1
|
Balla T. Phosphatidylinositol 4-phosphate; A minor lipid with multiple personalities. Biochim Biophys Acta Mol Cell Biol Lipids 2025; 1870:159615. [PMID: 40262701 DOI: 10.1016/j.bbalip.2025.159615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/08/2025] [Accepted: 04/18/2025] [Indexed: 04/24/2025]
Abstract
Phosphorylated products of phosphatidylinositol (PI), named Diphosphoinositide (DPI) and triphosphoinositide (TPI) were identified long time ago and found to exhibit high turnover rates based on their rapid 32P-phosphate labeling. The PI kinase activities that were responsible for their production were subsequently identified and found to be associated with different organelle membranes, including the plasma membrane. These activities were then linked with a certain group of cell surface receptors that activated phospholipase C enzymes to hydrolyze PI and used calcium or cGMP as a second messenger. This visionary concept was introduced in the seminal BBA review written by Robert Michell, exactly 50 years ago. The enzymology and functional diversity of PI 4-phosphate (PI4P) (the term that has replaced DPI) has since underwent an expansion that could not have been foreseen. In this review I will attempt to revisit this expansion with some historical reflections celebrating the 50th anniversary of the Michell review.
Collapse
Affiliation(s)
- Tamas Balla
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
2
|
Zhang Q, Shen L, Lin F, Liao Q, Xiao S, Zhang W. Anionic phospholipid-mediated transmembrane transport and intracellular membrane trafficking in plant cells. THE NEW PHYTOLOGIST 2025; 245:1386-1402. [PMID: 39639545 DOI: 10.1111/nph.20329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 11/20/2024] [Indexed: 12/07/2024]
Abstract
Cellular membranes primarily consist of proteins and lipids. These proteins perform cellular functions such as metabolic regulation, environmental and hormonal signal sensing, and nutrient transport. There is increasing experimental evidence that certain lipids, particularly anionic phospholipids, can act as signaling molecules. Specific examples of functional regulation by anionic phospholipids in plant cells have been reported for transporters, channels, and even receptors. By regulating the structure and activity of membrane-integral proteins, these phospholipids mediate the transport of phytohormones and ions, and elicit physiological responses to developmental and environmental cues. Phospholipids also control membrane protein abundance and lipid composition and abundance by facilitating vesicular trafficking. In this review, we discuss recent research that elucidates the mechanisms by which membrane-integral transporters and channels are controlled via phospholipid signaling, as well as the regulation of membrane protein accumulation by phospholipids through coordinated removal, recycling, and degradation processes.
Collapse
Affiliation(s)
- Qun Zhang
- College of Life Sciences, National Center for Soybean Improvement, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Like Shen
- College of Life Sciences, National Center for Soybean Improvement, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Lin
- College of Life Sciences, National Center for Soybean Improvement, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qi Liao
- College of Life Sciences, National Center for Soybean Improvement, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shi Xiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Wenhua Zhang
- College of Life Sciences, National Center for Soybean Improvement, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Laboratory, Nanjing, 210095, China
| |
Collapse
|
3
|
Fritz C, Reimann TM, Adler J, Knab J, Schulmeister S, Kriechbaum C, Müller S, Parmryd I, Kost B. Plasma membrane and cytoplasmic compartmentalization: A dynamic structural framework required for pollen tube tip growth. PLANT PHYSIOLOGY 2024; 197:kiae558. [PMID: 39446406 DOI: 10.1093/plphys/kiae558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 09/28/2024] [Indexed: 12/24/2024]
Abstract
Rapid, unidirectional pollen tube tip growth is essential for fertilization and widely employed as a model of polar cell expansion, a process crucial for plant morphogenesis. Different proteins and lipids with key functions in the control of polar cell expansion are associated with distinct domains of the plasma membrane (PM) at the pollen tube tip. These domains need to be dynamically maintained during tip growth, which depends on massive secretory and endocytic membrane trafficking. Very little is currently known about the molecular and cellular mechanisms responsible for the compartmentalization of the pollen tube PM. To provide a reliable structural framework for the further characterization of these mechanisms, an integrated quantitative map was compiled of the relative positions in normally growing Nicotiana tabacum (tobacco) pollen tubes of PM domains (i) enriched in key signaling proteins or lipids, (ii) displaying high membrane order, or (iii) in contact with cytoplasmic structures playing important roles in apical membrane trafficking. Previously identified secretory and endocytic PM domains were also included in this map. Internalization of regulatory proteins or lipids associated with PM regions overlapping with the lateral endocytic domain was assessed based on brefeldin A treatment. These analyses revealed remarkable aspects of the structural organization of tobacco pollen tube tips, which (i) enhance our understanding of cellular and regulatory processes underlying tip growth and (ii) highlight important areas of future research.
Collapse
Affiliation(s)
- Carolin Fritz
- Division of Cell Biology, Department of Biology, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Theresa Maria Reimann
- Division of Cell Biology, Department of Biology, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Jeremy Adler
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Johanna Knab
- Division of Cell Biology, Department of Biology, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Sylwia Schulmeister
- Division of Cell Biology, Department of Biology, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Choy Kriechbaum
- Division of Cell Biology, Department of Biology, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Sabine Müller
- Division of Cell Biology, Department of Biology, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Ingela Parmryd
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Benedikt Kost
- Division of Cell Biology, Department of Biology, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
4
|
Hao GJ, Ying J, Li LS, Yu F, Dun SS, Su LY, Zhao XY, Li S, Zhang Y. Two functionally interchangeable Vps9 isoforms mediate pollen tube penetration of style. THE NEW PHYTOLOGIST 2024; 244:840-854. [PMID: 39262026 DOI: 10.1111/nph.20088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/07/2024] [Indexed: 09/13/2024]
Abstract
Style penetration by pollen tubes is essential for reproductive success, a process requiring canonical Rab5s in Arabidopsis. However, functional loss of Arabidopsis Vps9a, the gene encoding for guanine nucleotide exchange factor (GEF) of Rab5s, did not affect male transmission, implying the presence of a compensation program or redundancy. By combining genetic, cytological, and molecular approaches, we report that Arabidopsis Vps9b is a pollen-preferential gene, redundantly mediating pollen tube penetration of style with Vps9a. Vps9b is functionally interchangeable with Vps9a, whose functional distinction results from distinct expression profiles. Functional loss of Vps9a and Vps9b results in the mis-targeting of Rab5-dependent tonoplast proteins, defective vacuolar biogenesis, disturbed distribution of post-Golgi vesicles, increased cellular turgor, cytosolic acidification, and disrupted organization of actin microfilaments (MF) in pollen tubes, which collectively lead to the failure of pollen tubes to grow through style.
Collapse
Affiliation(s)
- Guang-Jiu Hao
- Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tian'jin, 300017, China
| | - Jun Ying
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Lu-Shen Li
- Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tian'jin, 300017, China
| | - Fei Yu
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Shan-Shan Dun
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Le-Yan Su
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Xin-Ying Zhao
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Sha Li
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Yan Zhang
- Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tian'jin, 300017, China
| |
Collapse
|
5
|
Thulasi Devendrakumar K, Herrfurth C, Yeap M, Peng TS, Feussner I, Li X. Balancing roles between phosphatidylinositols and sphingolipids in regulating immunity and ER stress responses in pi4kβ1,2. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2816-2836. [PMID: 39074039 DOI: 10.1111/tpj.16952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/08/2024] [Accepted: 07/16/2024] [Indexed: 07/31/2024]
Abstract
Plant immune regulation is complex. In addition to proteins, lipid molecules play critical roles in modulating immune responses. The mutant pi4kβ1,2 is mutated in two phosphatidylinositol 4-kinases PI4Kβ1 and β2 involved in the biosynthesis of phosphatidylinositol 4-phosphate (PI4P). The mutant displays autoimmunity, short roots, aberrant root hairs, and a heightened sensitivity to ER stress. In a forward genetic screen designed to dissect pi4kβ1,2 autoimmunity, we found that Orosomucoid-like 1 (ORM1) is required for the phenotypes of pi4kβ1,2, including short root and ER stress sensitivity. The orm1 mutations lead to increased long-chain base and ceramide levels in the suppressors. We also found that the basic region/leucine Zipper motif (bZIP) 28 and 60 transcription factors, central regulators of ER stress response, are required for its autoimmunity and root defect. In comparison, the defense-related phytohormones salicylic acid (SA) and N-hydroxypipecolic acid (NHP) are required for its autoimmunity but plays a minor role in its root phenotypes. Further, we found that wild-type plants overexpressing ORM1 are autoimmune, displaying short roots and increased ceramide levels. The autoimmunity of the ORM1 overexpression lines is dependent on SA, NHP, and bZIP60. As ORM1 is a known negative regulator of sphingolipid biosynthesis, our study uncovers a balancing role between PIs and sphingolipids in regulating immunity and ER stress responses in pi4kβ1,2.
Collapse
Affiliation(s)
- Karen Thulasi Devendrakumar
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Cornelia Herrfurth
- Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, University of Goettingen, Goettingen, D-37077, Germany
- Goettingen Center for Molecular Biosciences (GZMB), Service Unit for Metabolomics and Lipidomics, University of Goettingen, Goettingen, D-37077, Germany
| | - Mikaela Yeap
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Tony ShengZhe Peng
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Ivo Feussner
- Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, University of Goettingen, Goettingen, D-37077, Germany
- Goettingen Center for Molecular Biosciences (GZMB), Service Unit for Metabolomics and Lipidomics, University of Goettingen, Goettingen, D-37077, Germany
- Goettingen Center for Molecular Biosciences (GZMB), Department of Plant Biochemistry, University of Goettingen, Goettingen, D-37077, Germany
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| |
Collapse
|
6
|
Casimiro-Soriguer I, Aguilar-Benitez D, Gutierrez N, Torres AM. Transcriptome Analysis of Stigmas of Vicia faba L. Flowers. PLANTS (BASEL, SWITZERLAND) 2024; 13:1443. [PMID: 38891252 PMCID: PMC11175038 DOI: 10.3390/plants13111443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024]
Abstract
Pollination in angiosperms depends on complex communication between pollen grains and stigmas, classified as wet or dry, depending on the presence or absence of secretions at the stigma surface, respectively. In species with wet stigma, the cuticle is disrupted and the presence of exudates is indicative of their receptivity. Most stigma studies are focused on a few species and families, many of them with self-incompatibility systems. However, there is scarce knowledge about the stigma composition in Fabaceae, the third angiosperm family, whose stigmas have been classified as semidry. Here we report the first transcriptome profiling and DEGs of Vicia faba L. styles and stigmas from autofertile (flowers able to self-fertilize in the absence of manipulation, whose exudate is released spontaneously) and autosterile (flowers that need to be manipulated to break the cuticle and release the exudates to be receptive) inbred lines. From the 76,269 contigs obtained from the de novo assembly, only 45.1% of the sequences were annotated with at least one GO term. A total of 115,920, 75,489, and 70,801 annotations were assigned to Biological Process (BP), Cellular Component (CC), and Molecular Function (MF) categories, respectively, and 5918 differentially expressed genes (DEGs) were identified between the autofertile and the autosterile lines. Among the most enriched metabolic pathways in the DEGs subset were those related with amino acid biosynthesis, terpenoid metabolism, or signal transduction. Some DEGs have been related with previous QTLs identified for autofertility traits, and their putative functions are discussed. The results derived from this work provide an important transcriptomic reference for style-stigma processes to aid our understanding of the molecular mechanisms involved in faba bean fertilization.
