1
|
Hamzah M, Meitinger F, Ohta M. PLK4: Master Regulator of Centriole Duplication and Its Therapeutic Potential. Cytoskeleton (Hoboken) 2025. [PMID: 40257113 DOI: 10.1002/cm.22031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 03/10/2025] [Accepted: 04/07/2025] [Indexed: 04/22/2025]
Abstract
Centrosomes catalyze the assembly of a microtubule-based bipolar spindle, essential for the precise chromosome segregation during cell division. At the center of this process lies Polo-Like Kinase 4 (PLK4), the master regulator that controls the duplication of the centriolar core to ensure the correct balance of two centrosomes per dividing cell. Disruptions in centrosome number or function can lead to genetic disorders such as primary microcephaly or drive tumorigenesis via centrosome amplification. In this context, several chemical inhibitors of PLK4 have emerged as promising therapeutic candidates. The inhibition of PLK4 results in the emergence of acentrosomal cells, which undergo prolonged and error-prone mitosis. This aberrant mitotic duration triggers a "mitotic stopwatch" mechanism that activates the tumor suppressor p53, halting cellular proliferation. However, in a multitude of cancers, the efficacy of this mitotic surveillance mechanism is compromised by mutations that incapacitate p53. Recent investigations have unveiled p53-independent vulnerabilities in cancers characterized by chromosomal gain or amplification of 17q23, which encodes for the ubiquitin ligase TRIM37, in response to PLK4 inhibition, particularly in neuroblastoma and breast cancer. This review encapsulates the latest advancements in our understanding of centriole duplication and acentrosomal cell division in the context of TRIM37 amplification, positioning PLK4 as a compelling target for innovative cancer therapeutics.
Collapse
Affiliation(s)
- Muhammad Hamzah
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Franz Meitinger
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Midori Ohta
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|
2
|
Skinner MW, Nhan PB, Simington CJ, Jordan PW. Meiotic divisions and round spermatid formation do not require centriole duplication in mice. PLoS Genet 2025; 21:e1011698. [PMID: 40294089 PMCID: PMC12064039 DOI: 10.1371/journal.pgen.1011698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 05/09/2025] [Accepted: 04/21/2025] [Indexed: 04/30/2025] Open
Abstract
Centrosomes, composed of centrioles and pericentriolar matrix proteins, are traditionally viewed as essential microtubule-organizing centers (MTOCs) that facilitate bipolar spindle formation and chromosome segregation during spermatogenesis. In this study, we investigated the role of centrioles in male germ cell development by using a murine conditional knockout (cKO) of Sas4, a critical component of centriole biogenesis. We found that while centriole duplication was impaired in Sas4 cKO spermatocytes, these cells were still capable of progressing through meiosis I and II. Chromosome segregation was able to proceed through the formation of a non-centrosomal MTOC, indicating that centrioles are not required for meiotic divisions. However, spermatids that inherited fewer than two centrioles exhibited severe defects in spermiogenesis, including improper manchette formation, constricted perinuclear rings, disrupted acrosome morphology, and failure to form flagella. Consequently, Sas4 cKO males were infertile due to the absence of functional spermatozoa. Our findings demonstrate that while centrioles are dispensable for meiosis in male germ cells, they are essential for spermiogenesis and sperm maturation. This work provides key insights into the role of centrosomes in male fertility and may have implications for understanding certain conditions of male infertility associated with centriole defects.
Collapse
Affiliation(s)
- Marnie W. Skinner
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Paula B. Nhan
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Carter J. Simington
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Philip W. Jordan
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- School of Biomedicine, The University of Adelaide, Adelaide, Australia
| |
Collapse
|
3
|
Pfister JA, Agostini L, Bournonville L, Sankaralingam P, Bell ZG, Hamel V, Guichard P, Biertümpfel C, Mizuno N, O’Connell KF. The C. elegans homolog of Sjögren's Syndrome Nuclear Antigen 1 is required for the structural integrity of the centriole and bipolar mitotic spindle assembly. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.03.616528. [PMID: 39803516 PMCID: PMC11722412 DOI: 10.1101/2024.10.03.616528] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Centrioles play central roles in ciliogenesis and mitotic spindle assembly. Once assembled, centrioles exhibit long-term stability, a property essential for maintaining numerical control. How centriole stability is achieved and how it is lost in certain biological contexts are still not completely understood. In this study we show that SSNA-1, the Caenorhabditis elegans ortholog of Sjogren's Syndrome Nuclear Antigen 1, is a centriole constituent that localizes close to the microtubule outer wall, while also exhibiting a developmentally regulated association with centriole satellite-like structures. A complete deletion of the ssna-1 gene results in an embryonic lethal phenotype marked by the appearance of extra centrioles and spindle poles. We show that SSNA-1 genetically interacts with the centriole stability factor SAS-1 and is required post assembly for centriole structural integrity. In SSNA-1's absence, centrioles assemble but fracture leading to extra spindle poles. However, if the efficiency of cartwheel assembly is reduced, the absence of SSNA-1 results in daughter centriole loss and monopolar spindle formation, indicating that the cartwheel and SSNA-1 cooperate to stabilize the centriole during assembly. Our work thus shows that SSNA-1 contributes to centriole stability during and after assembly, thereby ensuring proper centriole number.
Collapse
Affiliation(s)
- Jason A. Pfister
- Laboratory of Biochemistry and Genetics, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lorenzo Agostini
- Laboratory of Structural Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lorène Bournonville
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Prabhu Sankaralingam
- Laboratory of Biochemistry and Genetics, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Zachary G. Bell
- Laboratory of Biochemistry and Genetics, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Virginie Hamel
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Paul Guichard
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Christian Biertümpfel
- Laboratory of Structural Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Naoko Mizuno
- Laboratory of Structural Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kevin F. O’Connell
- Laboratory of Biochemistry and Genetics, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
4
|
Sankaralingam P, Wang S, Liu Y, Oegema KF, O'Connell KF. The kinase ZYG-1 phosphorylates the cartwheel protein SAS-5 to drive centriole assembly in C. elegans. EMBO Rep 2024; 25:2698-2721. [PMID: 38744971 PMCID: PMC11169420 DOI: 10.1038/s44319-024-00157-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/05/2024] [Accepted: 04/22/2024] [Indexed: 05/16/2024] Open
Abstract
Centrioles organize centrosomes, the cell's primary microtubule-organizing centers (MTOCs). Centrioles double in number each cell cycle, and mis-regulation of this process is linked to diseases such as cancer and microcephaly. In C. elegans, centriole assembly is controlled by the Plk4 related-kinase ZYG-1, which recruits the SAS-5-SAS-6 complex. While the kinase activity of ZYG-1 is required for centriole assembly, how it functions has not been established. Here we report that ZYG-1 physically interacts with and phosphorylates SAS-5 on 17 conserved serine and threonine residues in vitro. Mutational scanning reveals that serine 10 and serines 331/338/340 are indispensable for proper centriole assembly. Embryos expressing SAS-5S10A exhibit centriole assembly failure, while those expressing SAS-5S331/338/340A possess extra centrioles. We show that in the absence of serine 10 phosphorylation, the SAS-5-SAS-6 complex is recruited to centrioles, but is not stably incorporated, possibly due to a failure to coordinately recruit the microtubule-binding protein SAS-4. Our work defines the critical role of phosphorylation during centriole assembly and reveals that ZYG-1 might play a role in preventing the formation of excess centrioles.
Collapse
Affiliation(s)
- Prabhu Sankaralingam
- Laboratory of Biochemistry and Genetics, National Institutes of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA.
| | - Shaohe Wang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Yan Liu
- Laboratory of Biochemistry and Genetics, National Institutes of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | - Karen F Oegema
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Kevin F O'Connell
- Laboratory of Biochemistry and Genetics, National Institutes of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA.
| |
Collapse
|
5
|
Pierron M, Woglar A, Busso C, Jha K, Mikeladze‐Dvali T, Croisier M, Gönczy P. Centriole elimination during Caenorhabditis elegans oogenesis initiates with loss of the central tube protein SAS-1. EMBO J 2023; 42:e115076. [PMID: 37987153 PMCID: PMC10711648 DOI: 10.15252/embj.2023115076] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/22/2023] Open
Abstract
In most metazoans, centrioles are lost during oogenesis, ensuring that the zygote is endowed with the correct number of two centrioles, which are paternally contributed. How centriole architecture is dismantled during oogenesis is not understood. Here, we analyze with unprecedent detail the ultrastructural and molecular changes during oogenesis centriole elimination in Caenorhabditis elegans. Centriole elimination begins with loss of the so-called central tube and organelle widening, followed by microtubule disassembly. The resulting cluster of centriolar proteins then disappears gradually, usually moving in a microtubule- and dynein-dependent manner to the plasma membrane. Our analysis indicates that neither Polo-like kinases nor the PCM, which modulate oogenesis centriole elimination in Drosophila, do so in C. elegans. Furthermore, we demonstrate that the central tube protein SAS-1 normally departs initially from the organelle, which loses integrity earlier in sas-1 mutants. Overall, our work provides novel mechanistic insights regarding the fundamental process of oogenesis centriole elimination.
Collapse
Affiliation(s)
- Marie Pierron
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life SciencesSwiss Federal Institute of Technology Lausanne (EPFL)LausanneSwitzerland
| | - Alexander Woglar
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life SciencesSwiss Federal Institute of Technology Lausanne (EPFL)LausanneSwitzerland
| | - Coralie Busso
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life SciencesSwiss Federal Institute of Technology Lausanne (EPFL)LausanneSwitzerland
| | - Keshav Jha
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life SciencesSwiss Federal Institute of Technology Lausanne (EPFL)LausanneSwitzerland
| | | | - Marie Croisier
- BIO‐EM platform, School of Life SciencesSwiss Federal Institute of Technology Lausanne (EPFL)LausanneSwitzerland
| | - Pierre Gönczy
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life SciencesSwiss Federal Institute of Technology Lausanne (EPFL)LausanneSwitzerland
| |
Collapse
|
6
|
Houston J, Ohta M, Gómez-Cavazos JS, Deep A, Corbett KD, Oegema K, Lara-Gonzalez P, Kim T, Desai A. BUB-1-bound PLK-1 directs CDC-20 kinetochore recruitment to ensure timely embryonic mitoses. Curr Biol 2023; 33:2291-2299.e10. [PMID: 37137308 PMCID: PMC10270731 DOI: 10.1016/j.cub.2023.04.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 03/13/2023] [Accepted: 04/12/2023] [Indexed: 05/05/2023]
Abstract
During mitosis, chromosomes assemble kinetochores to dynamically couple with spindle microtubules.1,2 Kinetochores also function as signaling hubs directing mitotic progression by recruiting and controlling the fate of the anaphase promoting complex/cyclosome (APC/C) activator CDC-20.3,4,5 Kinetochores either incorporate CDC-20 into checkpoint complexes that inhibit the APC/C or dephosphorylate CDC-20, which allows it to interact with and activate the APC/C.4,6 The importance of these two CDC-20 fates likely depends on the biological context. In human somatic cells, the major mechanism controlling mitotic progression is the spindle checkpoint. By contrast, progression through mitosis during the cell cycles of early embryos is largely checkpoint independent.7,8,9,10 Here, we first show that CDC-20 phosphoregulation controls mitotic duration in the C. elegans embryo and defines a checkpoint-independent temporal mitotic optimum for robust embryogenesis. CDC-20 phosphoregulation occurs at kinetochores and in the cytosol. At kinetochores, the flux of CDC-20 for local dephosphorylation requires an ABBA motif on BUB-1 that directly interfaces with the structured WD40 domain of CDC-20.6,11,12,13 We next show that a conserved "STP" motif in BUB-1 that docks the mitotic kinase PLK-114 is necessary for CDC-20 kinetochore recruitment and timely mitotic progression. The kinase activity of PLK-1 is required for CDC-20 to localize to kinetochores and phosphorylates the CDC-20-binding ABBA motif of BUB-1 to promote BUB-1-CDC-20 interaction and mitotic progression. Thus, the BUB-1-bound pool of PLK-1 ensures timely mitosis during embryonic cell cycles by promoting CDC-20 recruitment to the vicinity of kinetochore-localized phosphatase activity.
