevated fission in the latter. Correspondingly, upon onset of closed mitosis in fission yeast, wherein interphase microtubules assemble to form the spindle within the nucleus, we observed increased mitochondrial fission. We found that the consequent rise in the mitochondrial copy number is necessary to reduce partitioning errors during independent segregation of mitochondria between daughter cells. We also discovered that the association of mitochondria with microtubules physically impedes the assembly of the fission protein Dnm1 around mitochondria, resulting in inhibition of mitochondrial fission. Taken together, we demonstrate a mechanism for the regulation of mitochondrial fission that is dictated by the interaction between mitochondria and the microtubule cytoskeleton.
Collapse
Affiliation(s)
- Kritika Mehta
- From the Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Leeba Ann Chacko
- From the Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Manjyot Kaur Chug
- From the Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Siddharth Jhunjhunwala
- From the Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Vaishnavi Ananthanarayanan
- From the Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
17
|
Johnson M, Mulvihill DP. Dependency relationships within the fission yeast polarity network. FEBS Lett 2018; 592:2543-2549. [PMID: 29972885 PMCID: PMC6120479 DOI: 10.1002/1873-3468.13180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 11/07/2022]
Abstract
The ability to regulate polarised cell growth is crucial to maintain the viability of cells. Growth is modulated to facilitate essential cell functions and respond to the external environment. Failure to do so can lead to numerous developmental and disease states, including cancer. We have undertaken a detailed analysis of the regulatory interplay between molecules involved in the regulation and maintenance of polarised cell growth within fission yeast. Internally controlled live cell imaging was used to examine interactions between 10 key polarity proteins. Analysis reveals interplay between the microtubule and actin cytoskeletons, as well as multiple novel dependency pathways and feedback networks between groups of proteins. This study provides important insights into the conserved regulation of polarised cell growth within eukaryotes.
Collapse
|
18
|
Kreitzer G, Myat MM. Microtubule Motors in Establishment of Epithelial Cell Polarity. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a027896. [PMID: 28264820 DOI: 10.1101/cshperspect.a027896] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Epithelial cells play a key role in insuring physiological homeostasis by acting as a barrier between the outside environment and internal organs. They are also responsible for the vectorial transport of ions and fluid essential to the function of many organs. To accomplish these tasks, epithelial cells must generate an asymmetrically organized plasma membrane comprised of structurally and functionally distinct apical and basolateral membranes. Adherent and occluding junctions, respectively, anchor cells within a layer and prevent lateral diffusion of proteins in the outer leaflet of the plasma membrane and restrict passage of proteins and solutes through intercellular spaces. At a fundamental level, the establishment and maintenance of epithelial polarity requires that signals initiated at cell-substratum and cell-cell adhesions are transmitted appropriately and dynamically to the cytoskeleton, to the membrane-trafficking machinery, and to the regulation of occluding and adherent junctions. Rigorous descriptive and mechanistic studies published over the last 50 years have provided great detail to our understanding of epithelial polarization. Yet still, critical early steps in morphogenesis are not yet fully appreciated. In this review, we discuss how cytoskeletal motor proteins, primarily kinesins, contribute to coordinated modification of microtubule and actin arrays, formation and remodeling of cell adhesions to targeted membrane trafficking, and to initiating the formation and expansion of an apical lumen.
Collapse
Affiliation(s)
- Geri Kreitzer
- Department of Pathobiology, Sophie Davis School of Biomedical Education, City College of New York, The City University of New York School of Medicine, New York, New York 10031
| | - Monn Monn Myat
- Department of Biology, Medgar Evers College, Brooklyn, New York 11225.,The Graduate Center, The City University of New York, New York, New York 10016
| |
Collapse
|
19
|
Evolutionary dynamics in the fungal polarization network, a mechanistic perspective. Biophys Rev 2017; 9:375-387. [PMID: 28812259 PMCID: PMC5578929 DOI: 10.1007/s12551-017-0286-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 07/24/2017] [Indexed: 12/21/2022] Open
Abstract
Polarity establishment underlies proper cell cycle completion across virtually all organisms. Much progress has been made in generating an understanding of the structural and functional components of this process, especially in model species. Here we focus on the evolutionary dynamics of the fungal polarization protein network in order to determine general components and mechanistic principles, species- or lineage-specific adaptations and the evolvability of the network. The currently available genomic and proteomic screens in a variety of fungal species have shown three main characteristics: (1) certain proteins, processes and functions are conserved throughout the fungal clade; (2) orthologous functions can never be assumed, as various cases have been observed of homologous loci with dissimilar functions; (3) species have, typically, various species- or lineage-specific proteins incorporated in their polarization network. Further large-scale comparative and experimental studies, including those on non-model species representing the great fungal diversity, are needed to gain a better understanding of the evolutionary dynamics and generalities of the polarization network in fungi.
Collapse
|
20
|
Kelkar M, Martin SG. PKA antagonizes CLASP-dependent microtubule stabilization to re-localize Pom1 and buffer cell size upon glucose limitation. Nat Commun 2015; 6:8445. [PMID: 26443240 PMCID: PMC4618306 DOI: 10.1038/ncomms9445] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 08/21/2015] [Indexed: 01/28/2023] Open
Abstract
Cells couple growth with division and regulate size in response to nutrient availability. In rod-shaped fission yeast, cell-size control occurs at mitotic commitment. An important regulator is the DYRK-family kinase Pom1, which forms gradients from cell poles and inhibits the mitotic activator Cdr2, itself localized at the medial cortex. Where and when Pom1 modulates Cdr2 activity is unclear as Pom1 medial cortical levels remain constant during cell elongation. Here we show that Pom1 re-localizes to cell sides upon environmental glucose limitation, where it strongly delays mitosis. This re-localization is caused by severe microtubule destabilization upon glucose starvation, with microtubules undergoing catastrophe and depositing the Pom1 gradient nucleator Tea4 at cell sides. Microtubule destabilization requires PKA/Pka1 activity, which negatively regulates the microtubule rescue factor CLASP/Cls1/Peg1, reducing CLASP's ability to stabilize microtubules. Thus, PKA signalling tunes CLASP's activity to promote Pom1 cell side localization and buffer cell size upon glucose starvation.
