1
|
Richens JH, Dmitrieva M, Zenner HL, Muschalik N, Butler R, Glashauser J, Camelo C, Luschnig S, Munro S, Rittscher J, St Johnston D. MSP-tracker: A versatile vesicle tracking software tool used to reveal the spatial control of polarized secretion in Drosophila epithelial cells. PLoS Biol 2025; 23:e3003099. [PMID: 40208901 PMCID: PMC12021295 DOI: 10.1371/journal.pbio.3003099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 04/24/2025] [Accepted: 03/05/2025] [Indexed: 04/12/2025] Open
Abstract
Understanding how specific secretory cargoes are targeted to distinct domains of the plasma membrane in epithelial cells requires analyzing the trafficking of post-Golgi vesicles to their sites of secretion. We used the RUSH (retention using selective hooks) system to synchronously release an apical cargo, Cadherin 99C (Cad99C), and a basolateral cargo, the ECM protein Nidogen, from the endoplasmic reticulum and followed their movements to the plasma membrane. We also developed an interactive vesicle tracking framework, MSP-tracker and viewer, that exploits developments in computer vision and deep learning to determine vesicle trajectories in a noisy environment without the need for extensive training data. MSP-tracker outperformed other tracking software in detecting and tracking post-Golgi vesicles, revealing that Cad99c vesicles predominantly move apically with a mean speed of 1.1µm/sec. This is reduced to 0.85 µm/sec by a dominant slow dynein mutant, demonstrating that dynein transports Cad99C vesicles to the apical cortex. Furthermore, both the dynein mutant and microtubule depolymerization cause lateral Cad99C secretion. Thus, microtubule organization plays a central role in targeting apical secretion, suggesting that Drosophila does not have distinct apical versus basolateral vesicle fusion machinery. Nidogen vesicles undergo planar-polarized transport to the leading edge of follicle cells as they migrate over the ECM, whereas most Collagen is secreted at trailing edges. The follicle cells therefore bias secretion of different ECM components to opposite sides of the cell, revealing that the secretory pathway is more spatially organized than previously thought.
Collapse
Affiliation(s)
- Jennifer H. Richens
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Mariia Dmitrieva
- Institute of Biomedical Engineering (IBME), Department of Engineering Science and the Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom
| | - Helen L. Zenner
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Nadine Muschalik
- MRC-Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Richard Butler
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Jade Glashauser
- Institute of Integrative Cell Biology and Physiology, Cells in Motion (CiM) Interfaculty Centre, University of Münster, Münster, Germany
| | - Carolina Camelo
- Institute of Integrative Cell Biology and Physiology, Cells in Motion (CiM) Interfaculty Centre, University of Münster, Münster, Germany
| | - Stefan Luschnig
- Institute of Integrative Cell Biology and Physiology, Cells in Motion (CiM) Interfaculty Centre, University of Münster, Münster, Germany
| | - Sean Munro
- MRC-Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Jens Rittscher
- Institute of Biomedical Engineering (IBME), Department of Engineering Science and the Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Daniel St Johnston
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
2
|
Nadar-Ponniah PT, Lopez-Escamez JA. Preclinical Models to Study the Molecular Pathophysiology of Meniere's Disease: A Pathway to Gene Therapy. J Clin Med 2025; 14:1427. [PMID: 40094841 PMCID: PMC11899769 DOI: 10.3390/jcm14051427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/11/2025] [Accepted: 02/17/2025] [Indexed: 03/19/2025] Open
Abstract
Background: Meniere's disease (MD) is a set of rare disorders that affects >4 million people worldwide. Individuals with MD suffer from episodes of vertigo associated with fluctuating sensorineural hearing loss and tinnitus. Hearing loss can involve one or both ears. Over 10% of the reported cases are observed in families, suggesting its significant genetic contribution. The condition is polygenic with >20 genes, and several patterns of inheritance have been reported, including autosomal dominant, autosomal recessive, and digenic inheritance across multiple MD families. Preclinical research using animal models has been an indispensable tool for studying the neurophysiology of the auditory and vestibular systems and to get a better understanding of the functional role of genes that are involved in the hearing and vestibular dysfunction. While mouse models are the most used preclinical model, this review analyzes alternative animal and non-animal models that can be used to study MD genes. Methods: A literature search of the 21 genes reported for familial MD and the preclinical models used to investigate their functional role was performed. Results: Comparing the homology of proteins encoded by these genes to other model organisms revealed Drosophila and zebrafish as cost-effective models to screen multiple genes and study the pathophysiology of MD. Conclusions: Murine models are preferred for a quantitative neurophysiological assessment of hearing and vestibular functions to develop drug or gene therapy.
Collapse
Affiliation(s)
- Prathamesh T. Nadar-Ponniah
- Meniere Disease Neuroscience Research Program, Faculty of Medicine & Health, School of Medical Sciences, The Kolling Institute, University of Sydney, Sydney, NSW 2065, Australia
| | - Jose A. Lopez-Escamez
- Meniere Disease Neuroscience Research Program, Faculty of Medicine & Health, School of Medical Sciences, The Kolling Institute, University of Sydney, Sydney, NSW 2065, Australia
- Otology & Neurotology Group CTS495, Division of Otolaryngology, Department of Surgery, Instituto de Investigación Biosanitaria, ibs.GRANADA, Universidad de Granada, 18071 Granada, Spain
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, 28029 Madrid, Spain
| |
Collapse
|
3
|
Matoo S, Graves MJ, Choi MS, Idris RAES, Acharya P, Thapa G, Nguyen T, Atallah SY, Tipirneni AK, Stevenson PJ, Crawley SW. The microvillar protocadherin CDHR5 associates with EBP50 to promote brush border assembly. Mol Biol Cell 2024; 35:ar36. [PMID: 38170579 PMCID: PMC10916864 DOI: 10.1091/mbc.e23-02-0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 10/27/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024] Open
Abstract
Transporting epithelial cells of the gut and kidney interact with their luminal environment through a densely packed collection of apical microvilli known as a brush border (BB). Proper brush border assembly depends on the intermicrovillar adhesion complex (IMAC), a protocadherin-based adhesion complex found at the distal tips of microvilli that mediates adhesion between neighboring protrusions to promote their organized packing. Loss of the IMAC adhesion molecule Cadherin-related family member 5 (CDHR5) results in significant brush border defects, though the functional properties of this protocadherin have not been thoroughly explored. Here, we show that the cytoplasmic tail of CDHR5 contributes to its correct apical targeting and functional properties in an isoform-specific manner. Library screening identified the Ezrin-associated scaffolds EBP50 and E3KARP as cytoplasmic binding partners for CDHR5. Consistent with this, loss of EBP50 disrupted proper brush border assembly with cells exhibiting markedly reduced apical IMAC levels. Together, our results shed light on the apical targeting determinants of CDHR5 and further define the interactome of the IMAC involved in brush border assembly.
Collapse
Affiliation(s)
- Samaneh Matoo
- Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606
| | - Maura J. Graves
- Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606
| | - Myoung Soo Choi
- Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606
| | | | - Prashun Acharya
- Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606
| | - Garima Thapa
- Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606
| | - Tram Nguyen
- Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606
| | - Sarah Y. Atallah
- Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606
| | - Ashna K. Tipirneni
- Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606
| | | | - Scott W. Crawley
- Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606
| |
Collapse
|
4
|
Mallart C, Netter S, Chalvet F, Claret S, Guichet A, Montagne J, Pret AM, Malartre M. JAK-STAT-dependent contact between follicle cells and the oocyte controls Drosophila anterior-posterior polarity and germline development. Nat Commun 2024; 15:1627. [PMID: 38388656 PMCID: PMC10883949 DOI: 10.1038/s41467-024-45963-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
The number of embryonic primordial germ cells in Drosophila is determined by the quantity of germ plasm, whose assembly starts in the posterior region of the oocyte during oogenesis. Here, we report that extending JAK-STAT activity in the posterior somatic follicular epithelium leads to an excess of primordial germ cells in the future embryo. We show that JAK-STAT signaling is necessary for the differentiation of approximately 20 specialized follicle cells maintaining tight contact with the oocyte. These cells define, in the underlying posterior oocyte cortex, the anchoring of the germ cell determinant oskar mRNA. We reveal that the apical surface of these posterior anchoring cells extends long filopodia penetrating the oocyte. We identify two JAK-STAT targets in these cells that are each sufficient to extend the zone of contact with the oocyte, thereby leading to production of extra primordial germ cells. JAK-STAT signaling thus determines a fixed number of posterior anchoring cells required for anterior-posterior oocyte polarity and for the development of the future germline.
Collapse
Affiliation(s)
- Charlotte Mallart
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Sophie Netter
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université de Versailles-Saint-Quentin en Yvelines, Université Paris-Saclay, Gif- sur-Yvette, France
| | - Fabienne Chalvet
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Sandra Claret
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Antoine Guichet
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Jacques Montagne
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Anne-Marie Pret
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université de Versailles-Saint-Quentin en Yvelines, Université Paris-Saclay, Gif- sur-Yvette, France
| | - Marianne Malartre
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France.
| |
Collapse
|
5
|
Niazi A, Kim JA, Kim DK, Lu D, Sterin I, Park J, Park S. Microvilli regulate the release modes of alpha-tectorin to organize the domain-specific matrix architecture of the tectorial membrane. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.04.574255. [PMID: 38260557 PMCID: PMC10802356 DOI: 10.1101/2024.01.04.574255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The tectorial membrane (TM) is an apical extracellular matrix (ECM) in the cochlea essential for auditory transduction. The TM exhibits highly ordered domain-specific architecture. Alpha-tectorin/TECTA is a glycosylphosphatidylinositol (GPI)-anchored ECM protein essential for TM organization. Here, we identified that TECTA is released by distinct modes: proteolytic shedding by TMPRSS2 and GPI-anchor-dependent release from the microvillus tip. In the medial/limbal domain, proteolytically shed TECTA forms dense fibers. In the lateral/body domain produced by the supporting cells displaying dense microvilli, the proteolytic shedding restricts TECTA to the microvillus tip and compartmentalizes the collagen-binding site. The tip-localized TECTA, in turn, is released in a GPI-anchor-dependent manner to form collagen-crosslinking fibers, required for maintaining the spacing and parallel organization of collagen fibrils. Overall, we showed that distinct release modes of TECTA determine the domain-specific organization pattern, and the microvillus coordinates the release modes along its membrane to organize the higher-order ECM architecture.