Collapse
Affiliation(s)
- Jack Houston
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA
| | - Midori Ohta
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA
| | - J Sebastián Gómez-Cavazos
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Amar Deep
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kevin D Corbett
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Karen Oegema
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA; Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Pablo Lara-Gonzalez
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA; Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Taekyung Kim
- Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA; Department of Biology Education, Pusan National University, Busan 46241, Republic of Korea.
| | - Arshad Desai
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA; Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
7
|
Maheshwari R, Rahman MM, Drey S, Onyundo M, Fabig G, Martinez MAQ, Matus DQ, Müller-Reichert T, Cohen-Fix O. A membrane reticulum, the centriculum, affects centrosome size and function in Caenorhabditis elegans. Curr Biol 2023; 33:791-806.e7. [PMID: 36693370 PMCID: PMC10023444 DOI: 10.1016/j.cub.2022.12.059] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/21/2022] [Accepted: 12/21/2022] [Indexed: 01/24/2023]
Abstract
Centrosomes are cellular structures that nucleate microtubules. At their core is a pair of centrioles that recruit pericentriolar material (PCM). Although centrosomes are considered membraneless organelles, in many cell types, including human cells, centrosomes are surrounded by endoplasmic reticulum (ER)-derived membranes of unknown structure and function. Using volume electron microscopy (vEM), we show that centrosomes in the Caenorhabditis elegans (C. elegans) early embryo are surrounded by a three-dimensional (3D), ER-derived membrane reticulum that we call the centriculum, for centrosome-associated membrane reticulum. The centriculum is adjacent to the nuclear envelope in interphase and early mitosis and fuses with the fenestrated nuclear membrane at metaphase. Centriculum formation is dependent on the presence of an underlying centrosome and on microtubules. Conversely, increasing centriculum size by genetic means led to the expansion of the PCM, increased microtubule nucleation capacity, and altered spindle width. The effect of the centriculum on centrosome function suggests that in the C. elegans early embryo, the centrosome is not membraneless. Rather, it is encased in a membrane meshwork that affects its properties. We provide evidence that the centriculum serves as a microtubule "filter," preventing the elongation of a subset of microtubules past the centriculum. Finally, we propose that the fusion between the centriculum and the nuclear membrane contributes to nuclear envelope breakdown by coupling spindle elongation to nuclear membrane fenestration.
Collapse
Affiliation(s)
- Richa Maheshwari
- The Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mohammad M Rahman
- The Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | - Seth Drey
- The Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | - Megan Onyundo
- The Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gunar Fabig
- Experimental Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Michael A Q Martinez
- Department of Biochemistry and Cell Biology, Stony Brook University, 450 Life Sciences Building, Stony Brook, NY 11794, USA
| | - David Q Matus
- Department of Biochemistry and Cell Biology, Stony Brook University, 450 Life Sciences Building, Stony Brook, NY 11794, USA
| | - Thomas Müller-Reichert
- Experimental Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Orna Cohen-Fix
- The Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
8
|
Murph M, Singh S, Schvarzstein M. A combined in silico and in vivo approach to the structure-function annotation of SPD-2 provides mechanistic insight into its functional diversity. Cell Cycle 2022; 21:1958-1979. [PMID: 35678569 PMCID: PMC9415446 DOI: 10.1080/15384101.2022.2078458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 04/10/2022] [Accepted: 05/04/2022] [Indexed: 11/03/2022] Open
Abstract
Centrosomes are organelles that function as hubs of microtubule nucleation and organization, with key roles in organelle positioning, asymmetric cell division, ciliogenesis, and signaling. Aberrant centrosome number, structure or function is linked to neurodegenerative diseases, developmental abnormalities, ciliopathies, and tumor development. A major regulator of centrosome biogenesis and function in C. elegans is the conserved Spindle-defective protein 2 (SPD-2), a homolog of the human CEP-192 protein. CeSPD-2 is required for centrosome maturation, centriole duplication, spindle assembly and possibly cell polarity establishment. Despite its importance, the specific molecular mechanism of CeSPD-2 regulation and function is poorly understood. Here, we combined computational analysis with cell biology approaches to uncover possible structure-function relationships of CeSPD-2 that may shed mechanistic light on its function. Domain prediction analysis corroborated and refined previously identified coiled-coils and ASH (Aspm-SPD-2 Hydin) domains and identified new domains: a GEF domain, an Ig-like domain, and a PDZ-like domain. In addition to these predicted structural features, CeSPD-2 is also predicted to be intrinsically disordered. Surface electrostatic maps identified a large basic region unique to the ASH domain of CeSPD-2. This basic region overlaps with most of the residues predicted to be involved in protein-protein interactions. In vivo, ASH::GFP localized to centrosomes and centrosome-associated microtubules. Our analysis groups ASH domains, PapD, Usher chaperone domains, and Major Sperm Protein (MSP) domains into a single superfold within the larger Immunoglobulin superfamily. This study lays the groundwork for designing rational hypothesis-based experiments to uncover the mechanisms of CeSPD-2 function in vivo.Abbreviations: AIR, Aurora kinase; ASH, Aspm-SPD-2 Hydin; ASP, Abnormal Spindle Protein; ASPM, Abnormal Spindle-like Microcephaly-associated Protein; CC, coiled-coil; CDK, Cyclin-dependent Kinase; Ce, Caenorhabditis elegans; CEP, Centrosomal Protein; CPAP, centrosomal P4.1-associated protein; D, Drosophila; GAP, GTPase activating protein; GEF, GTPase guanine nucleotide exchange factor; Hs, Homo sapiens/Human; Ig, Immunoglobulin; MAP, Microtubule associated Protein; MSP, Major Sperm Protein; MDP, Major Sperm Domain-Containing Protein; OCRL-1, Golgi endocytic trafficking protein Inositol polyphosphate 5-phosphatase; PAR, abnormal embryonic PARtitioning of the cytosol; PCM, Pericentriolar material; PCMD, pericentriolar matrix deficient; PDZ, PSD95/Dlg-1/zo-1; PLK, Polo like kinase; RMSD, Root Mean Square Deviation; SAS, Spindle assembly abnormal proteins; SPD, Spindle-defective protein; TRAPP, TRAnsport Protein Particle; Xe, Xenopus; ZYG, zygote defective protein.
Collapse
Affiliation(s)
- Mikaela Murph
- Department of Biology, City University of New York, Brooklyn College, New York, NY, USA
| | - Shaneen Singh
- Department of Biology, City University of New York, Brooklyn College, New York, NY, USA
- Department of Biology, The Graduate Center at City University of New York, New York, NY, USA
- Department Biochemistry, The Graduate Center at City University of New York, New York, NY, USA
| | - Mara Schvarzstein
- Department of Biology, City University of New York, Brooklyn College, New York, NY, USA
- Department of Biology, The Graduate Center at City University of New York, New York, NY, USA
- Department Biochemistry, The Graduate Center at City University of New York, New York, NY, USA
| |
Collapse
|
9
|
Vásquez-Limeta A, Lukasik K, Kong D, Sullenberger C, Luvsanjav D, Sahabandu N, Chari R, Loncarek J. CPAP insufficiency leads to incomplete centrioles that duplicate but fragment. J Cell Biol 2022; 221:213119. [PMID: 35404385 PMCID: PMC9007748 DOI: 10.1083/jcb.202108018] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/13/2022] [Accepted: 02/28/2022] [Indexed: 11/22/2022] Open
Abstract
Centrioles are structures that assemble centrosomes. CPAP is critical for centrosome assembly, and its mutations are found in patients with diseases such as primary microcephaly. CPAP’s centrosomal localization, its dynamics, and the consequences of its insufficiency in human cells are poorly understood. Here we use human cells genetically engineered for fast degradation of CPAP, in combination with superresolution microscopy, to address these uncertainties. We show that three independent centrosomal CPAP populations are dynamically regulated during the cell cycle. We confirm that CPAP is critical for assembly of human centrioles, but not for recruitment of pericentriolar material on already assembled centrioles. Further, we reveal that CPAP insufficiency leads to centrioles with incomplete microtubule triplets that can convert to centrosomes, duplicate, and form mitotic spindle poles, but fragment owing to loss of cohesion between microtubule blades. These findings further our basic understanding of the role of CPAP in centrosome biogenesis and help understand how CPAP aberrations can lead to human diseases.
Collapse
Affiliation(s)
- Alejandra Vásquez-Limeta
- Laboratory of Protein Dynamics and Signaling, National Institutes of Health, National Cancer Institute, Center for Cancer Research, Frederick, MD
| | - Kimberly Lukasik
- Laboratory of Protein Dynamics and Signaling, National Institutes of Health, National Cancer Institute, Center for Cancer Research, Frederick, MD
| | - Dong Kong
- Laboratory of Protein Dynamics and Signaling, National Institutes of Health, National Cancer Institute, Center for Cancer Research, Frederick, MD
| | - Catherine Sullenberger
- Laboratory of Protein Dynamics and Signaling, National Institutes of Health, National Cancer Institute, Center for Cancer Research, Frederick, MD
| | - Delgermaa Luvsanjav
- Laboratory of Protein Dynamics and Signaling, National Institutes of Health, National Cancer Institute, Center for Cancer Research, Frederick, MD
| | - Natalie Sahabandu
- Laboratory of Protein Dynamics and Signaling, National Institutes of Health, National Cancer Institute, Center for Cancer Research, Frederick, MD
| | - Raj Chari
- Genome Modification Core, Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Jadranka Loncarek
- Laboratory of Protein Dynamics and Signaling, National Institutes of Health, National Cancer Institute, Center for Cancer Research, Frederick, MD
| |
Collapse
|
10
|
Microtubule and Actin Cytoskeletal Dynamics in Male Meiotic Cells of Drosophila melanogaster. Cells 2022; 11:cells11040695. [PMID: 35203341 PMCID: PMC8870657 DOI: 10.3390/cells11040695] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 01/12/2023] Open
Abstract
Drosophila dividing spermatocytes offer a highly suitable cell system in which to investigate the coordinated reorganization of microtubule and actin cytoskeleton systems during cell division of animal cells. Like male germ cells of mammals, Drosophila spermatogonia and spermatocytes undergo cleavage furrow ingression during cytokinesis, but abscission does not take place. Thus, clusters of primary and secondary spermatocytes undergo meiotic divisions in synchrony, resulting in cysts of 32 secondary spermatocytes and then 64 spermatids connected by specialized structures called ring canals. The meiotic spindles in Drosophila males are substantially larger than the spindles of mammalian somatic cells and exhibit prominent central spindles and contractile rings during cytokinesis. These characteristics make male meiotic cells particularly amenable to immunofluorescence and live imaging analysis of the spindle microtubules and the actomyosin apparatus during meiotic divisions. Moreover, because the spindle assembly checkpoint is not robust in spermatocytes, Drosophila male meiosis allows investigating of whether gene products required for chromosome segregation play additional roles during cytokinesis. Here, we will review how the research studies on Drosophila male meiotic cells have contributed to our knowledge of the conserved molecular pathways that regulate spindle microtubules and cytokinesis with important implications for the comprehension of cancer and other diseases.