Collapse
Affiliation(s)
- Manasi Kelkar
- Department of Fundamental Microbiology, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Sophie G Martin
- Department of Fundamental Microbiology, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| |
Collapse
|
21
|
Laporte D, Courtout F, Pinson B, Dompierre J, Salin B, Brocard L, Sagot I. A stable microtubule array drives fission yeast polarity reestablishment upon quiescence exit. J Cell Biol 2015; 210:99-113. [PMID: 26124291 PMCID: PMC4494004 DOI: 10.1083/jcb.201502025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 06/01/2015] [Indexed: 11/22/2022] Open
Abstract
Cells perpetually face the decision to proliferate or to stay quiescent. Here we show that upon quiescence establishment, Schizosaccharomyces pombe cells drastically rearrange both their actin and microtubule (MT) cytoskeletons and lose their polarity. Indeed, while polarity markers are lost from cell extremities, actin patches and cables are reorganized into actin bodies, which are stable actin filament-containing structures. Astonishingly, MTs are also stabilized and rearranged into a novel antiparallel bundle associated with the spindle pole body, named Q-MT bundle. We have identified proteins involved in this process and propose a molecular model for Q-MT bundle formation. Finally and importantly, we reveal that Q-MT bundle elongation is involved in polarity reestablishment upon quiescence exit and thereby the efficient return to the proliferative state. Our work demonstrates that quiescent S. pombe cells assemble specific cytoskeleton structures that improve the swiftness of the transition back to proliferation.
Collapse
Affiliation(s)
- Damien Laporte
- Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, 33000 Bordeaux, France Centre National de la Recherche Scientifique, UMR5095 Bordeaux, 33077 Bordeaux, France
| | - Fabien Courtout
- Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, 33000 Bordeaux, France Centre National de la Recherche Scientifique, UMR5095 Bordeaux, 33077 Bordeaux, France
| | - Benoît Pinson
- Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, 33000 Bordeaux, France Centre National de la Recherche Scientifique, UMR5095 Bordeaux, 33077 Bordeaux, France
| | - Jim Dompierre
- Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, 33000 Bordeaux, France Centre National de la Recherche Scientifique, UMR5095 Bordeaux, 33077 Bordeaux, France
| | - Bénédicte Salin
- Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, 33000 Bordeaux, France Centre National de la Recherche Scientifique, UMR5095 Bordeaux, 33077 Bordeaux, France
| | - Lysiane Brocard
- Bordeaux Imaging Center, Pôle d'imagerie du végétal, Institut National de la Recherche Agronomique, 33140 Villenave d'Ornon, France
| | - Isabelle Sagot
- Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, 33000 Bordeaux, France Centre National de la Recherche Scientifique, UMR5095 Bordeaux, 33077 Bordeaux, France
| |
Collapse
|
22
|
Pöhlmann J, Risse C, Seidel C, Pohlmann T, Jakopec V, Walla E, Ramrath P, Takeshita N, Baumann S, Feldbrügge M, Fischer R, Fleig U. The Vip1 inositol polyphosphate kinase family regulates polarized growth and modulates the microtubule cytoskeleton in fungi. PLoS Genet 2014; 10:e1004586. [PMID: 25254656 PMCID: PMC4177672 DOI: 10.1371/journal.pgen.1004586] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 07/08/2014] [Indexed: 11/19/2022] Open
Abstract
Microtubules (MTs) are pivotal for numerous eukaryotic processes ranging from cellular morphogenesis, chromosome segregation to intracellular transport. Execution of these tasks requires intricate regulation of MT dynamics. Here, we identify a new regulator of the Schizosaccharomyces pombe MT cytoskeleton: Asp1, a member of the highly conserved Vip1 inositol polyphosphate kinase family. Inositol pyrophosphates generated by Asp1 modulate MT dynamic parameters independent of the central +TIP EB1 and in a dose-dependent and cellular-context-dependent manner. Importantly, our analysis of the in vitro kinase activities of various S. pombe Asp1 variants demonstrated that the C-terminal phosphatase-like domain of the dual domain Vip1 protein negatively affects the inositol pyrophosphate output of the N-terminal kinase domain. These data suggest that the former domain has phosphatase activity. Remarkably, Vip1 regulation of the MT cytoskeleton is a conserved feature, as Vip1-like proteins of the filamentous ascomycete Aspergillus nidulans and the distantly related pathogenic basidiomycete Ustilago maydis also affect the MT cytoskeleton in these organisms. Consistent with the role of interphase MTs in growth zone selection/maintenance, all 3 fungal systems show aspects of aberrant cell morphogenesis. Thus, for the first time we have identified a conserved biological process for inositol pyrophosphates.
Collapse
Affiliation(s)
- Jennifer Pöhlmann
- Lehrstuhl für funktionelle Genomforschung der Mikroorganismen, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Carmen Risse
- Lehrstuhl für funktionelle Genomforschung der Mikroorganismen, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Constanze Seidel
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Dept. of Microbiology, Karlsruhe, Germany
| | - Thomas Pohlmann
- Institut für Mikrobiologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Visnja Jakopec
- Lehrstuhl für funktionelle Genomforschung der Mikroorganismen, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Eva Walla
- Lehrstuhl für funktionelle Genomforschung der Mikroorganismen, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Pascal Ramrath
- Lehrstuhl für funktionelle Genomforschung der Mikroorganismen, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Norio Takeshita
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Dept. of Microbiology, Karlsruhe, Germany
- University of Tsukuba, Faculty of Life and Environmental Sciences, Ibaraki, Tsukuba, Japan
| | - Sebastian Baumann
- Institut für Mikrobiologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Michael Feldbrügge
- Institut für Mikrobiologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Reinhard Fischer
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Dept. of Microbiology, Karlsruhe, Germany
| | - Ursula Fleig
- Lehrstuhl für funktionelle Genomforschung der Mikroorganismen, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
- * E-mail:
| |
Collapse
|
23
|
Yoshida M, Katsuyama S, Tateho K, Nakamura H, Miyoshi J, Ohba T, Matsuhara H, Miki F, Okazaki K, Haraguchi T, Niwa O, Hiraoka Y, Yamamoto A. Microtubule-organizing center formation at telomeres induces meiotic telomere clustering. ACTA ACUST UNITED AC 2013; 200:385-95. [PMID: 23401002 PMCID: PMC3575533 DOI: 10.1083/jcb.201207168] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Telomere-localized SUN and KASH proteins induce formation of a microtubule-based “telocentrosome” that fosters microtubule motor-dependent telomere clustering. During meiosis, telomeres cluster and promote homologous chromosome pairing. Telomere clustering requires the interaction of telomeres with the nuclear membrane proteins SUN (Sad1/UNC-84) and KASH (Klarsicht/ANC-1/Syne homology). The mechanism by which telomeres gather remains elusive. In this paper, we show that telomere clustering in fission yeast depends on microtubules and the microtubule motors, cytoplasmic dynein, and kinesins. Furthermore, the γ-tubulin complex (γ-TuC) is recruited to SUN- and KASH-localized telomeres to form a novel microtubule-organizing center that we termed the “telocentrosome.” Telocentrosome formation depends on the γ-TuC regulator Mto1 and on the KASH protein Kms1, and depletion of either Mto1 or Kms1 caused severe telomere clustering defects. In addition, the dynein light chain (DLC) contributes to telocentrosome formation, and simultaneous depletion of DLC and dynein also caused severe clustering defects. Thus, the telocentrosome is essential for telomere clustering. We propose that telomere-localized SUN and KASH induce telocentrosome formation and that subsequent microtubule motor-dependent aggregation of telocentrosomes via the telocentrosome-nucleated microtubules causes telomere clustering.
