1
|
Lu W, Lee BS, Deng HXY, Lakonishok M, Martin-Blanco E, Gelfand VI. 'Mitotic' kinesin-5 is a dynamic brake for axonal growth in Drosophila. Development 2025; 152:dev204424. [PMID: 40223510 DOI: 10.1242/dev.204424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 03/21/2025] [Indexed: 04/15/2025]
Abstract
During neuronal development, microtubule reorganization shapes axons and dendrites, establishing the framework for efficient nervous system wiring. Our previous work has demonstrated the role of kinesin-1 in driving microtubule sliding, which powers early axon outgrowth and regeneration in Drosophila melanogaster. Here, we reveal a crucial new role for kinesin-5, a mitotic motor, in modulating postmitotic neuron development. The Drosophila kinesin-5, Klp61F, is expressed in larval brain neurons, with high levels in ventral nerve cord (VNC) neurons. Knockdown of Klp61F in neurons leads to severe adult locomotion defects and lethality, primarily due to defects in VNC motor neurons. Klp61F depletion results in excessive microtubule penetration into the axon growth cone, causing significant axon growth defects in culture and in vivo. These defects are rescued by a chimeric human-Drosophila kinesin-5 motor, indicating a conserved role for kinesin-5 in neuronal development. Altogether, we propose that kinesin-5 acts as a brake on kinesin-1-driven microtubule sliding, ensuring proper axon pathfinding in growing neurons.
Collapse
Affiliation(s)
- Wen Lu
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Brad S Lee
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Helen Xue Ying Deng
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Margot Lakonishok
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Enrique Martin-Blanco
- Instituto de Biología Molecular de Barcelona, CSIC, Parc Cientific de Barcelona, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Vladimir I Gelfand
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
2
|
Spector JO, Chen J, Szczesna E, Roll-Mecak A. Multicamera simultaneous total internal reflection and interference reflection microscopy. J Microsc 2025; 298:10-16. [PMID: 39629928 DOI: 10.1111/jmi.13375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 11/13/2024] [Indexed: 12/11/2024]
Abstract
Interference Reflection Microscopy (IRM) is an optical technique that relies on the interference between the reflected light from an incident beam as it passes through materials of different refractive indices. This technique has been successfully used to image microtubules, biologically important biofilaments with a diameter of 25 nm. However, it is often desirable to image both the microtubule and microtubule interacting proteins simultaneously. Here we present a simple modification to a standard multicolour total internal reflection fluorescence (TIRF) microscope that enables simultaneous high-speed IRM and single molecule TIRF imaging. Our design utilises a camera for each channel (IRM and TIRF) allowing independent optimisation of camera parameters for the two different modalities. We illustrate its application by imaging unlabelled microtubules and GFP-labelled end-binding protein EB1, which forms comets on the tips of polymerising microtubules. Our design is easily implemented, and with minimal cost, making it accessible to any laboratory with an existing fluorescence microscope.
Collapse
Affiliation(s)
- Jeffrey O Spector
- Cell Biology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA
| | - Jiayi Chen
- Cell Biology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA
| | - Ewa Szczesna
- Cell Biology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA
- Proteomics Core Facility, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA
| | - Antonina Roll-Mecak
- Cell Biology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA
- Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, Bethesda, Maryland, USA
| |
Collapse
|
3
|
Estévez-Gallego J, Blum TB, Ruhnow F, Gili M, Speroni S, García-Castellanos R, Steinmetz MO, Surrey T. Hydrolysis-deficient mosaic microtubules as faithful mimics of the GTP cap. Nat Commun 2025; 16:2396. [PMID: 40064882 PMCID: PMC11893814 DOI: 10.1038/s41467-025-57555-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
A critical feature of microtubules is their GTP cap, a stabilizing GTP-tubulin rich region at growing microtubule ends. Microtubules polymerized in the presence of GTP analogs or from GTP hydrolysis-deficient tubulin mutants have been used as GTP-cap mimics for structural and biochemical studies. However, these analogs and mutants generate microtubules with diverse biochemical properties and lattice structures, leaving it unclear what is the most faithful GTP mimic and hence the structure of the GTP cap. Here, we generate a hydrolysis-deficient human tubulin mutant, αE254Q, with the smallest possible modification. We show that αE254Q-microtubules are stable, but still exhibit mild mutation-induced growth abnormalities. However, mixing two GTP hydrolysis-deficient tubulin mutants, αE254Q and αE254N, at an optimized ratio eliminates growth and lattice abnormalities, indicating that these 'mosaic microtubules' are faithful GTP cap mimics. Their cryo-electron microscopy structure reveals that longitudinal lattice expansion, but not protofilament twist, is the primary structural feature distinguishing the GTP-tubulin containing cap from the GDP-tubulin containing microtubule shaft. However, alterations in protofilament twist may be transiently needed to allow lattice compaction and GTP hydrolysis. Together, our results provide insights into the structural origin of GTP cap stability, the pathway of GTP hydrolysis and hence microtubule dynamic instability.