Collapse
Affiliation(s)
- Ava Niazi
- Department of Neurobiology, University of Utah, Salt Lake City, Utah, USA
- Neuroscience Program, University of Utah, Salt Lake City, Utah, USA
| | - Ju Ang Kim
- Department of Neurobiology, University of Utah, Salt Lake City, Utah, USA
- Current affiliation: Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Dong-Kyu Kim
- Department of Neurobiology, University of Utah, Salt Lake City, Utah, USA
- Current affiliation: Genetics & Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Di Lu
- Department of Neurobiology, University of Utah, Salt Lake City, Utah, USA
| | - Igal Sterin
- Department of Neurobiology, University of Utah, Salt Lake City, Utah, USA
| | - Joosang Park
- Department of Neurobiology, University of Utah, Salt Lake City, Utah, USA
| | - Sungjin Park
- Department of Neurobiology, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
6
|
Berg C, Sieber M, Sun J. Finishing the egg. Genetics 2024; 226:iyad183. [PMID: 38000906 PMCID: PMC10763546 DOI: 10.1093/genetics/iyad183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/27/2023] [Indexed: 11/26/2023] Open
Abstract
Gamete development is a fundamental process that is highly conserved from early eukaryotes to mammals. As germ cells develop, they must coordinate a dynamic series of cellular processes that support growth, cell specification, patterning, the loading of maternal factors (RNAs, proteins, and nutrients), differentiation of structures to enable fertilization and ensure embryonic survival, and other processes that make a functional oocyte. To achieve these goals, germ cells integrate a complex milieu of environmental and developmental signals to produce fertilizable eggs. Over the past 50 years, Drosophila oogenesis has risen to the forefront as a system to interrogate the sophisticated mechanisms that drive oocyte development. Studies in Drosophila have defined mechanisms in germ cells that control meiosis, protect genome integrity, facilitate mRNA trafficking, and support the maternal loading of nutrients. Work in this system has provided key insights into the mechanisms that establish egg chamber polarity and patterning as well as the mechanisms that drive ovulation and egg activation. Using the power of Drosophila genetics, the field has begun to define the molecular mechanisms that coordinate environmental stresses and nutrient availability with oocyte development. Importantly, the majority of these reproductive mechanisms are highly conserved throughout evolution, and many play critical roles in the development of somatic tissues as well. In this chapter, we summarize the recent progress in several key areas that impact egg chamber development and ovulation. First, we discuss the mechanisms that drive nutrient storage and trafficking during oocyte maturation and vitellogenesis. Second, we examine the processes that regulate follicle cell patterning and how that patterning impacts the construction of the egg shell and the establishment of embryonic polarity. Finally, we examine regulatory factors that control ovulation, egg activation, and successful fertilization.
Collapse
Affiliation(s)
- Celeste Berg
- Department of Genome Sciences, University of Washington, Seattle, WA 98195-5065 USA
| | - Matthew Sieber
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX 75390 USA
| | - Jianjun Sun
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269 USA
| |
Collapse
|
7
|
Sheahan TD, Grewal A, Korthauer LE, Blumenthal EM. The Drosophila drop-dead gene is required for eggshell integrity. PLoS One 2023; 18:e0295412. [PMID: 38051756 PMCID: PMC10697589 DOI: 10.1371/journal.pone.0295412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 11/21/2023] [Indexed: 12/07/2023] Open
Abstract
The eggshell of the fruit fly Drosophila melanogaster is a useful model for understanding the synthesis of a complex extracellular matrix. The eggshell is synthesized during mid-to-late oogenesis by the somatic follicle cells that surround the developing oocyte. We previously reported that female flies mutant for the gene drop-dead (drd) are sterile, but the underlying cause of the sterility remained unknown. In this study, we examined the role of drd in eggshell synthesis. We show that eggs laid by drd mutant females are fertilized but arrest early in embryogenesis, and that the innermost layer of the eggshell, the vitelline membrane, is abnormally permeable to dye in these eggs. In addition, the major vitelline membrane proteins fail to become crosslinked by nonreducible bonds, a process that normally occurs during egg activation following ovulation, as evidenced by their solubility and detection by Western blot in laid eggs. In contrast, the Cp36 protein, which is found in the outer chorion layers of the eggshell, becomes crosslinked normally. To link the drd expression pattern with these phenotypes, we show that drd is expressed in the ovarian follicle cells beginning in mid-oogenesis, and, importantly, that all drd mutant eggshell phenotypes could be recapitulated by selective knockdown of drd expression in the follicle cells. To determine whether drd expression was required for the crosslinking itself, we performed in vitro activation and crosslinking experiments. The vitelline membranes of control egg chambers could become crosslinked either by incubation in hyperosmotic medium, which activates the egg chambers, or by exogenous peroxidase and hydrogen peroxide. In contrast, neither treatment resulted in the crosslinking of the vitelline membrane in drd mutant egg chambers. These results indicate that drd expression in the follicle cells is necessary for vitelline membrane proteins to serve as substrates for peroxidase-mediated cross-linking at the end of oogenesis.
Collapse
Affiliation(s)
- Tayler D. Sheahan
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, United States of America
| | - Amanpreet Grewal
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, United States of America
| | - Laura E. Korthauer
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, United States of America
| | - Edward M. Blumenthal
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, United States of America
| |
Collapse
|
8
|
Mukherjee A, Schuppe M, Renault AD. The Lipid Phosphate Phosphatase Wunen Promotes Eggshell Formation and Is Essential for Fertility in Drosophila. BIOLOGY 2023; 12:1003. [PMID: 37508432 PMCID: PMC10376809 DOI: 10.3390/biology12071003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/22/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023]
Abstract
The eggshell that surrounds insect eggs acts as a barrier, protecting against biotic factors and desiccation. The eggshell is a multi-layered structure which is synthesised by the somatic follicle cells that surround the developing oocyte. Although the temporal order of expression of the protein eggshell components goes someway to explaining how the different layers are built up, but how the precise three-dimensional structure is achieved and how lipid components responsible for desiccation resistance are incorporated are poorly understood. In this paper, we demonstrate that wunen, which encodes a lipid phosphate phosphatase, is necessary for fertility in Drosophila females. Compared to sibling controls, females null for wunen lay fewer eggs which subsequently collapse such that no larvae emerge. We show that this is due to a requirement for wunen in the ovarian follicle cells which is needed to produce an ordered and functional eggshell. Knockdown of a septate junction component also results in collapsed eggs, supporting the idea that similar to its role in embryonic tracheal development, Wunen in follicle cells also promotes septate junction function.
Collapse
Affiliation(s)
- Amrita Mukherjee
- MRC Toxicology Unit, Gleeson Building, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Michaela Schuppe
- Institute for Organic Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Andrew D Renault
- School of Life Sciences, University of Nottingham, Medical School, QMC, Nottingham NG7 2UH, UK
| |
Collapse
|
9
|
Sheahan TD, Grewal A, Korthauer LE, Blumenthal EM. The Drosophila drop-dead gene is required for eggshell integrity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.25.538335. [PMID: 37163052 PMCID: PMC10168300 DOI: 10.1101/2023.04.25.538335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The eggshell of the fruit fly Drosophila melanogaster is a useful model for understanding the synthesis of a complex extracellular matrix. The eggshell is synthesized during mid-to-late oogenesis by the somatic follicle cells that surround the developing oocyte. We previously reported that female flies mutant for the gene drop-dead ( drd ) are sterile, but the underlying cause of the sterility remained unknown. In this study, we examined the role of drd in eggshell synthesis. We show that eggs laid by drd mutant females are fertilized but arrest early in embryogenesis, and that the innermost layer of the eggshell, the vitelline membrane, is abnormally permeable to dye in these eggs. In addition, the major vitelline membrane proteins fail to become crosslinked by nonreducible bonds, a process that normally occurs during egg activation following ovulation, as evidenced by their solubility and detection by Western blot in laid eggs. In contrast, the Cp36 protein, which is found in the outer chorion layers of the eggshell, becomes crosslinked normally. To link the drd expression pattern with these phenotypes, we show that drd is expressed in the ovarian follicle cells beginning in mid-oogenesis, and, importantly, that all drd mutant eggshell phenotypes could be recapitulated by selective knockdown of drd expression in the follicle cells. To determine whether drd expression was required for the crosslinking itself, we performed in vitro activation and crosslinking experiments. The vitelline membranes of control egg chambers could become crosslinked either by incubation in hyperosmotic medium, which activates the egg chambers, or by exogenous peroxidase and hydrogen peroxide. In contrast, neither treatment resulted in the crosslinking of the vitelline membrane in drd mutant egg chambers. These results indicate that drd expression in the follicle cells is necessary for vitelline membrane proteins to serve as substrates for peroxidase-mediated cross-linking at the end of oogenesis.
Collapse
|
10
|
Altered Posttranslational Modification of Microtubules Contributes to Disturbed Enterocyte Morphology in Celiac Disease. Int J Mol Sci 2023; 24:ijms24032635. [PMID: 36768957 PMCID: PMC9917072 DOI: 10.3390/ijms24032635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Celiac disease (CD) represents a frequent autoimmune disease triggered by the ingestion of gliadin in genetically predisposed individuals. The alteration of enterocytes and brush border membrane morphology have been repetitively demonstrated, but the underlying mechanisms remain unclear. Microtubules represent a major element of the cytoskeleton and exert multiple functions depending on their tyrosination status. The aim of our study was to investigate whether posttranslational modification of microtubules was altered in the context of CD and whether this mechanism contributed to morphological changes of CD enterocytes. We examined the expression of tubulin tyrosine ligase (TTL) and vasohibin-2 (VASH2) and the level of detyrosinated and acetylated tubulin in duodenal biopsies and Caco-2 cells by immunoblot and immunofluorescence microcopy. Electron microscopy was performed to investigate the subcellular distribution of detyrosinated tubulin and brush border membrane architecture in CD biopsies and Madin-Darby Canine Kidney type II (MDCK) cells lacking TTL. CD enterocytes and Caco-2 cells stimulated with digested gliadin or IFN-y displayed a flattened cell morphology. This disturbed cellular architecture was accompanied by an increased amount of detyrosinated and acetylated tubulin and corresponding high expression of VASH2 and low expression of TTL. The altered posttranslational modification of tubulin was reversible after the introduction of the gluten-free diet. CD enterocytes and MDCK cells deficient in TTL displayed a reduced cell height along with an increased cell width and a reduced number of apical microvilli. Our results provide a functional explanation for the observed morphological alterations of the enterocytes observed in CD and provide diagnostic potential of the tyrosination status of microtubules as an early marker of villous atrophy and CD inflammation.
Collapse
|
11
|
Yusuf IH, Garrett A, MacLaren RE, Issa PC. Retinal cadherins and the retinal cadherinopathies: Current concepts and future directions. Prog Retin Eye Res 2022; 90:101038. [DOI: 10.1016/j.preteyeres.2021.101038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 12/13/2021] [Accepted: 12/20/2021] [Indexed: 12/18/2022]
|
12
|
Hurbain I, Macé AS, Romao M, Prince E, Sengmanivong L, Ruel L, Basto R, Thérond PP, Raposo G, D'Angelo G. Microvilli-derived extracellular vesicles carry Hedgehog morphogenic signals for Drosophila wing imaginal disc development. Curr Biol 2021; 32:361-373.e6. [PMID: 34890558 DOI: 10.1016/j.cub.2021.11.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 08/12/2021] [Accepted: 11/10/2021] [Indexed: 12/20/2022]
Abstract
Morphogens are secreted molecules that regulate and coordinate major developmental processes, such as cell differentiation and tissue morphogenesis. Depending on the mechanisms of secretion and the nature of their carriers, morphogens act at short and long range. We investigated the paradigmatic long-range activity of Hedgehog (Hh), a well-known morphogen, and its contribution to the growth and patterning of the Drosophila wing imaginal disc. Extracellular vesicles (EVs) contribute to Hh long-range activity; however, the nature, the site, and the mechanisms underlying the biogenesis of these vesicular carriers remain unknown. Here, through the analysis of mutants and a series of Drosophila RNAi-depleted wing imaginal discs using fluorescence and live-imaging electron microscopy, including tomography and 3D reconstruction, we demonstrate that microvilli of the wing imaginal disc epithelium are the site of generation of small EVs that transport Hh across the tissue. Further, we show that the Prominin-like (PromL) protein is critical for microvilli integrity. Together with actin cytoskeleton and membrane phospholipids, PromL maintains microvilli architecture that is essential to promote its secretory function. Importantly, the distribution of Hh to microvilli and its release via these EVs contribute to the proper morphogenesis of the wing imaginal disc. Our results demonstrate that microvilli-derived EVs are carriers for Hh long-range signaling in vivo. By establishing that members of the Prominin protein family are key determinants of microvilli formation and integrity, our findings support the view that microvilli-derived EVs conveying Hh may provide a means for exchanging signaling cues of high significance in tissue development and cancer.