Collapse
|
11
|
Stenzel L, Schreiner A, Zuccoli E, Üstüner S, Mehler J, Zanin E, Mikeladze-Dvali T. PCMD-1 bridges the centrioles and the pericentriolar material scaffold in C. elegans. Development 2021; 148:dev198416. [PMID: 34545391 PMCID: PMC10659035 DOI: 10.1242/dev.198416] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 09/15/2021] [Indexed: 12/29/2022]
Abstract
Correct cell division relies on the formation of a bipolar spindle. In animal cells, microtubule nucleation at the spindle poles is facilitated by the pericentriolar material (PCM), which assembles around a pair of centrioles. Although centrioles are essential for PCM assembly, the proteins that anchor the PCM to the centrioles are less known. Here, we investigate the molecular function of PCMD-1 in bridging the PCM and the centrioles in Caenorhabditis elegans. We demonstrate that the centrosomal recruitment of PCMD-1 is dependent on the outer centriolar protein SAS-7. The most C-terminal part of PCMD-1 is sufficient to target it to the centrosome, and the coiled-coil domain promotes its accumulation by facilitating self-interaction. We reveal that PCMD-1 interacts with the PCM scaffold protein SPD-5, the mitotic kinase PLK-1 and the centriolar protein SAS-4. Using an ectopic translocation assay, we show that PCMD-1 can selectively recruit downstream PCM scaffold components to an ectopic location in the cell, indicating that PCMD-1 is able to anchor the PCM scaffold proteins at the centrioles. Our work suggests that PCMD-1 is an essential functional bridge between the centrioles and the PCM.
Collapse
Affiliation(s)
- Lisa Stenzel
- Department Biology II, Ludwig-Maximilians-University, Munich, 82152 Planegg-Martinsried, Germany
| | - Alina Schreiner
- Department Biology II, Ludwig-Maximilians-University, Munich, 82152 Planegg-Martinsried, Germany
| | - Elisa Zuccoli
- Department Biology II, Ludwig-Maximilians-University, Munich, 82152 Planegg-Martinsried, Germany
| | - Sim Üstüner
- Department Biology II, Ludwig-Maximilians-University, Munich, 82152 Planegg-Martinsried, Germany
| | - Judith Mehler
- Department Biology II, Ludwig-Maximilians-University, Munich, 82152 Planegg-Martinsried, Germany
| | - Esther Zanin
- Department Biology II, Ludwig-Maximilians-University, Munich, 82152 Planegg-Martinsried, Germany
- Department Biologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Tamara Mikeladze-Dvali
- Department Biology II, Ludwig-Maximilians-University, Munich, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
12
|
Dobbelaere J, Schmidt Cernohorska M, Huranova M, Slade D, Dammermann A. Cep97 Is Required for Centriole Structural Integrity and Cilia Formation in Drosophila. Curr Biol 2020; 30:3045-3056.e7. [PMID: 32589908 DOI: 10.1016/j.cub.2020.05.078] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 02/25/2020] [Accepted: 05/26/2020] [Indexed: 01/19/2023]
Abstract
Centrioles are highly elaborate microtubule-based structures responsible for the formation of centrosomes and cilia. Despite considerable variation across species and tissues within any given tissue, their size is essentially constant [1, 2]. While the diameter of the centriole cylinder is set by the dimensions of the inner scaffolding structure of the cartwheel [3], how centriole length is set so precisely and stably maintained over many cell divisions is not well understood. Cep97 and CP110 are conserved proteins that localize to the distal end of centrioles and have been reported to limit centriole elongation in vertebrates [4, 5]. Here, we examine Cep97 function in Drosophila melanogaster. We show that Cep97 is essential for formation of full-length centrioles in multiple tissues of the fly. We further identify the microtubule deacetylase Sirt2 as a Cep97 interactor. Deletion of Sirt2 likewise affects centriole size. Interestingly, so does deletion of the acetylase Atat1, indicating that loss of stabilizing acetyl marks impairs centriole integrity. Cep97 and CP110 were originally identified as inhibitors of cilia formation in vertebrate cultured cells [6], and loss of CP110 is a widely used marker of basal body maturation. In contrast, in Drosophila, Cep97 appears to be only transiently removed from basal bodies and loss of Cep97 strongly impairs ciliogenesis. Collectively, our results support a model whereby Cep97 functions as part of a protective cap that acts together with the microtubule acetylation machinery to maintain centriole stability, essential for proper function in cilium biogenesis.
Collapse
Affiliation(s)
- Jeroen Dobbelaere
- Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Dr Bohr-Gasse 9, 1030 Vienna, Austria.
| | - Marketa Schmidt Cernohorska
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, Prague 14220, Czech Republic
| | - Martina Huranova
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, Prague 14220, Czech Republic
| | - Dea Slade
- Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Dr Bohr-Gasse 9, 1030 Vienna, Austria
| | - Alexander Dammermann
- Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Dr Bohr-Gasse 9, 1030 Vienna, Austria.
| |
Collapse
|
13
|
Gartenmann L, Vicente CC, Wainman A, Novak ZA, Sieber B, Richens JH, Raff JW. Drosophila Sas-6, Ana2 and Sas-4 self-organise into macromolecular structures that can be used to probe centriole and centrosome assembly. J Cell Sci 2020; 133:jcs244574. [PMID: 32409564 PMCID: PMC7328145 DOI: 10.1242/jcs.244574] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/24/2020] [Indexed: 01/02/2023] Open
Abstract
Centriole assembly requires a small number of conserved proteins. The precise pathway of centriole assembly has been difficult to study, as the lack of any one of the core assembly proteins [Plk4, Ana2 (the homologue of mammalian STIL), Sas-6, Sas-4 (mammalian CPAP) or Asl (mammalian Cep152)] leads to the absence of centrioles. Here, we use Sas-6 and Ana2 particles (SAPs) as a new model to probe the pathway of centriole and centrosome assembly. SAPs form in Drosophila eggs or embryos when Sas-6 and Ana2 are overexpressed. SAP assembly requires Sas-4, but not Plk4, whereas Asl helps to initiate SAP assembly but is not required for SAP growth. Although not centrioles, SAPs recruit and organise many centriole and centrosome components, nucleate microtubules, organise actin structures and compete with endogenous centrosomes to form mitotic spindle poles. SAPs require Asl to efficiently recruit pericentriolar material (PCM), but Spd-2 (the homologue of mammalian Cep192) can promote some PCM assembly independently of Asl. These observations provide new insights into the pathways of centriole and centrosome assembly.
Collapse
Affiliation(s)
- Lisa Gartenmann
- Sir William Dunn School of Pathology, University of Oxford, South Parks Rd, Oxford OX1 3RE, UK
| | - Catarina C Vicente
- Sir William Dunn School of Pathology, University of Oxford, South Parks Rd, Oxford OX1 3RE, UK
| | - Alan Wainman
- Sir William Dunn School of Pathology, University of Oxford, South Parks Rd, Oxford OX1 3RE, UK
| | - Zsofi A Novak
- Sir William Dunn School of Pathology, University of Oxford, South Parks Rd, Oxford OX1 3RE, UK
| | - Boris Sieber
- Sir William Dunn School of Pathology, University of Oxford, South Parks Rd, Oxford OX1 3RE, UK
| | - Jennifer H Richens
- Sir William Dunn School of Pathology, University of Oxford, South Parks Rd, Oxford OX1 3RE, UK
| | - Jordan W Raff
- Sir William Dunn School of Pathology, University of Oxford, South Parks Rd, Oxford OX1 3RE, UK
| |
Collapse
|
14
|
Ramani A, Mariappan A, Gottardo M, Mandad S, Urlaub H, Avidor-Reiss T, Riparbelli M, Callaini G, Debec A, Feederle R, Gopalakrishnan J. Plk1/Polo Phosphorylates Sas-4 at the Onset of Mitosis for an Efficient Recruitment of Pericentriolar Material to Centrosomes. Cell Rep 2019; 25:3618-3630.e6. [PMID: 30590037 DOI: 10.1016/j.celrep.2018.11.102] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 09/19/2018] [Accepted: 11/29/2018] [Indexed: 01/03/2023] Open
Abstract
Centrosomes are the major microtubule-organizing centers, consisting of centrioles surrounded by a pericentriolar material (PCM). Centrosomal PCM is spatiotemporally regulated to be minimal during interphase and expands as cells enter mitosis. It is unclear how PCM expansion is initiated at the onset of mitosis. Here, we identify that, in Drosophila, Plk1/Polo kinase phosphorylates the conserved centrosomal protein Sas-4 in vitro. This phosphorylation appears to occur at the onset of mitosis, enabling Sas-4's localization to expand outward from meiotic and mitotic centrosomes. The Plk1/Polo kinase site of Sas-4 is then required for an efficient recruitment of Cnn and γ-tubulin, bona fide PCM proteins that are essential for PCM expansion and centrosome maturation. Point mutations at Plk1/Polo sites of Sas-4 affect neither centrosome structure nor centriole duplication but specifically reduce the affinity to bind Cnn and γ-tubulin. These observations identify Plk1/Polo kinase regulation of Sas-4 as essential for efficient PCM expansion.
Collapse
Affiliation(s)
- Anand Ramani
- Institute of Human Genetics, Universitätsklinikum Heinrich-Heine-Universität Düsseldorf, Universität Str. 1, 40225 Düsseldorf, Germany; Center for Molecular Medicine Cologne, University of Cologne, Robert-Koch-Str. 21, 50931 Cologne, Germany; IUF-Leibniz-Institut für umweltmedizinische Forschung gGmbH, Auf'm Hennekamp 50, 40225 Düsseldorf, Germany
| | - Aruljothi Mariappan
- Institute of Human Genetics, Universitätsklinikum Heinrich-Heine-Universität Düsseldorf, Universität Str. 1, 40225 Düsseldorf, Germany; Center for Molecular Medicine Cologne, University of Cologne, Robert-Koch-Str. 21, 50931 Cologne, Germany
| | - Marco Gottardo
- Institute of Human Genetics, Universitätsklinikum Heinrich-Heine-Universität Düsseldorf, Universität Str. 1, 40225 Düsseldorf, Germany; Center for Molecular Medicine Cologne, University of Cologne, Robert-Koch-Str. 21, 50931 Cologne, Germany
| | - Sunit Mandad
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany; Bioanalytics, University Medical Center Goettingen, Robert-Koch-Strasse 40, 37075 Goettingen, Germany; Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany; Bioanalytics, University Medical Center Goettingen, Robert-Koch-Strasse 40, 37075 Goettingen, Germany
| | - Tomer Avidor-Reiss
- Department of Biological Sciences, College of Natural Sciences and Mathematics, University of Toledo, Toledo, OH 43606
| | - Maria Riparbelli
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Giuliano Callaini
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Alain Debec
- Polarity and Morphogenesis Group, Institut Jacques Monod, Centre National de la Recherche Scientifique, University Paris Diderot, 75013 Paris, France
| | - Regina Feederle
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute for Diabetes and Obesity, Core Facility, 81377 Munich, Germany
| | - Jay Gopalakrishnan
- Institute of Human Genetics, Universitätsklinikum Heinrich-Heine-Universität Düsseldorf, Universität Str. 1, 40225 Düsseldorf, Germany; Center for Molecular Medicine Cologne, University of Cologne, Robert-Koch-Str. 21, 50931 Cologne, Germany; IUF-Leibniz-Institut für umweltmedizinische Forschung gGmbH, Auf'm Hennekamp 50, 40225 Düsseldorf, Germany.