Collapse
Affiliation(s)
- Masashi Yoshida
- Department of Chemistry, Shizuoka University, Suruga-ku, Shizuoka 422-8529, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Duellberg C, Fourniol FJ, Maurer SP, Roostalu J, Surrey T. End-binding proteins and Ase1/PRC1 define local functionality of structurally distinct parts of the microtubule cytoskeleton. Trends Cell Biol 2013; 23:54-63. [PMID: 23103209 DOI: 10.1016/j.tcb.2012.10.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 09/25/2012] [Accepted: 10/02/2012] [Indexed: 12/27/2022]
Abstract
The microtubule cytoskeleton is crucial for the intracellular organization of eukaryotic cells. It is a dynamic scaffold that has to perform a variety of very different functions. This multitasking is achieved through the activity of numerous microtubule-associated proteins. Two prominent classes of proteins are central to the selective recognition of distinct transiently existing structural features of the microtubule cytoskeleton. They define local functionality through tightly regulated protein recruitment. Here we summarize the recent developments in elucidating the molecular mechanism underlying the action of microtubule end-binding proteins (EBs) and antiparallel microtubule crosslinkers of the Ase1/PRC1 family that represent the core of these two recruitment modules. Despite their fundamentally different activities, these conserved families share several common features.
Collapse
Affiliation(s)
- Christian Duellberg
- London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | | | | | | | | |
Collapse
|
25
|
Takeshita N, Mania D, Herrero de Vega S, Ishitsuka Y, Nienhaus GU, Podolski M, Howard J, Fischer R. The cell end marker TeaA and the microtubule polymerase AlpA contribute to microtubule guidance at the hyphal tip cortex of Aspergillus nidulans for polarity maintenance. J Cell Sci 2013; 126:5400-11. [DOI: 10.1242/jcs.129841] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In the absence of landmark proteins, hyphae of Aspergillus nidulans lose their direction of growth and show a zigzag growth pattern. Here, we show that the cell end marker protein TeaA is important for localizing the growth machinery at hyphal tips. The central position of TeaA at the tip correlated with the convergence of the microtubule (MT) ends to a single point. Conversely, in the absence of TeaA, the MTs often failed to converge to a single point at the cortex. Further analysis suggested a functional connection between TeaA and AlpA (MT polymerase XMAP215 orthologue) for proper regulation of MT growth at hyphal tips. AlpA localized at MT plus ends, and bimolecular fluorescence complementation assays suggested that it interacted with TeaA after MT plus ends reached the tip cortex. In vitro MT polymerization assays showed that AlpA promoted MT growth up to seven-fold. Addition of the C-terminal region of TeaA increased the catastrophe frequency of the MTs. Thus, the control of the AlpA activity through TeaA may be a novel principle for MT growth regulation after reaching the cortex. In addition, we present evidence that the curvature of hyphal tips also could be involved in the control of MT growth at hyphal tips.
Collapse
|
26
|
Al-Bassam J, Kim H, Flor-Parra I, Lal N, Velji H, Chang F. Fission yeast Alp14 is a dose-dependent plus end-tracking microtubule polymerase. Mol Biol Cell 2012; 23:2878-90. [PMID: 22696680 PMCID: PMC3408415 DOI: 10.1091/mbc.e12-03-0205] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Alp14, a XMAP215 orthologue in fission yeast, is a microtubule (MT) polymerase. It tracks growing MT plus ends and regulates the polymerization state of tubulin by cycling between a tubulin dimer–bound cytoplasmic state and a MT polymerase state that promotes rapid MT assembly. XMAP215/Dis1 proteins are conserved tubulin-binding TOG-domain proteins that regulate microtubule (MT) plus-end dynamics. Here we show that Alp14, a XMAP215 orthologue in fission yeast, Schizosaccharomyces pombe, has properties of a MT polymerase. In vivo, Alp14 localizes to growing MT plus ends in a manner independent of Mal3 (EB1). alp14-null mutants display short interphase MTs with twofold slower assembly rate and frequent pauses. Alp14 is a homodimer that binds a single tubulin dimer. In vitro, purified Alp14 molecules track growing MT plus ends and accelerate MT assembly threefold. TOG-domain mutants demonstrate that tubulin binding is critical for function and plus end localization. Overexpression of Alp14 or only its TOG domains causes complete MT loss in vivo, and high Alp14 concentration inhibits MT assembly in vitro. These inhibitory effects may arise from Alp14 sequestration of tubulin and effects on the MT. Our studies suggest that Alp14 regulates the polymerization state of tubulin by cycling between a tubulin dimer–bound cytoplasmic state and a MT polymerase state that promotes rapid MT assembly.