Collapse
Affiliation(s)
- Ilse Hurbain
- Institut Curie, PSL Research University, CNRS, UMR144, 26 rue d'Ulm, 75248 Paris Cedex 05, France; Institut Curie, PSL Research University, CNRS, UMR144, Cell and Tissue Imaging Facility (PICT-IBiSA), 26, rue d'Ulm, 75248 Paris Cedex 05, France
| | - Anne-Sophie Macé
- Institut Curie, PSL Research University, CNRS, UMR144, 26 rue d'Ulm, 75248 Paris Cedex 05, France; Institut Curie, PSL Research University, CNRS, UMR144, Cell and Tissue Imaging Facility (PICT-IBiSA), 26, rue d'Ulm, 75248 Paris Cedex 05, France
| | - Maryse Romao
- Institut Curie, PSL Research University, CNRS, UMR144, 26 rue d'Ulm, 75248 Paris Cedex 05, France; Institut Curie, PSL Research University, CNRS, UMR144, Cell and Tissue Imaging Facility (PICT-IBiSA), 26, rue d'Ulm, 75248 Paris Cedex 05, France
| | - Elodie Prince
- Université Côte d'Azur, UMR7277 CNRS, Inserm U1091, Institute of Biology Valrose (iBV), Parc Valrose, 06108 Nice Cedex 2, France
| | - Lucie Sengmanivong
- Institut Curie, PSL Research University, CNRS, UMR144, 26 rue d'Ulm, 75248 Paris Cedex 05, France; Institut Curie, PSL Research University, CNRS, UMR144, Cell and Tissue Imaging Facility (PICT-IBiSA), 26, rue d'Ulm, 75248 Paris Cedex 05, France
| | - Laurent Ruel
- Université Côte d'Azur, UMR7277 CNRS, Inserm U1091, Institute of Biology Valrose (iBV), Parc Valrose, 06108 Nice Cedex 2, France
| | - Renata Basto
- Institut Curie, PSL Research University, CNRS, UMR144, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | - Pascal P Thérond
- Université Côte d'Azur, UMR7277 CNRS, Inserm U1091, Institute of Biology Valrose (iBV), Parc Valrose, 06108 Nice Cedex 2, France
| | - Graça Raposo
- Institut Curie, PSL Research University, CNRS, UMR144, 26 rue d'Ulm, 75248 Paris Cedex 05, France; Institut Curie, PSL Research University, CNRS, UMR144, Cell and Tissue Imaging Facility (PICT-IBiSA), 26, rue d'Ulm, 75248 Paris Cedex 05, France
| | - Gisela D'Angelo
- Institut Curie, PSL Research University, CNRS, UMR144, 26 rue d'Ulm, 75248 Paris Cedex 05, France; Institut Curie, PSL Research University, CNRS, UMR144, Cell and Tissue Imaging Facility (PICT-IBiSA), 26, rue d'Ulm, 75248 Paris Cedex 05, France.
| |
Collapse
|
13
|
Ronchi P, Mizzon G, Machado P, D’Imprima E, Best BT, Cassella L, Schnorrenberg S, Montero MG, Jechlinger M, Ephrussi A, Leptin M, Mahamid J, Schwab Y. High-precision targeting workflow for volume electron microscopy. J Cell Biol 2021; 220:e202104069. [PMID: 34160561 PMCID: PMC8225610 DOI: 10.1083/jcb.202104069] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/27/2021] [Accepted: 06/06/2021] [Indexed: 02/07/2023] Open
Abstract
Cells are 3D objects. Therefore, volume EM (vEM) is often crucial for correct interpretation of ultrastructural data. Today, scanning EM (SEM) methods such as focused ion beam (FIB)-SEM are frequently used for vEM analyses. While they allow automated data acquisition, precise targeting of volumes of interest within a large sample remains challenging. Here, we provide a workflow to target FIB-SEM acquisition of fluorescently labeled cells or subcellular structures with micrometer precision. The strategy relies on fluorescence preservation during sample preparation and targeted trimming guided by confocal maps of the fluorescence signal in the resin block. Laser branding is used to create landmarks on the block surface to position the FIB-SEM acquisition. Using this method, we acquired volumes of specific single cells within large tissues such as 3D cultures of mouse mammary gland organoids, tracheal terminal cells in Drosophila melanogaster larvae, and ovarian follicular cells in adult Drosophila, discovering ultrastructural details that could not be appreciated before.
Collapse
Affiliation(s)
- Paolo Ronchi
- Electron Microscopy Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Giulia Mizzon
- Electron Microscopy Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Pedro Machado
- Electron Microscopy Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Edoardo D’Imprima
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Benedikt T. Best
- Directors’ Research, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Lucia Cassella
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Sebastian Schnorrenberg
- Advanced Light Microscopy Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Marta G. Montero
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Martin Jechlinger
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Anne Ephrussi
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Maria Leptin
- Directors’ Research, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Julia Mahamid
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Yannick Schwab
- Electron Microscopy Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
14
|
Sallee JL, Crawford JM, Singh V, Kiehart DP. Mutations in Drosophila crinkled/Myosin VIIA disrupt denticle morphogenesis. Dev Biol 2021; 470:121-135. [PMID: 33248112 PMCID: PMC7855556 DOI: 10.1016/j.ydbio.2020.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 10/22/2022]
Abstract
Actin filament crosslinking, bundling and molecular motor proteins are necessary for the assembly of epithelial projections such as microvilli, stereocilia, hairs, and bristles. Mutations in such proteins cause defects in the shape, structure, and function of these actin - based protrusions. One protein necessary for stereocilia formation, Myosin VIIA, is an actin - based motor protein conserved throughout phylogeny. In Drosophila melanogaster, severe mutations in the MyoVIIA homolog crinkled (ck) are "semi - lethal" with only a very small percentage of flies surviving to adulthood. Such survivors show morphological defects related to actin bundling in hairs and bristles. To better understand ck/MyoVIIA's function in bundled - actin structures, we used dominant female sterile approaches to analyze the loss of maternal and zygotic (M/Z) ck/MyoVIIA in the morphogenesis of denticles, small actin - based projections on the ventral epidermis of Drosophila embryos. M/Z ck mutants displayed severe defects in denticle morphology - actin filaments initiated in the correct location, but failed to elongate and bundle to form normal projections. Using deletion mutant constructs, we demonstrated that both of the C - terminal MyTH4 and FERM domains are necessary for proper denticle formation. Furthermore, we show that ck/MyoVIIA interacts genetically with dusky - like (dyl), a member of the ZPD family of proteins that links the extracellular matrix to the plasma membrane, and when mutated also disrupts normal denticle formation. Loss of either protein alone does not alter the localization of the other; however, loss of the two proteins together dramatically enhances the defects in denticle shape observed when either protein alone was absent. Our data indicate that ck/MyoVIIA plays a key role in the formation and/or organization of actin filament bundles, which drive proper shape of cellular projections.
Collapse
Affiliation(s)
- Jennifer L Sallee
- Department of Biology, Duke University, Durham, NC, 27708, USA; Department of Biology, North Central College, Naperville, IL, 60540, USA.
| | | | - Vinay Singh
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | | |
Collapse
|
15
|
Antel M, Baena V, Terasaki M, Inaba M. Ultrastructural Analysis of Cell-Cell Interactions in Drosophila Ovary. Methods Mol Biol 2021; 2346:79-90. [PMID: 33460026 DOI: 10.1007/7651_2020_342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Drosophila ovary is an exceptional model for studying cell-cell interactions in vivo. Cells communicate with each other in a highly coordinated manner. Accurate spatiotemporal regulation of cell-cell interaction is critical for the development of eggs. Ultrastructural analysis using electron microscopy (EM) permits the visualization of both cells and subcellular signaling structures with high resolution. Here we describe a method for the processing of intact fly ovaries by scanning electron microscopy (SEM).
Collapse
Affiliation(s)
- Matthew Antel
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, USA
| | - Valentina Baena
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, USA
| | - Mark Terasaki
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, USA
| | - Mayu Inaba
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, USA.
| |
Collapse
|
16
|
Jevitt A, Chatterjee D, Xie G, Wang XF, Otwell T, Huang YC, Deng WM. A single-cell atlas of adult Drosophila ovary identifies transcriptional programs and somatic cell lineage regulating oogenesis. PLoS Biol 2020; 18:e3000538. [PMID: 32339165 PMCID: PMC7205450 DOI: 10.1371/journal.pbio.3000538] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 05/07/2020] [Accepted: 03/27/2020] [Indexed: 12/28/2022] Open
Abstract
Oogenesis is a complex developmental process that involves spatiotemporally regulated coordination between the germline and supporting, somatic cell populations. This process has been modeled extensively using the Drosophila ovary. Although different ovarian cell types have been identified through traditional means, the large-scale expression profiles underlying each cell type remain unknown. Using single-cell RNA sequencing technology, we have built a transcriptomic data set for the adult Drosophila ovary and connected tissues. Using this data set, we identified the transcriptional trajectory of the entire follicle-cell population over the course of their development from stem cells to the oogenesis-to-ovulation transition. We further identify expression patterns during essential developmental events that take place in somatic and germline cell types such as differentiation, cell-cycle switching, migration, symmetry breaking, nurse-cell engulfment, egg-shell formation, and corpus luteum signaling. Extensive experimental validation of unique expression patterns in both ovarian and nearby, nonovarian cells also led to the identification of many new cell type-and stage-specific markers. The inclusion of several nearby tissue types in this data set also led to our identification of functional convergence in expression between distantly related cell types such as the immune-related genes that were similarly expressed in immune cells (hemocytes) and ovarian somatic cells (stretched cells) during their brief phagocytic role in nurse-cell engulfment. Taken together, these findings provide new insight into the temporal regulation of genes in a cell-type specific manner during oogenesis and begin to reveal the relatedness in expression between cell and tissues types.