| |
Collapse
|
15
|
Takao D, Watanabe K, Kuroki K, Kitagawa D. Feedback loops in the Plk4-STIL-HsSAS6 network coordinate site selection for procentriole formation. Biol Open 2019; 8:bio047175. [PMID: 31533936 PMCID: PMC6777370 DOI: 10.1242/bio.047175] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 08/23/2019] [Indexed: 12/12/2022] Open
Abstract
Centrioles are duplicated once in every cell cycle, ensuring the bipolarity of the mitotic spindle. How the core components cooperate to achieve high fidelity in centriole duplication remains poorly understood. By live-cell imaging of endogenously tagged proteins in human cells throughout the entire cell cycle, we quantitatively tracked the dynamics of the critical duplication factors: Plk4, STIL and HsSAS6. Centriolar Plk4 peaks and then starts decreasing during the late G1 phase, which coincides with the accumulation of STIL at centrioles. Shortly thereafter, the HsSAS6 level increases steeply at the procentriole assembly site. We also show that both STIL and HsSAS6 are necessary for attenuating Plk4 levels. Furthermore, our mathematical modeling and simulation suggest that the STIL-HsSAS6 complex in the cartwheel has a negative feedback effect on centriolar Plk4. Combined, these findings illustrate how the dynamic behavior of and interactions between critical duplication factors coordinate the centriole-duplication process.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Daisuke Takao
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Hongo, Tokyo 113-0033, Japan
| | - Koki Watanabe
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Hongo, Tokyo 113-0033, Japan
| | - Kanako Kuroki
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Hongo, Tokyo 113-0033, Japan
| | - Daiju Kitagawa
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Hongo, Tokyo 113-0033, Japan
| |
Collapse
|
16
|
Cabral G, Laos T, Dumont J, Dammermann A. Differential Requirements for Centrioles in Mitotic Centrosome Growth and Maintenance. Dev Cell 2019; 50:355-366.e6. [PMID: 31303441 DOI: 10.1016/j.devcel.2019.06.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 03/29/2019] [Accepted: 06/10/2019] [Indexed: 10/26/2022]
Abstract
Centrosomes, the predominant sites of microtubule nucleation and anchorage, coordinate spindle assembly and cell division in animal cells. At the onset of mitosis, centrioles accumulate microtubule-organizing pericentriolar material (PCM) in a process termed centrosome maturation. To what extent centrosome maturation depends on the continued activity of mitotic regulators or the presence of centrioles has hitherto been unclear. Using the C. elegans early embryo, we show that PCM expansion requires the Polo-like kinase PLK-1 and CEP192 (SPD-2 in C. elegans), but not its upstream regulator Aurora A (AIR-1), while maintenance of the PCM polymer depends exclusively on PLK-1. SPD-2 and PLK-1 are highly concentrated at centrioles. Unexpectedly, laser microsurgery reveals that while centrioles are required for PCM recruitment and centrosome structural integrity they are dispensable for PCM maintenance. We propose a model whereby centrioles promote centrosome maturation by recruiting PLK-1, but subsequent maintenance occurs via PLK-1 acting directly within the PCM.
Collapse
Affiliation(s)
- Gabriela Cabral
- Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | - Triin Laos
- Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | - Julien Dumont
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France
| | - Alexander Dammermann
- Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, A-1030 Vienna, Austria.
| |
Collapse
|
17
|
Bergwell M, Smith A, Lakin H, Slay R, Iyer J. Generation of sas-6::ha by CRISPR/Cas9 editing. MICROPUBLICATION BIOLOGY 2019; 2019:10.17912/micropub.biology.000141. [PMID: 32550418 PMCID: PMC7252276 DOI: 10.17912/micropub.biology.000141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
- Mary Bergwell
- University of Tulsa, 800 S. Tucker Dr, Tulsa, OK- 74104
| | - Amy Smith
- University of Tulsa, 800 S. Tucker Dr, Tulsa, OK- 74104
| | - Holly Lakin
- University of Tulsa, 800 S. Tucker Dr, Tulsa, OK- 74104
| | - Rebecca Slay
- University of Tulsa, 800 S. Tucker Dr, Tulsa, OK- 74104
| | - Jyoti Iyer
- University of Tulsa, 800 S. Tucker Dr, Tulsa, OK- 74104,
Correspondence to: Jyoti Iyer ()
| |
Collapse
|
18
|
Pintard L, Bowerman B. Mitotic Cell Division in Caenorhabditis elegans. Genetics 2019; 211:35-73. [PMID: 30626640 PMCID: PMC6325691 DOI: 10.1534/genetics.118.301367] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/24/2018] [Indexed: 11/18/2022] Open
Abstract
Mitotic cell divisions increase cell number while faithfully distributing the replicated genome at each division. The Caenorhabditis elegans embryo is a powerful model for eukaryotic cell division. Nearly all of the genes that regulate cell division in C. elegans are conserved across metazoan species, including humans. The C. elegans pathways tend to be streamlined, facilitating dissection of the more redundant human pathways. Here, we summarize the virtues of C. elegans as a model system and review our current understanding of centriole duplication, the acquisition of pericentriolar material by centrioles to form centrosomes, the assembly of kinetochores and the mitotic spindle, chromosome segregation, and cytokinesis.
Collapse
Affiliation(s)
- Lionel Pintard
- Equipe labellisée Ligue contre le Cancer, Institut Jacques Monod, Team Cell Cycle and Development UMR7592, Centre National de la Recherche Scientifique - Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France
| | - Bruce Bowerman
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403
| |
Collapse
|
19
|
Aydogan MG, Wainman A, Saurya S, Steinacker TL, Caballe A, Novak ZA, Baumbach J, Muschalik N, Raff JW. A homeostatic clock sets daughter centriole size in flies. J Cell Biol 2018; 217:1233-1248. [PMID: 29500190 PMCID: PMC5881511 DOI: 10.1083/jcb.201801014] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 01/23/2018] [Accepted: 01/26/2018] [Indexed: 12/13/2022] Open
Abstract
Centrioles are highly structured organelles whose size is remarkably consistent within any given cell type. New centrioles are born when Polo-like kinase 4 (Plk4) recruits Ana2/STIL and Sas-6 to the side of an existing "mother" centriole. These two proteins then assemble into a cartwheel, which grows outwards to form the structural core of a new daughter. Here, we show that in early Drosophila melanogaster embryos, daughter centrioles grow at a linear rate during early S-phase and abruptly stop growing when they reach their correct size in mid- to late S-phase. Unexpectedly, the cartwheel grows from its proximal end, and Plk4 determines both the rate and period of centriole growth: the more active the centriolar Plk4, the faster centrioles grow, but the faster centriolar Plk4 is inactivated and growth ceases. Thus, Plk4 functions as a homeostatic clock, establishing an inverse relationship between growth rate and period to ensure that daughter centrioles grow to the correct size.
Collapse
Affiliation(s)
- Mustafa G Aydogan
- Sir William Dunn School of Pathology, University of Oxford, Oxford, England, UK
| | - Alan Wainman
- Sir William Dunn School of Pathology, University of Oxford, Oxford, England, UK
- Micron Oxford Advanced Bioimaging Unit, Department of Biochemistry, University of Oxford, Oxford, England, UK
| | - Saroj Saurya
- Sir William Dunn School of Pathology, University of Oxford, Oxford, England, UK
| | - Thomas L Steinacker
- Sir William Dunn School of Pathology, University of Oxford, Oxford, England, UK
| | - Anna Caballe
- Sir William Dunn School of Pathology, University of Oxford, Oxford, England, UK
| | - Zsofia A Novak
- Sir William Dunn School of Pathology, University of Oxford, Oxford, England, UK
| | - Janina Baumbach
- Sir William Dunn School of Pathology, University of Oxford, Oxford, England, UK
| | - Nadine Muschalik
- Sir William Dunn School of Pathology, University of Oxford, Oxford, England, UK
| | - Jordan W Raff
- Sir William Dunn School of Pathology, University of Oxford, Oxford, England, UK
| |
Collapse
|
20
|
Penfield L, Wysolmerski B, Mauro M, Farhadifar R, Martinez MA, Biggs R, Wu HY, Broberg C, Needleman D, Bahmanyar S. Dynein pulling forces counteract lamin-mediated nuclear stability during nuclear envelope repair. Mol Biol Cell 2018; 29:852-868. [PMID: 29386297 PMCID: PMC5905298 DOI: 10.1091/mbc.e17-06-0374] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Transient nuclear envelope (NE) ruptures in the Caenorhabditis elegans zygote are caused by a weakened nuclear lamina during nuclear positioning. Dynein-pulling forces enhance the severity of ruptures, while lamin restricts nucleocytoplasmic mixing and allows stable NE repair. This work is the first mechanistic analysis of NE rupture and repair in an organism. Recent work done exclusively in tissue culture cells revealed that the nuclear envelope (NE) ruptures and repairs in interphase. The duration of NE ruptures depends on lamins; however, the underlying mechanisms and relevance to in vivo events are not known. Here, we use the Caenorhabditis elegans zygote to analyze lamin’s role in NE rupture and repair in vivo. Transient NE ruptures and subsequent NE collapse are induced by weaknesses in the nuclear lamina caused by expression of an engineered hypomorphic C. elegans lamin allele. Dynein-generated forces that position nuclei enhance the severity of transient NE ruptures and cause NE collapse. Reduction of dynein forces allows the weakened lamin network to restrict nucleo–cytoplasmic mixing and support stable NE recovery. Surprisingly, the high incidence of transient NE ruptures does not contribute to embryonic lethality, which is instead correlated with stochastic chromosome scattering resulting from premature NE collapse, suggesting that C. elegans tolerates transient losses of NE compartmentalization during early embryogenesis. In sum, we demonstrate that lamin counteracts dynein forces to promote stable NE repair and prevent catastrophic NE collapse, and thus provide the first mechanistic analysis of NE rupture and repair in an organismal context.
Collapse
Affiliation(s)
- Lauren Penfield
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520
| | - Brian Wysolmerski
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520
| | - Michael Mauro
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520
| | - Reza Farhadifar
- Department of Molecular and Cellular Biology, School of Engineering and Applied Sciences, FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138
| | - Michael A Martinez
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520
| | - Ronald Biggs
- Department of Cellular & Molecular Medicine, Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093
| | - Hai-Yin Wu
- Department of Molecular and Cellular Biology, School of Engineering and Applied Sciences, FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138
| | - Curtis Broberg
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520
| | - Daniel Needleman
- Department of Molecular and Cellular Biology, School of Engineering and Applied Sciences, FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138
| | - Shirin Bahmanyar
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520
| |
Collapse
|
21
|
Bianchi S, Rogala KB, Dynes NJ, Hilbert M, Leidel SA, Steinmetz MO, Gönczy P, Vakonakis I. Interaction between the Caenorhabditis elegans centriolar protein SAS-5 and microtubules facilitates organelle assembly. Mol Biol Cell 2018; 29:722-735. [PMID: 29367435 PMCID: PMC6003225 DOI: 10.1091/mbc.e17-06-0412] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 01/10/2018] [Accepted: 01/17/2018] [Indexed: 12/11/2022] Open
Abstract
Centrioles are microtubule-based organelles that organize the microtubule network and seed the formation of cilia and flagella. New centrioles assemble through a stepwise process dependent notably on the centriolar protein SAS-5 in Caenorhabditis elegans SAS-5 and its functional homologues in other species form oligomers that bind the centriolar proteins SAS-6 and SAS-4, thereby forming an evolutionarily conserved structural core at the onset of organelle assembly. Here, we report a novel interaction of SAS-5 with microtubules. Microtubule binding requires SAS-5 oligomerization and a disordered protein segment that overlaps with the SAS-4 binding site. Combined in vitro and in vivo analysis of select mutants reveals that the SAS-5-microtubule interaction facilitates centriole assembly in C. elegans embryos. Our findings lead us to propose that the interdependence of SAS-5 oligomerization and microtubule binding reflects an avidity mechanism, which also strengthens SAS-5 associations with other centriole components and, thus, promotes organelle assembly.
Collapse
Affiliation(s)
- Sarah Bianchi
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Kacper B Rogala
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Nicola J Dynes
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (École Polytechnique Fédérale de Lausanne), 1015 Lausanne, Switzerland
| | - Manuel Hilbert
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Sebastian A Leidel
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (École Polytechnique Fédérale de Lausanne), 1015 Lausanne, Switzerland
| | - Michel O Steinmetz
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, 5232 Villigen, Switzerland
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Pierre Gönczy
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (École Polytechnique Fédérale de Lausanne), 1015 Lausanne, Switzerland
| | - Ioannis Vakonakis
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| |
Collapse
|
22
|
Abstract
Gemble and Basto preview work from Aydogan et al. that shows a homeostatic role for Plk4 in the regulation of centriole growth rate. In each duplication cycle, daughter centrioles grow to the same length as their mothers. Which mechanisms regulate this fidelity to maintain centriole length is not known. In this issue, Aydogan et al. (2018. J. Cell Biol.https://doi.org/10.1083/jcb.201801014) report a novel role for Polo-like kinase 4 (Plk4). They found that Plk4 functions in a homeostatic manner to balance growth rate and growth period to set the final centriole size.