Collapse
Affiliation(s)
- Inés Casimiro-Soriguer
- Área de Mejora Vegetal y Biotecnología, IFAPA Centro Alameda del Obispo, Apdo. 3092, 14080 Cordoba, Spain; (D.A.-B.); (N.G.); (A.M.T.)
| | | | | | | |
Collapse
|
7
|
Thulasi Devendrakumar K, Peng TS, Pierdzig L, Jackson E, Lipka V, Li X. Signal Peptide Peptidase and PI4Kβ1/2 play opposite roles in plant ER stress response and immunity. STRESS BIOLOGY 2024; 4:20. [PMID: 38507026 PMCID: PMC10954597 DOI: 10.1007/s44154-024-00155-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/07/2024] [Indexed: 03/22/2024]
Abstract
The Arabidopsis pi4kβ1,2 mutant is mutated in the phosphatidylinositol 4-kinase (PI4K) β1 and PI4Kβ2 enzymes which are involved in the biosynthesis of phosphatidylinositol 4-phosphate (PI4P), a minor membrane lipid with important signaling roles. pi4kβ1,2 plants display autoimmunity and shorter roots. Though the pi4kβ1,2 mutant has been extensively characterized, the source of its autoimmunity remains largely unknown. In this study, through a genetic suppressor screen, we identified multiple partial loss-of-function alleles of signal peptide peptidase (spp) that can suppress all the defects of pi4kβ1,2. SPP is an intramembrane cleaving aspartic protease. Interestingly, pi4kβ1,2 plants display enhanced ER stress response and mutations in SPP can suppress such phenotype. Furthermore, reduced ER stress responses were observed in the spp single mutants. Overall, our study reveals a previously unknown function of PI4Kβ and SPP in ER stress and plant immunity.
Collapse
Affiliation(s)
- Karen Thulasi Devendrakumar
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Tony ShengZhe Peng
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Leon Pierdzig
- Department of Plant Cell Biology, Georg August Universität Göttingen, 37077, Göttingen, Lower Saxony, Germany
| | - Edan Jackson
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Volker Lipka
- Department of Plant Cell Biology, Georg August Universität Göttingen, 37077, Göttingen, Lower Saxony, Germany
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
8
|
Qian D, Li T, Zheng C, Niu Y, Niu Y, Li C, Wang M, Yang Y, An L, Xiang Y. Actin-depolymerizing factors 8 and 11 promote root hair elongation at high pH. PLANT COMMUNICATIONS 2024; 5:100787. [PMID: 38158655 PMCID: PMC10943588 DOI: 10.1016/j.xplc.2023.100787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 12/26/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
A root hair is a polarly elongated single-celled structure that derives from a root epidermal cell and functions in uptake of water and nutrients from the surrounding environment. Previous reports have demonstrated that short periods of high pH inhibit root hair extension; but the effects of long-term high-pH treatment on root hair growth are still unclear. Here, we report that the duration of root hair elongation is significantly prolonged with increasing external pH, which counteracts the effect of decreasing root hair elongation rate and ultimately produces longer root hairs, whereas loss of actin-depolymerizing factor 8 and 11 (ADF8/11) function causes shortening of root hair length at high pH (pH 7.4). Accumulation of ADF8/11 at the tips of root hairs is inhibited by high pH, and increasing environmental pH affects the actin filament (F-actin) meshwork at the root hair tip. At high pH, the tip-focused F-actin meshwork is absent in root hairs of the adf8/11 mutant, actin filaments are disordered at the adf8/11 root hair tips, and actin turnover is attenuated. Secretory and recycling vesicles do not aggregate in the apical region of adf8/11 root hairs at high pH. Together, our results suggest that, under long-term exposure to high extracellular pH, ADF8/11 may establish and maintain the tip-focused F-actin meshwork to regulate polar trafficking of secretory/recycling vesicles at the root hair tips, thereby promoting root hair elongation.
Collapse
Affiliation(s)
- Dong Qian
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Tian Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Chen Zheng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yue Niu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yingzhi Niu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Chengying Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Muxuan Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yang Yang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Lizhe An
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yun Xiang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
9
|
Thulasi Devendrakumar K, Goldstein M, Kronstad J, Li X. Deletions within intronic T-DNA lead to reversion of T-DNA mutant phenotypes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:161-176. [PMID: 37773774 DOI: 10.1111/tpj.16482] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 09/15/2023] [Indexed: 10/01/2023]
Abstract
Agrobacterium-mediated transformation enables random transfer-DNA (T-DNA) insertion into plant genomes. T-DNA insertion into a gene's exons, introns or untranscribed regions close to the start or stop codon can disrupt gene function. Such T-DNA mutants have been useful for reverse genetics analysis, especially in Arabidopsis thaliana. As T-DNAs are inserted into genomic DNA, they are generally believed to be stably inherited. Here, we report a phenomenon of reversion of intronic T-DNA mutant phenotypes. From a suppressor screen using intronic T-DNA pi4kβ1,2 double mutant, we recovered intragenic mutants of pi4kβ1, which suppressed the autoimmunity of the double mutant. These mutants carried deletions in the intronic T-DNAs, resulting in elevated transcription of normal PI4Kβ1. Such reversion of T-DNA insertional mutant phenotype stresses the need for caution when using intronic T-DNA mutants and reiterates the importance of using irreversible null mutant alleles in genetic analyses.
Collapse
Affiliation(s)
- Karen Thulasi Devendrakumar
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Madeleine Goldstein
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - James Kronstad
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
10
|
Gandhi A, Tseng YH, Oelmüller R. The damage-associated molecular pattern cellotriose alters the phosphorylation pattern of proteins involved in cellulose synthesis and trans-Golgi trafficking in Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2023; 18:2184352. [PMID: 36913771 PMCID: PMC10026868 DOI: 10.1080/15592324.2023.2184352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
We have recently demonstrated that the cellulose breakdown product cellotriose is a damage-associated molecular pattern (DAMP) which induces responses related to the integrity of the cell wall. Activation of downstream responses requires the Arabidopsis malectin domain-containing CELLOOLIGOMER RECEPTOR KINASE1 (CORK1)1. The cellotriose/CORK1 pathway induces immune responses, including NADPH oxidase-mediated reactive oxygen species production, mitogen-activated protein kinase 3/6 phosphorylation-dependent defense gene activation, and the biosynthesis of defense hormones. However, apoplastic accumulation of cell wall breakdown products should also activate cell wall repair mechanisms. We demonstrate that the phosphorylation pattern of numerous proteins involved in the accumulation of an active cellulose synthase complex in the plasma membrane and those for protein trafficking to and within the trans-Golgi network (TGN) are altered within minutes after cellotriose application to Arabidopsis roots. The phosphorylation pattern of enzymes involved in hemicellulose or pectin biosynthesis and the transcript levels for polysaccharide-synthesizing enzymes responded barely to cellotriose treatments. Our data show that the phosphorylation pattern of proteins involved in cellulose biosynthesis and trans-Golgi trafficking is an early target of the cellotriose/CORK1 pathway.
Collapse
Affiliation(s)
- Akanksha Gandhi
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Department of Plant Physiology, Friedrich-Schiller-University, Jena, Germany
| | - Yu-Heng Tseng
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Department of Plant Physiology, Friedrich-Schiller-University, Jena, Germany
| | - Ralf Oelmüller
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Department of Plant Physiology, Friedrich-Schiller-University, Jena, Germany
- CONTACT Ralf Oelmüller Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Department of Plant Physiology, Friedrich-Schiller-University, Jena, Germany
| |
Collapse
|
11
|
Quinn O, Kumar M, Turner S. The role of lipid-modified proteins in cell wall synthesis and signaling. PLANT PHYSIOLOGY 2023; 194:51-66. [PMID: 37682865 PMCID: PMC10756762 DOI: 10.1093/plphys/kiad491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 09/10/2023]
Abstract
The plant cell wall is a complex and dynamic extracellular matrix. Plant primary cell walls are the first line of defense against pathogens and regulate cell expansion. Specialized cells deposit a secondary cell wall that provides support and permits water transport. The composition and organization of the cell wall varies between cell types and species, contributing to the extensibility, stiffness, and hydrophobicity required for its proper function. Recently, many of the proteins involved in the biosynthesis, maintenance, and remodeling of the cell wall have been identified as being post-translationally modified with lipids. These modifications exhibit diverse structures and attach to proteins at different sites, which defines the specific role played by each lipid modification. The introduction of relatively hydrophobic lipid moieties promotes the interaction of proteins with membranes and can act as sorting signals, allowing targeted delivery to the plasma membrane regions and secretion into the apoplast. Disruption of lipid modification results in aberrant deposition of cell wall components and defective cell wall remodeling in response to stresses, demonstrating the essential nature of these modifications. Although much is known about which proteins bear lipid modifications, many questions remain regarding the contribution of lipid-driven membrane domain localization and lipid heterogeneity to protein function in cell wall metabolism. In this update, we highlight the contribution of lipid modifications to proteins involved in the formation and maintenance of plant cell walls, with a focus on the addition of glycosylphosphatidylinositol anchors, N-myristoylation, prenylation, and S-acylation.
Collapse
Affiliation(s)
- Oliver Quinn
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Dover Street, Manchester M13 9PT, UK
| | - Manoj Kumar
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Dover Street, Manchester M13 9PT, UK
| | - Simon Turner
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Dover Street, Manchester M13 9PT, UK
| |
Collapse
|
12
|
Devendrakumar KT, Copeland C, Adamchek C, Zhong X, Huang X, Gendron JM, Li X. Arabidopsis Tubby domain-containing F-box proteins positively regulate immunity by modulating PI4Kβ protein levels. THE NEW PHYTOLOGIST 2023; 240:354-371. [PMID: 37571862 PMCID: PMC11114105 DOI: 10.1111/nph.19187] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 06/30/2023] [Indexed: 08/13/2023]
Abstract
The Tubby domain, named after the TUBBY protein in mice, binds to phosphatidylinositol 4,5-bisphosphate. Arabidopsis has 11 Tubby domain-containing proteins referred to as Tubby-Like Proteins (TLPs). Of the 11 TLPs, 10 possess the N-terminal F-box domain, which can interact with SKP-like proteins and form SKP1-Cullin-F-box E3 ligase complexes. Although mice TUBBY has been extensively studied, plant TLPs' functions are scarcely detailed. In this study, we show that the Arabidopsis Tubby-like protein 6 (TLP6) and its redundant homologs, TLP1, TLP2, TLP5, and TLP10, positively regulate Arabidopsis immune responses. Furthermore, in an immunoprecipitation mass spectrometry analysis to search for ubiquitination substrates of the TLPs, we identified two redundant phosphoinositide biosynthesis enzymes, phosphatidylinositol 4-kinase β proteins (PI4Kβs), PI4Kβ1 and PI4Kβ2, as TLP interactors. Importantly, TLP6 overexpression lines fully phenocopy the phenotypes of the pi4kβ1,2 mutant, while TLP6 overexpression also leads to increased PI4Kβ2 ubiquitination and reduction in its protein level in a proteasome-dependent manner. Most significantly, TLP6 overexpression does not further enhance the autoimmunity of the pi4kβ1,2 double mutant, supporting the hypothesis that TLP6 targets the PI4Kβs for ubiquitination and degradation. Thus, our study reveals a novel mechanism where TLPs promote plant immune responses by modulating the PI4Kβs protein levels.
Collapse
Affiliation(s)
- Karen Thulasi Devendrakumar
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Charles Copeland
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Christopher Adamchek
- Yale Science Building, Yale University, 260 Whitney Ave, New Haven, CT 06511, USA
| | - Xionghui Zhong
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Xingchuan Huang
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Joshua M. Gendron
- Yale Science Building, Yale University, 260 Whitney Ave, New Haven, CT 06511, USA
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
13
|
Liao Z, Ghanizadeh H, Zhang X, Yang H, Zhou Y, Huang L, Zhang X, Jiang Y, Nie G. Exogenous Methyl Jasmonate Mediated MiRNA-mRNA Network Improves Heat Tolerance of Perennial Ryegrass. Int J Mol Sci 2023; 24:11085. [PMID: 37446266 DOI: 10.3390/ijms241311085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Heat stress can hinder the growth of perennial ryegrass (Lolium perenne L.). Methyl jasmonate (MeJA) applied exogenously can increase heat stress tolerance in plants; however, the regulatory mechanisms involved in heat tolerance mediated by MeJA are poorly understood in perennial ryegrass. Here, the microRNA (miRNA) expression profiles of perennial ryegrass were assessed to elucidate the regulatory pathways associated with heat tolerance induced by MeJA. Plants were subjected to four treatments, namely, control (CK), MeJA pre-treatment (T), heat stress treatment (H), and MeJA pre-treatment + heat stress (TH). According to the results, 102 miRNAs were up-regulated in all treatments, with 20, 27, and 33 miRNAs being up-regulated in the T, H, and TH treatment groups, respectively. The co-expression network analysis between the deferentially expressed miRNAs and their corresponding target genes showed that 20 miRNAs modulated 51 potential target genes. Notably, the miRNAs that targeted genes related to with regards to heat tolerance were driven by MeJA, and they were involved in four pathways: novel-m0258-5p mediated signal transduction, novel-m0350-5p mediated protein homeostasis, miR397-z, miR5658-z, and novel-m0008-5p involved in cell wall component, and miR1144-z and miR5185-z dominated chlorophyll degradation. Overall, the findings of this research paved the way for more research into the heat tolerance mechanism in perennial ryegrass and provided a theoretical foundation for developing cultivars with enhanced heat tolerance.