Collapse
Affiliation(s)
- Jawdat Al-Bassam
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Duncan CDS, Mata J. Widespread cotranslational formation of protein complexes. PLoS Genet 2011; 7:e1002398. [PMID: 22144913 PMCID: PMC3228823 DOI: 10.1371/journal.pgen.1002398] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 10/11/2011] [Indexed: 12/28/2022] Open
Abstract
Most cellular processes are conducted by multi-protein complexes. However, little is known about how these complexes are assembled. In particular, it is not known if they are formed while one or more members of the complexes are being translated (cotranslational assembly). We took a genomic approach to address this question, by systematically identifying mRNAs associated with specific proteins. In a sample of 31 proteins from Schizosaccharomyces pombe that did not contain RNA–binding domains, we found that ∼38% copurify with mRNAs that encode interacting proteins. For example, the cyclin-dependent kinase Cdc2p associates with the rum1 and cdc18 mRNAs, which encode, respectively, an inhibitor of Cdc2p kinase activity and an essential regulator of DNA replication. Both proteins interact with Cdc2p and are key cell cycle regulators. We obtained analogous results with proteins with different structures and cellular functions (kinesins, protein kinases, transcription factors, proteasome components, etc.). We showed that copurification of a bait protein and of specific mRNAs was dependent on the presence of the proteins encoded by the interacting mRNAs and on polysomal integrity. These results indicate that these observed associations reflect the cotranslational interaction between the bait and the nascent proteins encoded by the interacting mRNAs. Therefore, we show that the cotranslational formation of protein–protein interactions is a widespread phenomenon. Most proteins do not function in isolation. Instead, they associate with other proteins to form complexes. Little is known about the assembly of protein complexes within cells. One possibility is that proteins are completely synthesised before they bind to each other. An alternative is that proteins attach to each other as they are being translated in the ribosome (called cotranslational assembly). To investigate if cells use cotranslational assembly to form complexes, we identified mRNAs associated with specific proteins. The expectation is that if protein A binds to protein B as protein B is being translated, A will associate indirectly to the mRNA encoding B. Indeed, we found that for ∼40% of proteins (out of a sample of over 30) this was the case. Proteins associated with a small number of mRNAs, most of which encoded known or predicted interacting proteins. We found examples of this phenomenon in proteins with different functions and structures, indicating that cotranslational assembly is widespread. Cotranslational assembly might be required for certain proteins to associate, or it might be important in cases where the early formation of a protein complex is beneficial, such as when a protein is toxic or unstable unless bound to a partner.
Collapse
Affiliation(s)
- Caia D. S. Duncan
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Juan Mata
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
28
|
Lo Presti L, Martin SG. Shaping fission yeast cells by rerouting actin-based transport on microtubules. Curr Biol 2011; 21:2064-9. [PMID: 22137473 DOI: 10.1016/j.cub.2011.10.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 10/21/2011] [Accepted: 10/21/2011] [Indexed: 10/14/2022]
Abstract
Kinesins and myosins transport cargos to specific locations along microtubules and actin filaments, respectively. The relative contribution of the two transport systems for cell polarization varies extensively in different cell types, with some cells relying exclusively on actin-based transport while others mainly use microtubules. Using fission yeast, we asked whether one transport system can substitute for the other. In this organism, microtubules and actin cables both contribute to polarized growth by transporting cargos to cell poles, but with distinct roles: microtubules transport landmarks to label cell poles for growth and actin assembly but do not directly contribute to the growth process [1]. Actin cables serve as tracks for myosin V delivery of growth vesicles to cell poles [2-4]. We engineered a chimera between the motor domain of the kinesin 7 Tea2 and the globular tail of the myosin V Myo52, which we show transports Ypt3, a myosin cargo receptor, to cell poles along microtubules. Remarkably, this chimera restores polarized growth and viability to cells lacking actin cables. It also bypasses the normal microtubule-dependent marking of cell poles for polarized growth, but not for other functions. Thus, a synthetic motor protein successfully redirects cargos along a distinct cytoskeletal route.
Collapse
Affiliation(s)
- Libera Lo Presti
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland
| | | |
Collapse
|
29
|
Appressorium Function in Colletotrichum orbiculare and Prospect for Genome Based Analysis. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/978-3-642-22916-9_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
|
30
|
Drummond DR. Regulation of microtubule dynamics by kinesins. Semin Cell Dev Biol 2011; 22:927-34. [PMID: 22001250 DOI: 10.1016/j.semcdb.2011.09.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 09/30/2011] [Indexed: 01/14/2023]
Abstract
The simple mechanistic and functional division of the kinesin family into either active translocators or non-motile microtubule depolymerases was initially appropriate but is now proving increasingly unhelpful, given evidence that several translocase kinesins can affect microtubule dynamics, whilst non-translocase kinesins can promote microtubule assembly and depolymerisation. Such multi-role kinesins act either directly on microtubule dynamics, by interaction with microtubules and tubulin, or indirectly, through the transport of other factors along the lattice to the microtubule tip. Here I review recent progress on the mechanisms and roles of these translocase kinesins.
Collapse
Affiliation(s)
- Douglas R Drummond
- Centre for Mechanochemical Cell Biology, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, United Kingdom.
| |
Collapse
|
31
|
Bowen JR, Hwang D, Bai X, Roy D, Spiliotis ET. Septin GTPases spatially guide microtubule organization and plus end dynamics in polarizing epithelia. ACTA ACUST UNITED AC 2011; 194:187-97. [PMID: 21788367 PMCID: PMC3144415 DOI: 10.1083/jcb.201102076] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Filamentous and microtubule-associated septin GTPases guide the reorganization of the microtubule network during epithelial cell polarization. Establishment of epithelial polarity requires the reorganization of the microtubule (MT) cytoskeleton from a radial array into a network positioned along the apicobasal axis of the cell. Little is known about the mechanisms that spatially guide the remodeling of MTs during epithelial polarization. Septins are filamentous guanine triphosphatases (GTPases) that associate with MTs, but the function of septins in MT organization and dynamics is poorly understood. In this paper, we show that in polarizing epithelia, septins guide the directionality of MT plus end movement by suppressing MT catastrophe. By enabling persistent MT growth, two spatially distinct populations of septins, perinuclear and peripheral filaments, steer the growth and capture of MT plus ends. This navigation mechanism is essential for the maintenance of perinuclear MT bundles and for the orientation of peripheral MTs as well as for the apicobasal positioning of MTs. Our results suggest that septins provide the directional guidance cues necessary for polarizing the epithelial MT network.