Collapse
Affiliation(s)
- Allison Jevitt
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| | - Deeptiman Chatterjee
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Gengqiang Xie
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| | - Xian-Feng Wang
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Taylor Otwell
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| | - Yi-Chun Huang
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Wu-Min Deng
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| |
Collapse
|
17
|
Chen J, Aimanova KG, Gill SS. Aedes cadherin receptor that mediates Bacillus thuringiensis Cry11A toxicity is essential for mosquito development. PLoS Negl Trop Dis 2020; 14:e0007948. [PMID: 32012156 PMCID: PMC7018227 DOI: 10.1371/journal.pntd.0007948] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 02/13/2020] [Accepted: 11/25/2019] [Indexed: 11/20/2022] Open
Abstract
Aedes cadherin (AaeCad, AAEL024535) has been characterized as a receptor for Bacillus thuringiensis subsp. israelensis (Bti) Cry11A toxins. However, its role in development is still unknown. In this study, we modified the cadherin gene using ZFN and TALEN. Even though we obtained heterozygous deletions, no homozygous mutants were viable. Because ZFN and TALEN have lower off-targets than CRISPR/Cas9, we conclude the cadherin gene is essential for Aedes development. In contrast, in lepidopteran insects loss of a homologous cadherin does not appear to be lethal, since homozygous mutants are viable. To analyze the role of AaeCad in vivo, we tagged this protein with EGFP using CRISPR-Cas9-mediated homologous recombination and obtained a homozygous AaeCad-EGFP line. Addition of Aedes Rad51 mRNA enhanced the rate of recombination. We then examined AaeCad protein expression in most tissues and protein dynamics during mosquito development. We observe that AaeCad is expressed in larval and adult midgut-specific manner and its expression pattern changed during the mosquito development. Confocal images showed AaeCad has high expression in larval caecae and posterior midgut, and also in adult midgut. Expression of AaeCad is observed primarily in the apical membranes of epithelial cells, and not in cell-cell junctions. The expression pattern observed suggests AaeCad does not appear to play a role in these junctions. However, we cannot exclude its role beyond cell-cell adhesion in the midgut. We also observed that Cry11A bound to the apical side of larval gastric caecae and posterior midgut cells exactly where AaeCad-EGFP was expressed. Their co-localization suggests that AaeCad is indeed a receptor for the Cry11A toxin. Using this mosquito line we also observed that low doses of Cry11A toxin caused the cells to slough off membranes, which likely represents a defense mechanism, to limit cell damage from Cry11A toxin pores formed in the cell membrane. A number of receptors for Bt Cry toxins, have been identified and characterized, including cadherin proteins. However, the role of these proteins in the insect is unknown and there have been few efforts to elucidate their function. First, in this study we show that in the mosquito, Aedes aegypti, the cadherin protein is essential for development. Secondly, we provide evidence that AaeCad plays a role in the apical membrane and the maintenance of midgut integrity by gene tagging using CRISPR/Cas9, which overcomes the limitation of receptor localization using antibodies in previous studies. These investigations are helpful to further investigate the physiological function of AaeCad. Moreover, this study demonstrated successful tagging of an essential gene with fluorescence protein in a non-model insect. In addition, this study showed that epithelium thinning is possibly a conserved mechanism for host defense against pore-forming toxins, like Cry11A.
Collapse
Affiliation(s)
- Jianwu Chen
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, California, United States of America
| | - Karly G. Aimanova
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, California, United States of America
| | - Sarjeet S. Gill
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, California, United States of America
- * E-mail:
| |
Collapse
|
18
|
Modulation of Cell-Cell Interactions in Drosophila Oocyte Development. Cells 2020; 9:cells9020274. [PMID: 31979180 PMCID: PMC7072342 DOI: 10.3390/cells9020274] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 02/07/2023] Open
Abstract
The Drosophila ovary offers a suitable model system to study the mechanisms that orchestrate diverse cellular processes. Oogenesis starts from asymmetric stem cell division, proper differentiation and the production of fully patterned oocytes equipped with all the maternal information required for embryogenesis. Spatial and temporal regulation of cell-cell interaction is particularly important to fulfill accurate biological outcomes at each step of oocyte development. Progress has been made in understanding diverse cell physiological regulation of signaling. Here we review the roles of specialized cellular machinery in cell-cell communication in different stages of oogenesis.
Collapse
|
19
|
Barr J, Charania S, Gilmutdinov R, Yakovlev K, Shidlovskii Y, Schedl P. The CPEB translational regulator, Orb, functions together with Par proteins to polarize the Drosophila oocyte. PLoS Genet 2019; 15:e1008012. [PMID: 30865627 PMCID: PMC6433291 DOI: 10.1371/journal.pgen.1008012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/25/2019] [Accepted: 02/12/2019] [Indexed: 01/05/2023] Open
Abstract
orb is a founding member of the CPEB family of translational regulators and is required at multiple steps during Drosophila oogenesis. Previous studies showed that orb is required during mid-oogenesis for the translation of the posterior/germline determinant oskar mRNA and the dorsal-ventral determinant gurken mRNA. Here, we report that orb also functions upstream of these axes determinants in the polarization of the microtubule network (MT). Prior to oskar and gurken translational activation, the oocyte MT network is repolarized. The MT organizing center at the oocyte posterior is disassembled, and a new MT network is established at the oocyte anterior. Repolarization depends upon cross-regulatory interactions between anterior (apical) and posterior (basal) Par proteins. We show that repolarization of the oocyte also requires orb and that orb is needed for the proper functioning of the Par proteins. orb interacts genetically with aPKC and cdc42 and in egg chambers compromised for orb activity, Par-1 and aPKC protein and aPKC mRNA are mislocalized. Moreover, like cdc42-, the defects in Par protein localization appear to be connected to abnormalities in the cortical actin cytoskeleton. These abnormalities also disrupt the localization of the spectraplakin Shot and the microtubule minus-end binding protein Patronin. These two proteins play a critical role in the repolarization of the MT network.
Collapse
Affiliation(s)
- Justinn Barr
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Sofia Charania
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Rudolf Gilmutdinov
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Konstantin Yakovlev
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Yulii Shidlovskii
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Paul Schedl
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
20
|
Pelaseyed T, Bretscher A. Regulation of actin-based apical structures on epithelial cells. J Cell Sci 2018; 131:131/20/jcs221853. [PMID: 30333133 DOI: 10.1242/jcs.221853] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Cells of transporting epithelia are characterized by the presence of abundant F-actin-based microvilli on their apical surfaces. Likewise, auditory hair cells have highly reproducible rows of apical stereocilia (giant microvilli) that convert mechanical sound into an electrical signal. Analysis of mutations in deaf patients has highlighted the critical components of tip links between stereocilia, and related structures that contribute to the organization of microvilli on epithelial cells have been found. Ezrin/radixin/moesin (ERM) proteins, which are activated by phosphorylation, provide a critical link between the plasma membrane and underlying actin cytoskeleton in surface structures. Here, we outline recent insights into how microvilli and stereocilia are built, and the roles of tip links. Furthermore, we highlight how ezrin is locally regulated by phosphorylation, and that this is necessary to maintain polarity. Localized phosphorylation is achieved through an intricate coincidence detection mechanism that requires the membrane lipid phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] and the apically localized ezrin kinase, lymphocyte-oriented kinase (LOK, also known as STK10) or Ste20-like kinase (SLK). We also discuss how ezrin-binding scaffolding proteins regulate microvilli and how, despite these significant advances, it remains to be discovered how the cell polarity program ultimately interfaces with these processes.
Collapse
Affiliation(s)
- Thaher Pelaseyed
- Institute of Biomedicine, Department of Medical Biochemistry and Cell Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Anthony Bretscher
- Weill Institute for Cell and Molecular Biology, Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
21
|
Ge J, Elferich J, Goehring A, Zhao H, Schuck P, Gouaux E. Structure of mouse protocadherin 15 of the stereocilia tip link in complex with LHFPL5. eLife 2018; 7:38770. [PMID: 30070639 PMCID: PMC6092121 DOI: 10.7554/elife.38770] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/31/2018] [Indexed: 11/13/2022] Open
Abstract
Hearing and balance involve the transduction of mechanical stimuli into electrical signals by deflection of bundles of stereocilia linked together by protocadherin 15 (PCDH15) and cadherin 23 'tip links'. PCDH15 transduces tip link tension into opening of a mechano-electrical transduction (MET) ion channel. PCDH15 also interacts with LHFPL5, a candidate subunit of the MET channel. Here we illuminate the PCDH15-LHFPL5 structure, showing how the complex is composed of PCDH15 and LHFPL5 subunit pairs related by a 2-fold axis. The extracellular cadherin domains define a mobile tether coupled to a rigid, 2-fold symmetric 'collar' proximal to the membrane bilayer. LHFPL5 forms extensive interactions with the PCDH15 transmembrane helices and stabilizes the overall PCDH15-LHFPL5 assembly. Our studies illuminate the architecture of the PCDH15-LHFPL5 complex, localize mutations associated with deafness, and shed new light on how forces in the PCDH15 tether may be transduced into the stereocilia membrane.
Collapse
Affiliation(s)
- Jingpeng Ge
- Vollum Institute, Oregon Health & Science University, Portland, United States
| | - Johannes Elferich
- Vollum Institute, Oregon Health & Science University, Portland, United States
| | - April Goehring
- Vollum Institute, Oregon Health & Science University, Portland, United States
| | - Huaying Zhao
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, United States
| | - Peter Schuck
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, United States
| | - Eric Gouaux
- Vollum Institute, Oregon Health & Science University, Portland, United States.,Howard Hughes Medical Institute, Oregon Health & Science University, Portland, United States
| |
Collapse
|
22
|
Li T, Bellen HJ, Groves AK. Using Drosophila to study mechanisms of hereditary hearing loss. Dis Model Mech 2018; 11:11/6/dmm031492. [PMID: 29853544 PMCID: PMC6031363 DOI: 10.1242/dmm.031492] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Johnston's organ - the hearing organ of Drosophila - has a very different structure and morphology to that of the hearing organs of vertebrates. Nevertheless, it is becoming clear that vertebrate and invertebrate auditory organs share many physiological, molecular and genetic similarities. Here, we compare the molecular and cellular features of hearing organs in Drosophila with those of vertebrates, and discuss recent evidence concerning the functional conservation of Usher proteins between flies and mammals. Mutations in Usher genes cause Usher syndrome, the leading cause of human deafness and blindness. In Drosophila, some Usher syndrome proteins appear to physically interact in protein complexes that are similar to those described in mammals. This functional conservation highlights a rational role for Drosophila as a model for studying hearing, and for investigating the evolution of auditory organs, with the aim of advancing our understanding of the genes that regulate human hearing and the pathogenic mechanisms that lead to deafness.
Collapse
Affiliation(s)
- Tongchao Li
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hugo J Bellen
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.,Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Andrew K Groves
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA .,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
23
|
Tyska MJ. Listen to your gut: Using adhesion to shape the surface of functionally diverse epithelia. Rare Dis 2016. [DOI: 10.1080/21675511.2016.1220469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Matthew J. Tyska
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
24
|
Li T, Giagtzoglou N, Eberl DF, Jaiswal SN, Cai T, Godt D, Groves AK, Bellen HJ. The E3 ligase Ubr3 regulates Usher syndrome and MYH9 disorder proteins in the auditory organs of Drosophila and mammals. eLife 2016; 5. [PMID: 27331610 PMCID: PMC4978524 DOI: 10.7554/elife.15258] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 06/21/2016] [Indexed: 01/08/2023] Open
Abstract
Myosins play essential roles in the development and function of auditory organs and multiple myosin genes are associated with hereditary forms of deafness. Using a forward genetic screen in Drosophila, we identified an E3 ligase, Ubr3, as an essential gene for auditory organ development. Ubr3 negatively regulates the mono-ubiquitination of non-muscle Myosin II, a protein associated with hearing loss in humans. The mono-ubiquitination of Myosin II promotes its physical interaction with Myosin VIIa, a protein responsible for Usher syndrome type IB. We show that ubr3 mutants phenocopy pathogenic variants of Myosin II and that Ubr3 interacts genetically and physically with three Usher syndrome proteins. The interactions between Myosin VIIa and Myosin IIa are conserved in the mammalian cochlea and in human retinal pigment epithelium cells. Our work reveals a novel mechanism that regulates protein complexes affected in two forms of syndromic deafness and suggests a molecular function for Myosin IIa in auditory organs.