Collapse
Affiliation(s)
- Juan Estévez-Gallego
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen, Switzerland.
| | - Thorsten B Blum
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen, Switzerland
| | - Felix Ruhnow
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - María Gili
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Silvia Speroni
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Raquel García-Castellanos
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Michel O Steinmetz
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen, Switzerland
- University of Basel, Biozentrum, Basel, Switzerland
| | - Thomas Surrey
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- ICREA, Pg. Lluis Companys 23, Barcelona, Spain.
| |
Collapse
|
4
|
Zhang Y, He M, Pan J. Axonemal microtubule dynamics in the assembly and disassembly of cilia. Biochem Soc Trans 2025; 53:BST20240688. [PMID: 39889304 DOI: 10.1042/bst20240688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/28/2024] [Accepted: 12/23/2024] [Indexed: 02/02/2025]
Abstract
Cilia and eukaryotic flagella (exchangeable terms) function in cell motility and signaling, which are pivotal for development and physiology. Cilia dysfunction can lead to ciliopathies. Cilia are usually assembled in quiescent and/or differentiated cells and undergo disassembly when cells enter cell cycle or in response to environmental stresses. Cilia contain a microtubule-based structure termed axoneme that comprises nine outer doublet microtubules with or without a pair of central microtubules, which is ensheathed by the ciliary membrane. Regulation of the axonemal microtubule dynamics is tightly associated with ciliary assembly and disassembly. In this short review, we discuss recent findings on the regulation of axonemal microtubules by microtubule-binding proteins and microtubule modulating kinesins during ciliary assembly and disassembly.
Collapse
Affiliation(s)
- Yi Zhang
- MOE Key Laboratory of Protein Sciences,State Key Laboratory of Complex, Severe, and Rare Diseases, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Mu He
- School of Biomedical Sciences, The University of Hong Kong, Hongkong, China
| | - Junmin Pan
- MOE Key Laboratory of Protein Sciences,State Key Laboratory of Complex, Severe, and Rare Diseases, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| |
Collapse
|
5
|
Czub MP, Uliana F, Grubić T, Padeste C, Rosowski KA, Lorenz C, Dufresne ER, Menzel A, Vakonakis I, Gasser U, Steinmetz MO. Phase separation of a microtubule plus-end tracking protein into a fluid fractal network. Nat Commun 2025; 16:1165. [PMID: 39885130 PMCID: PMC11782662 DOI: 10.1038/s41467-025-56468-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 01/20/2025] [Indexed: 02/01/2025] Open
Abstract
Microtubule plus-end tracking proteins (+TIPs) participate in nearly all microtubule-based cellular processes and have recently been proposed to function as liquid condensates. However, their formation and internal organization remain poorly understood. Here, we have study the phase separation of Bik1, a CLIP-170 family member and key +TIP involved in budding yeast cell division. Bik1 is a dimer with a rod-shaped conformation primarily defined by its central coiled-coil domain. Its liquid condensation likely involves the formation of higher-order oligomers that phase separate in a manner dependent on the protein's N-terminal CAP-Gly domain and C-terminal EEY/F-like motif. This process is accompanied by conformational rearrangements in Bik1, leading to at least a two-fold increase in multivalent interactions between its folded and disordered domains. Unlike classical liquids, Bik1 condensates exhibit a heterogeneous, fractal supramolecular structure with protein- and solvent-rich regions. This structural evidence supports recent percolation-based models of biomolecular condensates. Together, our findings offer insights into the structure, dynamic rearrangement, and organization of a complex, oligomeric, and multidomain protein in both dilute and condensed states. Our experimental framework can be applied to other biomolecular condensates, including more complex +TIP networks.