Collapse
Affiliation(s)
- Zongchao Liao
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Hossein Ghanizadeh
- School of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand
| | - Xin Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Hechuan Yang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Ying Zhou
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Linkai Huang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xinquan Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yiwei Jiang
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Gang Nie
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
14
|
Montag K, Ivanov R, Bauer P. Role of SEC14-like phosphatidylinositol transfer proteins in membrane identity and dynamics. FRONTIERS IN PLANT SCIENCE 2023; 14:1181031. [PMID: 37255567 PMCID: PMC10225987 DOI: 10.3389/fpls.2023.1181031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/05/2023] [Indexed: 06/01/2023]
Abstract
Membrane identity and dynamic processes, that act at membrane sites, provide important cues for regulating transport, signal transduction and communication across membranes. There are still numerous open questions as to how membrane identity changes and the dynamic processes acting at the surface of membranes are regulated in diverse eukaryotes in particular plants and which roles are being played by protein interaction complexes composed of peripheral and integral membrane proteins. One class of peripheral membrane proteins conserved across eukaryotes comprises the SEC14-like phosphatidylinositol transfer proteins (SEC14L-PITPs). These proteins share a SEC14 domain that contributes to membrane identity and fulfills regulatory functions in membrane trafficking by its ability to sense, bind, transport and exchange lipophilic substances between membranes, such as phosphoinositides and diverse other lipophilic substances. SEC14L-PITPs can occur as single-domain SEC14-only proteins in all investigated organisms or with a modular domain structure as multi-domain proteins in animals and streptophytes (comprising charales and land plants). Here, we present an overview on the functional roles of SEC14L-PITPs, with a special focus on the multi-domain SEC14L-PITPs of the SEC14-nodulin and SEC14-GOLD group (PATELLINs, PATLs in plants). This indicates that SEC14L-PITPs play diverse roles from membrane trafficking to organism fitness in plants. We concentrate on the structure of SEC14L-PITPs, their ability to not only bind phospholipids but also other lipophilic ligands, and their ability to regulate complex cellular responses through interacting with proteins at membrane sites.
Collapse
Affiliation(s)
- Karolin Montag
- Institute of Botany, Heinrich Heine University, Düsseldorf, Germany
| | - Rumen Ivanov
- Institute of Botany, Heinrich Heine University, Düsseldorf, Germany
| | - Petra Bauer
- Institute of Botany, Heinrich Heine University, Düsseldorf, Germany
- Center of Excellence on Plant Sciences (CEPLAS), Germany
| |
Collapse
|
15
|
TDP-43 condensates and lipid droplets regulate the reactivity of microglia and regeneration after traumatic brain injury. Nat Neurosci 2022; 25:1608-1625. [PMID: 36424432 DOI: 10.1038/s41593-022-01199-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 10/11/2022] [Indexed: 11/27/2022]
Abstract
Decreasing the activation of pathology-activated microglia is crucial to prevent chronic inflammation and tissue scarring. In this study, we used a stab wound injury model in zebrafish and identified an injury-induced microglial state characterized by the accumulation of lipid droplets and TAR DNA-binding protein of 43 kDa (TDP-43)+ condensates. Granulin-mediated clearance of both lipid droplets and TDP-43+ condensates was necessary and sufficient to promote the return of microglia back to the basal state and achieve scarless regeneration. Moreover, in postmortem cortical brain tissues from patients with traumatic brain injury, the extent of microglial activation correlated with the accumulation of lipid droplets and TDP-43+ condensates. Together, our results reveal a mechanism required for restoring microglia to a nonactivated state after injury, which has potential for new therapeutic applications in humans.
Collapse
|
16
|
Shimizu Y, Uemura T. The sorting of cargo proteins in the plant trans-Golgi network. FRONTIERS IN PLANT SCIENCE 2022; 13:957995. [PMID: 36035717 PMCID: PMC9402974 DOI: 10.3389/fpls.2022.957995] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/20/2022] [Indexed: 06/01/2023]
Abstract
Membrane trafficking contributes to distinct protein compositions of organelles and is essential for proper organellar maintenance and functions. The trans-Golgi network (TGN) acts as a sorting station where various cargo proteins are sorted and directed to post-Golgi compartments, such as the multivesicular body or pre-vacuolar compartment, vacuoles, and plasma membrane. The spatial and temporal segregation of cargo proteins within the TGN, which is mediated with different sets of regulators including small GTPases and cargo adaptors, is a fundamental process in the sorting machinery. Recent studies with powerful imaging technologies have suggested that the TGN possesses spatially distinct subdomains or zones for different trafficking pathways. In this review, we will summarize the spatially and dynamically characteristic features of the plant TGN and their relation to cargo protein trafficking.
Collapse
Affiliation(s)
- Yutaro Shimizu
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Tomohiro Uemura
- Graduate School of Humanities and Sciences, Ochanomizu University, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
17
|
Marković V, Jaillais Y. Phosphatidylinositol 4-phosphate: a key determinant of plasma membrane identity and function in plants. THE NEW PHYTOLOGIST 2022; 235:867-874. [PMID: 35586972 DOI: 10.1111/nph.18258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/24/2022] [Indexed: 06/15/2023]
Abstract
Phosphatidylinositol 4-phosphate (PI4P) is an anionic phospholipid which has been described as a master regulator of the Golgi apparatus in eukaryotic cells. However, recent evidence suggests that PI4P mainly accumulates at the plasma membrane in all plant cells analyzed so far. In addition, many functions that are typically attributed to phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2 ) in animal and yeast cells are also supported by PI4P in plants. For example, PI4P is the key anionic lipid that powers the strong electrostatic properties of the plasma membrane. Phosphatidylinositol 4-phosphate is also required for the establishment of stable membrane contacts between the endoplasmic reticulum and the plasma membrane, for exocytosis and to support signaling pathways. Thus, we propose that PI4P has a prominent role in specifying the identity of the plasma membrane and in supporting some of its key functions and should be considered a hallmark lipid of this compartment.
Collapse
Affiliation(s)
- Vedrana Marković
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, CNRS, INRAE, F-69342, Lyon, France
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, CNRS, INRAE, F-69342, Lyon, France
| |
Collapse
|
18
|
Phosphatidylinositol-4-phosphate controls autophagosome formation in Arabidopsis thaliana. Nat Commun 2022; 13:4385. [PMID: 35902598 PMCID: PMC9334301 DOI: 10.1038/s41467-022-32109-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 07/18/2022] [Indexed: 11/08/2022] Open
Abstract
Autophagy is an intracellular degradation mechanism critical for plant acclimation to environmental stresses. Central to autophagy is the formation of specialized vesicles, the autophagosomes, which target and deliver cargo to the lytic vacuole. How autophagosomes form in plant cells remains poorly understood. Here, we uncover the importance of the lipid phosphatidylinositol-4-phosphate in autophagy using pharmacological and genetical approaches. Combining biochemical and live-microscopy analyses, we show that PI4K activity is required for early stages of autophagosome formation. Further, our results show that the plasma membrane-localized PI4Kα1 is involved in autophagy and that a substantial portion of autophagy structures are found in proximity to the PI4P-enriched plasma membrane. Together, our study unravels critical insights into the molecular determinants of autophagy, proposing a model whereby the plasma membrane provides PI4P to support the proper assembly and expansion of the phagophore thus governing autophagosome formation in Arabidopsis. Autophagosomes are specialized vesicles that target and deliver cargo to the lytic vacuole. Here the authors show that plasma-membrane derived lipid phosphatidylinositol-4-phosphate supports the assembly and expansion of autophagosomes in Arabidopsis
Collapse
|
19
|
Cheng S, Wang Y. Subcellular trafficking and post-translational modification regulate PIN polarity in plants. FRONTIERS IN PLANT SCIENCE 2022; 13:923293. [PMID: 35968084 PMCID: PMC9363823 DOI: 10.3389/fpls.2022.923293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Auxin regulates plant growth and tropism responses. As a phytohormone, auxin is transported between its synthesis sites and action sites. Most natural auxin moves between cells via a polar transport system that is mediated by PIN-FORMED (PIN) auxin exporters. The asymmetrically localized PINs usually determine the directionality of intercellular auxin flow. Different internal cues and external stimuli modulate PIN polar distribution and activity at multiple levels, including transcription, protein stability, subcellular trafficking, and post-translational modification, and thereby regulate auxin-distribution-dependent development. Thus, the different regulation levels of PIN polarity constitute a complex network. For example, the post-translational modification of PINs can affect the subcellular trafficking of PINs. In this review, we focus on subcellular trafficking and post-translational modification of PINs to summarize recent progress in understanding PIN polarity.
Collapse
Affiliation(s)
- Shuyang Cheng
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yizhou Wang
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
- Zhejiang Provincial Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, China
| |
Collapse
|
20
|
González Solís A, Berryman E, Otegui MS. Plant endosomes as protein sorting hubs. FEBS Lett 2022; 596:2288-2304. [PMID: 35689494 DOI: 10.1002/1873-3468.14425] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/28/2022] [Accepted: 05/31/2022] [Indexed: 01/10/2023]
Abstract
Endocytosis, secretion, and endosomal trafficking are key cellular processes that control the composition of the plasma membrane. Through the coordination of these trafficking pathways, cells can adjust the composition, localization, and turnover of proteins and lipids in response to developmental or environmental cues. Upon being incorporated into vesicles and internalized through endocytosis, plant plasma membrane proteins are delivered to the trans-Golgi network (TGN). At the TGN, plasma membrane proteins are recycled back to the plasma membrane or transferred to multivesicular endosomes (MVEs), where they are further sorted into intralumenal vesicles for degradation in the vacuole. Both types of plant endosomes, TGN and MVEs, act as sorting organelles for multiple endocytic, recycling, and secretory pathways. Molecular assemblies such as retromer, ESCRT (endosomal sorting complex required for transport) machinery, small GTPases, adaptor proteins, and SNAREs associate with specific domains of endosomal membranes to mediate different sorting and membrane-budding events. In this review, we discuss the mechanisms underlying the recognition and sorting of proteins at endosomes, membrane remodeling and budding, and their implications for cellular trafficking and physiological responses in plants.
Collapse
Affiliation(s)
- Ariadna González Solís
- Department of Botany and Center for Quantitative Cell Imaging, University of Wisconsin-Madison, WI, USA
| | - Elizabeth Berryman
- Department of Botany and Center for Quantitative Cell Imaging, University of Wisconsin-Madison, WI, USA
| | - Marisa S Otegui
- Department of Botany and Center for Quantitative Cell Imaging, University of Wisconsin-Madison, WI, USA
| |
Collapse
|
21
|
Ito E, Uemura T. RAB GTPases and SNAREs at the trans-Golgi network in plants. JOURNAL OF PLANT RESEARCH 2022; 135:389-403. [PMID: 35488138 PMCID: PMC9188535 DOI: 10.1007/s10265-022-01392-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/20/2022] [Indexed: 05/07/2023]
Abstract
Membrane traffic is a fundamental cellular system to exchange proteins and membrane lipids among single membrane-bound organelles or between an organelle and the plasma membrane in order to keep integrity of the endomembrane system. RAB GTPases and SNARE proteins, the key regulators of membrane traffic, are conserved broadly among eukaryotic species. However, genome-wide analyses showed that organization of RABs and SNAREs that regulate the post-Golgi transport pathways is greatly diversified in plants compared to other model eukaryotes. Furthermore, some organelles acquired unique properties in plant lineages. Like in other eukaryotic systems, the trans-Golgi network of plants coordinates secretion and vacuolar transport; however, uniquely in plants, it also acts as a platform for endocytic transport and recycling. In this review, we focus on RAB GTPases and SNAREs that function at the TGN, and summarize how these regulators perform to control different transport pathways at the plant TGN. We also highlight the current knowledge of RABs and SNAREs' role in regulation of plant development and plant responses to environmental stimuli.