Collapse
Affiliation(s)
- Tongchao Li
- Program in Developmental Biology, Baylor College of Medicine, Houston, United States
| | - Nikolaos Giagtzoglou
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States.,Department of Neurology, Baylor College of Medicine, Houston, United States
| | - Daniel F Eberl
- Department of Biology, University of Iowa, Iowa City, United States
| | - Sonal Nagarkar Jaiswal
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States.,Howard Hughes Medical Institute, Baylor College of Medicine, Houston, United States
| | - Tiantian Cai
- Department of Neuroscience, Baylor College of Medicine, Houston, United States
| | - Dorothea Godt
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Andrew K Groves
- Program in Developmental Biology, Baylor College of Medicine, Houston, United States.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, United States
| | - Hugo J Bellen
- Program in Developmental Biology, Baylor College of Medicine, Houston, United States.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States.,Howard Hughes Medical Institute, Baylor College of Medicine, Houston, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, United States
| |
Collapse
|
25
|
Khanal I, Elbediwy A, Diaz de la Loza MDC, Fletcher GC, Thompson BJ. Shot and Patronin polarise microtubules to direct membrane traffic and biogenesis of microvilli in epithelia. J Cell Sci 2016; 129:2651-9. [PMID: 27231092 PMCID: PMC4958304 DOI: 10.1242/jcs.189076] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 05/19/2016] [Indexed: 01/08/2023] Open
Abstract
In epithelial tissues, polarisation of microtubules and actin microvilli occurs along the apical-basal axis of each cell, yet how these cytoskeletal polarisation events are coordinated remains unclear. Here, we examine the hierarchy of events during cytoskeletal polarisation in Drosophila melanogaster epithelia. Core apical-basal polarity determinants polarise the spectrin cytoskeleton to recruit the microtubule-binding proteins Patronin (CAMSAP1, CAMSAP2 and CAMSAP3 in humans) and Shortstop [Shot; MACF1 and BPAG1 (also known as DST) in humans] to the apical membrane domain. Patronin and Shot then act to polarise microtubules along the apical-basal axis to enable apical transport of Rab11 endosomes by the Nuf-Dynein microtubule motor complex. Finally, Rab11 endosomes are transferred to the MyoV (also known as Didum in Drosophila) actin motor to deliver the key microvillar determinant Cadherin 99C to the apical membrane to organise the biogenesis of actin microvilli.
Collapse
Affiliation(s)
- Ichha Khanal
- The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Ahmed Elbediwy
- The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | | | | | - Barry J Thompson
- The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| |
Collapse
|
26
|
Halberg KA, Rainey SM, Veland IR, Neuert H, Dornan AJ, Klämbt C, Davies SA, Dow JAT. The cell adhesion molecule Fasciclin2 regulates brush border length and organization in Drosophila renal tubules. Nat Commun 2016; 7:11266. [PMID: 27072072 PMCID: PMC4833865 DOI: 10.1038/ncomms11266] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 03/08/2016] [Indexed: 12/20/2022] Open
Abstract
Multicellular organisms rely on cell adhesion molecules to coordinate cell–cell interactions, and to provide navigational cues during tissue formation. In Drosophila, Fasciclin 2 (Fas2) has been intensively studied due to its role in nervous system development and maintenance; yet, Fas2 is most abundantly expressed in the adult renal (Malpighian) tubule rather than in neuronal tissues. The role Fas2 serves in this epithelium is unknown. Here we show that Fas2 is essential to brush border maintenance in renal tubules of Drosophila. Fas2 is dynamically expressed during tubule morphogenesis, localizing to the brush border whenever the tissue is transport competent. Genetic manipulations of Fas2 expression levels impact on both microvilli length and organization, which in turn dramatically affect stimulated rates of fluid secretion by the tissue. Consequently, we demonstrate a radically different role for this well-known cell adhesion molecule, and propose that Fas2-mediated intermicrovillar homophilic adhesion complexes help stabilize the brush border. In Drosophila, Fasciclin 2 (Fas2) has been mainly studied in the nervous system, yet this adhesion protein is more abundant in the adult renal tubule. Here the authors show that Fas2 is essential for brush border maintenance in renal tubules through regulation of microvilli length and organization.
Collapse
Affiliation(s)
- Kenneth A Halberg
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Davidson Building Room 324, Glasgow G12 8QQ, UK.,Section for Cell &Neurobiology, Department of Biology, University of Copenhagen, Universitetsparken 15, Copenhagen DK-2100, Denmark
| | - Stephanie M Rainey
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Davidson Building Room 324, Glasgow G12 8QQ, UK.,MRC-University of Glasgow Centre for Virus Research, Henry Wellcome Building, 464 Bearsden Road, Glasgow G61 1QH, UK
| | - Iben R Veland
- Cancer Research UK
- Beatson Institute, Garscube Estate, Switchback road, Glasgow G61 1BD, UK.,Section of Cell Biology and Physiology, Department of Biology, University of Copenhagen, Universitetsparken 13, Copenhagen DK-2100, Denmark
| | - Helen Neuert
- Institut für Neuro- und Verhaltensbiologie, Universität Münster, Badestrasse 9, 48149 Münster, Germany
| | - Anthony J Dornan
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Davidson Building Room 324, Glasgow G12 8QQ, UK
| | - Christian Klämbt
- Institut für Neuro- und Verhaltensbiologie, Universität Münster, Badestrasse 9, 48149 Münster, Germany
| | - Shireen-Anne Davies
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Davidson Building Room 324, Glasgow G12 8QQ, UK
| | - Julian A T Dow
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Davidson Building Room 324, Glasgow G12 8QQ, UK
| |
Collapse
|
27
|
Romani P, Gargiulo G, Cavaliere V. The ecdysone receptor signalling regulates microvilli formation in follicular epithelial cells. Cell Mol Life Sci 2016; 73:409-25. [PMID: 26223269 PMCID: PMC11108565 DOI: 10.1007/s00018-015-1999-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 07/03/2015] [Accepted: 07/22/2015] [Indexed: 11/27/2022]
Abstract
Epithelial morphogenesis contributes greatly to the development and homeostasis of the organs and body parts. Here, we analysed the consequences of impaired ecdysone receptor (EcR) signalling in the Drosophila follicular epithelium. Besides governing cell growth, the three EcR isoforms act redundantly in controlling follicle cell positioning. Flattening of the microvilli and an aberrant actin cytoskeleton arise from defective EcR signalling in follicle cells, and these defects impact on the organisation of the oocyte membrane. We found that this signalling governs a complex molecular network since its impairment affects key molecules as atypical protein kinase C and activated Moesin. Interestingly, the activity of the transcription factor Tramtrack69 isoform is required for microvilli and their actin core morphogenesis as well as for follicle cell positioning. In conclusion, our findings provide evidence of novel roles for EcR signalling and Tramtrack69 transcription factor in controlling stage-specific differentiation events that take place in the follicular epithelium.
Collapse
Affiliation(s)
- Patrizia Romani
- Dipartimento di Farmacia e Biotecnologie, FaBiT, Università di Bologna, Via Selmi, 3, 40126, Bologna, Italy.
| | - Giuseppe Gargiulo
- Dipartimento di Farmacia e Biotecnologie, FaBiT, Università di Bologna, Via Selmi, 3, 40126, Bologna, Italy
| | - Valeria Cavaliere
- Dipartimento di Farmacia e Biotecnologie, FaBiT, Università di Bologna, Via Selmi, 3, 40126, Bologna, Italy.
| |
Collapse
|
28
|
Sherrard KM, Fehon RG. The transmembrane protein Crumbs displays complex dynamics during follicular morphogenesis and is regulated competitively by Moesin and aPKC. Development 2015; 142:1869-78. [PMID: 25926360 DOI: 10.1242/dev.115329] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 03/23/2015] [Indexed: 01/05/2023]
Abstract
The transmembrane protein Crumbs (Crb) functions in apical polarity and epithelial integrity. To better understand its role in epithelial morphogenesis, we examined Crb localization and dynamics in the late follicular epithelium of Drosophila. Crb was unexpectedly dynamic during middle-to-late stages of egg chamber development, being lost from the marginal zone (MZ) in stage 9 before abruptly returning at the end of stage 10b, then undergoing a pulse of endocytosis in stage 12. The reappearance of MZ Crb is necessary to maintain an intact adherens junction and MZ. Although Crb has been proposed to interact through its juxtamembrane domain with Moesin (Moe), a FERM domain protein that regulates the cortical actin cytoskeleton, the functional significance of this interaction is poorly understood. We found that whereas the Crb juxtamembrane domain was not required for adherens junction integrity, it was necessary for MZ localization of Moe, aPKC and F-actin. Furthermore, Moe and aPKC functioned antagonistically, suggesting that Moe limits Crb levels by reducing its interactions with the apical Par network. Additionally, Moe mutant cells lost Crb from the apical membrane and accumulated excess Crb at the MZ, suggesting that Moe regulates Crb distribution at the membrane. Together, these studies reveal reciprocal interactions between Crb, Moe and aPKC during cellular morphogenesis.
Collapse
Affiliation(s)
- Kristin M Sherrard
- Department of Molecular Genetics and Cell Biology, University of Chicago, 920 E. 58th Street, Chicago, IL 60637, USA
| | - Richard G Fehon
- Department of Molecular Genetics and Cell Biology, University of Chicago, 920 E. 58th Street, Chicago, IL 60637, USA
| |
Collapse
|
29
|
Wangler MF, Yamamoto S, Bellen HJ. Fruit flies in biomedical research. Genetics 2015; 199:639-653. [PMID: 25624315 PMCID: PMC4349060 DOI: 10.1534/genetics.114.171785] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 12/09/2014] [Indexed: 12/13/2022] Open
Abstract
Many scientists complain that the current funding situation is dire. Indeed, there has been an overall decline in support in funding for research from the National Institutes of Health and the National Science Foundation. Within the Drosophila field, some of us question how long this funding crunch will last as it demotivates principal investigators and perhaps more importantly affects the long-term career choice of many young scientists. Yet numerous very interesting biological processes and avenues remain to be investigated in Drosophila, and probing questions can be answered fast and efficiently in flies to reveal new biological phenomena. Moreover, Drosophila is an excellent model organism for studies that have translational impact for genetic disease and for other medical implications such as vector-borne illnesses. We would like to promote a better collaboration between Drosophila geneticists/biologists and human geneticists/bioinformaticians/clinicians, as it would benefit both fields and significantly impact the research on human diseases.
Collapse
Affiliation(s)
- Michael F Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, Texas 77030 Department of Pediatrics, Baylor College of Medicine (BCM), Houston, Texas 77030 Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, Texas 77030 Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030 Program in Developmental Biology, Baylor College of Medicine (BCM), Texas 77030
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, Texas 77030 Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030 Program in Developmental Biology, Baylor College of Medicine (BCM), Texas 77030 Department of Neuroscience, Baylor College of Medicine (BCM), Texas 77030 Howard Hughes Medical Institute, Houston, Texas 77030
| |
Collapse
|
30
|
Fox RM, Andrew DJ. Changes in organelle position and epithelial architecture associated with loss of CrebA. Biol Open 2015; 4:317-30. [PMID: 25681391 PMCID: PMC4359738 DOI: 10.1242/bio.201411205] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Drosophila CrebA facilitates high-level secretion by transcriptional upregulation of the protein components of the core secretory machinery. In CrebA mutant embryos, both salivary gland (SG) morphology and epidermal cuticle secretion are abnormal, phenotypes similar to those observed with mutations in core secretory pathway component genes. Here, we examine the cellular defects associated with CrebA loss in the SG epithelium. Apically localized secretory vesicles are smaller and less abundant, consistent with overall reductions in secretion. Unexpectedly, global mislocalization of cellular organelles and excess membrane accumulation in the septate junctions (SJs) are also observed. Whereas mutations in core secretory pathway genes lead to organelle localization defects similar to those of CrebA mutants, they have no effect on SJ-associated membrane. Mutations in tetraspanin genes, which are normally repressed by CrebA, have mild defects in SJ morphology that are rescued by simultaneous CrebA loss. Correspondingly, removal of several tetraspanins gives partial rescue of the CrebA SJ phenotype, supporting a role for tetraspanins in SJ organization.