Collapse
Affiliation(s)
| | - Federico Uliana
- Institute of Biochemistry, Department of Biology, ETH Zürich, Zürich, Switzerland
- Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Tarik Grubić
- PSI Center for Life Sciences, Villigen PSI, Switzerland
| | | | - Kathryn A Rosowski
- Department of Materials, ETH Zürich, Zürich, Switzerland
- Roche Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Charlotta Lorenz
- Department of Materials, ETH Zürich, Zürich, Switzerland
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Eric R Dufresne
- Department of Materials, ETH Zürich, Zürich, Switzerland
- Department of Materials Science and Engineering, Department of Physics, Cornell University, Ithaca, NY, USA
| | - Andreas Menzel
- PSI Center for Photon Science, Villigen PSI, Switzerland
| | - Ioannis Vakonakis
- Department of Biochemistry, University of Oxford, Oxford, UK
- Lonza Biologics, Microbial Development, Visp, Switzerland
| | - Urs Gasser
- PSI Center for Neutron and Muon Sciences, Villigen PSI, Switzerland
| | - Michel O Steinmetz
- PSI Center for Life Sciences, Villigen PSI, Switzerland.
- University of Basel, Biozentrum, Basel, Switzerland.
| |
Collapse
|
6
|
Saunders HAJ, van den Berg CM, Hoogebeen RA, Schweizer D, Stecker KE, Roepman R, Howes SC, Akhmanova A. A network of interacting ciliary tip proteins with opposing activities imparts slow and processive microtubule growth. Nat Struct Mol Biol 2025:10.1038/s41594-025-01483-y. [PMID: 39856351 DOI: 10.1038/s41594-025-01483-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025]
Abstract
Cilia are motile or sensory organelles present on many eukaryotic cells. Their formation and function rely on axonemal microtubules, which exhibit very slow dynamics, but the underlying mechanisms are largely unexplored. Here we reconstituted in vitro the individual and collective activities of the ciliary tip module proteins CEP104, CSPP1, TOGARAM1, ARMC9 and CCDC66, which interact with each other and with microtubules and, when mutated in humans, cause ciliopathies such as Joubert syndrome. We show that CEP104, a protein with a tubulin-binding TOG domain, and its luminal partner CSPP1 inhibit microtubule growth and shortening. Another TOG-domain protein, TOGARAM1, overcomes growth inhibition imposed by CEP104 and CSPP1. CCDC66 and ARMC9 do not affect microtubule dynamics but act as scaffolds for their partners. Cryo-electron tomography demonstrated that, together, ciliary tip module members form plus-end-specific cork-like structures that reduce protofilament flaring. The combined effect of these proteins is very slow processive microtubule elongation, which recapitulates axonemal dynamics in cells.
Collapse
Affiliation(s)
- Harriet A J Saunders
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Cyntha M van den Berg
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Robin A Hoogebeen
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Donna Schweizer
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Kelly E Stecker
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
- Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Ronald Roepman
- Department of Human Genetics, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Stuart C Howes
- Structural Biochemistry, Department of Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Anna Akhmanova
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
7
|
Kim SK, Rogers SL, Lu W, Lee BS, Gelfand VI. EB-SUN, a new microtubule plus-end tracking protein in Drosophila. Mol Biol Cell 2024; 35:ar147. [PMID: 39475714 PMCID: PMC11656466 DOI: 10.1091/mbc.e24-09-0402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 11/06/2024] Open
Abstract
Microtubule (MT) regulation is essential for oocyte development. In Drosophila, MT stability, polarity, abundance, and orientation undergo dynamic changes across developmental stages. In our effort to identify novel microtubule-associated proteins that regulate MTs in the Drosophila ovary, we identified a previously uncharacterized gene, CG18190, which encodes a novel MT end-binding (EB) protein, which we propose to name EB-SUN. We show that EB-SUN colocalizes with EB1 at growing MT plus-ends in Drosophila S2 cells. Tissue-specific and developmental expression profiles from Paralog Explorer reveal that EB-SUN is predominantly expressed in the ovary and early embryos, while EB1 is ubiquitously expressed. Furthermore, as early as oocyte determination, EB-SUN comets are highly concentrated in oocytes during oogenesis. EB-SUN knockout (KO) results in decreased MT density at the onset of mid-oogenesis (stage 7) and delays oocyte growth during late mid-oogenesis (stage 9). Combining EB-SUN KO with EB1 knockdown (KD) in germ cells significantly further reduces MT density at stage 7. Hatching assays of single protein depletion reveal distinct roles for EB-SUN and EB1 in early embryogenesis, likely due to differences in their expression and binding partners. Notably, all eggs from EB-SUN KO/EB1 KD females fail to hatch, suggesting partial redundancy between these proteins.