Collapse
Affiliation(s)
- Simon Gemble
- Institut Curie, Paris Sciences et Lettres Research University, Centre National de la Recherche Scientifique, UMR144, Paris, France
| | - Renata Basto
- Institut Curie, Paris Sciences et Lettres Research University, Centre National de la Recherche Scientifique, UMR144, Paris, France
| |
Collapse
|
23
|
Myers TR, Amendola PG, Lussi YC, Salcini AE. JMJD-1.2 controls multiple histone post-translational modifications in germ cells and protects the genome from replication stress. Sci Rep 2018; 8:3765. [PMID: 29491442 PMCID: PMC5830613 DOI: 10.1038/s41598-018-21914-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 02/13/2018] [Indexed: 01/29/2023] Open
Abstract
Post-translational modifications of histones, constitutive components of chromatin, regulate chromatin compaction and control all DNA-based cellular processes. C. elegans JMJD-1.2, a member of the KDM7 family, is a demethylase active towards several lysine residues on Histone 3 (H3), but its contribution in regulating histone methylation in germ cells has not been fully investigated. Here, we show that jmjd-1.2 is expressed abundantly in the germline where it controls the level of histone 3 lysine 9, lysine 23 and lysine 27 di-methylation (H3K9/K23/K27me2) both in mitotic and meiotic cells. Loss of jmjd-1.2 is not associated with major defects in the germ cells in animals grown under normal conditions or after DNA damage induced by UV or ionizing irradiation. However, jmjd-1.2 mutants are more sensitive to replication stress and the progeny of mutant animals exposed to hydroxyurea show increased embryonic lethality and mutational rate, compared to wild-type. Thus, our results suggest a role for jmjd-1.2 in the maintenance of genome integrity after replication stress and emphasize the relevance of the regulation of histone methylation in genomic stability.
Collapse
Affiliation(s)
- Toshia R Myers
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen N, Denmark
- Centre for Epigenetics, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen N, Denmark
| | - Pier Giorgio Amendola
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen N, Denmark
- Centre for Epigenetics, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen N, Denmark
| | - Yvonne C Lussi
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen N, Denmark
- Centre for Epigenetics, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen N, Denmark
| | - Anna Elisabetta Salcini
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen N, Denmark.
- Centre for Epigenetics, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen N, Denmark.
| |
Collapse
|
24
|
Serwas D, Su TY, Roessler M, Wang S, Dammermann A. Centrioles initiate cilia assembly but are dispensable for maturation and maintenance in C. elegans. J Cell Biol 2017; 216:1659-1671. [PMID: 28411189 PMCID: PMC5461022 DOI: 10.1083/jcb.201610070] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 03/10/2017] [Accepted: 04/10/2017] [Indexed: 01/17/2023] Open
Abstract
Cilia are cellular projections that assemble on centriole-derived basal bodies. While cilia assembly is absolutely dependent on centrioles, it is not known to what extent they contribute to downstream events. The nematode C. elegans provides a unique opportunity to address this question, as centrioles do not persist at the base of mature cilia. Using fluorescence microscopy and electron tomography, we find that centrioles degenerate early during ciliogenesis. The transition zone and axoneme are not completely formed at this time, indicating that cilia maturation does not depend on intact centrioles. The hydrolethalus syndrome protein HYLS-1 is the only centriolar protein known to remain at the base of mature cilia and is required for intraflagellar transport trafficking. Surprisingly, targeted degradation of HYLS-1 after initiation of ciliogenesis does not affect ciliary structures. Taken together, our results indicate that while centrioles are essential to initiate cilia formation, they are dispensable for cilia maturation and maintenance.
Collapse
Affiliation(s)
- Daniel Serwas
- Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter (VBC), A-1030 Vienna, Austria
| | - Tiffany Y Su
- Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter (VBC), A-1030 Vienna, Austria
| | - Max Roessler
- Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter (VBC), A-1030 Vienna, Austria
| | - Shaohe Wang
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Alexander Dammermann
- Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter (VBC), A-1030 Vienna, Austria
| |
Collapse
|
25
|
Zheng X, Ramani A, Soni K, Gottardo M, Zheng S, Ming Gooi L, Li W, Feng S, Mariappan A, Wason A, Widlund P, Pozniakovsky A, Poser I, Deng H, Ou G, Riparbelli M, Giuliano C, Hyman AA, Sattler M, Gopalakrishnan J, Li H. Molecular basis for CPAP-tubulin interaction in controlling centriolar and ciliary length. Nat Commun 2016; 7:11874. [PMID: 27306797 PMCID: PMC4912634 DOI: 10.1038/ncomms11874] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 05/09/2016] [Indexed: 02/05/2023] Open
Abstract
Centrioles and cilia are microtubule-based structures, whose precise formation requires controlled cytoplasmic tubulin incorporation. How cytoplasmic tubulin is recognized for centriolar/ciliary-microtubule construction remains poorly understood. Centrosomal-P4.1-associated-protein (CPAP) binds tubulin via its PN2-3 domain. Here, we show that a C-terminal loop-helix in PN2-3 targets β-tubulin at the microtubule outer surface, while an N-terminal helical motif caps microtubule's α-β surface of β-tubulin. Through this, PN2-3 forms a high-affinity complex with GTP-tubulin, crucial for defining numbers and lengths of centriolar/ciliary-microtubules. Surprisingly, two distinct mutations in PN2-3 exhibit opposite effects on centriolar/ciliary-microtubule lengths. CPAP(F375A), with strongly reduced tubulin interaction, causes shorter centrioles and cilia exhibiting doublet- instead of triplet-microtubules. CPAP(EE343RR) that unmasks the β-tubulin polymerization surface displays slightly reduced tubulin-binding affinity inducing over-elongation of newly forming centriolar/ciliary-microtubules by enhanced dynamic release of its bound tubulin. Thus CPAP regulates delivery of its bound-tubulin to define the size of microtubule-based cellular structures using a 'clutch-like' mechanism.
Collapse
Affiliation(s)
- Xiangdong Zheng
- Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China.,MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Anand Ramani
- Institute for Biochemistry I and Center for Molecular Medicine of the University of Cologne, Robert-Koch-Str. 21, Cologne 50931, Germany
| | - Komal Soni
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, Neuherberg 85764, Germany.,Biomolecular NMR at Center for Integrated Protein Science Munich and Department Chemie, Technische Universität München, Lichtenbergstr. 4, Garching 85747, Germany
| | - Marco Gottardo
- Department of Life Sciences, University of Siena, Siena 53100, Italy
| | - Shuangping Zheng
- Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China.,MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Li Ming Gooi
- Institute for Biochemistry I and Center for Molecular Medicine of the University of Cologne, Robert-Koch-Str. 21, Cologne 50931, Germany
| | - Wenjing Li
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shan Feng
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Aruljothi Mariappan
- Institute for Biochemistry I and Center for Molecular Medicine of the University of Cologne, Robert-Koch-Str. 21, Cologne 50931, Germany
| | - Arpit Wason
- Institute for Biochemistry I and Center for Molecular Medicine of the University of Cologne, Robert-Koch-Str. 21, Cologne 50931, Germany
| | - Per Widlund
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauer Str. 108, Dresden 01307, Germany
| | - Andrei Pozniakovsky
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauer Str. 108, Dresden 01307, Germany
| | - Ina Poser
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauer Str. 108, Dresden 01307, Germany
| | - Haiteng Deng
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Guangshuo Ou
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Maria Riparbelli
- Department of Life Sciences, University of Siena, Siena 53100, Italy
| | - Callaini Giuliano
- Department of Life Sciences, University of Siena, Siena 53100, Italy
| | - Anthony A Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauer Str. 108, Dresden 01307, Germany
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, Neuherberg 85764, Germany.,Biomolecular NMR at Center for Integrated Protein Science Munich and Department Chemie, Technische Universität München, Lichtenbergstr. 4, Garching 85747, Germany
| | - Jay Gopalakrishnan
- Institute for Biochemistry I and Center for Molecular Medicine of the University of Cologne, Robert-Koch-Str. 21, Cologne 50931, Germany
| | - Haitao Li
- Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China.,MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
26
|
The E2F-DP1 Transcription Factor Complex Regulates Centriole Duplication in Caenorhabditis elegans. G3-GENES GENOMES GENETICS 2016; 6:709-20. [PMID: 26772748 PMCID: PMC4777132 DOI: 10.1534/g3.115.025577] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Centrioles play critical roles in the organization of microtubule-based structures, from the mitotic spindle to cilia and flagella. In order to properly execute their various functions, centrioles are subjected to stringent copy number control. Central to this control mechanism is a precise duplication event that takes place during S phase of the cell cycle and involves the assembly of a single daughter centriole in association with each mother centriole . Recent studies have revealed that posttranslational control of the master regulator Plk4/ZYG-1 kinase and its downstream effector SAS-6 is key to ensuring production of a single daughter centriole. In contrast, relatively little is known about how centriole duplication is regulated at a transcriptional level. Here we show that the transcription factor complex EFL-1-DPL-1 both positively and negatively controls centriole duplication in the Caenorhabditis elegans embryo. Specifically, we find that down regulation of EFL-1-DPL-1 can restore centriole duplication in a zyg-1 hypomorphic mutant and that suppression of the zyg-1 mutant phenotype is accompanied by an increase in SAS-6 protein levels. Further, we find evidence that EFL-1-DPL-1 promotes the transcription of zyg-1 and other centriole duplication genes. Our results provide evidence that in a single tissue type, EFL-1-DPL-1 sets the balance between positive and negative regulators of centriole assembly and thus may be part of a homeostatic mechanism that governs centriole assembly.
Collapse
|
27
|
A Short CEP135 Splice Isoform Controls Centriole Duplication. Curr Biol 2015; 25:2591-6. [PMID: 26412126 DOI: 10.1016/j.cub.2015.08.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 07/30/2015] [Accepted: 08/19/2015] [Indexed: 12/25/2022]
Abstract
Centriole duplication is coordinated such that a single round of duplication occurs during each cell cycle. Disruption of this synchrony causes defects including supernumerary centrosomes in cancer and perturbed ciliary signaling [1-5]. To preserve the normal number of centrioles, the level, localization, and post-translational modification of centriole proteins is regulated so that, when centriole protein expression and/or activity are increased, centrioles self-assemble. Assembly is initiated by the formation of the cartwheel structure that comprises the base of centrioles [6-11]. SAS-6 constitutes the cartwheel, and SAS-6 levels remain low until centriole assembly is initiated at S phase onset [3, 12, 13]. CEP135 physically links to SAS-6 near the site of microtubule nucleation and binds to CPAP for triplet microtubule formation [13, 14]. We identify two distinct protein isoforms of CEP135 that antagonize each other to modulate centriole duplication: full-length CEP135 (CEP135(full)) promotes new assembly, whereas a short isoform, CEP135(mini), represses it. CEP135(mini) represses centriole duplication by limiting the centriolar localization of CEP135(full) binding proteins (SAS-6 and CPAP) and the pericentriolar localization of γ-tubulin. The CEP135 isoforms exhibit distinct and complementary centrosomal localization during the cell cycle. CEP135(mini) protein decreases from centrosomes upon anaphase onset. We suggest that the decrease in CEP135(mini) from centrosomes promotes centriole assembly. The repression of centriole duplication by a splice isoform of a protein that normally promotes it serves as a novel mechanism to limit centriole duplication.
Collapse
|
28
|
Dobbelaere J. Genome-wide RNAi screens in S2 cells to identify centrosome components. Methods Cell Biol 2015; 129:279-300. [PMID: 26175444 DOI: 10.1016/bs.mcb.2015.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Centrosomes act as the major microtubule organizing centers in animal cells. To fully understand how the centrosome functions, a detailed analysis of its principal structural components and regulators is needed. Genome-wide RNA interference (RNAi) allows for comprehensive screening of all components. Drosophila tissue culture cells provide an attractive model for such screens. First, Drosophila centrosomes are similar to their human counterparts, but less complex. Thus, all major centrosome components are conserved and fewer redundancies apply. Second, RNAi is highly efficient in Drosophila tissue culture cells and, compared to RNAi in human cells, it is cost-effective. Finally, the availability of comprehensive libraries permits easy genome-wide screening of most of Drosophila's 14,000 protein coding genes. In this paper, we present detailed instructions for designing, performing, and analyzing a genome-wide screen in Drosophila tissue culture cells to identify centrosome components using a microscopy-based approach.