Collapse
Affiliation(s)
- Rebecca M Fox
- The Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Deborah J Andrew
- The Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
31
|
Bacterial uracil modulates Drosophila DUOX-dependent gut immunity via Hedgehog-induced signaling endosomes. Cell Host Microbe 2015; 17:191-204. [PMID: 25639794 DOI: 10.1016/j.chom.2014.12.012] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 10/27/2014] [Accepted: 12/10/2014] [Indexed: 12/27/2022]
Abstract
Genetic studies in Drosophila have demonstrated that generation of microbicidal reactive oxygen species (ROS) through the NADPH dual oxidase (DUOX) is a first line of defense in the gut epithelia. Bacterial uracil acts as DUOX-activating ligand through poorly understood mechanisms. Here, we show that the Hedgehog (Hh) signaling pathway modulates uracil-induced DUOX activation. Uracil-induced Hh signaling is required for intestinal expression of the calcium-dependent cell adhesion molecule Cadherin 99C (Cad99C) and subsequent Cad99C-dependent formation of endosomes. These endosomes play essential roles in uracil-induced ROS production by acting as signaling platforms for PLCβ/PKC/Ca2+-dependent DUOX activation. Animals with impaired Hh signaling exhibit abolished Cad99C-dependent endosome formation and reduced DUOX activity, resulting in high mortality during enteric infection. Importantly, endosome formation, DUOX activation, and normal host survival are restored by genetic reintroduction of Cad99C into enterocytes, demonstrating the important role for Hh signaling in host resistance to enteric infection.
Collapse
|
32
|
Glowinski C, Liu RHS, Chen X, Darabie A, Godt D. Myosin VIIA regulates microvillus morphogenesis and interacts with cadherin Cad99C in Drosophila oogenesis. J Cell Sci 2014; 127:4821-32. [PMID: 25236597 DOI: 10.1242/jcs.099242] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Microvilli and related actin-based protrusions permit multiple interactions between cells and their environment. How the shape, length and arrangement of microvilli are determined remains largely unclear. To address this issue and explore the cooperation of the two main components of a microvillus, the central F-actin bundle and the enveloping plasma membrane, we investigated the expression and function of Myosin VIIA (Myo7A), which is encoded by crinkled (ck), and its interaction with cadherin Cad99C in the microvilli of the Drosophila follicular epithelium. Myo7A is present in the microvilli and terminal web of follicle cells, and associates with several other F-actin-rich structures in the ovary. Loss of Myo7A caused brush border defects and a reduction in the amount of the microvillus regulator Cad99C. We show that Myo7A and Cad99C form a molecular complex and that the cytoplasmic tail of Cad99C recruits Myo7A to microvilli. Our data indicate that Myo7A regulates the structure and spacing of microvilli, and interacts with Cad99C in vivo. A comparison of the mutant phenotypes suggests that Myo7A and Cad99C have co-dependent and independent functions in microvilli.
Collapse
Affiliation(s)
- Cory Glowinski
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, M5S 2M6, Canada
| | - Ri-Hua Sandy Liu
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, M5S 2M6, Canada
| | - Xi Chen
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, M5S 2M6, Canada
| | - Audrey Darabie
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, M5S 2M6, Canada
| | - Dorothea Godt
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, M5S 2M6, Canada
| |
Collapse
|
33
|
Crawley SW, Shifrin DA, Grega-Larson NE, McConnell RE, Benesh AE, Mao S, Zheng Y, Zheng QY, Nam KT, Millis BA, Kachar B, Tyska MJ. Intestinal brush border assembly driven by protocadherin-based intermicrovillar adhesion. Cell 2014; 157:433-446. [PMID: 24725409 DOI: 10.1016/j.cell.2014.01.067] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 12/19/2013] [Accepted: 01/28/2014] [Indexed: 12/17/2022]
Abstract
Transporting epithelial cells build apical microvilli to increase membrane surface area and enhance absorptive capacity. The intestinal brush border provides an elaborate example with tightly packed microvilli that function in nutrient absorption and host defense. Although the brush border is essential for physiological homeostasis, its assembly is poorly understood. We found that brush border assembly is driven by the formation of Ca(2+)-dependent adhesion links between adjacent microvilli. Intermicrovillar links are composed of protocadherin-24 and mucin-like protocadherin, which target to microvillar tips and interact to form a trans-heterophilic complex. The cytoplasmic domains of microvillar protocadherins interact with the scaffolding protein, harmonin, and myosin-7b, which promote localization to microvillar tips. Finally, a mouse model of Usher syndrome lacking harmonin exhibits microvillar protocadherin mislocalization and severe defects in brush border morphology. These data reveal an adhesion-based mechanism for brush border assembly and illuminate the basis of intestinal pathology in patients with Usher syndrome. PAPERFLICK:
Collapse
Affiliation(s)
- Scott W Crawley
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - David A Shifrin
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Nathan E Grega-Larson
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Russell E McConnell
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Andrew E Benesh
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Suli Mao
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Yuxi Zheng
- Department of Otolaryngology-HNS, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Qing Yin Zheng
- Department of Otolaryngology-HNS, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Ki Taek Nam
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Bryan A Millis
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bechara Kachar
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Matthew J Tyska
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
34
|
Wayt J, Bretscher A. Cordon Bleu serves as a platform at the basal region of microvilli, where it regulates microvillar length through its WH2 domains. Mol Biol Cell 2014; 25:2817-27. [PMID: 25031432 PMCID: PMC4161516 DOI: 10.1091/mbc.e14-06-1131] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The actin nucleator Cordon Bleu (Cobl) is localized to the basal region of microvilli of epithelial cells, where it regulates microvilli length through its WH2 domains. The COBL domain recruits several BAR-containing proteins, including PACSIN 2 and ASAP1, suggesting a role in coordinating microvillar structure with membrane traffic. Cordon Bleu (Cobl) is a WH2-containing protein believed to act as an actin nucleator. We show that it has a very specific localization in epithelial cells at the basal region of microvilli, a localization unlikely to be involved in actin nucleation. The protein is localized by a central region between the N-terminal COBL domain and the three C-terminal WH2 domains. Ectopic expression of Cobl shortens apical microvilli, and this requires functional WH2 domains. Proteomic studies reveal that the COBL domain binds several BAR-containing proteins, including SNX9, PACSIN 2/syndapin 2, and ASAP1. ASAP1 is recruited to the base of microvilli by binding the COBL domain through its SH3. We propose that Cobl is localized to the basal region of microvilli both to participate in length regulation and to recruit BAR proteins that associate with the curved membrane found at the microvillar base.
Collapse
Affiliation(s)
- Jessica Wayt
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | - Anthony Bretscher
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| |
Collapse
|
35
|
Chung S, Hanlon CD, Andrew DJ. Building and specializing epithelial tubular organs: the Drosophila salivary gland as a model system for revealing how epithelial organs are specified, form and specialize. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2014; 3:281-300. [PMID: 25208491 DOI: 10.1002/wdev.140] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 04/02/2014] [Accepted: 04/15/2014] [Indexed: 12/28/2022]
Abstract
The past two decades have witnessed incredible progress toward understanding the genetic and cellular mechanisms of organogenesis. Among the organs that have provided key insight into how patterning information is integrated to specify and build functional body parts is the Drosophila salivary gland, a relatively simple epithelial organ specialized for the synthesis and secretion of high levels of protein. Here, we discuss what the past couple of decades of research have revealed about organ specification, development, specialization, and death, and what general principles emerge from these studies.
Collapse
Affiliation(s)
- SeYeon Chung
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Caitlin D Hanlon
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Deborah J Andrew
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
36
|
Chung S, Andrew DJ. Cadherin 99C regulates apical expansion and cell rearrangement during epithelial tube elongation. Development 2014; 141:1950-60. [PMID: 24718992 DOI: 10.1242/dev.104166] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Apical and basolateral determinants specify and maintain membrane domains in epithelia. Here, we identify new roles for two apical surface proteins - Cadherin 99C (Cad99C) and Stranded at Second (SAS) - in conferring apical character in Drosophila tubular epithelia. Cad99C, the Drosophila ortholog of human Usher protocadherin PCDH15, is expressed in several embryonic tubular epithelial structures. Through loss-of-function and overexpression studies, we show that Cad99C is required to regulate cell rearrangement during salivary tube elongation. We further show that overexpression of either Cad99C or SAS causes a dramatic increase in apical membrane at the expense of other membrane domains, and that both proteins can do this independently of each other and independently of mislocalization of the apical determinant Crumbs (Crb). Overexpression of Cad99C or SAS results in similar, but distinct effects, suggesting both shared and unique roles for these proteins in conferring apical identity.
Collapse
Affiliation(s)
- Seyeon Chung
- Department of Cell Biology, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205-2196, USA
| | | |
Collapse
|
37
|
Scavenger receptors mediate the role of SUMO and Ftz-f1 in Drosophila steroidogenesis. PLoS Genet 2013; 9:e1003473. [PMID: 23637637 PMCID: PMC3630131 DOI: 10.1371/journal.pgen.1003473] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 03/07/2013] [Indexed: 12/31/2022] Open
Abstract
SUMOylation participates in ecdysteroid biosynthesis at the onset of metamorphosis in Drosophila melanogaster. Silencing the Drosophila SUMO homologue smt3 in the prothoracic gland leads to reduced lipid content, low ecdysone titers, and a block in the larval–pupal transition. Here we show that the SR-BI family of Scavenger Receptors mediates SUMO functions. Reduced levels of Snmp1 compromise lipid uptake in the prothoracic gland. In addition, overexpression of Snmp1 is able to recover lipid droplet levels in the smt3 knockdown prothoracic gland cells. Snmp1 expression depends on Ftz-f1 (an NR5A-type orphan nuclear receptor), the expression of which, in turn, depends on SUMO. Furthermore, we show by in vitro and in vivo experiments that Ftz-f1 is SUMOylated. RNAi–mediated knockdown of ftz-f1 phenocopies that of smt3 at the larval to pupal transition, thus Ftz-f1 is an interesting candidate to mediate some of the functions of SUMO at the onset of metamorphosis. Additionally, we demonstrate that the role of SUMOylation, Ftz-f1, and the Scavenger Receptors in lipid capture and mobilization is conserved in other steroidogenic tissues such as the follicle cells of the ovary. smt3 knockdown, as well as ftz-f1 or Scavenger knockdown, depleted the lipid content of the follicle cells, which could be rescued by Snmp1 overexpression. Therefore, our data provide new insights into the regulation of metamorphosis via lipid homeostasis, showing that Drosophila Smt3, Ftz-f1, and SR-BIs are part of a general mechanism for uptake of lipids such as cholesterol, required during development in steroidogenic tissues. Steroid hormones are cholesterol derivates that control many aspects of animal physiology, including development of the adult organisms, growth, energy storage, and reproduction. In insects, pulses of the steroid hormone ecdysone precede molting and metamorphosis, the regulation of hormonal synthesis being a crucial step that determines animal viability and size. Reduced levels of the small ubiquitin-like modifier SUMO in the prothoracic gland block the synthesis of ecdysone, as SUMO is needed for cholesterol intake. Here we show that SUMO is required for the expression of Scavenger Receptors (Class B, type I). These membrane receptors are necessary for lipid uptake by the gland. Strikingly, their expression is sufficient to recover lipid content when SUMO is removed. The expression of the Scavenger Receptors depends on Ftz-f1, a nuclear transcription factor homologous to mammalian Steroidogenic factor 1 (SF-1). Interestingly, the expression of Ftz-f1 also depends on SUMO and, in addition, Ftz-f1 is SUMOylated. This modification modulates its capacity to activate the Scavenger Receptor Snmp1. The role of SUMO, Scavenger Receptors, and Ftz-f1 on lipid intake is conserved in other tissues that synthesize steroid hormones, such as the ovaries. These factors are conserved in vertebrates, with mutations underlying human disease, so this mechanism to regulate lipid uptake could have implications for human health.