Collapse
Affiliation(s)
- Emi Ito
- Graduate School of Humanities and Sciences, Ochanomizu University, Bunkyo-ku, Tokyo, 112-8610, Japan
| | - Tomohiro Uemura
- Graduate School of Humanities and Sciences, Ochanomizu University, Bunkyo-ku, Tokyo, 112-8610, Japan.
| |
Collapse
|
22
|
Lin F, Zheng J, Xie Y, Jing W, Zhang Q, Zhang W. Emerging roles of phosphoinositide-associated membrane trafficking in plant stress responses. J Genet Genomics 2022; 49:726-734. [DOI: 10.1016/j.jgg.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 10/18/2022]
|
23
|
An Arabidopsis mutant deficient in phosphatidylinositol-4-phosphate kinases ß1 and ß2 displays altered auxin-related responses in roots. Sci Rep 2022; 12:6947. [PMID: 35484296 PMCID: PMC9051118 DOI: 10.1038/s41598-022-10458-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 04/04/2022] [Indexed: 11/11/2022] Open
Abstract
Phosphatidylinositol 4-kinases (PI4Ks) are the first enzymes that commit phosphatidylinositol into the phosphoinositide pathway. Here, we show that Arabidopsis thaliana seedlings deficient in PI4Kβ1 and β2 have several developmental defects including shorter roots and unfinished cytokinesis. The pi4kβ1β2 double mutant was insensitive to exogenous auxin concerning inhibition of root length and cell elongation; it also responded more slowly to gravistimulation. The pi4kß1ß2 root transcriptome displayed some similarities to a wild type plant response to auxin. Yet, not all the genes displayed such a constitutive auxin-like response. Besides, most assessed genes did not respond to exogenous auxin. This is consistent with data with the transcriptional reporter DR5-GUS. The content of bioactive auxin in the pi4kß1ß2 roots was similar to that in wild-type ones. Yet, an enhanced auxin-conjugating activity was detected and the auxin level reporter DII-VENUS did not respond to exogenous auxin in pi4kß1ß2 mutant. The mutant exhibited altered subcellular trafficking behavior including the trapping of PIN-FORMED 2 protein in rapidly moving vesicles. Bigger and less fragmented vacuoles were observed in pi4kß1ß2 roots when compared to the wild type. Furthermore, the actin filament web of the pi4kß1ß2 double mutant was less dense than in wild-type seedling roots, and less prone to rebuilding after treatment with latrunculin B. A mechanistic model is proposed in which an altered PI4K activity leads to actin filament disorganization, changes in vesicle trafficking, and altered auxin homeostasis and response resulting in a pleiotropic root phenotypes.
Collapse
|
24
|
Pang L, Ma Z, Zhang X, Huang Y, Li R, Miao Y, Li R. The small GTPase RABA2a recruits SNARE proteins to regulate the secretory pathway in parallel with the exocyst complex in Arabidopsis. MOLECULAR PLANT 2022; 15:398-418. [PMID: 34798312 DOI: 10.1016/j.molp.2021.11.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 10/24/2021] [Accepted: 11/12/2021] [Indexed: 05/22/2023]
Abstract
Delivery of proteins to the plasma membrane occurs via secretion, which requires tethering, docking, priming, and fusion of vesicles. In yeast and mammalian cells, an evolutionarily conserved RAB GTPase activation cascade functions together with the exocyst and SNARE proteins to coordinate vesicle transport with fusion at the plasma membrane. However, it is unclear whether this is the case in plants. In this study, we show that the small GTPase RABA2a recruits and interacts with the VAMP721/722-SYP121-SNAP33 SNARE ternary complex for membrane fusion. Through immunoprecipitation coupled with mass spectrometry analysis followed by the validatation with a series of biochemical assays, we identified the SNARE proteins VAMP721 and SYP121 as the interactors and downstream effectors of RABA2a. Further expreiments showed that RABA2a interacts with all members of the SNARE complex in its GTP-bound form and modulates the assembly of the VAMP721/722-SYP121-SNAP33 SNARE ternary complex. Intriguingly, we did not observe the interaction of the exocyst subunits with either RABA2a or theSNARE proteins in several different experiments. Neither RABA2a inactivation affects the subcellular localization or assembly of the exocystnor the exocyst subunit mutant exo84b shows the disrupted RABA2a-SNARE association or SNARE assembly, suggesting that the RABA2a-SNARE- and exocyst-mediated secretory pathways are largely independent. Consistently, our live imaging experiments reveal that the two sets of proteins follow non-overlapping trafficking routes, and genetic and cell biologyanalyses indicate that the two pathways select different cargos. Finally, we demonstrate that the plant-specific RABA2a-SNARE pathway is essential for the maintenance of potassium homeostasis in Arabisopsis seedlings. Collectively, our findings imply that higher plants might have generated different endomembrane sorting pathways during evolution and may enable the highly conserved endomembrane proteins to participate in plant-specific trafficking mechanisms for adaptation to the changing environment.
Collapse
Affiliation(s)
- Lei Pang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhiming Ma
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Xi Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yuanzhi Huang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ruili Li
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yansong Miao
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Ruixi Li
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
25
|
Noack LC, Bayle V, Armengot L, Rozier F, Mamode-Cassim A, Stevens FD, Caillaud MC, Munnik T, Mongrand S, Pleskot R, Jaillais Y. A nanodomain-anchored scaffolding complex is required for the function and localization of phosphatidylinositol 4-kinase alpha in plants. THE PLANT CELL 2022; 34:302-332. [PMID: 34010411 PMCID: PMC8774046 DOI: 10.1093/plcell/koab135] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 05/10/2021] [Indexed: 05/24/2023]
Abstract
Phosphoinositides are low-abundant lipids that participate in the acquisition of membrane identity through their spatiotemporal enrichment in specific compartments. Phosphatidylinositol 4-phosphate (PI4P) accumulates at the plant plasma membrane driving its high electrostatic potential, and thereby facilitating interactions with polybasic regions of proteins. PI4Kα1 has been suggested to produce PI4P at the plasma membrane, but how it is recruited to this compartment is unknown. Here, we pin-point the mechanism that tethers Arabidopsis thaliana phosphatidylinositol 4-kinase alpha1 (PI4Kα1) to the plasma membrane via a nanodomain-anchored scaffolding complex. We established that PI4Kα1 is part of a complex composed of proteins from the NO-POLLEN-GERMINATION, EFR3-OF-PLANTS, and HYCCIN-CONTAINING families. Comprehensive knockout and knockdown strategies revealed that subunits of the PI4Kα1 complex are essential for pollen, embryonic, and post-embryonic development. We further found that the PI4Kα1 complex is immobilized in plasma membrane nanodomains. Using synthetic mis-targeting strategies, we demonstrate that a combination of lipid anchoring and scaffolding localizes PI4Kα1 to the plasma membrane, which is essential for its function. Together, this work opens perspectives on the mechanisms and function of plasma membrane nanopatterning by lipid kinases.
Collapse
Affiliation(s)
- Lise C Noack
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, F-69342, Lyon, France
| | - Vincent Bayle
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, F-69342, Lyon, France
| | - Laia Armengot
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, F-69342, Lyon, France
| | - Frédérique Rozier
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, F-69342, Lyon, France
| | - Adiilah Mamode-Cassim
- Laboratoire de Biogenèse Membranaire, UMR5200, Université de Bordeaux, CNRS, 33140 Villenave d’Ornon, France
- Agroécologie, AgroSup Dijon, CNRS, INRA, University Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Floris D Stevens
- Research Cluster Green Life Sciences, Section Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, 1090 GE, The Netherlands
| | - Marie-Cécile Caillaud
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, F-69342, Lyon, France
| | - Teun Munnik
- Research Cluster Green Life Sciences, Section Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, 1090 GE, The Netherlands
| | - Sébastien Mongrand
- Laboratoire de Biogenèse Membranaire, UMR5200, Université de Bordeaux, CNRS, 33140 Villenave d’Ornon, France
| | - Roman Pleskot
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, 16502 Prague 6, Czech Republic
| | | |
Collapse
|
26
|
Zhang M, Chen Z, Yuan F, Wang B, Chen M. Integrative transcriptome and proteome analyses provide deep insights into the molecular mechanism of salt tolerance in Limonium bicolor. PLANT MOLECULAR BIOLOGY 2022; 108:127-143. [PMID: 34950990 DOI: 10.1007/s11103-021-01230-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 12/02/2021] [Indexed: 05/21/2023]
Abstract
Integrative transcriptome and proteome analyses revealed many candidate members that may involve in salt secretion from salt glands in Limonium bicolor. Limonium bicolor, a typical recretohalophyte, protects itself from salt damage by excreting excess salt out of its cells through salt glands. Here, to provide an overview of the salt-tolerance mechanism of L. bicolor, we conducted integrative transcriptome and proteome analyses of this species under salt treatment. We identified numerous differentially expressed transcripts and proteins that may be related to the salt-tolerance mechanism of L. bicolor. By measuring the Na+ secretion rate, were found that this cation secretion rate of a single salt gland was significantly increased after high salinity treatment compared with that in control and then reached the maximum in a short time. Interestingly, transcripts and proteins involved in transmembrane transport of ions were differentially expressed in response to high salinity treatment, suggesting a number of genes and proteins they may play important roles in the salt-stress response. Correlation between differentially expressed transcript and protein profiles revealed several transcripts and proteins that may be responsible for salt tolerance, such as cellulose synthases and annexins. Our findings uncovered many candidate transcripts and proteins in response to the salt tolerance of L. bicolor, providing deep insights into the molecular mechanisms of this important process in recretohalophytes.
Collapse
Affiliation(s)
- Mingjing Zhang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, PR China
| | - Zhuo Chen
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, PR China
| | - Fang Yuan
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, PR China
| | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, PR China.
| | - Min Chen
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, PR China.
| |
Collapse
|
27
|
Huang FC, Chi SF, Chien PR, Liu YT, Chang HN, Lin CS, Hwang HH. Arabidopsis RAB8A, RAB8B and RAB8D Proteins Interact with Several RTNLB Proteins and are Involved in the Agrobacterium tumefaciens Infection Process. PLANT & CELL PHYSIOLOGY 2021; 62:1572-1588. [PMID: 34255832 DOI: 10.1093/pcp/pcab112] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/01/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Arabidopsis thaliana small GTP-binding proteins, AtRAB8s, associate with the endomembrane system and modulate tubulovesicular trafficking between compartments of the biosynthetic and endocytic pathways. There are five members in Arabidopsis, namely AtRAB8A-8E. Yeast two-hybrid assays, bimolecular fluorescence complementation assays and glutathione-S-transferase pull-down assays showed that RAB8A, 8B and 8D interacted with several membrane-associated reticulon-like (AtRTNLB) proteins in yeast, plant cells and in vitro. Furthermore, RAB8A, 8B and 8D proteins showed interactions with the Agrobacterium tumefaciens virulence protein, VirB2, a component of a type IV secretion system (T4SS). A. tumefaciens uses a T4SS to transfer T-DNA and Virulence proteins to plants, which causes crown gall disease in plants. The Arabidopsis rab8A, rab8B and rab8D single mutants showed decreased levels of Agrobacterium-mediated root and seedling transformation, while the RAB8A, 8B and 8D overexpression transgenic Arabidopsis plants were hypersusceptible to A. tumefaciens and Pseudomonas syringae infections. RAB8A-8E transcripts accumulated differently in roots, rosette leaves, cauline leaves, inflorescence and flowers of wild-type plants. In summary, RAB8A, 8B and 8D interacted with several RTNLB proteins and participated in A. tumefaciens and P. syringae infection processes.