Collapse
Affiliation(s)
- Jeroen Dobbelaere
- Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria.
| |
Collapse
|
29
|
Abstract
The centrosome was discovered in the late 19th century when mitosis was first described. Long recognized as a key organelle of the spindle pole, its core component, the centriole, was realized more than 50 or so years later also to comprise the basal body of the cilium. Here, we chart the more recent acquisition of a molecular understanding of centrosome structure and function. The strategies for gaining such knowledge were quickly developed in the yeasts to decipher the structure and function of their distinctive spindle pole bodies. Only within the past decade have studies with model eukaryotes and cultured cells brought a similar degree of sophistication to our understanding of the centrosome duplication cycle and the multiple roles of this organelle and its component parts in cell division and signaling. Now as we begin to understand these functions in the context of development, the way is being opened up for studies of the roles of centrosomes in human disease.
Collapse
Affiliation(s)
- Jingyan Fu
- Cancer Research UK Cell Cycle Genetics Group, Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Iain M Hagan
- Cancer Research UK Manchester Institute, University of Manchester, Withington, Manchester M20 4BX, United Kingdom
| | - David M Glover
- Cancer Research UK Cell Cycle Genetics Group, Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| |
Collapse
|
30
|
von Tobel L, Mikeladze-Dvali T, Delattre M, Balestra FR, Blanchoud S, Finger S, Knott G, Müller-Reichert T, Gönczy P. SAS-1 is a C2 domain protein critical for centriole integrity in C. elegans. PLoS Genet 2014; 10:e1004777. [PMID: 25412110 PMCID: PMC4238951 DOI: 10.1371/journal.pgen.1004777] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 09/25/2014] [Indexed: 02/06/2023] Open
Abstract
Centrioles are microtubule-based organelles important for the formation of cilia, flagella and centrosomes. Despite progress in understanding the underlying assembly mechanisms, how centriole integrity is ensured is incompletely understood, including in sperm cells, where such integrity is particularly critical. We identified C. elegans sas-1 in a genetic screen as a locus required for bipolar spindle assembly in the early embryo. Our analysis reveals that sperm-derived sas-1 mutant centrioles lose their integrity shortly after fertilization, and that a related defect occurs when maternal sas-1 function is lacking. We establish that sas-1 encodes a C2 domain containing protein that localizes to centrioles in C. elegans, and which can bind and stabilize microtubules when expressed in human cells. Moreover, we uncover that SAS-1 is related to C2CD3, a protein required for complete centriole formation in human cells and affected in a type of oral-facial-digital (OFD) syndrome. Centrioles are microtubule-based organelles critical for forming cilia, flagella and centrosomes. Centrioles are very stable, but how such stability is ensured is poorly understood. We identified sas-1 as a component that contributes to centriole stability in C. elegans. Centrioles that lack sas-1 function loose their integrity, and our analysis reveals that sas-1 is particularly important for sperm-derived centrioles. Moreover, we show that SAS-1 binds and stabilizes microtubules in human cells, together leading us to propose that SAS-1 acts by stabilizing centriolar microtubules. We identify C2CD3 as a human homolog of SAS-1. C2CD3 is needed for the presence of the distal part of centrioles in human cells, and we thus propose that this protein family is broadly needed to maintain centriole structure.
Collapse
Affiliation(s)
- Lukas von Tobel
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL) Lausanne, Switzerland
| | - Tamara Mikeladze-Dvali
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL) Lausanne, Switzerland
| | - Marie Delattre
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL) Lausanne, Switzerland
| | - Fernando R. Balestra
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL) Lausanne, Switzerland
| | - Simon Blanchoud
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL) Lausanne, Switzerland
| | - Susanne Finger
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Graham Knott
- BioEM Facility, School of Life Sciences, Swiss Federal Institute of Technology (EPFL) Lausanne, Switzerland
| | - Thomas Müller-Reichert
- Structural Cell Biology Group, Experimental Center, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Pierre Gönczy
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL) Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
31
|
Lu Y, Roy R. Centrosome/Cell cycle uncoupling and elimination in the endoreduplicating intestinal cells of C. elegans. PLoS One 2014; 9:e110958. [PMID: 25360893 PMCID: PMC4215990 DOI: 10.1371/journal.pone.0110958] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 09/28/2014] [Indexed: 01/14/2023] Open
Abstract
The centrosome cycle is most often coordinated with mitotic cell division through the activity of various essential cell cycle regulators, consequently ensuring that the centriole is duplicated once, and only once, per cell cycle. However, this coupling can be altered in specific developmental contexts; for example, multi-ciliated cells generate hundreds of centrioles without any S-phase requirement for their biogenesis, while Drosophila follicle cells eliminate their centrosomes as they begin to endoreduplicate. In order to better understand how the centrosome cycle and the cell cycle are coordinated in a developmental context we use the endoreduplicating intestinal cell lineage of C. elegans to address how novel variations of the cell cycle impact this important process. In C. elegans, the larval intestinal cells undergo one nuclear division without subsequent cytokinesis, followed by four endocycles that are characterized by successive rounds of S-phase. We monitored the levels of centriolar/centrosomal markers and found that centrosomes lose their pericentriolar material following the nuclear division that occurs during the L1 stage and is thereafter never re-gained. The centrioles then become refractory to S phase regulators that would normally promote duplication during the first endocycle, after which they are eliminated during the L2 stage. Furthermore, we show that SPD-2 plays a central role in the numeral regulation of centrioles as a potential target of CDK activity. On the other hand, the phosphorylation on SPD-2 by Polo-like kinase, the transcriptional regulation of genes that affect centriole biogenesis, and the ubiquitin/proteasome degradation pathway, contribute collectively to the final elimination of the centrioles during the L2 stage.
Collapse
Affiliation(s)
- Yu Lu
- Department of Biology, The Developmental Biology Research Initiative, McGill University, Montreal, Quebec, Canada
| | - Richard Roy
- Department of Biology, The Developmental Biology Research Initiative, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
32
|
Centrosomes are autocatalytic droplets of pericentriolar material organized by centrioles. Proc Natl Acad Sci U S A 2014; 111:E2636-45. [PMID: 24979791 DOI: 10.1073/pnas.1404855111] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Centrosomes are highly dynamic, spherical organelles without a membrane. Their physical nature and their assembly are not understood. Using the concept of phase separation, we propose a theoretical description of centrosomes as liquid droplets. In our model, centrosome material occurs in a form soluble in the cytosol and a form that tends to undergo phase separation from the cytosol. We show that an autocatalytic chemical transition between these forms accounts for the temporal evolution observed in experiments. Interestingly, the nucleation of centrosomes can be controlled by an enzymatic activity of the centrioles, which are present at the core of all centrosomes. This nonequilibrium feature also allows for multiple stable centrosomes, a situation that is unstable in equilibrium phase separation. Our theory explains the growth dynamics of centrosomes for all cell sizes down to the eight-cell stage of the Caenorhabditis elegans embryo, and it also accounts for data acquired in experiments with aberrant numbers of centrosomes and altered cell volumes. Furthermore, the model can describe unequal centrosome sizes observed in cells with perturbed centrioles. We also propose an interpretation of the molecular details of the involved proteins in the case of C. elegans. Our example suggests a general picture of the organization of membraneless organelles.
Collapse
|
33
|
Acentriolar mitosis activates a p53-dependent apoptosis pathway in the mouse embryo. Proc Natl Acad Sci U S A 2014; 111:E1491-500. [PMID: 24706806 DOI: 10.1073/pnas.1400568111] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Centrosomes are the microtubule-organizing centers of animal cells that organize interphase microtubules and mitotic spindles. Centrioles are the microtubule-based structures that organize centrosomes, and a defined set of proteins, including spindle assembly defective-4 (SAS4) (CPAP/CENPJ), is required for centriole biogenesis. The biological functions of centrioles and centrosomes vary among animals, and the functions of mammalian centrosomes have not been genetically defined. Here we use a null mutation in mouse Sas4 to define the cellular and developmental functions of mammalian centrioles in vivo. Sas4-null embryos lack centrosomes but survive until midgestation. As expected, Sas4(-/-) mutants lack primary cilia and therefore cannot respond to Hedgehog signals, but other developmental signaling pathways are normal in the mutants. Unlike mutants that lack cilia, Sas4(-/-) embryos show widespread apoptosis associated with global elevated expression of p53. Cell death is rescued in Sas4(-/-) p53(-/-) double-mutant embryos, demonstrating that mammalian centrioles prevent activation of a p53-dependent apoptotic pathway. Expression of p53 is not activated by abnormalities in bipolar spindle organization, chromosome segregation, cell-cycle profile, or DNA damage response, which are normal in Sas4(-/-) mutants. Instead, live imaging shows that the duration of prometaphase is prolonged in the mutants while two acentriolar spindle poles are assembled. Independent experiments show that prolonging spindle assembly is sufficient to trigger p53-dependent apoptosis. We conclude that a short delay in the prometaphase caused by the absence of centrioles activates a previously undescribed p53-dependent cell death pathway in the rapidly dividing cells of the mouse embryo.
Collapse
|
34
|
van Breugel M, Wilcken R, McLaughlin SH, Rutherford TJ, Johnson CM. Structure of the SAS-6 cartwheel hub from Leishmania major. eLife 2014; 3:e01812. [PMID: 24596152 PMCID: PMC3939493 DOI: 10.7554/elife.01812] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Centrioles are cylindrical cell organelles with a ninefold symmetric peripheral microtubule array that is essential to template cilia and flagella. They are built around a central cartwheel assembly that is organized through homo-oligomerization of the centriolar protein SAS-6, but whether SAS-6 self-assembly can dictate cartwheel and thereby centriole symmetry is unclear. Here we show that Leishmania major SAS-6 crystallizes as a 9-fold symmetric cartwheel and provide the X-ray structure of this assembly at a resolution of 3.5 Å. We furthermore demonstrate that oligomerization of Leishmania SAS-6 can be inhibited by a small molecule in vitro and provide indications for its binding site. Our results firmly establish that SAS-6 can impose cartwheel symmetry on its own and indicate how this process might occur mechanistically in vivo. Importantly, our data also provide a proof-of-principle that inhibition of SAS-6 oligomerization by small molecules is feasible. DOI:http://dx.doi.org/10.7554/eLife.01812.001 Many cells have tiny hair-like structures called cilia on their surface that are important for communicating with other cells and for detecting changes in the cell’s surroundings. Some cilia also beat to move fluids across the cell surface—for example, to move mucus out of the lungs—or act as flagella that undergo rapid whip-like movements to propel cells along. Cilia are formed when a small cylindrical structure in the cell called a centriole docks against the cell membrane and subsequently grows out. However, many of the details of this process are poorly understood. One of the earliest events in centriole assembly is the formation of a central structure that looks like a cartwheel. This cartwheel acts as a scaffold onto which the rest of the centriole is then added. It has been proposed that a protein called SAS-6 can build this cartwheel just by interacting with itself. However, this has so far not been shown clearly. Now, using a technique called X-ray crystallography, van Breugel et al. directly confirm this hypothesis. This is significant because it demonstrates that the simple self interaction of a protein could lie at the heart of building a complex structure like a centriole. The single-celled human parasites that spread diseases such as Leishmaniasis, Chagas disease, and sleeping sickness rely on flagella to move around and interact with their surroundings. If SAS-6 cannot assemble into the cartwheel structure, flagella cannot form correctly, potentially stopping the parasites. By screening a library of small molecules, van Breugel et al. found one that partially disrupted the interactions of SAS-6 with itself in the test tube. This small molecule interacted only very weakly with SAS-6 and was not specific for SAS-6 from the disease-causing organism. These unfavourable properties therefore make this compound of no immediate use. However, this result nevertheless shows that small molecules can impair SAS-6 function at least in the test tube and that the development of a more efficient inhibitor might therefore be possible. DOI:http://dx.doi.org/10.7554/eLife.01812.002
Collapse
Affiliation(s)
- Mark van Breugel
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | | | | | | | | |
Collapse
|
35
|
Cottee MA, Muschalik N, Wong YL, Johnson CM, Johnson S, Andreeva A, Oegema K, Lea SM, Raff JW, van Breugel M. Crystal structures of the CPAP/STIL complex reveal its role in centriole assembly and human microcephaly. eLife 2013; 2:e01071. [PMID: 24052813 PMCID: PMC3776556 DOI: 10.7554/elife.01071] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 07/30/2013] [Indexed: 01/15/2023] Open
Abstract
Centrioles organise centrosomes and template cilia and flagella. Several centriole and centrosome proteins have been linked to microcephaly (MCPH), a neuro-developmental disease associated with small brain size. CPAP (MCPH6) and STIL (MCPH7) are required for centriole assembly, but it is unclear how mutations in them lead to microcephaly. We show that the TCP domain of CPAP constitutes a novel proline recognition domain that forms a 1:1 complex with a short, highly conserved target motif in STIL. Crystal structures of this complex reveal an unusual, all-β structure adopted by the TCP domain and explain how a microcephaly mutation in CPAP compromises complex formation. Through point mutations, we demonstrate that complex formation is essential for centriole duplication in vivo. Our studies provide the first structural insight into how the malfunction of centriole proteins results in human disease and also reveal that the CPAP-STIL interaction constitutes a conserved key step in centriole biogenesis. DOI:http://dx.doi.org/10.7554/eLife.01071.001.