Collapse
Affiliation(s)
- Jonathan R Bowen
- Department of Biology, Drexel University, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
32
|
Goryachev AB. A common mechanism for protein cluster formation. Small GTPases 2011; 2:143-147. [PMID: 21776415 DOI: 10.4161/sgtp.2.3.15902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 04/16/2011] [Accepted: 04/20/2011] [Indexed: 11/19/2022] Open
Abstract
Polarized states on the membranes are characterized by focal accumulation of proteins and lipids at local concentrations far exceeding their levels typically found outside of these dense clusters. Principles of thermodynamics argue that formation and maintenance of such structures require continuous expenditure of cellular energy to combat the effect of molecular diffusion that relentlessly dissipates the clusters in favor of the spatially homogeneous state. Small GTPases are known to play a crucial role in the formation of several such polarized states. Their ability to consume stored energy and convert it into a potentially useful work by cyclically hydrolyzing GTP and coupling to various effectors in a nucleotide-dependent way, makes them eligible candidates to fulfill the requirements for the molecules involved in the mechanisms responsible for the maintenance of polarized states. Consistently, continuous nucleotide cycling of small GTPases has been found required for the emergence of structures in several well characterized cases. Despite this general awareness, the detailed molecular mechanisms remain largely unknown. In a recent study, not directly involving small GTPases, we proposed a mechanism explaining the emergence and maintenance of the stable cell-polarity landmark that manifests itself as a protein cluster positioned on the plasma membrane at the growing ends of fission yeast cells. Unexpectedly, this study has suggested a number of striking parallels with the mechanisms based on the activity of small GTPases. These findings highlight common design principles of cellular pattern-forming mechanisms that have been mixed and matched in various combinations in the course of evolution to achieve the same desired outcome-tightly controlled in space and time formation of dense protein clusters.
Collapse
Affiliation(s)
- Andrew B Goryachev
- Centre for Systems Biology; School of Biological Sciences; The University of Edinburgh; Edinburgh, UK
| |
Collapse
|
33
|
Snaith HA, Thompson J, Yates JR, Sawin KE. Characterization of Mug33 reveals complementary roles for actin cable-dependent transport and exocyst regulators in fission yeast exocytosis. J Cell Sci 2011; 124:2187-99. [PMID: 21652630 PMCID: PMC3113670 DOI: 10.1242/jcs.084038] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Although endocytosis and exocytosis have been extensively studied in budding yeast, there have been relatively few investigations of these complex processes in the fission yeast Schizosaccharomyces pombe. Here we identify and characterize fission yeast Mug33, a novel Tea1-interacting protein, and show that Mug33 is involved in exocytosis. Mug33 is a Sur7/PalI-family transmembrane protein that localizes to the plasma membrane at the cell tips and to cytoplasmic tubulovesicular elements (TVEs). A subset of Mug33 TVEs make long-range movements along actin cables, co-translocating with subunits of the exocyst complex. TVE movement depends on the type V myosin Myo52. Although mug33Δ mutants are viable, with only a mild cell-polarity phenotype, mug33Δ myo52Δ double mutants are synthetically lethal. Combining mug33 Δ with deletion of the formin For3 (for3Δ) leads to synthetic temperature-sensitive growth and strongly reduced levels of exocytosis. Interestingly, mutants in non-essential genes involved in exocyst function behave in a manner similar to mug33Δ when combined with myo52Δ and for3Δ. By contrast, combining mug33Δ with mutants in non-essential exocyst genes has only minor effects on growth. We propose that Mug33 contributes to exocyst function and that actin cable-dependent vesicle transport and exocyst function have complementary roles in promoting efficient exocytosis in fission yeast.
Collapse
Affiliation(s)
- Hilary A Snaith
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Swann Building, Mayfield Road, Edinburgh EH93JR, UK
| | | | | | | |
Collapse
|
34
|
On the role of microtubules, cell end markers, and septal microtubule organizing centres on site selection for polar growth in Aspergillus nidulans. Fungal Biol 2011; 115:506-17. [PMID: 21640315 DOI: 10.1016/j.funbio.2011.02.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 02/04/2011] [Accepted: 02/09/2011] [Indexed: 02/01/2023]
|
35
|
Thadani R, Huang D, Oliferenko S. Robust polarity specification operates above a threshold of microtubule dynamicity. Cytoskeleton (Hoboken) 2011; 68:290-9. [PMID: 21548112 DOI: 10.1002/cm.20512] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Revised: 04/06/2011] [Accepted: 04/18/2011] [Indexed: 11/12/2022]
Abstract
Microtubule arrays effect cell polarisation by directing cellular cues for cortical remodelling and growth. Their function depends crucially on the intrinsic dynamic properties of constituent microtubules. Microtubule dynamicity is restricted to a certain range within the confines of a cellular geometry. Thus it is of great interest to determine whether rescaling of dynamic properties of microtubules has consequences for cell polarity. We constructed fission yeast strains exhibiting depressed microtubule dynamics by mutating the β-tubulin gene, nda3. This interfered with efficient accumulation of a polarity factor Tea1 at cell tips. Interestingly, the polarity machinery in the mutant cells was highly susceptible to perturbations. Simulations of growth zone formation followed by imaging of actin distribution showed a significantly delayed onset of bipolar growth. We propose that there exists a threshold of microtubule dynamicity that allows robust cellular polarisation.
Collapse
Affiliation(s)
- Rahul Thadani
- Temasek Life Sciences Laboratory, 1 Research Link, Singapore
| | | | | |
Collapse
|
36
|
Herrero S, Takeshita N, Fischer R. The Aspergillus nidulans CENP-E kinesin motor KipA interacts with the fungal homologue of the centromere-associated protein CENP-H at the kinetochore. Mol Microbiol 2011; 80:981-94. [PMID: 21392133 DOI: 10.1111/j.1365-2958.2011.07624.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Saturnino Herrero
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Department of Microbiology, Hertzstrasse 16, D-76187 Karlsruhe, Germany
| | | | | |
Collapse
|
37
|
Calcineurin ensures a link between the DNA replication checkpoint and microtubule-dependent polarized growth. Nat Cell Biol 2011; 13:234-42. [PMID: 21336311 DOI: 10.1038/ncb2166] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 12/01/2010] [Indexed: 12/29/2022]
Abstract
Microtubules are central to eukaryotic cell morphogenesis. Microtubule plus-end tracking proteins (+TIPs) transport polarity factors to the cell cortex, thereby playing a key role in both microtubule dynamics and cell polarity. However, the signalling pathway linking +TIPs to cell polarity control remains elusive. Here we show that the fission yeast checkpoint kinase Cds1 (Chk2 homologue) delays the transition of growth polarity from monopolar to bipolar (termed NETO; new-end take-off). The +TIPs CLIP170 homologue Tip1 and kinesin Tea2 are responsible for this delay, which is accompanied by a reduction in microtubule dynamics at the cell tip. Remarkably, microtubule stabilization occurs asymmetrically, prominently at the non-growing cell end, which induces abnormal accumulation of the polarity factor Tea1. Importantly, NETO delay requires activation of calcineurin, which is carried out by Cds1, resulting in Tip1 dephosphorylation. Thus, our study establishes a critical link between calcineurin and checkpoint-dependent cell morphogenesis.