Collapse
Affiliation(s)
- Fan-Chen Huang
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
| | - Shin-Fei Chi
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
| | - Pei-Ru Chien
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
| | - Yin-Tzu Liu
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
| | - Hsin-Nung Chang
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
| | - Choun-Sea Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Hau-Hsuan Hwang
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
28
|
Ito Y, Esnay N, Platre MP, Wattelet-Boyer V, Noack LC, Fougère L, Menzel W, Claverol S, Fouillen L, Moreau P, Jaillais Y, Boutté Y. Sphingolipids mediate polar sorting of PIN2 through phosphoinositide consumption at the trans-Golgi network. Nat Commun 2021; 12:4267. [PMID: 34257291 PMCID: PMC8277843 DOI: 10.1038/s41467-021-24548-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 06/23/2021] [Indexed: 01/09/2023] Open
Abstract
The lipid composition of organelles acts as a landmark to define membrane identity and specify subcellular function. Phosphoinositides are anionic lipids acting in protein sorting and trafficking at the trans-Golgi network (TGN). In animal cells, sphingolipids control the turnover of phosphoinositides through lipid exchange mechanisms at endoplasmic reticulum/TGN contact sites. In this study, we discover a mechanism for how sphingolipids mediate phosphoinositide homeostasis at the TGN in plant cells. Using multiple approaches, we show that a reduction of the acyl-chain length of sphingolipids results in an increased level of phosphatidylinositol-4-phosphate (PtdIns(4)P or PI4P) at the TGN but not of other lipids usually coupled to PI4P during exchange mechanisms. We show that sphingolipids mediate Phospholipase C (PLC)-driven consumption of PI4P at the TGN rather than local PI4P synthesis and that this mechanism is involved in the polar sorting of the auxin efflux carrier PIN2 at the TGN. Together, our data identify a mode of action of sphingolipids in lipid interplay at the TGN during protein sorting. Lipid composition impacts the function of cellular membranes. Here the authors show that a reduction in sphingolipid acyl-chain length promotes phosphoinositide consumption by phospholipase C at the Arabidopsis trans-Golgi network which in turn regulates sorting of the auxin efflux carrier PIN2.
Collapse
Affiliation(s)
- Yoko Ito
- Laboratoire de Biogenèse Membranaire, Univ. Bordeaux, Villenave d'Ornon, France
| | - Nicolas Esnay
- Laboratoire de Biogenèse Membranaire, Univ. Bordeaux, Villenave d'Ornon, France.,BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Matthieu Pierre Platre
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon1, CNRS, INRAE, Lyon, France.,Plant Molecular and Cellular Biology Laboratory and Integrative Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | - Lise C Noack
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon1, CNRS, INRAE, Lyon, France
| | - Louise Fougère
- Laboratoire de Biogenèse Membranaire, Univ. Bordeaux, Villenave d'Ornon, France
| | - Wilhelm Menzel
- Laboratoire de Biogenèse Membranaire, Univ. Bordeaux, Villenave d'Ornon, France.,Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | | | - Laetitia Fouillen
- Laboratoire de Biogenèse Membranaire, Univ. Bordeaux, Villenave d'Ornon, France.,MetaboHub-Bordeaux Metabolome INRAE, Villenave d'Ornon, France
| | - Patrick Moreau
- Laboratoire de Biogenèse Membranaire, Univ. Bordeaux, Villenave d'Ornon, France.,Bordeaux Imaging Centre, Plant Imaging Platform, UMS 3420 University of Bordeaux-CNRS, INRAE, Villenave-d'Ornon Cedex, France
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon1, CNRS, INRAE, Lyon, France
| | - Yohann Boutté
- Laboratoire de Biogenèse Membranaire, Univ. Bordeaux, Villenave d'Ornon, France.
| |
Collapse
|
29
|
Tripathy MK, Deswal R, Sopory SK. Plant RABs: Role in Development and in Abiotic and Biotic Stress Responses. Curr Genomics 2021; 22:26-40. [PMID: 34045922 PMCID: PMC8142350 DOI: 10.2174/1389202922666210114102743] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 12/05/2020] [Accepted: 12/26/2020] [Indexed: 12/15/2022] Open
Abstract
Endosomal trafficking plays an integral role in various eukaryotic cellular activities and is vital for higher-order functions in multicellular organisms. RAB GTPases are important proteins that influence various aspects of membrane traffic, which consequently influence many cellular functions and responses. Compared to yeast and mammals, plants have evolved a unique set of plant-specific RABs that play a significant role in their development. RABs form the largest family of small guanosine triphosphate (GTP)-binding proteins, and are divided into eight sub-families named RAB1, RAB2, RAB5, RAB6, RAB7, RAB8, RAB11 and RAB18. Recent studies on different species suggest that RAB proteins play crucial roles in intracellular trafficking and cytokinesis, in autophagy, plant microbe interactions and in biotic and abiotic stress responses. This review recaptures and summarizes the roles of RABs in plant cell functions and in enhancing plant survival under stress conditions.
Collapse
Affiliation(s)
- Manas K Tripathy
- 1International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; 2Department of Botany, University of Delhi, Delhi 110007, India
| | - Renu Deswal
- 1International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; 2Department of Botany, University of Delhi, Delhi 110007, India
| | - Sudhir K Sopory
- 1International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; 2Department of Botany, University of Delhi, Delhi 110007, India
| |
Collapse
|
30
|
Dubois GA, Jaillais Y. Anionic phospholipid gradients: an uncharacterized frontier of the plant endomembrane network. PLANT PHYSIOLOGY 2021; 185:577-592. [PMID: 33793905 PMCID: PMC8133617 DOI: 10.1093/plphys/kiaa056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/16/2020] [Indexed: 05/19/2023]
Abstract
Anionic phospholipids include phosphatidic acid (PA), phosphatidylserine (PS), phosphatidylinositol (PI), and its phosphorylated derivatives the phosphoinositides (e.g. phosphatidylinositol-4-phosphate [PI4P] and phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2]). Although anionic phospholipids are low-abundant lipids, they are particularly important for membrane functions. In particular, anionic lipids act as biochemical and biophysical landmarks that contribute to the establishment of membrane identity, signaling activities, and compartment morphodynamics. Each anionic lipid accumulates in different endomembranes according to a unique subcellular pattern, where they locally provide docking platforms for proteins. As such, they are mostly believed to act in the compartments in which they accumulate. However, mounting evidence throughout eukaryotes suggests that anionic lipids are not as compartment-specific as initially thought and that they are instead organized as concentration gradients across different organelles. In this update, we review the evidence for the existence of anionic lipid gradients in plants. We then discuss the possible implication of these gradients in lipid dynamics and homeostasis, and also in coordinating subcellular activities. Finally, we introduce the notion that anionic lipid gradients at the cellular scale may translate into gradients at the tissue level, which could have implications for plant development.
Collapse
Affiliation(s)
- Gwennogan A Dubois
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, F-69342, Lyon, France
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, F-69342, Lyon, France
- Author for communication:
| |
Collapse
|
31
|
Xing J, Zhang L, Duan Z, Lin J. Coordination of Phospholipid-Based Signaling and Membrane Trafficking in Plant Immunity. TRENDS IN PLANT SCIENCE 2021; 26:407-420. [PMID: 33309101 DOI: 10.1016/j.tplants.2020.11.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 05/26/2023]
Abstract
In plants, defense-associated signal transduction involves key membrane-related processes, such as phospholipid-based signaling and membrane trafficking. Coordination of these processes occurs in the lipid bilayer of plasma membrane (PM) and luminal/extracellular membranes. Deciphering the spatiotemporal organization of phospholipids and lipid-protein interactions provides crucial information on the mechanisms that link phospholipid-based signaling and membrane trafficking in plant immunity. In this review, we summarize recent advances in our understanding of these connections, including deployment of key enzymes and molecules in phospholipid pathways, and roles of lipid diversity in membrane trafficking. We highlight the mechanisms that mediate feedback between phospholipid-based signaling and membrane trafficking to regulate plant immunity, including their novel roles in balancing endocytosis and exocytosis.
Collapse
Affiliation(s)
- Jingjing Xing
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Liang Zhang
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Zhikun Duan
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jinxing Lin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| |
Collapse
|
32
|
Kim D, Yang J, Gu F, Park S, Combs J, Adams A, Mayes HB, Jeon SJ, Bahk JD, Nielsen E. A temperature-sensitive FERONIA mutant allele that alters root hair growth. PLANT PHYSIOLOGY 2021; 185:405-423. [PMID: 33721904 PMCID: PMC8133571 DOI: 10.1093/plphys/kiaa051] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 11/14/2020] [Indexed: 05/22/2023]
Abstract
In plants, root hairs undergo a highly polarized form of cell expansion called tip-growth, in which cell wall deposition is restricted to the root hair apex. In order to identify essential cellular components that might have been missed in earlier genetic screens, we identified conditional temperature-sensitive (ts) root hair mutants by ethyl methanesulfonate mutagenesis in Arabidopsis thaliana. Here, we describe one of these mutants, feronia-temperature sensitive (fer-ts). Mutant fer-ts seedlings were unaffected at normal temperatures (20°C), but failed to form root hairs at elevated temperatures (30°C). Map based-cloning and whole-genome sequencing revealed that fer-ts resulted from a G41S substitution in the extracellular domain of FERONIA (FER). A functional fluorescent fusion of FER containing the fer-ts mutation localized to plasma membranes, but was subject to enhanced protein turnover at elevated temperatures. While tip-growth was rapidly inhibited by addition of rapid alkalinization factor 1 (RALF1) peptides in both wild-type and fer-ts mutants at normal temperatures, root elongation of fer-ts seedlings was resistant to added RALF1 peptide at elevated temperatures. Additionally, at elevated temperatures fer-ts seedlings displayed altered reactive oxygen species (ROS) accumulation upon auxin treatment and phenocopied constitutive fer mutant responses to a variety of plant hormone treatments. Molecular modeling and sequence comparison with other Catharanthus roseus receptor-like kinase 1L (CrRLK1L) receptor family members revealed that the mutated glycine in fer-ts is highly conserved, but is not located within the recently characterized RALF23 and LORELI-LIKE-GLYCOPROTEIN 2 binding domains, perhaps suggesting that fer-ts phenotypes may not be directly due to loss of binding to RALF1 peptides.
Collapse
Affiliation(s)
- Daewon Kim
- Division of Applied Life Sciences (BK21plus), Graduate School of Gyeongsang National University, Jinju 660-701, Republic of Korea
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Jiyuan Yang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Fangwei Gu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Sungjin Park
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Jonathon Combs
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Alexander Adams
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Heather B Mayes
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Su Jeong Jeon
- Division of Applied Life Sciences (BK21plus), Graduate School of Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Jeong Dong Bahk
- Division of Applied Life Sciences (BK21plus), Graduate School of Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Erik Nielsen
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
33
|
Junková P, Neubergerová M, Kalachova T, Valentová O, Janda M. Regulation of the microsomal proteome by salicylic acid and deficiency of phosphatidylinositol-4-kinases β1 and β2 in Arabidopsis thaliana. Proteomics 2021; 21:e2000223. [PMID: 33463038 DOI: 10.1002/pmic.202000223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/14/2020] [Accepted: 12/29/2020] [Indexed: 11/06/2022]
Abstract
Phosphatidylinositol-4-kinases β1 and β2 (PI4Kβ1/PI4Kβ2), which are responsible for phosphorylation of phosphatidylinositol to phosphatidylinositol-4-phosphate, have important roles in plant vesicular trafficking. Moreover, PI4Kβ1/PI4Kβ2 negatively regulates biosynthesis of phytohormone salicylic acid (SA), a key player in plant immune responses. The study focused on the effect of PI4Kβ1/PI4Kβ2 deficiency and SA level on the proteome of microsomal fraction. For that purpose we used four Arabidopsis thaliana genotypes: wild type; double mutant with impaired function of PI4Kβ1/PI4Kβ2 (pi4kβ1/pi4kβ2) exhibiting high SA level; sid2 mutant with impaired SA biosynthesis depending on the isochorismate synthase 1 and triple mutant sid2/pi4kβ1/pi4kβ2. We identified 1797 proteins whose levels were changed between genotypes. We showed that increased SA concentration affected the levels of 473 proteins. This includes typical SA pathway markers but also points to connections between SA pathway and clathrin-independent endocytosis (flotillins) and exocytosis/protein secretion (syntaxins, tetraspanin) to be investigated in future. In contrast to SA, the absence of PI4Kβ1/PI4Kβ2 itself affected only 27 proteins. Among them we identified CERK1, a receptor for chitin. Although PI4Kβ1/PI4Kβ2 deficiency itself did not have a substantial impact on the proteome of the microsomal fraction, our data clearly show that it enhances proteome changes when SA pathway is modulated in parallel.