Collapse
|
38
|
Ismat A, Cheshire AM, Andrew DJ. The secreted AdamTS-A metalloprotease is required for collective cell migration. Development 2013; 140:1981-93. [PMID: 23536567 DOI: 10.1242/dev.087908] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Members of the ADAMTS family of secreted metalloproteases play crucial roles in modulating the extracellular matrix (ECM) in development and disease. Here, we show that ADAMTS-A, the Drosophila ortholog of human ADAMTS 9 and ADAMTS 20, and of C. elegans GON-1, is required for cell migration during embryogenesis. AdamTS-A is expressed in multiple migratory cell types, including hemocytes, caudal visceral mesoderm (CVM), the visceral branch of the trachea (VBs) and the secretory portion of the salivary gland (SG). Loss of AdamTS-A causes defects in germ cell, CVM and VB migration and, depending on the tissue, AdamTS-A functions both autonomously and non-autonomously. In the highly polarized collective of the SG epithelium, loss of AdamTS-A causes apical surface irregularities and cell elongation defects. We provide evidence that ADAMTS-A is secreted into the SG lumen where it functions to release cells from the apical ECM, consistent with the defects observed in AdamTS-A mutant SGs. We show that loss of the apically localized protocadherin Cad99C rescues the SG defects, suggesting that Cad99C serves as a link between the SG apical membrane and the secreted apical ECM component(s) cleaved by ADAMTS-A. Our analysis of AdamTS-A function in the SG suggests a novel role for ADAMTS proteins in detaching cells from the apical ECM, facilitating tube elongation during collective cell migration.
Collapse
Affiliation(s)
- Afshan Ismat
- Department of Cell Biology, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205-2196, USA
| | | | | |
Collapse
|
39
|
Soplop NH, Cheng YS, Kramer SG. Roundabout is required in the visceral mesoderm for proper microvillus length in the hindgut epithelium. Dev Dyn 2012; 241:759-69. [PMID: 22334475 DOI: 10.1002/dvdy.23749] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2012] [Indexed: 11/11/2022] Open
Abstract
INTRODUCTION In this study we examined Roundabout signaling in the Drosophila embryonic hindgut. RESULTS Slit and its receptors Roundabout (Robo) and Roundabout 2 (Robo2) localize to discrete regions in the hindgut epithelium and surrounding visceral mesoderm. Loss of robo, robo2 or slit did not disrupt overall hindgut patterning. However, slit and robo mutants showed a decrease in microvillus length on the boundary cells of the hindgut epithelium. Rescue and overexpression analysis revealed that robo is specifically required in the visceral mesoderm for correct microvillus length in the underlying hindgut epithelium. Expression of robo in the visceral mesoderm of robo mutant embryos restored normal microvillus length, while overexpression of robo resulted in an increase in microvillus length. Microvillus length was also increased in robo2 mutants suggesting that robo2 may antagonize robo function in the hindgut. CONCLUSION Together, these results establish a novel, dose-dependent role for Robo in regulating microvilli growth and provide in vivo evidence for the role of the visceral mesoderm in controlling morphological changes in the underlying intestinal epithelium.
Collapse
Affiliation(s)
- Nadine H Soplop
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey 08854-8020, USA
| | | | | |
Collapse
|
40
|
Sarpal R, Pellikka M, Patel RR, Hui FYW, Godt D, Tepass U. Mutational analysis supports a core role for Drosophila α-catenin in adherens junction function. J Cell Sci 2012; 125:233-45. [PMID: 22266901 DOI: 10.1242/jcs.096644] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
α-catenin associates the cadherin-catenin complex with the actin cytoskeleton. α-catenin binds to β-catenin, which links it to the cadherin cytoplasmic tail, and F-actin, but also to a multitude of actin-associated proteins. These interactions suggest a highly complex cadherin-actin interface. Moreover, mammalian αE-catenin has been implicated in a cadherin-independent cytoplasmic function in Arp2/3-dependent actin regulation, and in cell signaling. The function and regulation of individual molecular interactions of α-catenin, in particular during development, are not well understood. We have generated mutations in Drosophila α-Catenin (α-Cat) to investigate α-Catenin function in this model, and to establish a setup for testing α-Catenin-related constructs in α-Cat-null mutant cells in vivo. Our analysis of α-Cat mutants in embryogenesis, imaginal discs and oogenesis reveals defects consistent with a loss of cadherin function. Compromising components of the Arp2/3 complex or its regulator SCAR ameliorate the α-Cat loss-of-function phenotype in embryos but not in ovaries, suggesting negative regulatory interactions between α-Catenin and the Arp2/3 complex in some tissues. We also show that the α-Cat mutant phenotype can be rescued by the expression of a DE-cadherin::α-Catenin fusion protein, which argues against an essential cytosolic, cadherin-independent role of Drosophila α-Catenin.
Collapse
Affiliation(s)
- Ritu Sarpal
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
41
|
Abstract
Adherens junctions are the most common junction type found in animal epithelia. Their core components are classical cadherins and catenins, which form membrane-spanning complexes that mediate intercellular binding on the extracellular side and associate with the actin cytoskeleton on the intracellular side. Junctional cadherin-catenin complexes are key elements involved in driving animal morphogenesis. Despite their ubiquity and importance, comparative studies of classical cadherins, catenins and their related molecules suggest that the cadherin/catenin-based adherens junctions have undergone structural and compositional transitions during the diversification of animal lineages. This chapter describes the molecular diversities related to the cadherin-catenin complex, based on accumulated molecular and genomic information. Understanding when and how the junctional cadherin-catenin complex originated, and its subsequent diversification in animals, promotes a comprehensive understanding of the mechanisms of animal morphological diversification.
Collapse
Affiliation(s)
- Oda Hiroki
- JT Biohistory Research Hall, 1-1 Murasaki-cho, 569-1125, Takatsuki, Osaka, Japan,
| |
Collapse
|
42
|
Lobas MA, Helsper L, Vernon CG, Schreiner D, Zhang Y, Holtzman MJ, Thedens DR, Weiner JA. Molecular heterogeneity in the choroid plexus epithelium: the 22-member γ-protocadherin family is differentially expressed, apically localized, and implicated in CSF regulation. J Neurochem 2011; 120:913-27. [PMID: 22092001 DOI: 10.1111/j.1471-4159.2011.07587.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The choroid plexus (CP) epithelium develops from the ependyma that lines the ventricular system, and plays a critical role in the development and function of the brain. In addition to being the primary site of CSF production, the CP maintains the blood-CSF barrier via apical tight junctions between epithelial cells. Here we show that the 22-member γ-protocadherin (γ-Pcdh) family of cell adhesion molecules, which we have implicated previously in synaptogenesis and neuronal survival, is highly expressed by both CP epithelial and ependymal cells, in which γ-Pcdh protein localization is, surprisingly, tightly restricted to the apical membrane. Multi-label immunostaining demonstrates that γ-Pcdhs are excluded from tight junctions, basolateral adherens junctions, and apical cilia tufts. RT-PCR analysis indicates that, as a whole, the CP expresses most members of the Pcdh-γ gene family. Immunostaining using novel monoclonal antibodies specific for single γ-Pcdh proteins shows that individual epithelial cells differ in their apically localized γ-Pcdh repertoire. Restricted mutation of the Pcdh-γ locus in the choroid plexus and ependyma leads to significant reductions in ventricular volume, without obvious disruptions of epithelial apical-basal polarity. Together, these results suggest an unsuspected role for the γ-Pcdhs in CSF production and demonstrate a surprising molecular heterogeneity in the CP epithelium.
Collapse
Affiliation(s)
- Mark A Lobas
- Department of Biology, The University of Iowa, Iowa City, Iowa, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
M6 membrane protein plays an essential role in Drosophila oogenesis. PLoS One 2011; 6:e19715. [PMID: 21603606 PMCID: PMC3095610 DOI: 10.1371/journal.pone.0019715] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Accepted: 04/14/2011] [Indexed: 12/03/2022] Open
Abstract
We had previously shown that the transmembrane glycoprotein M6a, a member of the proteolipid protein (PLP) family, regulates neurite/filopodium outgrowth, hence, M6a might be involved in neuronal remodeling and differentiation. In this work we focused on M6, the only PLP family member present in Drosophila, and ortholog to M6a. Unexpectedly, we found that decreased expression of M6 leads to female sterility. M6 is expressed in the membrane of the follicular epithelium in ovarioles throughout oogenesis. Phenotypes triggered by M6 downregulation in hypomorphic mutants included egg collapse and egg permeability, thus suggesting M6 involvement in eggshell biosynthesis. In addition, RNAi-mediated M6 knockdown targeted specifically to follicle cells induced an arrest of egg chamber development, revealing that M6 is essential in oogenesis. Interestingly, M6-associated phenotypes evidenced abnormal changes of the follicle cell shape and disrupted follicular epithelium in mid- and late-stage egg chambers. Therefore, we propose that M6 plays a role in follicular epithelium maintenance involving membrane cell remodeling during oogenesis in Drosophila.
Collapse
|
44
|
Yan Y, Denef N, Tang C, Schüpbach T. Drosophila PI4KIIIalpha is required in follicle cells for oocyte polarization and Hippo signaling. Development 2011; 138:1697-703. [PMID: 21429988 PMCID: PMC3074446 DOI: 10.1242/dev.059279] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2011] [Indexed: 01/07/2023]
Abstract
In a genetic screen we isolated mutations in CG10260, which encodes a phosphatidylinositol 4-kinase (PI4KIIIalpha), and found that PI4KIIIalpha is required for Hippo signaling in Drosophila ovarian follicle cells. PI4KIIIalpha mutations in the posterior follicle cells lead to oocyte polarization defects similar to those caused by mutations in the Hippo signaling pathway. PI4KIIIalpha mutations also cause misexpression of well-established Hippo signaling targets. The Merlin-Expanded-Kibra complex is required at the apical membrane for Hippo activity. In PI4KIIIalpha mutant follicle cells, Merlin fails to localize to the apical domain. Our analysis of PI4KIIIalpha mutants provides a new link in Hippo signal transduction from the cell membrane to its core kinase cascade.