Collapse
|
38
|
Vilela M, Morgan JJ, Lindahl PA. Mathematical model of a cell size checkpoint. PLoS Comput Biol 2010; 6:e1001036. [PMID: 21187911 PMCID: PMC3002998 DOI: 10.1371/journal.pcbi.1001036] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 11/16/2010] [Indexed: 01/06/2023] Open
Abstract
How cells regulate their size from one generation to the next has remained an enigma for decades. Recently, a molecular mechanism that links cell size and cell cycle was proposed in fission yeast. This mechanism involves changes in the spatial cellular distribution of two proteins, Pom1 and Cdr2, as the cell grows. Pom1 inhibits Cdr2 while Cdr2 promotes the G2 → M transition. Cdr2 is localized in the middle cell region (midcell) whereas the concentration of Pom1 is highest at the cell tips and declines towards the midcell. In short cells, Pom1 efficiently inhibits Cdr2. However, as cells grow, the Pom1 concentration at midcell decreases such that Cdr2 becomes activated at some critical size. In this study, the chemistry of Pom1 and Cdr2 was modeled using a deterministic reaction-diffusion-convection system interacting with a deterministic model describing microtubule dynamics. Simulations mimicked experimental data from wild-type (WT) fission yeast growing at normal and reduced rates; they also mimicked the behavior of a Pom1 overexpression mutant and WT yeast exposed to a microtubule depolymerizing drug. A mechanism linking cell size and cell cycle, involving the downstream action of Cdr2 on Wee1 phosphorylation, is proposed. Cells delay division into two daughter cells until they reach a particular size. However, the molecular-level mechanisms by which they do this have remained unknown until recently. A cell-size checkpoint mechanism in rod-shaped fission yeast cells has recently been shown to involve two proteins, Pom1 and Cdr2. The concentrations of these proteins in the middle of the cell differ from that at the poles. The changing nature of these spatial gradients as the cell grows is size-sensitive. Pom1 inhibits Cdr2 while Cdr2 stimulates the cell to enter into mitosis. In short cells, the Pom1 concentration in the middle of the cell is so great that Cdr2 is inhibited. As cells grow, the Pom1 concentration in the middle of the cell declines; at some particular size, Cdr2 activates. In this study, we developed a mathematical model that mimics this checkpoint behavior.
Collapse
Affiliation(s)
- Marco Vilela
- Department of Chemistry, Texas A&M University, College Station, Texas, United States of America
| | - Jeffrey J. Morgan
- Department of Mathematics, University of Houston, Houston, Texas, United States of America
| | - Paul A. Lindahl
- Department of Chemistry, Texas A&M University, College Station, Texas, United States of America
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
39
|
Abstract
For cell morphogenesis, the cell must establish distinct spatial domains at specified locations at the cell surface. Here, we review the molecular mechanisms of cell polarity in the fission yeast Schizosaccharomyces pombe. These are simple rod-shaped cells that form cortical domains at cell tips for cell growth and at the cell middle for cytokinesis. In both cases, microtubule-based systems help to shape the cell by breaking symmetry, providing endogenous spatial cues to position these sites. The plus ends of dynamic microtubules deliver polarity factors to the cell tips, leading to local activation of the GTPase cdc42p and the actin assembly machinery. Microtubule bundles contribute to positioning the division plane through the nucleus and the cytokinesis factor mid1p. Recent advances illustrate how the spatial and temporal regulation of cell polarization integrates many elements, including historical landmarks, positive and negative controls, and competition between pathways.
Collapse
Affiliation(s)
- Fred Chang
- Columbia University, College of Physicians and Surgeons, Department of Microbiology, 701 W 168th Street, New York 10032, USA.
| | | |
Collapse
|
40
|
Bicho CC, Kelly DA, Snaith HA, Goryachev AB, Sawin KE. A catalytic role for Mod5 in the formation of the Tea1 cell polarity landmark. Curr Biol 2010; 20:1752-7. [PMID: 20850323 PMCID: PMC3094757 DOI: 10.1016/j.cub.2010.08.035] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 06/29/2010] [Accepted: 08/16/2010] [Indexed: 12/31/2022]
Abstract
Many systems regulating cell polarity involve stable landmarks defined by internal cues [1–5]. In the rod-shaped fission yeast Schizosaccharomyces pombe, microtubules regulate polarized vegetative growth via a landmark involving the protein Tea1 [6–9]. Tea1 is delivered to cell tips as packets of molecules associated with growing microtubule ends [10] and anchored at the plasma membrane via a mechanism involving interaction with the membrane protein Mod5 [11, 12]. Tea1 and Mod5 are highly concentrated in clusters at cell tips in a mutually dependent manner, but how the Tea1-Mod5 interaction contributes mechanistically to generating a stable landmark is not understood. Here, we use live-cell imaging, FRAP, and computational modeling to dissect dynamics of the Tea1-Mod5 interaction. Surprisingly, we find that Tea1 and Mod5 exhibit distinctly different turnover rates at cell tips. Our data and modeling suggest that rather than acting simply as a Tea1 receptor or as a molecular “glue” to retain Tea1, Mod5 functions catalytically to stimulate incorporation of Tea1 into a stable tip-associated cluster network. The model also suggests an emergent self-focusing property of the Tea1-Mod5 cluster network, which can increase the fidelity of polarized growth.