Collapse
Affiliation(s)
- Petra Junková
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Prague, Czech Republic.,Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Michaela Neubergerová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Tetiana Kalachova
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
| | - Olga Valentová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Martin Janda
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Prague, Czech Republic.,Faculty of Biology, Ludwig-Maximilians-University of Munich (LMU), Martinsried, Germany
| |
Collapse
|
34
|
Retzer K, Weckwerth W. The TOR-Auxin Connection Upstream of Root Hair Growth. PLANTS (BASEL, SWITZERLAND) 2021; 10:150. [PMID: 33451169 PMCID: PMC7828656 DOI: 10.3390/plants10010150] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 12/11/2022]
Abstract
Plant growth and productivity are orchestrated by a network of signaling cascades involved in balancing responses to perceived environmental changes with resource availability. Vascular plants are divided into the shoot, an aboveground organ where sugar is synthesized, and the underground located root. Continuous growth requires the generation of energy in the form of carbohydrates in the leaves upon photosynthesis and uptake of nutrients and water through root hairs. Root hair outgrowth depends on the overall condition of the plant and its energy level must be high enough to maintain root growth. TARGET OF RAPAMYCIN (TOR)-mediated signaling cascades serve as a hub to evaluate which resources are needed to respond to external stimuli and which are available to maintain proper plant adaptation. Root hair growth further requires appropriate distribution of the phytohormone auxin, which primes root hair cell fate and triggers root hair elongation. Auxin is transported in an active, directed manner by a plasma membrane located carrier. The auxin efflux carrier PIN-FORMED 2 is necessary to transport auxin to root hair cells, followed by subcellular rearrangements involved in root hair outgrowth. This review presents an overview of events upstream and downstream of PIN2 action, which are involved in root hair growth control.
Collapse
Affiliation(s)
- Katarzyna Retzer
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, 165 02 Prague, Czech Republic
| | - Wolfram Weckwerth
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, 1010 Vienna, Austria;
- Vienna Metabolomics Center (VIME), University of Vienna, 1010 Vienna, Austria
| |
Collapse
|
35
|
So WM, Huque AKMM, Shin HY, Kim SY, Shin JS, Cui M, Shin JS. AtMYB109 negatively regulates stomatal closure under osmotic stress in Arabidopsis thaliana. JOURNAL OF PLANT PHYSIOLOGY 2020; 255:153292. [PMID: 33069038 DOI: 10.1016/j.jplph.2020.153292] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/15/2020] [Accepted: 09/19/2020] [Indexed: 06/11/2023]
Abstract
Osmotic stress, caused by drought, salinity, or PEG (polyethylene glycol), is one of the most important abiotic factors that hinder plant growth and development. In Arabidopsis, more than 100 R2R3-MYB transcription factors (TFs) have been identified, and many of them are involved in the transcriptional regulation of a variety of biological processes related to growth and development, as well as responses to biotic and abiotic stresses. However, the MYB TF involving in both plant development and stress response has rarely been reported. We report here that Arabidopsis AtMYB109, a R2R3-MYB TF, functions as a negative regulator of stomatal closure under osmotic stress as well as of pollen tube elongation. Under PEG-induced osmotic stress, whole leaves of AtMYB109-OXs were intensely wilted, while leaves of the wild-type (WT) and myb109 were weakly affected. Moreover, we confirmed that the wilting in AtMYB109-OXs was more severe than in WT and myb109 under drought conditions, and that after re-watering, WT and myb109 plants promptly recovered, while AtMYB109-OXs failed to survive. In addition, stomatal closure was delayed in the AtMYB109-OXs compared to the WT and myb109. However, proline content and the expression of stress-induced and proline synthesis genes were higher in the overexpression lines than in WT and myb109. Then, we observed that the expression of ICS1, a key gene in SA biosynthesis, was greatly suppressed in AtMYB109-OXs. In addition, we found that AtMYB109 expression gradually increased until the flowers were fully opened and thereafter dramatically decreased during silique development. The pollen tube growth was significantly suppressed in AtMYB109-OXs compared to the WT and myb109. Using EMSA and ChIP-qPCR, we confirmed that AtMYB109 bound to the promoter of RABA4D, a gene encoding a pollen development regulator. Taken together, we suggest the delayed stomatal closing and vulnerable phenotypes in the AtMYB109-OXs under osmotic stress are possibly directly or indirectly associated with a SA-mediated mechanism, and that AtMYB109 suppresses RABA4D that modulates pollen tube growth.
Collapse
Affiliation(s)
- Won Mi So
- Division of Life Sciences, Korea University, Seoul, 02841, South Korea
| | | | - Hyun-Young Shin
- Division of Life Sciences, Korea University, Seoul, 02841, South Korea
| | - Soo Youn Kim
- Division of Life Sciences, Korea University, Seoul, 02841, South Korea; Cloning Department, Bionics, Seoul, 04778, South Korea
| | - Jin Seok Shin
- Division of Life Sciences, Korea University, Seoul, 02841, South Korea
| | - Meihua Cui
- Division of Life Sciences, Korea University, Seoul, 02841, South Korea; Shanghai Institute for Advanced Immunochemical Studies (SIAIS), Shanghai Tech University, Shanghai, China
| | - Jeong Sheop Shin
- Division of Life Sciences, Korea University, Seoul, 02841, South Korea.
| |
Collapse
|
36
|
Champeyroux C, Stoof C, Rodriguez-Villalon A. Signaling phospholipids in plant development: small couriers determining cell fate. CURRENT OPINION IN PLANT BIOLOGY 2020; 57:61-71. [PMID: 32771964 DOI: 10.1016/j.pbi.2020.05.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/24/2020] [Accepted: 05/23/2020] [Indexed: 05/25/2023]
Abstract
The survival of plants hinges on their ability to perceive various environmental stimuli and translate them into appropriate biochemical responses. Phospholipids, a class of membrane lipid compounds that are asymmetrically distributed within plant cells, stand out among signal transmitters for their diversity of mechanisms by which they modulate stress and developmental processes. By modifying the chemo-physical properties of the plasma membrane (PM) as well as vesicle trafficking, phospholipids contribute to changes in the protein membrane landscape, and hence, signaling responses. In this article, we review the distinct signaling mechanisms phospholipids are involved in, with a special focus on the nuclear role of these compounds. Additionally, we summarize exemplary developmental processes greatly influenced by phospholipids.
Collapse
Affiliation(s)
- Chloe Champeyroux
- Group of Plant Vascular Development, Swiss Federal Institute of Technology (ETH) Zurich, 8092 Zurich, Switzerland
| | - Claudia Stoof
- Group of Plant Vascular Development, Swiss Federal Institute of Technology (ETH) Zurich, 8092 Zurich, Switzerland
| | - Antia Rodriguez-Villalon
- Group of Plant Vascular Development, Swiss Federal Institute of Technology (ETH) Zurich, 8092 Zurich, Switzerland.
| |
Collapse
|
37
|
Zhao CY, Xue HW. PI4Kγ2 Interacts with E3 Ligase MIEL1 to Regulate Auxin Metabolism and Root Development. PLANT PHYSIOLOGY 2020; 184:933-944. [PMID: 32788299 PMCID: PMC7536656 DOI: 10.1104/pp.20.00799] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 07/20/2020] [Indexed: 05/07/2023]
Abstract
Root development is important for normal plant growth and nutrient absorption. Studies have revealed the involvement of various factors in this complex process, improving our understanding of the relevant regulatory mechanisms. Here, we functionally characterize the role of Arabidopsis (Arabidopsis thaliana) phosphatidylinositol 4-kinase γ2 (PI4Kγ2) in root elongation regulation, which functions to modulate stability of the RING-type E3 ligase MYB30-INTERACTING E3 LIGASE1 (MIEL1) and auxin metabolism. Mutant plants deficient in PI4Kγ2 (pi4kγ2) exhibited a shortened root length and elongation zone due to reduced auxin level. PI4Kγ2 was shown to interact with MIEL1, regulating its degradation and furthering the stability of transcription factor MYB30 (which suppresses auxin metabolism by directly binding to promoter regions of GH3 2 and GH3 6). Interestingly, pi4kγ2 plants presented altered hypersensitive response, indicating that PI4Kγ2 regulates synergetic growth and defense of plants through modulating auxin metabolism. These results reveal the importance of protein interaction in regulating ubiquitin-mediated protein degradation in eukaryotic cells, and illustrate a mechanism coordinating plant growth and biotic stress response.
Collapse
Affiliation(s)
- Chun-Yan Zhao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Hong-Wei Xue
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
38
|
Scholz P, Anstatt J, Krawczyk HE, Ischebeck T. Signalling Pinpointed to the Tip: The Complex Regulatory Network That Allows Pollen Tube Growth. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1098. [PMID: 32859043 PMCID: PMC7569787 DOI: 10.3390/plants9091098] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/18/2020] [Accepted: 08/23/2020] [Indexed: 12/13/2022]
Abstract
Plants display a complex life cycle, alternating between haploid and diploid generations. During fertilisation, the haploid sperm cells are delivered to the female gametophyte by pollen tubes, specialised structures elongating by tip growth, which is based on an equilibrium between cell wall-reinforcing processes and turgor-driven expansion. One important factor of this equilibrium is the rate of pectin secretion mediated and regulated by factors including the exocyst complex and small G proteins. Critically important are also non-proteinaceous molecules comprising protons, calcium ions, reactive oxygen species (ROS), and signalling lipids. Among the latter, phosphatidylinositol 4,5-bisphosphate and the kinases involved in its formation have been assigned important functions. The negatively charged headgroup of this lipid serves as an interaction point at the apical plasma membrane for partners such as the exocyst complex, thereby polarising the cell and its secretion processes. Another important signalling lipid is phosphatidic acid (PA), that can either be formed by the combination of phospholipases C and diacylglycerol kinases or by phospholipases D. It further fine-tunes pollen tube growth, for example by regulating ROS formation. How the individual signalling cues are intertwined or how external guidance cues are integrated to facilitate directional growth remain open questions.
Collapse
Affiliation(s)
- Patricia Scholz
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig Weg 11, D-37077 Goettingen, Germany; (J.A.); (H.E.K.)
| | | | | | - Till Ischebeck
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig Weg 11, D-37077 Goettingen, Germany; (J.A.); (H.E.K.)
| |
Collapse
|
39
|
MARTINIÈRE A, MOREAU P. Complex roles of Rabs and SNAREs in the secretory pathway and plant development: a never‐ending story. J Microsc 2020; 280:140-157. [DOI: 10.1111/jmi.12952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/22/2020] [Accepted: 07/31/2020] [Indexed: 12/14/2022]
Affiliation(s)
- A. MARTINIÈRE
- Univ Montpellier, CNRS, INRAE, Montpellier SupAgro BPMP Montpellier France
| | - P. MOREAU
- UMR 5200 Membrane Biogenesis Laboratory CNRS and University of Bordeaux, INRAE Bordeaux Villenave d'Ornon France
| |
Collapse
|
40
|
Abstract
Anionic phospholipids, which include phosphatidic acid, phosphatidylserine, and phosphoinositides, represent a small percentage of membrane lipids. They are able to modulate the physical properties of membranes, such as their surface charges, curvature, or clustering of proteins. Moreover, by mediating interactions with numerous membrane-associated proteins, they are key components in the establishment of organelle identity and dynamics. Finally, anionic lipids also act as signaling molecules, as they are rapidly produced or interconverted by a set of dedicated enzymes. As such, anionic lipids are major regulators of many fundamental cellular processes, including cell signaling, cell division, membrane trafficking, cell growth, and gene expression. In this review, we describe the functions of anionic lipids from a cellular perspective. Using the localization of each anionic lipid and its related metabolic enzymes as starting points, we summarize their roles within the different compartments of the endomembrane system and address their associated developmental and physiological consequences.