Collapse
Affiliation(s)
- Matthew A Cottee
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Nadine Muschalik
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Yao Liang Wong
- Department of Cellular and Molecular Medicine, Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, United States
| | - Christopher M Johnson
- Laboratory of Molecular Biology, Medical Research Council, Cambridge, United Kingdom
| | - Steven Johnson
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Antonina Andreeva
- Laboratory of Molecular Biology, Medical Research Council, Cambridge, United Kingdom
| | - Karen Oegema
- Department of Cellular and Molecular Medicine, Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, United States
| | - Susan M Lea
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Jordan W Raff
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Mark van Breugel
- Laboratory of Molecular Biology, Medical Research Council, Cambridge, United Kingdom
| |
Collapse
|
36
|
Cabral G, Sans S, Cowan C, Dammermann A. Multiple mechanisms contribute to centriole separation in C. elegans. Curr Biol 2013; 23:1380-7. [PMID: 23885867 PMCID: PMC3722485 DOI: 10.1016/j.cub.2013.06.043] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 05/16/2013] [Accepted: 06/18/2013] [Indexed: 01/10/2023]
Abstract
Centrosome function in cell division requires their duplication, once, and only once, per cell cycle. Underlying centrosome duplication are alternating cycles of centriole assembly and separation. Work in vertebrates has implicated the cysteine protease separase in anaphase-coupled centriole separation (or disengagement) and identified this as a key step in licensing another round of assembly. Current models have separase cleaving a physical link between centrioles, potentially cohesin, that prevents reinitiation of centriole assembly unless disengaged. Here, we examine separase function in the C. elegans early embryo. We find that depletion impairs separation and consequently duplication of sperm-derived centrioles at the meiosis-mitosis transition. However, subsequent cycles proceed normally. Whereas mitotic centrioles separate in the context of cortical forces acting on a disassembling pericentriolar material, sperm centrioles are not associated with significant pericentriolar material or subject to strong forces. Increasing centrosomal microtubule nucleation restores sperm centriole separation and duplication in separase-depleted embryos, while forced pericentriolar material disassembly drives premature separation in mitosis. These results emphasize the critical role of cytoskeletal forces and the pericentriolar material in centriole separation. Separase contributes to separation where forces are limited, offering a potential explanation for results obtained in different experimental models.
Collapse
Affiliation(s)
- Gabriela Cabral
- Max F. Perutz Laboratories, University of Vienna, Doktor-Bohr-Gasse 9, 1030 Vienna, Austria
| | - Sabina Sanegre Sans
- Research Institute of Molecular Pathology, Doktor-Bohr-Gasse 7, 1030 Vienna, Austria
| | - Carrie R. Cowan
- Research Institute of Molecular Pathology, Doktor-Bohr-Gasse 7, 1030 Vienna, Austria
| | - Alexander Dammermann
- Max F. Perutz Laboratories, University of Vienna, Doktor-Bohr-Gasse 9, 1030 Vienna, Austria
| |
Collapse
|
37
|
Hilbert M, Erat MC, Hachet V, Guichard P, Blank ID, Flückiger I, Slater L, Lowe ED, Hatzopoulos GN, Steinmetz MO, Gönczy P, Vakonakis I. Caenorhabditis elegans centriolar protein SAS-6 forms a spiral that is consistent with imparting a ninefold symmetry. Proc Natl Acad Sci U S A 2013; 110:11373-8. [PMID: 23798409 PMCID: PMC3710844 DOI: 10.1073/pnas.1302721110] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Centrioles are evolutionary conserved organelles that give rise to cilia and flagella as well as centrosomes. Centrioles display a characteristic ninefold symmetry imposed by the spindle assembly abnormal protein 6 (SAS-6) family. SAS-6 from Chlamydomonas reinhardtii and Danio rerio was shown to form ninefold symmetric, ring-shaped oligomers in vitro that were similar to the cartwheels observed in vivo during early steps of centriole assembly in most species. Here, we report crystallographic and EM analyses showing that, instead, Caenorhabotis elegans SAS-6 self-assembles into a spiral arrangement. Remarkably, we find that this spiral arrangement is also consistent with ninefold symmetry, suggesting that two distinct SAS-6 oligomerization architectures can direct the same output symmetry. Sequence analysis suggests that SAS-6 spirals are restricted to specific nematodes. This oligomeric arrangement may provide a structural basis for the presence of a central tube instead of a cartwheel during centriole assembly in these species.
Collapse
Affiliation(s)
- Manuel Hilbert
- Laboratory of Biomolecular Research (LBR), Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | - Michèle C. Erat
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom; and
| | - Virginie Hachet
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne, Switzerland
| | - Paul Guichard
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne, Switzerland
| | - Iris D. Blank
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom; and
| | - Isabelle Flückiger
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne, Switzerland
| | - Leanne Slater
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom; and
| | - Edward D. Lowe
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom; and
| | | | - Michel O. Steinmetz
- Laboratory of Biomolecular Research (LBR), Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | - Pierre Gönczy
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne, Switzerland
| | - Ioannis Vakonakis
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom; and
| |
Collapse
|
38
|
Lettman MM, Wong YL, Viscardi V, Niessen S, Chen SH, Shiau AK, Zhou H, Desai A, Oegema K. Direct binding of SAS-6 to ZYG-1 recruits SAS-6 to the mother centriole for cartwheel assembly. Dev Cell 2013; 25:284-98. [PMID: 23673331 DOI: 10.1016/j.devcel.2013.03.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 01/26/2013] [Accepted: 03/17/2013] [Indexed: 12/18/2022]
Abstract
Assembly of SAS-6 dimers to form the centriolar cartwheel requires the ZYG-1/Plk4 kinase. Here, we show that ZYG-1 recruits SAS-6 to the mother centriole independently of its kinase activity; kinase activity is subsequently required for cartwheel assembly. We identify a direct interaction between ZYG-1 and the SAS-6 coiled coil that explains its kinase activity-independent function in SAS-6 recruitment. Perturbing this interaction, or the interaction between an adjacent segment of the SAS-6 coiled coil and SAS-5, prevented SAS-6 recruitment and cartwheel assembly. SAS-6 mutants with alanine substitutions in a previously described ZYG-1 target site or in 37 other residues, either phosphorylated by ZYG-1 in vitro or conserved in closely related nematodes, all supported cartwheel assembly. We propose that ZYG-1 binding to the SAS-6 coiled coil recruits the SAS-6-SAS-5 complex to the mother centriole, where a ZYG-1 kinase activity-dependent step, whose target is unlikely to be SAS-6, triggers cartwheel assembly.
Collapse
Affiliation(s)
- Molly M Lettman
- Department of Cellular and Molecular Medicine, Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Comartin D, Gupta G, Fussner E, Coyaud É, Hasegan M, Archinti M, Cheung S, Pinchev D, Lawo S, Raught B, Bazett-Jones DP, Lüders J, Pelletier L. CEP120 and SPICE1 Cooperate with CPAP in Centriole Elongation. Curr Biol 2013; 23:1360-6. [DOI: 10.1016/j.cub.2013.06.002] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 05/06/2013] [Accepted: 06/03/2013] [Indexed: 11/27/2022]
|
40
|
Fu J, Glover DM. Structured illumination of the interface between centriole and peri-centriolar material. Open Biol 2013; 2:120104. [PMID: 22977736 PMCID: PMC3438536 DOI: 10.1098/rsob.120104] [Citation(s) in RCA: 197] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 08/02/2012] [Indexed: 12/22/2022] Open
Abstract
The increase in centrosome size in mitosis was described over a century ago, and yet it is poorly understood how centrioles, which lie at the core of centrosomes, organize the pericentriolar material (PCM) in this process. Now, structured illumination microscopy reveals in Drosophila that, before clouds of PCM appear, its proteins are closely associated with interphase centrioles in two tube-like layers: an inner layer occupied by centriolar microtubules, Sas-4, Spd-2 and Polo kinase; and an outer layer comprising Pericentrin-like protein (Dplp), Asterless (Asl) and Plk4 kinase. Centrosomin (Cnn) and γ-tubulin associate with this outer tube in G2 cells and, upon mitotic entry, Polo activity is required to recruit them together with Spd-2 into PCM clouds. Cnn is required for Spd-2 to expand into the PCM during this maturation process but can itself contribute to PCM independently of Spd-2. By contrast, the centrioles of spermatocytes elongate from a pre-existing proximal unit during the G2 preceding meiosis. Sas-4 is restricted to the microtubule-associated, inner cylinder and Dplp and Cnn to the outer cylinder of this proximal part. γ-Tubulin and Asl associate with the outer cylinder and Spd-2 with the inner cylinder throughout the entire G2 centriole. Although they occupy different spatial compartments on the G2 centriole, Cnn, Spd-2 and γ-tubulin become diminished at the centriole upon entry into meiosis to become part of PCM clouds.
Collapse
Affiliation(s)
- Jingyan Fu
- Cancer Research UK Cell Cycle Genetics Group, Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK.
| | | |
Collapse
|
41
|
|
42
|
Qiao R, Cabral G, Lettman MM, Dammermann A, Dong G. SAS-6 coiled-coil structure and interaction with SAS-5 suggest a regulatory mechanism in C. elegans centriole assembly. EMBO J 2012; 31:4334-47. [PMID: 23064147 DOI: 10.1038/emboj.2012.280] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2012] [Accepted: 09/20/2012] [Indexed: 01/17/2023] Open
Abstract
The centriole is a conserved microtubule-based organelle essential for both centrosome formation and cilium biogenesis. Five conserved proteins for centriole duplication have been identified. Two of them, SAS-5 and SAS-6, physically interact with each other and are codependent for their targeting to procentrioles. However, it remains unclear how these two proteins interact at the molecular level. Here, we demonstrate that the short SAS-5 C-terminal domain (residues 390-404) specifically binds to a narrow central region (residues 275-288) of the SAS-6 coiled coil. This was supported by the crystal structure of the SAS-6 coiled-coil domain (CCD), which, together with mutagenesis studies, indicated that the association is mediated by synergistic hydrophobic and electrostatic interactions. The crystal structure also shows a periodic charge pattern along the SAS-6 CCD, which gives rise to an anti-parallel tetramer. Overall, our findings establish the molecular basis of the specific interaction between SAS-5 and SAS-6, and suggest that both proteins individually adopt an oligomeric conformation that is disrupted upon the formation of the hetero-complex to facilitate the correct assembly of the nine-fold symmetric centriole.