Collapse
Affiliation(s)
- Claudia C. Bicho
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, UK
| | - David A. Kelly
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, UK
| | - Hilary A. Snaith
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, UK
| | - Andrew B. Goryachev
- Centre for Systems Biology, University of Edinburgh, Edinburgh EH9 3JR, UK
- Corresponding author
| | - Kenneth E. Sawin
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, UK
- Corresponding author
| |
Collapse
|
41
|
Jaulin F, Kreitzer G. KIF17 stabilizes microtubules and contributes to epithelial morphogenesis by acting at MT plus ends with EB1 and APC. ACTA ACUST UNITED AC 2010; 190:443-60. [PMID: 20696710 PMCID: PMC2922650 DOI: 10.1083/jcb.201006044] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Epithelial polarization is associated with selective stabilization and reorganization of microtubule (MT) arrays. However, upstream events and downstream consequences of MT stabilization during epithelial morphogenesis are still unclear. We show that the anterograde kinesin KIF17 localizes to MT plus ends, stabilizes MTs, and affects epithelial architecture. Targeting of KIF17 to plus ends of growing MTs requires kinesin motor activity and interaction with EB1. In turn, KIF17 participates in localizing adenomatous polyposis coli (APC) to the plus ends of a subset of MTs. We found that KIF17 affects MT dynamics, polymerization rates, and MT plus end stabilization to generate posttranslationally acetylated MTs. Depletion of KIF17 from cells growing in three-dimensional matrices results in aberrant epithelial cysts that fail to generate a single central lumen and to polarize apical markers. These findings implicate KIF17 in MT stabilization events that contribute to epithelial polarization and morphogenesis.
Collapse
Affiliation(s)
- Fanny Jaulin
- Department of Cell and Developmental Biology, Weill Cornell Medical College of Cornell University, New York, NY 10021, USA
| | | |
Collapse
|
42
|
Asp1, a conserved 1/3 inositol polyphosphate kinase, regulates the dimorphic switch in Schizosaccharomyces pombe. Mol Cell Biol 2010; 30:4535-47. [PMID: 20624911 DOI: 10.1128/mcb.00472-10] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The ability to undergo dramatic morphological changes in response to extrinsic cues is conserved in fungi. We have used the model yeast Schizosaccharomyces pombe to determine which intracellular signal regulates the dimorphic switch from the single-cell yeast form to the filamentous invasive growth form. The S. pombe Asp1 protein, a member of the conserved Vip1 1/3 inositol polyphosphate kinase family, is a key regulator of the morphological switch via the cAMP protein kinase A (PKA) pathway. Lack of a functional Asp1 kinase domain abolishes invasive growth which is monopolar, while an increase in Asp1-generated inositol pyrophosphates (PP) increases the cellular response. Remarkably, the Asp1 kinase activity encoded by the N-terminal part of the protein is regulated negatively by the C-terminal domain of Asp1, which has homology to acid histidine phosphatases. Thus, the fine tuning of the cellular response to environmental cues is modulated by the same protein. As the Saccharomyces cerevisiae Asp1 ortholog is also required for the dimorphic switch in this yeast, we propose that Vip1 family members have a general role in regulating fungal dimorphism.
Collapse
|
43
|
Gouveia SM, Akhmanova A. Cell and Molecular Biology of Microtubule Plus End Tracking Proteins. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 285:1-74. [DOI: 10.1016/b978-0-12-381047-2.00001-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
44
|
Stoica C, Park J, Pare JM, Willows S, Hobman TC. The Kinesin motor protein Cut7 regulates biogenesis and function of Ago1-complexes. Traffic 2010; 11:25-36. [PMID: 19883398 DOI: 10.1111/j.1600-0854.2009.01000.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Argonaute proteins are the effectors of small RNA-dependent gene-silencing pathways. In the cytoplasm, they are incorporated into large mobile ribonucleoprotein (RNP) complexes that travel along microtubules. We used a genetic screen to identify the microtubule-associated motor that interacts with Ago1-containing RNPs. Here, we report that activity of the kinesin family member Cut7 is important for biogenesis and/or stability of Ago1-containing RNPs in the cytoplasm. Results from pulldown and coimmunoprecipitation assays indicate that Cut7 interacts with Ago1 as well as its two cognate binding proteins, Dcr1 and Rdp1. Loss of Cut7 activity was associated with increased levels of reverse centromeric transcripts, presumably because of a defect in post-transcriptional gene silencing. Overexpression of the Ago1-binding region of Cut7 resulted in loss of microscopic Ago1-containing RNPs. Together, these results suggest that microtubule motor proteins function in the biogenesis and function of gene-silencing machinery in the cytoplasm.
Collapse
Affiliation(s)
- Cezar Stoica
- Department of Cell Biology, University of Alberta, Edmonton, T6G 2H7, Canada
| | | | | | | | | |
Collapse
|
45
|
Phospho-regulated interaction between kinesin-6 Klp9p and microtubule bundler Ase1p promotes spindle elongation. Dev Cell 2009; 17:257-67. [PMID: 19686686 DOI: 10.1016/j.devcel.2009.06.012] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2009] [Revised: 05/08/2009] [Accepted: 06/19/2009] [Indexed: 12/30/2022]
Abstract
The spindle midzone-composed of antiparallel microtubules, microtubule-associated proteins (MAPs), and motors-is the structure responsible for microtubule organization and sliding during anaphase B. In general, MAPs and motors stabilize the midzone and motors produce sliding. We show that fission yeast kinesin-6 motor klp9p binds to the microtubule antiparallel bundler ase1p at the midzone at anaphase B onset. This interaction depends upon the phosphorylation states of klp9p and ase1p. The cyclin-dependent kinase cdc2p phosphorylates and its antagonist phosphatase clp1p dephosphorylates klp9p and ase1p to control the position and timing of klp9p-ase1p interaction. Failure of klp9p-ase1p binding leads to decreased spindle elongation velocity. The ase1p-mediated recruitment of klp9p to the midzone accelerates pole separation, as suggested by computer simulation. Our findings indicate that a phosphorylation switch controls the spatial-temporal interactions of motors and MAPs for proper anaphase B, and suggest a mechanism whereby a specific motor-MAP conformation enables efficient microtubule sliding.
Collapse
|
46
|
Martín-García R, Mulvihill DP. Myosin V spatially regulates microtubule dynamics and promotes the ubiquitin-dependent degradation of the fission yeast CLIP-170 homologue, Tip1. J Cell Sci 2009; 122:3862-72. [PMID: 19808886 DOI: 10.1242/jcs.054460] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Coordination between microtubule and actin cytoskeletons plays a crucial role during the establishment of cell polarity. In fission yeast, the microtubule cytoskeleton regulates the distribution of actin assembly at the new growing end during the monopolar-to-bipolar growth transition. Here, we describe a novel mechanism in which a myosin V modulates the spatial coordination of proteolysis and microtubule dynamics. In cells lacking a functional copy of the class V myosin, Myo52, the plus ends of microtubules fail to undergo catastrophe on contacting the cell end and continue to grow, curling around the end of the cell. We show that this actin-associated motor regulates the efficient ubiquitin-dependent proteolysis of the Schizosaccharomyces pombe CLIP-170 homologue, Tip1. Myo52 facilitates microtubule catastrophe by enhancing Tip1 removal from the plus end of growing microtubules at the cell tips. There, Myo52 and the ubiquitin receptor, Dph1, work in concert to target Tip1 for degradation.