Collapse
Affiliation(s)
- Lise C Noack
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, École Normale Supérieure (ENS) de Lyon, L'Université Claude Bernard (UCB) Lyon 1, CNRS, INRAE, 69342 Lyon, France; ,
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, École Normale Supérieure (ENS) de Lyon, L'Université Claude Bernard (UCB) Lyon 1, CNRS, INRAE, 69342 Lyon, France; ,
| |
Collapse
|
41
|
Nielsen E. The Small GTPase Superfamily in Plants: A Conserved Regulatory Module with Novel Functions. ANNUAL REVIEW OF PLANT BIOLOGY 2020; 71:247-272. [PMID: 32442390 DOI: 10.1146/annurev-arplant-112619-025827] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Small GTP-binding proteins represent a highly conserved signaling module in eukaryotes that regulates diverse cellular processes such as signal transduction, cytoskeletal organization and cell polarity, cell proliferation and differentiation, intracellular membrane trafficking and transport vesicle formation, and nucleocytoplasmic transport. These proteins function as molecular switches that cycle between active and inactive states, and this cycle is linked to GTP binding and hydrolysis. In this review, the roles of the plant complement of small GTP-binding proteins in these cellular processes are described, as well as accessory proteins that control their activity, and current understanding of the functions of individual members of these families in plants-with a focus on the model organism Arabidopsis-is presented. Some potential novel roles of these GTPases in plants, relative to their established roles in yeast and/or animal systems, are also discussed.
Collapse
Affiliation(s)
- Erik Nielsen
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA;
| |
Collapse
|
42
|
Kalachova T, Janda M, Šašek V, Ortmannová J, Nováková P, Dobrev IP, Kravets V, Guivarc’h A, Moura D, Burketová L, Valentová O, Ruelland E. Identification of salicylic acid-independent responses in an Arabidopsis phosphatidylinositol 4-kinase beta double mutant. ANNALS OF BOTANY 2020; 125:775-784. [PMID: 31250883 PMCID: PMC7182594 DOI: 10.1093/aob/mcz112] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 06/27/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND AND AIMS We have recently shown that an Arabidopsis thaliana double mutant of type III phosphatidylinositol-4-kinases (PI4Ks), pi4kβ1β2, constitutively accumulated a high level of salicylic acid (SA). By crossing this pi4kβ1β2 double mutant with mutants impaired in SA synthesis (such as sid2 impaired in isochorismate synthase) or transduction, we demonstrated that the high SA level was responsible for the dwarfism phenotype of the double mutant. Here we aimed to distinguish between the SA-dependent and SA-independent effects triggered by the deficiency in PI4Kβ1 and PI4Kβ2. METHODS To achieve this we used the sid2pi4kβ1β2 triple mutant. High-throughput analyses of phytohormones were performed on this mutant together with pi4kβ1β2 and sid2 mutants and wild-type plants. Responses to pathogens, namely Hyaloperonospora arabidopsidis, Pseudomonas syringae and Botrytis cinerea, and also to the non-host fungus Blumeria graminis, were also determined. Callose accumulation was monitored in response to flagellin. KEY RESULTS We show here the prominent role of high SA levels in influencing the concentration of many other tested phytohormones, including abscisic acid and its derivatives, the aspartate-conjugated form of indole-3-acetic acid and some cytokinins such as cis-zeatin. We show that the increased resistance of pi4kβ1β2 plants to the host pathogens H. arabidopsidis, P. syringae pv. tomato DC3000 and Bothrytis cinerea is dependent on accumulation of high SA levels. In contrast, accumulation of callose in pi4kβ1β2 after flagellin treatment was independent of SA. Concerning the response to Blumeria graminis, both callose accumulation and fungal penetration were enhanced in the pi4kβ1β2 double mutant compared to wild-type plants. Both of these processes occurred in an SA-independent manner. CONCLUSIONS Our data extensively illustrate the influence of SA on other phytohormone levels. The sid2pi4kβ1β2 triple mutant revealed the role of PI4Kβ1/β2 per se, thus showing the importance of these enzymes in plant defence responses.
Collapse
Affiliation(s)
- Tetiana Kalachova
- Institute of Experimental Botany, The Czech Academy of Sciences, Prague, Czech Republic
- Université Paris-Est, UPEC, Institut d’Ecologie et des Sciences de l’Environnement de Paris, Créteil, France
| | - Martin Janda
- Institute of Experimental Botany, The Czech Academy of Sciences, Prague, Czech Republic
- University of Chemistry and Technology, Department of Biochemistry and Microbiology, Prague, Czech Republic
| | - Vladimír Šašek
- Institute of Experimental Botany, The Czech Academy of Sciences, Prague, Czech Republic
| | - Jitka Ortmannová
- Institute of Experimental Botany, The Czech Academy of Sciences, Prague, Czech Republic
- Present address: Department of Plant Biology, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, SWEDEN
| | - Pavla Nováková
- Institute of Experimental Botany, The Czech Academy of Sciences, Prague, Czech Republic
- University of Chemistry and Technology, Department of Biochemistry and Microbiology, Prague, Czech Republic
| | - I Petre Dobrev
- Institute of Experimental Botany, The Czech Academy of Sciences, Prague, Czech Republic
| | - Volodymyr Kravets
- Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, Kiev, Ukraine
| | - Anne Guivarc’h
- CNRS, Institut d’Ecologie et des Sciences de l’Environnement de Paris, UMR 7618, Créteil, France
| | - Deborah Moura
- Université Paris-Est, UPEC, Institut d’Ecologie et des Sciences de l’Environnement de Paris, Créteil, France
| | - Lenka Burketová
- Institute of Experimental Botany, The Czech Academy of Sciences, Prague, Czech Republic
| | - Olga Valentová
- University of Chemistry and Technology, Department of Biochemistry and Microbiology, Prague, Czech Republic
| | - Eric Ruelland
- CNRS, Institut d’Ecologie et des Sciences de l’Environnement de Paris, UMR 7618, Créteil, France
- Université Paris-Est, UPEC, Institut d’Ecologie et des Sciences de l’Environnement de Paris, Créteil, France
- For correspondence. E-mail
| |
Collapse
|
43
|
Elliott L, Moore I, Kirchhelle C. Spatio-temporal control of post-Golgi exocytic trafficking in plants. J Cell Sci 2020; 133:133/4/jcs237065. [PMID: 32102937 DOI: 10.1242/jcs.237065] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A complex and dynamic endomembrane system is a hallmark of eukaryotic cells and underpins the evolution of specialised cell types in multicellular organisms. Endomembrane system function critically depends on the ability of the cell to (1) define compartment and pathway identity, and (2) organise compartments and pathways dynamically in space and time. Eukaryotes possess a complex molecular machinery to control these processes, including small GTPases and their regulators, SNAREs, tethering factors, motor proteins, and cytoskeletal elements. Whereas many of the core components of the eukaryotic endomembrane system are broadly conserved, there have been substantial diversifications within different lineages, possibly reflecting lineage-specific requirements of endomembrane trafficking. This Review focusses on the spatio-temporal regulation of post-Golgi exocytic transport in plants. It highlights recent advances in our understanding of the elaborate network of pathways transporting different cargoes to different domains of the cell surface, and the molecular machinery underpinning them (with a focus on Rab GTPases, their interactors and the cytoskeleton). We primarily focus on transport in the context of growth, but also highlight how these pathways are co-opted during plant immunity responses and at the plant-pathogen interface.
Collapse
Affiliation(s)
- Liam Elliott
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Ian Moore
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Charlotte Kirchhelle
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| |
Collapse
|
44
|
Yang K, Wang L, Le J, Dong J. Cell polarity: Regulators and mechanisms in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:132-147. [PMID: 31889400 PMCID: PMC7196246 DOI: 10.1111/jipb.12904] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 12/25/2019] [Indexed: 05/18/2023]
Abstract
Cell polarity plays an important role in a wide range of biological processes in plant growth and development. Cell polarity is manifested as the asymmetric distribution of molecules, for example, proteins and lipids, at the plasma membrane and/or inside of a cell. Here, we summarize a few polarized proteins that have been characterized in plants and we review recent advances towards understanding the molecular mechanism for them to polarize at the plasma membrane. Multiple mechanisms, including membrane trafficking, cytoskeletal activities, and protein phosphorylation, and so forth define the polarized plasma membrane domains. Recent discoveries suggest that the polar positioning of the proteo-lipid membrane domain may instruct the formation of polarity complexes in plants. In this review, we highlight the factors and regulators for their functions in establishing the membrane asymmetries in plant development. Furthermore, we discuss a few outstanding questions to be addressed to better understand the mechanisms by which cell polarity is regulated in plants.
Collapse
Affiliation(s)
- Kezhen Yang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Correspondences: Kezhen Yang (); Juan Dong (, Dr. Dong is fully responsible for the distributions of all materials associated with this article)
| | - Lu Wang
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Department of Plant Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08901, USA
| | - Jie Le
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Juan Dong
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Department of Plant Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08901, USA
- Correspondences: Kezhen Yang (); Juan Dong (, Dr. Dong is fully responsible for the distributions of all materials associated with this article)
| |
Collapse
|
45
|
"Salicylic Acid Mutant Collection" as a Tool to Explore the Role of Salicylic Acid in Regulation of Plant Growth under a Changing Environment. Int J Mol Sci 2019; 20:ijms20246365. [PMID: 31861218 PMCID: PMC6941003 DOI: 10.3390/ijms20246365] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 12/02/2022] Open
Abstract
The phytohormone salicylic acid (SA) has a crucial role in plant physiology. Its role is best described in the context of plant response to pathogen attack. During infection, SA is rapidly accumulated throughout the green tissues and is important for both local and systemic defences. However, some genetic/metabolic variations can also result in SA overaccumulation in plants, even in basal conditions. To date, more than forty Arabidopsis thaliana mutants have been described as having enhanced endogenous SA levels or constitutively activated SA signalling pathways. In this study, we established a collection of mutants containing different SA levels due to diverse genetic modifications and distinct gene functions. We chose prototypic SA-overaccumulators (SA-OAs), such as bon1-1, but also “non-typical” ones such as exo70b1-1; the selection of OA is accompanied by their crosses with SA-deficient lines. Here, we extensively studied the plant development and SA level/signalling under various growth conditions in soil and in vitro, and showed a strong negative correlation between rosette size, SA content and PR1/ICS1 transcript signature. SA-OAs (namely cpr5, acd6, bon1-1, fah1/fah2 and pi4kβ1β2) had bigger rosettes under high light conditions, whereas WT plants did not. Our data provide new insights clarifying a link between SA and plant behaviour under environmental stresses. The presented SA mutant collection is thus a suitable tool to shed light on the mechanisms underlying trade-offs between growth and defence in plants.
Collapse
|
46
|
Minamino N, Ueda T. RAB GTPases and their effectors in plant endosomal transport. CURRENT OPINION IN PLANT BIOLOGY 2019; 52:61-68. [PMID: 31454706 DOI: 10.1016/j.pbi.2019.07.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/18/2019] [Accepted: 07/23/2019] [Indexed: 06/10/2023]
Abstract
The plant endomembrane system comprises distinctive membrane-bounded organelles connected with one another by the membrane trafficking system. The RAB GTPase is a key component of the membrane trafficking machinery that regulates the targeting and tethering of trafficking vesicles to target compartments by acting as a molecular switch cycling between active and inactive states. The functions of RAB GTPases are fulfilled through their interactions with several classes of interacting factors, including guanine nucleotide exchange factors (GEFs) and effector proteins. Effector proteins for plant RAB GTPases consist of evolutionarily conserved and plant-unique factors, which are involved in various membrane trafficking events in plant cells in ways unique to plants. In this review, we summarize recent findings on the functions of endosomal RAB GTPases that underwent unique diversification during plant evolution, with a special focus on RAB5/RABF and RAB11/RABA.