Collapse
Affiliation(s)
- Renping Qiao
- Max F Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | | | | | | | | |
Collapse
|
43
|
Abstract
Eukaryotic cilia/flagella are ancient organelles with motility and sensory functions. Cilia display significant ultrastructural conservation where present across the eukaryotic phylogeny; however, diversity in ciliary biology exists and the ability to produce cilia has been lost independently on a number of occasions. Land plants provide an excellent system for the investigation of cilia evolution and loss across a broad phylogeny, because early divergent land plant lineages produce cilia, whereas most seed plants do not. This review highlights the differences in cilia form and function across land plants and discusses how recent advances in genomics are providing novel insights into the evolutionary trajectory of ciliary proteins. We propose a renewed effort to adopt ciliated land plants as models to investigate the mechanisms underpinning complex ciliary processes, such as number control, the coordination of basal body placement and the regulation of beat patterns.
Collapse
Affiliation(s)
- Matthew E Hodges
- Department of Plant Sciences, South Parks Road, University of Oxford, Oxford OX1 3RB, UK
| | - Bill Wickstead
- Centre for Genetics and Genomics, University of Nottingham, Nottingham NG7 2UH, UK
| | - Keith Gull
- Sir William Dunn School of Pathology, South Parks Road, University of Oxford, Oxford OX1 3RE, UK
| | - Jane A Langdale
- Department of Plant Sciences, South Parks Road, University of Oxford, Oxford OX1 3RB, UK
| |
Collapse
|
44
|
Chichinadze K, Tkemaladze J, Lazarashvili A. Discovery of centrosomal RNA and centrosomal hypothesis of cellular ageing and differentiation. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2012; 31:172-83. [PMID: 22356233 DOI: 10.1080/15257770.2011.648362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In 2006, a group of scientists studying centrosomes of Spisula solidissima mollusc oocytes under the leadership of Alliegro (Alliegro, M.C.; Alliegro, M.A.; Palazzo, R.E. Centrosome-associated RNA in surf clam oocytes. Proc. Natl. Acad. Sci. USA 2006, 103(24), 9034-9038) reliably demonstrated the existence of specific RNA in centrosome, called centrosomal RNA (cnRNA). In their first article, five different RNAs (cnRNAs 11, 102, 113, 170, and 184) were described. During the process of full sequencing of the first transcript (cnRNA 11), it was discovered that the transcript contained a conserved structure-a reverse transcriptase domain located together with the most important centrosomal protein, γ-tubulin. In an article published in 2005, we made assumptions about several possible mechanisms for determining the most important functions of centrosomal structures and referred to one of them as a "RNA-dependent mechanism." This idea about participation of hypothetic centrosomal small interference RNA and/or microRNA in the process was made one year prior to the discovery of cnRNA by Alliegro's group. The discovery of specific RNA in a centrosome is indirect evidence of a centrosomal hypothesis of cellular ageing and differentiation. The presence of a reverse transcriptase domain in this type of RNA, together with its uniqueness and specificity, makes the centrosome a place of information storage and reproduction.
Collapse
|
45
|
Tubulin nucleotide status controls Sas-4-dependent pericentriolar material recruitment. Nat Cell Biol 2012; 14:865-73. [PMID: 22729084 PMCID: PMC3411905 DOI: 10.1038/ncb2527] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 05/18/2012] [Indexed: 12/22/2022]
Abstract
Regulated centrosome biogenesis is required for accurate cell division and for maintaining genome integrity1. Centrosomes consist of a centriole pair surrounded by a protein network known as pericentriolar material (PCM)1. PCM assembly is a tightly regulated, critical step that determines a centrosome’s size and capability2–4. Here, we report a role for tubulin in regulating PCM recruitment via the conserved centrosomal protein Sas-4. Tubulin directly binds to Sas-4; together they are components of cytoplasmic complexes of centrosomal proteins5,6. A Sas-4 mutant, which cannot bind tubulin, enhances centrosomal protein complex formation and has abnormally large centrosomes with excessive activity. These suggest that tubulin negatively regulates PCM recruitment. Whereas tubulin-GTP prevents Sas-4 from forming protein complexes, tubulin-GDP promotes it. Thus, tubulin’s regulation of PCM recruitment depends on its GTP/GDP-bound state. These results identify a role for tubulin in regulating PCM recruitment independent of its well-known role as a building block of microtubules7. Based on its guanine bound state, tubulin can act as a molecular switch in PCM recruitment.
Collapse
|
46
|
Abstract
The centriole is an evolutionarily conserved macromolecular structure that is crucial for the formation of flagella, cilia and centrosomes. The ultrastructure of the centriole was first characterized decades ago with the advent of electron microscopy, revealing a striking ninefold radial arrangement of microtubules. However, it is only recently that the molecular mechanisms governing centriole assembly have begun to emerge, including the elucidation of the crucial role of spindle assembly abnormal 6 (SAS-6) proteins in imparting the ninefold symmetry. These advances have brought the field to an exciting era in which architecture meets function.
Collapse
|
47
|
Peel N, Dougherty M, Goeres J, Liu Y, O'Connell KF. The C. elegans F-box proteins LIN-23 and SEL-10 antagonize centrosome duplication by regulating ZYG-1 levels. J Cell Sci 2012; 125:3535-44. [PMID: 22623721 DOI: 10.1242/jcs.097105] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The correct segregation of DNA during cell division requires formation of a bipolar spindle, organized at each pole by a centrosome. The regulation of centrosome duplication such that each mitotic cell has exactly two centrosomes is therefore of central importance to cell division. Deregulation of centrosome duplication causes the appearance of supernumerary centrosomes, which are a hallmark of many cancer cells and can contribute to tumorigenesis. Overexpression of the kinase Plk4, which is required for centrosome duplication, causes the formation of extra centrosomes, and aberrant Plk4 expression levels are associated with cancer. Data from Drosophila and human cells show that Plk4 levels are regulated by the SCF ubiquitin ligase and proteasomal degradation. Recognition of Plk4 by the SCF complex is mediated by the F-box protein Slimb/βTrCP. We show that levels of the C. elegans Plk4 homolog ZYG-1 are elevated by impairing proteasome or SCF function, indicating that ZYG-1 is regulated by a conserved mechanism. In C. elegans, similar to Drosophila and humans, we find that the Slimb/βTrCP homolog LIN-23 regulates ZYG-1 levels. In addition, we show that a second F-box protein, SEL-10, also contributes to ZYG-1 regulation. Co-depletion of LIN-23 and SEL-10 suggests these proteins function cooperatively. Because SEL-10 is the homolog of human FBW7, which is frequently mutated in cancer, our findings have implications for understanding tumorigenesis.
Collapse
Affiliation(s)
- Nina Peel
- Department of Biology, The College of New Jersey, Ewing, NJ 08628, USA.
| | | | | | | | | |
Collapse
|
48
|
Mikeladze-Dvali T, von Tobel L, Strnad P, Knott G, Leonhardt H, Schermelleh L, Gönczy P. Analysis of centriole elimination during C. elegans oogenesis. Development 2012; 139:1670-9. [PMID: 22492357 PMCID: PMC4074223 DOI: 10.1242/dev.075440] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/29/2012] [Indexed: 01/04/2023]
Abstract
Centrosomes are the principal microtubule organizing centers (MTOCs) of animal cells and comprise a pair of centrioles surrounded by pericentriolar material (PCM). Centriole number must be carefully regulated, notably to ensure bipolar spindle formation and thus faithful chromosome segregation. In the germ line of most metazoan species, centrioles are maintained during spermatogenesis, but eliminated during oogenesis. Such differential behavior ensures that the appropriate number of centrioles is present in the newly fertilized zygote. Despite being a fundamental feature of sexual reproduction in metazoans, the mechanisms governing centriole elimination during oogenesis are poorly understood. Here, we investigate this question in C. elegans. Using antibodies directed against centriolar components and serial-section electron microscopy, we establish that centrioles are eliminated during the diplotene stage of the meiotic cell cycle. Moreover, we show that centriole elimination is delayed upon depletion of the helicase CGH-1. We also find that somatic cells make a minor contribution to this process, and demonstrate that the germ cell karyotype is important for timely centriole elimination. These findings set the stage for a mechanistic dissection of centriole elimination in a metazoan organism.
Collapse
Affiliation(s)
| | | | | | - Graham Knott
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL) Lausanne, 1015 Switzerland
| | | | | | - Pierre Gönczy
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL) Lausanne, 1015 Switzerland
| |
Collapse
|
49
|
Mahen R, Venkitaraman AR. Pattern formation in centrosome assembly. Curr Opin Cell Biol 2012; 24:14-23. [PMID: 22245706 DOI: 10.1016/j.ceb.2011.12.012] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 12/21/2011] [Accepted: 12/23/2011] [Indexed: 01/01/2023]
Abstract
A striking but poorly explained feature of cell division is the ability to assemble and maintain organelles not bounded by membranes, from freely diffusing components in the cytosol. This process is driven by information transfer across biological scales such that interactions at the molecular scale allow pattern formation at the scale of the organelle. One important example of such an organelle is the centrosome, which is the main microtubule organising centre in the cell. Centrosomes consist of two centrioles surrounded by a cloud of proteins termed the pericentriolar material (PCM). Profound structural and proteomic transitions occur in the centrosome during specific cell cycle stages, underlying events such as centrosome maturation during mitosis, in which the PCM increases in size and microtubule nucleating capacity. Here we use recent insights into the spatio-temporal behaviour of key regulators of centrosomal maturation, including Polo-like kinase 1, CDK5RAP2 and Aurora-A, to propose a model for the assembly and maintenance of the PCM through the mobility and local interactions of its constituent proteins. We argue that PCM structure emerges as a pattern from decentralised self-organisation through a reaction-diffusion mechanism, with or without an underlying template, rather than being assembled from a central structural template alone. Self-organisation of this kind may have broad implications for the maintenance of mitotic structures, which, like the centrosome, exist stably as supramolecular assemblies on the micron scale, based on molecular interactions at the nanometer scale.
Collapse
Affiliation(s)
- Robert Mahen
- The Medical Research Council Cancer Cell Unit, Hutchison/MRC Research Centre, Hills Road, Cambridge, CB2 OXZ, United Kingdom.
| | | |
Collapse
|
50
|
O'Toole E, Greenan G, Lange KI, Srayko M, Müller-Reichert T. The role of γ-tubulin in centrosomal microtubule organization. PLoS One 2012; 7:e29795. [PMID: 22253783 PMCID: PMC3254605 DOI: 10.1371/journal.pone.0029795] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 12/03/2011] [Indexed: 12/29/2022] Open
Abstract
As part of a multi-subunit ring complex, γ-tubulin has been shown to promote microtubule nucleation both in vitro and in vivo, and the structural properties of the complex suggest that it also seals the minus ends of the polymers with a conical cap. Cells depleted of γ-tubulin, however, still display many microtubules that participate in mitotic spindle assembly, suggesting that γ-tubulin is not absolutely required for microtubule nucleation in vivo, and raising questions about the function of the minus end cap. Here, we assessed the role of γ-tubulin in centrosomal microtubule organisation using three-dimensional reconstructions of γ-tubulin-depleted C. elegans embryos. We found that microtubule minus-end capping and the PCM component SPD-5 are both essential for the proper placement of microtubules in the centrosome. Our results further suggest that γ-tubulin and SPD-5 limit microtubule polymerization within the centrosome core, and we propose a model for how abnormal microtubule organization at the centrosome could indirectly affect centriole structure and daughter centriole replication.
Collapse
Affiliation(s)
- Eileen O'Toole
- Boulder Laboratory for 3-D Electron Microscopy of Cells, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Garrett Greenan
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Karen I. Lange
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Martin Srayko
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|