Collapse
|
47
|
Martin SG. Microtubule-dependent cell morphogenesis in the fission yeast. Trends Cell Biol 2009; 19:447-54. [PMID: 19713114 DOI: 10.1016/j.tcb.2009.06.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 06/09/2009] [Accepted: 06/10/2009] [Indexed: 10/20/2022]
Abstract
In many systems, microtubules contribute spatial information to cell morphogenesis, for instance in cell migration and division. In rod-shaped fission yeast cells, microtubules control cell morphogenesis by transporting polarity factors, namely the Tea1-Tea4 complex, to cell tips. This complex then recruits the DYRK kinase Pom1 to cell ends. Interestingly, recent work has shown that these proteins also provide long-range spatial cues to position the division site in the middle of the cell and temporal signals to coordinate cell length with the cell cycle. Here I review how these microtubule-associated proteins form polar morphogenesis centers that control and integrate both spatial and temporal aspects of cell morphogenesis.
Collapse
Affiliation(s)
- Sophie G Martin
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Génopode Building, 1015 Lausanne, Switzerland.
| |
Collapse
|
48
|
Force- and kinesin-8-dependent effects in the spatial regulation of fission yeast microtubule dynamics. Mol Syst Biol 2009; 5:250. [PMID: 19293830 PMCID: PMC2671921 DOI: 10.1038/msb.2009.5] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Accepted: 12/23/2008] [Indexed: 11/12/2022] Open
Abstract
Microtubules (MTs) are central to the organisation of the eukaryotic intracellular space and are involved in the control of cell morphology. For these purposes, MT polymerisation dynamics are tightly regulated. Using automated image analysis software, we investigate the spatial dependence of MT dynamics in interphase fission yeast cells with unprecedented statistical accuracy. We find that MT catastrophe frequencies (switches from polymerisation to depolymerisation) strongly depend on intracellular position. We provide evidence that compressive forces generated by MTs growing against the cell pole locally reduce MT growth velocities and enhance catastrophe frequencies. Furthermore, we find evidence for an MT length-dependent increase in the catastrophe frequency that is mediated by kinesin-8 proteins (Klp5/6). Given the intrinsic susceptibility of MT dynamics to compressive forces and the widespread importance of kinesin-8 proteins, we propose that similar spatial regulation of MT dynamics plays a role in other cell types as well. In addition, our systematic and quantitative data should provide valuable input for (mathematical) models of MT organisation in living cells.
Collapse
|
49
|
Anders A, Watt S, Bähler J, Sawin KE. Improved tools for efficient mapping of fission yeast genes: identification of microtubule nucleation modifier mod22-1 as an allele of chromatin- remodelling factor gene swr1. Yeast 2009; 25:913-25. [PMID: 19160458 PMCID: PMC2964509 DOI: 10.1002/yea.1639] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Fission yeast genes identified in genetic screens are usually cloned by transformation of mutants with plasmid libraries. However, for some genes this can be difficult, and positional cloning approaches are required. The mutation swi5-39 reduces recombination frequency in homozygous crosses and has been used as a tool in mapping gene position (Schmidt, 1993). However, strain construction in swi5-39-based mapping is significantly more laborious than is desirable. Here we describe a set of strains designed to make swi5-based mapping more efficient and more powerful. The first improvement is the use of a swi5Δ strain marked with kanamycin (G418) resistance, which greatly facilitates identification of swi5 mutants. The second improvement, which follows directly from the first, is the introduction of a large number of auxotrophic markers into mapping strains, increasing the likelihood of finding close linkage between a marker and the mutation of interest. We combine these new mapping strains with a rec12Δ-based approach for initial mapping of a mutation to an individual chromosome. Together, the two methods allow an approximate determination of map position in only a small number of crosses. We used these to determine that mod22-1, a modifier of microtubule nucleation phenotypes, encodes a truncation allele of Swr1, a chromatin-remodelling factor involved in nucleosomal deposition of H2A.Z histone variant Pht1. Expression microarray analysis of mod22-1, swr1Δ and pht1Δ cells suggests that the modifier phenotype of mod22-1 mutants may be due to small changes in expression of one or more genes involved in tubulin function. Copyright © 2009 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Andreas Anders
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | | | | | | |
Collapse
|
50
|
Abstract
Microtubules are polarized polymers that exhibit dynamic instability, with alternating phases of elongation and shortening, particularly at the more dynamic plus-end. Microtubule plus-end tracking proteins (+TIPs) localize to and track with growing microtubule plus-ends in the cell. +TIPs regulate microtubule dynamics and mediate interactions with other cellular components. The molecular mechanisms responsible for the +TIP tracking activity are not well understood, however. We reconstituted the +TIP tracking of mammalian proteins EB1 and CLIP-170 in vitro at single-molecule resolution using time-lapse total internal reflection fluorescence microscopy. We found that EB1 is capable of dynamically tracking growing microtubule plus-ends. Our single-molecule studies demonstrate that EB1 exchanges rapidly at microtubule plus-ends with a dwell time of <1 s, indicating that single EB1 molecules go through multiple rounds of binding and dissociation during microtubule polymerization. CLIP-170 exhibits lattice diffusion and fails to selectively track microtubule ends in the absence of EB1; the addition of EB1 is both necessary and sufficient to mediate plus-end tracking by CLIP-170. Single-molecule analysis of the CLIP-170-EB1 complex also indicates a short dwell time at growing plus-ends, an observation inconsistent with the copolymerization of this complex with tubulin for plus-end-specific localization. GTP hydrolysis is required for +TIP tracking, because end-specificity is lost when tubulin is polymerized in the presence of guanosine 5'-[alpha,beta-methylene]triphosphate (GMPCPP). Together, our data provide insight into the mechanisms driving plus-end tracking by mammalian +TIPs and suggest that EB1 specifically recognizes the distinct lattice structure at the growing microtubule end.
Collapse
|