Collapse
Affiliation(s)
- Naoki Minamino
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan
| | - Takashi Ueda
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan; Department of Basic Biology, SOKENDAI (Graduate University of Advanced Studies), Okazaki, Aichi 444-8585, Japan.
| |
Collapse
|
47
|
Kalde M, Elliott L, Ravikumar R, Rybak K, Altmann M, Klaeger S, Wiese C, Abele M, Al B, Kalbfuß N, Qi X, Steiner A, Meng C, Zheng H, Kuster B, Falter-Braun P, Ludwig C, Moore I, Assaad FF. Interactions between Transport Protein Particle (TRAPP) complexes and Rab GTPases in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:279-297. [PMID: 31264742 DOI: 10.1111/tpj.14442] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/15/2019] [Accepted: 06/11/2019] [Indexed: 05/23/2023]
Abstract
Transport Protein Particle II (TRAPPII) is essential for exocytosis, endocytosis, protein sorting and cytokinesis. In spite of a considerable understanding of its biological role, little information is known about Arabidopsis TRAPPII complex topology and molecular function. In this study, independent proteomic approaches initiated with TRAPP components or Rab-A GTPase variants converge on the TRAPPII complex. We show that the Arabidopsis genome encodes the full complement of 13 TRAPPC subunits, including four previously unidentified components. A dimerization model is proposed to account for binary interactions between TRAPPII subunits. Preferential binding to dominant negative (GDP-bound) versus wild-type or constitutively active (GTP-bound) RAB-A2a variants discriminates between TRAPPII and TRAPPIII subunits and shows that Arabidopsis complexes differ from yeast but resemble metazoan TRAPP complexes. Analyzes of Rab-A mutant variants in trappii backgrounds provide genetic evidence that TRAPPII functions upstream of RAB-A2a, allowing us to propose that TRAPPII is likely to behave as a guanine nucleotide exchange factor (GEF) for the RAB-A2a GTPase. GEFs catalyze exchange of GDP for GTP; the GTP-bound, activated, Rab then recruits a diverse local network of Rab effectors to specify membrane identity in subsequent vesicle fusion events. Understanding GEF-Rab interactions will be crucial to unravel the co-ordination of plant membrane traffic.
Collapse
Affiliation(s)
- Monika Kalde
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
| | - Liam Elliott
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
| | - Raksha Ravikumar
- Plant Science Department, Botany, Technische Universität München, Freising, 85354, Germany
| | - Katarzyna Rybak
- Plant Science Department, Botany, Technische Universität München, Freising, 85354, Germany
| | - Melina Altmann
- Institute of Network Biology (INET), Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, 85764, Germany
| | - Susan Klaeger
- Chair of Proteomics and Bioanalytics, Technische Universität München, Freising, 85354, Germany
| | - Christian Wiese
- Plant Science Department, Botany, Technische Universität München, Freising, 85354, Germany
| | - Miriam Abele
- Plant Science Department, Botany, Technische Universität München, Freising, 85354, Germany
| | - Benjamin Al
- Plant Science Department, Botany, Technische Universität München, Freising, 85354, Germany
| | - Nils Kalbfuß
- Plant Science Department, Botany, Technische Universität München, Freising, 85354, Germany
| | - Xingyun Qi
- Department of Biology, McGill University, Montreal, H3B 1A1, Canada
| | - Alexander Steiner
- Plant Science Department, Botany, Technische Universität München, Freising, 85354, Germany
| | - Chen Meng
- BayBioMS, Bavarian Center for Biomolecular Mass Spectrometry, Technische Universität München, Freising, 85354, Germany
| | - Huanquan Zheng
- Department of Biology, McGill University, Montreal, H3B 1A1, Canada
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, Technische Universität München, Freising, 85354, Germany
| | - Pascal Falter-Braun
- Institute of Network Biology (INET), Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, 85764, Germany
- Faculty of Biology, Microbe-Host-Interactions, Ludwig-Maximilians-Universität (LMU) München, Planegg-Martinsried, 82152, Germany
| | - Christina Ludwig
- BayBioMS, Bavarian Center for Biomolecular Mass Spectrometry, Technische Universität München, Freising, 85354, Germany
| | - Ian Moore
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
| | - Farhah F Assaad
- Plant Science Department, Botany, Technische Universität München, Freising, 85354, Germany
| |
Collapse
|
48
|
Rubilar-Hernández C, Osorio-Navarro C, Cabello F, Norambuena L. PI4KIII β Activity Regulates Lateral Root Formation Driven by Endocytic Trafficking to the Vacuole. PLANT PHYSIOLOGY 2019; 181:112-126. [PMID: 31285293 PMCID: PMC6716240 DOI: 10.1104/pp.19.00695] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 06/17/2019] [Indexed: 06/01/2023]
Abstract
Lateral roots (LRs) increase the contact area of the root with the rhizosphere and thereby improve water and nutrient uptake from the soil. LRs are generated either via a developmentally controlled mechanism or through induction by external stimuli, such as water and nutrient availability. Auxin regulates LR organogenesis via transcriptional activation by an auxin complex receptor. Endocytic trafficking to the vacuole positively regulates LR organogenesis independently of the auxin complex receptor in Arabidopsis (Arabidopsis thaliana). Here, we demonstrate that phosphatidylinositol 4-phosphate (PI4P) biosynthesis regulated by the phosphatidylinositol 4-kinases PI4KIIIβ1 and PI4KIIIβ2 is essential for the LR organogenesis driven by endocytic trafficking to the vacuole. Stimulation with Sortin2, a biomodulator that promotes protein targeting to the vacuole, altered PI4P abundance at both the plasma membrane and endosomal compartments, a process dependent on PI4K activity. These findings suggest that endocytic trafficking to the vacuole regulated by the enzymatic activities of PI4KIIIβ1 and PI4KIIIβ2 participates in a mechanism independent of the auxin complex receptor that regulates LR organogenesis in Arabidopsis. Surprisingly, loss-of-function of PI4KIIIβ1 and PI4KIIIβ2 induced both LR primordium formation and endocytic trafficking toward the vacuole. This LR primordium induction was alleviated by exogenous PI4P, suggesting that PI4KIIIβ1 and PI4KIIIβ2 activity constitutively negatively regulates LR primordium formation. Overall, this research demonstrates a dual role of PI4KIIIβ1 and PI4KIIIβ2 in LR primordium formation in Arabidopsis.
Collapse
Affiliation(s)
- Carlos Rubilar-Hernández
- Plant Molecular Biology Centre, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Claudio Osorio-Navarro
- Plant Molecular Biology Centre, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Francisca Cabello
- Plant Molecular Biology Centre, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Lorena Norambuena
- Plant Molecular Biology Centre, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| |
Collapse
|
49
|
Shanmugarajah K, Linka N, Gräfe K, Smits SHJ, Weber APM, Zeier J, Schmitt L. ABCG1 contributes to suberin formation in Arabidopsis thaliana roots. Sci Rep 2019; 9:11381. [PMID: 31388073 DOI: 10.1007/978-94-007-7864-1_123-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/26/2019] [Indexed: 05/19/2023] Open
Abstract
Diffusion barriers enable plant survival under fluctuating environmental conditions. They control internal water potential and protect against biotic or abiotic stress factors. How these protective molecules are deposited to the extracellular environment is poorly understood. We here examined the role of the Arabidopsis ABC half-size transporter AtABCG1 in the formation of the extracellular root suberin layer. Quantitative analysis of extracellular long-chain fatty acids and aliphatic alcohols in the atabcg1 mutants demonstrated altered root suberin composition, specifically a reduction in longer chain dicarboxylic acids, fatty alcohols and acids. Accordingly, the ATP-hydrolyzing activity of heterologous expressed and purified AtABCG1 was strongly stimulated by fatty alcohols (C26-C30) and fatty acids (C24-C30) in a chain length dependent manner. These results are a first indication for the function of AtABCG1 in the transport of longer chain aliphatic monomers from the cytoplasm to the apoplastic space during root suberin formation.
Collapse
Affiliation(s)
- Kalpana Shanmugarajah
- Institute of Biochemistry, Heinrich-Heine University, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine University, Düsseldorf, Germany
| | - Nicole Linka
- Institute of Plant Biochemistry, Heinrich-Heine University, Düsseldorf, Germany
| | - Katharina Gräfe
- Institute of Biochemistry, Heinrich-Heine University, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine University, Düsseldorf, Germany
| | - Sander H J Smits
- Institute of Biochemistry, Heinrich-Heine University, Düsseldorf, Germany
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Heinrich-Heine University, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine University, Düsseldorf, Germany
| | - Jürgen Zeier
- Institute for Molecular Ecophysiology of Plants, Heinrich-Heine University, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine University, Düsseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich-Heine University, Düsseldorf, Germany.
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine University, Düsseldorf, Germany.
| |
Collapse
|
50
|
Leontovyčová H, Kalachova T, Trdá L, Pospíchalová R, Lamparová L, Dobrev PI, Malínská K, Burketová L, Valentová O, Janda M. Actin depolymerization is able to increase plant resistance against pathogens via activation of salicylic acid signalling pathway. Sci Rep 2019; 9:10397. [PMID: 31320662 PMCID: PMC6639534 DOI: 10.1038/s41598-019-46465-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 06/20/2019] [Indexed: 12/18/2022] Open
Abstract
The integrity of the actin cytoskeleton is essential for plant immune signalling. Consequently, it is generally assumed that actin disruption reduces plant resistance to pathogen attack. Here, we demonstrate that actin depolymerization induced a dramatic increase in salicylic acid (SA) levels in Arabidopsis thaliana. Transcriptomic analysis showed that the SA pathway was activated due to the action of isochorismate synthase (ICS). The effect was also confirmed in Brassica napus. This raises the question of whether actin depolymerization could, under particular conditions, lead to increased resistance to pathogens. Thus, we explored the effect of pretreatment with actin-depolymerizing drugs on the resistance of Arabidopsis thaliana to the bacterial pathogen Pseudomonas syringae, and on the resistance of an important crop Brassica napus to its natural fungal pathogen Leptosphaeria maculans. In both pathosystems, actin depolymerization activated the SA pathway, leading to increased plant resistance. To our best knowledge, we herein provide the first direct evidence that disruption of the actin cytoskeleton can actually lead to increased plant resistance to pathogens, and that SA is crucial to this process.
Collapse
Affiliation(s)
- Hana Leontovyčová
- Laboratory of Plant Biochemistry, Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technicka 5, 166 28, Prague 6, Czech Republic.,Laboratory of Pathological Plant Physiology, Institute of Experimental Botany of The Czech Academy of Sciences, Rozvojova 263, 165 02, Prague 6, Czech Republic.,Department of Biochemistry, Faculty of Science, Charles University in Prague, Faculty of Science, 128 44 Hlavova 2030/8, Prague 2, Czech Republic
| | - Tetiana Kalachova
- Laboratory of Pathological Plant Physiology, Institute of Experimental Botany of The Czech Academy of Sciences, Rozvojova 263, 165 02, Prague 6, Czech Republic
| | - Lucie Trdá
- Laboratory of Pathological Plant Physiology, Institute of Experimental Botany of The Czech Academy of Sciences, Rozvojova 263, 165 02, Prague 6, Czech Republic
| | - Romana Pospíchalová
- Laboratory of Pathological Plant Physiology, Institute of Experimental Botany of The Czech Academy of Sciences, Rozvojova 263, 165 02, Prague 6, Czech Republic
| | - Lucie Lamparová
- Laboratory of Plant Biochemistry, Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technicka 5, 166 28, Prague 6, Czech Republic.,Laboratory of Pathological Plant Physiology, Institute of Experimental Botany of The Czech Academy of Sciences, Rozvojova 263, 165 02, Prague 6, Czech Republic
| | - Petre I Dobrev
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of The Czech Academy of Sciences, Rozvojova 263, 165 02, Prague 6, Czech Republic
| | - Kateřina Malínská
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of The Czech Academy of Sciences, Rozvojova 263, 165 02, Prague 6, Czech Republic
| | - Lenka Burketová
- Laboratory of Pathological Plant Physiology, Institute of Experimental Botany of The Czech Academy of Sciences, Rozvojova 263, 165 02, Prague 6, Czech Republic
| | - Olga Valentová
- Laboratory of Plant Biochemistry, Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technicka 5, 166 28, Prague 6, Czech Republic
| | - Martin Janda
- Laboratory of Plant Biochemistry, Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technicka 5, 166 28, Prague 6, Czech Republic. .,Laboratory of Pathological Plant Physiology, Institute of Experimental Botany of The Czech Academy of Sciences, Rozvojova 263, 165 02, Prague 6, Czech Republic. .,Ludwig-Maximilians-University of Munich (LMU), Faculty of Biology, Biocenter, Department Genetics, Grosshaderner Str. 2-4, D-82152, Martinsried, Germany.
| |
Collapse
|