Collapse
Affiliation(s)
- Yan Yan
- Howard Hughes Medical Institute, Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Natalie Denef
- Howard Hughes Medical Institute, Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Charm Tang
- Howard Hughes Medical Institute, Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Trudi Schüpbach
- Howard Hughes Medical Institute, Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
45
|
The insecticide 1,1,1-trichloro-2,2-bis(p-chlorophenyl) ethane (DDT) alters the membrane raft location of the TSH receptor stably expressed in Chinese hamster ovary cells. Toxicol Appl Pharmacol 2011; 253:121-9. [PMID: 21466821 DOI: 10.1016/j.taap.2011.03.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 03/21/2011] [Accepted: 03/25/2011] [Indexed: 12/11/2022]
Abstract
DDT is a highly lipophilic molecule known to deplete membrane rafts of their phosphoglycolipid and cholesterol contents. However, we have recently shown that DDT can also alter the thyroid homeostasis by inhibiting TSH receptor (TSHr) internalization. The present study was undertaken to verify whether DDT goitrogenic effects are due to the insecticide acting directly on TSHr or via alteration of the membrane rafts hosting the receptor itself. Our results demonstrate that, in CHO-TSHr transfected cells, TSHr is activated in the presence of TSH, while it is inhibited following DDT exposure. DDT can also reduce the endocytic vesicular traffic, alter the extension of multi-branched microvilli along their plasma membranes and induce TSHr shedding in vesicular forms. To verify whether TSHr displacement might depend on DDT altering the raft constitution of CHO-TSHr cell membranes the extent of TSHr and lipid raft co-localization was examined by confocal microscopy. Evidence shows that receptor/raft co-localization increased significantly upon exposure to TSH, while receptors and lipid rafts become dislodged on opposite cell poles in DDT-exposed CHO-TSHr cells. As a control, under similar culturing conditions, diphenylethylene, which is known to be a lipophilic substance that is structurally related to DDT, did not affect the extent of TSHr and lipid raft co-localization in CHO-TSHr cells treated with TSH. These findings corroborate and extend our view that, in CHO cells, the DDT disrupting action on TSHr is primarily due to the insecticide acting on membranes to deplete their raft cholesterol content, and that the resulting inhibition on TSHr internalization is due to receptor dislodgement from altered raft microdomains of the plasma membrane.
Collapse
|
46
|
Ventura G, Furriols M, Martín N, Barbosa V, Casanova J. closca, a new gene required for both Torso RTK activation and vitelline membrane integrity. Germline proteins contribute to Drosophila eggshell composition. Dev Biol 2010; 344:224-32. [PMID: 20457146 DOI: 10.1016/j.ydbio.2010.05.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 04/29/2010] [Accepted: 05/01/2010] [Indexed: 11/29/2022]
Abstract
The Drosophila eggshell is a specialised extracellular matrix (ECM) that surrounds and protects the oocyte and the embryo until its eclosion. In addition, the vitelline membrane, the innermost layer of the eggshell, holds the local determinant required to activate the Torso RTK pathway, which establishes the embryonic terminal regions. Here we report the identification and characterisation of closca, a gene encoding a new member of a group of proteins that act non-redundantly in vitelline membrane biogenesis and in Torso signalling. We also show that the Nasrat protein, another member of this group, is incorporated into the vitelline membrane, thereby indicating that the eggshell is a shared ECM that receives contributions from both follicle cells and the germline. This observation also provides a new scenario that accounts for the long known contribution of germline products to vitelline membrane biogenesis and to the follicle cell-dependent activation of the Torso receptor.
Collapse
Affiliation(s)
- Gemma Ventura
- Institut de Biologia Molecular de Barcelona (CSIC) and Institut de Recerca de Biomèdica, Barcelona, Spain
| | | | | | | | | |
Collapse
|
47
|
Carrière Y, Showalter AM, Fabrick JA, Sollome J, Ellers-Kirk C, Tabashnik BE. Cadherin gene expression and effects of Bt resistance on sperm transfer in pink bollworm. JOURNAL OF INSECT PHYSIOLOGY 2009; 55:1058-1064. [PMID: 19666026 DOI: 10.1016/j.jinsphys.2009.07.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 07/21/2009] [Accepted: 07/30/2009] [Indexed: 05/28/2023]
Abstract
Cadherin proteins bind Bacillus thuringiensis (Bt) toxins in lepidopteran midguts but their inherent function remains unclear. In pink bollworm, Pectinophora gossypiella, three recessive mutations in a cadherin gene (BtR) are tightly linked with resistance to Bt toxin Cry1Ac. Here we examined patterns of transcription of this gene and the association between cadherin genotype and sperm transfer in pink bollworm. Cadherin RNA was most abundant in larvae, but was also found in adults and embryos. In fourth instar larvae, cadherin RNA was most abundant in the gut, yet its presence in the testes indicates a potential role in sperm production. Previously, we found reduced first-male paternity in pink bollworm males homozygous for cadherin mutations conferring resistance to Bt, when a resistant and susceptible male competed for access to a female. However, the number of offspring sired by resistant and susceptible males was similar without competition. Male Lepidoptera produce both fertile eupyrene sperm and anucleate, non-fertile apyrene sperm, suggesting that apyrene sperm may contribute to male reproductive success when sperm competition occurs. Accordingly, we hypothesized that cadherin-based resistance to Bt entails fitness costs that reduce apyrene sperm transfer. To test this hypothesis, we compared apyrene and eupyrene sperm transfer in males from four strains of pink bollworm. Transfer of apyrene and eupyrene sperm was lower in homozygous resistant than in susceptible males. Furthermore, homozygous resistant males weighed less than susceptible males, which could have diminished sperm transfer by resistant males directly, or via a positive association between male weight, spermatophore weight and sperm transfer. While data suggest that cadherin mutations induced a recessive fitness cost affecting apyrene sperm transfer, these mutations also generated recessive costs that affected other traits and could have lowered first-male paternity.
Collapse
Affiliation(s)
- Yves Carrière
- Department of Entomology, The University of Arizona, Tucson, AZ 85721-0036, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Genevet A, Polesello C, Blight K, Robertson F, Collinson LM, Pichaud F, Tapon N. The Hippo pathway regulates apical-domain size independently of its growth-control function. J Cell Sci 2009; 122:2360-70. [PMID: 19531586 PMCID: PMC2704876 DOI: 10.1242/jcs.041806] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2009] [Indexed: 01/07/2023] Open
Abstract
The Hippo pathway, identified in Drosophila and conserved in vertebrates, regulates tissue growth by promoting cell cycle exit and apoptosis. In addition to their well-characterised overproliferation phenotype, adult Drosophila epithelial cells mutant for the kinases Hippo and Warts have hypertrophic apical domains. Here we examine the molecular basis of this apical hypertrophy and its impact on cell proliferation. In the wing imaginal disc epithelium, we observe increased staining for members of the apical polarity complexes aPKC and Crumbs as well as adherens junction components when Hippo activity is compromised, while basolateral markers are not affected. This increase in apical proteins is correlated with a hypertrophy of the apical domain and adherens junctions. The cell surface localisation of the Notch receptor is also increased in mutant clones, opening the possibility that aberrant receptor signalling may participate in overgrowth of hpo-deficient tissue. Interestingly, however, although the polarity determinant Crumbs is required for the accumulation of apical proteins, this does not appear to significantly contribute to the overproliferation defect elicited by loss of Hippo signalling. Therefore, Hippo signalling controls growth and apical domain size by distinct mechanisms.
Collapse
Affiliation(s)
- Alice Genevet
- Apoptosis and Proliferation Control Laboratory, Cancer Research UK, London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| | | | | | | | | | | | | |
Collapse
|
49
|
Demontis F, Dahmann C. Characterization of the Drosophila ortholog of the human Usher Syndrome type 1G protein sans. PLoS One 2009; 4:e4753. [PMID: 19270738 PMCID: PMC2649435 DOI: 10.1371/journal.pone.0004753] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Accepted: 02/09/2009] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The Usher syndrome (USH) is the most frequent deaf-blindness hereditary disease in humans. Deafness is attributed to the disorganization of stereocilia in the inner ear. USH1, the most severe subtype, is associated with mutations in genes encoding myosin VIIa, harmonin, cadherin 23, protocadherin 15, and sans. Myosin VIIa, harmonin, cadherin 23, and protocadherin 15 physically interact in vitro and localize to stereocilia tips in vivo, indicating that they form functional complexes. Sans, in contrast, localizes to vesicle-like structures beneath the apical membrane of stereocilia-displaying hair cells. How mutations in sans result in deafness and blindness is not well understood. Orthologs of myosin VIIa and protocadherin 15 have been identified in Drosophila melanogaster and their genetic analysis has identified essential roles in auditory perception and microvilli morphogenesis, respectively. PRINCIPAL FINDINGS Here, we have identified and characterized the Drosophila ortholog of human sans. Drosophila Sans is expressed in tubular organs of the embryo, in lens-secreting cone cells of the adult eye, and in microvilli-displaying follicle cells during oogenesis. Sans mutants are viable, fertile, and mutant follicle cells appear to form microvilli, indicating that Sans is dispensable for fly development and microvilli morphogenesis in the follicle epithelium. In follicle cells, Sans protein localizes, similar to its vertebrate ortholog, to intracellular punctate structures, which we have identified as early endosomes associated with the syntaxin Avalanche. CONCLUSIONS Our work is consistent with an evolutionary conserved function of Sans in vesicle trafficking. Furthermore it provides a significant basis for further understanding of the role of this Usher syndrome ortholog in development and disease.
Collapse
Affiliation(s)
- Fabio Demontis
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Christian Dahmann
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- * E-mail:
| |
Collapse
|
50
|
Compagnon J, Gervais L, Roman MS, Chamot-Boeuf S, Guichet A. Interplay between Rab5 and PtdIns(4,5)P2 controls early endocytosis in the Drosophila germline. J Cell Sci 2008; 122:25-35. [PMID: 19050045 DOI: 10.1242/jcs.033027] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Phosphoinositides have emerged as key regulators of membrane traffic through their control of the localization and activity of several effector proteins. Both Rab5 and phosphatidylinositol (4,5)-bisphosphate [PtdIns(4,5)P(2)] are involved in the early steps of the clathrin-dependent endocytic pathway, but little is known about how their functions are coordinated. We have studied the role of PtdIns(4,5)P(2) and Rab5 in the Drosophila germline during oogenesis. We found that Rab5 is required for the maturation of early endocytic vesicles. We show that PtdIns(4,5)P(2) is required for endocytic-vesicle formation, for Rab5 recruitment to endosomes and, consistently, for endocytosis. Furthermore, we reveal a previously undescribed role of Rab5 in releasing PtdIns(4,5)P(2), PtdIns(4,5)P(2)-binding budding factors and F-actin from early endocytic vesicles. Finally, we show that overexpressing the PtdIns(4,5)P(2)-synthesizing enzyme Skittles leads to an endocytic defect that is similar to that seen in rab5 loss-of-function mutants. Hence, our results argue strongly in favor of the hypothesis that the Rab5-dependant release of PtdIns(4,5)P(2) from endosomes that we discovered in this study is crucial for endocytosis to proceed.
Collapse
Affiliation(s)
- Julien Compagnon
- Institut Jacques Monod, UMR 7592, Université Paris 7, 2 Place Jussieu, 75005, France
| | | | | | | | | |
Collapse
|