Collapse
Affiliation(s)
- Sun K. Kim
- Department of Cell and Developmental Biology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611-3008
| | - Stephen L. Rogers
- Department of Biology, Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Wen Lu
- Department of Cell and Developmental Biology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611-3008
| | - Brad S. Lee
- Department of Cell and Developmental Biology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611-3008
| | - Vladimir I. Gelfand
- Department of Cell and Developmental Biology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611-3008
| |
Collapse
|
8
|
Lu W, Lee BS, Deng HXY, Lakonishok M, Martin-Blanco E, Gelfand VI. "Mitotic" kinesin-5 is a dynamic brake for axonal growth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.12.612721. [PMID: 39314406 PMCID: PMC11419024 DOI: 10.1101/2024.09.12.612721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
During neuronal development, neurons undergo significant microtubule reorganization to shape axons and dendrites, establishing the framework for efficient wiring of the nervous system. Previous studies from our laboratory demonstrated the key role of kinesin-1 in driving microtubule-microtubule sliding, which provides the mechanical forces necessary for early axon outgrowth and regeneration in Drosophila melanogaster. In this study, we reveal the critical role of kinesin-5, a mitotic motor, in modulating the development of postmitotic neurons. Kinesin-5, a conserved homotetrameric motor, typically functions in mitosis by sliding antiparallel microtubules apart in the spindle. Here, we demonstrate that the Drosophila kinesin-5 homolog, Klp61F, is expressed in larval brain neurons, with high levels in ventral nerve cord (VNC) neurons. Knockdown of Klp61F using a pan-neuronal driver leads to severe locomotion defects and complete lethality in adult flies, mainly due to the absence of kinesin-5 in VNC motor neurons during early larval development. Klp61F depletion results in significant axon growth defects, both in cultured and in vivo neurons. By imaging individual microtubules, we observe a significant increase in microtubule motility, and excessive penetration of microtubules into the axon growth cone in Klp61F-depleted neurons. Adult lethality and axon growth defects are fully rescued by a chimeric human-Drosophila kinesin-5 motor, which accumulates at the axon tips, suggesting a conserved role of kinesin-5 in neuronal development. Altogether, our findings show that at the growth cone, kinesin-5 acts as a brake on kinesin-1-driven microtubule sliding, preventing premature microtubule entry into the growth cone. This regulatory role of kinesin-5 is essential for precise axon pathfinding during nervous system development.
Collapse
Affiliation(s)
- Wen Lu
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Brad S. Lee
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Helen Xue Ying Deng
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Margot Lakonishok
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Enrique Martin-Blanco
- Instituto de Biología Molecular de Barcelona, CSIC, Parc Cientific de Barcelona, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Vladimir I. Gelfand
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
9
|
Kim SK, Rogers SL, Lu W, Lee BS, Gelfand VI. EB-SUN, a New Microtubule Plus-End Tracking Protein in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.11.612465. [PMID: 39314338 PMCID: PMC11419005 DOI: 10.1101/2024.09.11.612465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Microtubule (MT) regulation is essential for oocyte development. In Drosophila, MT stability, polarity, abundance, and orientation undergo dynamic changes across developmental stages. In our effort to identify novel microtubule-associated proteins (MAPs) that regulate MTs in the Drosophila ovary, we identified a previously uncharacterized gene, CG18190, encoding a novel MT end-binding (EB) protein, which we propose to name EB-SUN. We show that EB-SUN colocalizes with EB1 at growing microtubule plus-ends in Drosophila S2 cells. Tissue-specific and developmental expression profiles from Paralog Explorer reveal that EB-SUN is predominantly expressed in the ovary and early embryos, while EB1 is ubiquitously expressed. Furthermore, as early as oocyte determination, EB-SUN comets are highly concentrated in oocytes during oogenesis. EB-SUN knockout (KO) results in a decrease in MT density at the onset of mid-oogenesis (Stage 7) and delays oocyte growth during late mid-oogenesis (Stage 9). Combining EB-SUN KO with EB1 knockdown (KD) in germ cells significantly further reduced MT density at Stage 7. Notably, all eggs from EB-SUN KO/EB1 KD females fail to hatch, unlike single gene depletion, suggesting a functional redundancy between these two EB proteins during embryogenesis. Our findings indicate that EB-SUN and EB1 play distinct roles during early embryogenesis.
Collapse
Affiliation(s)
- Sun K Kim
- Northwestern University, Feinberg School of Medicine, Department of Cell and Developmental Biology Chicago, IL 60611-3008
| | - Stephen L Rogers
- Department of Biology, Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Wen Lu
- Northwestern University, Feinberg School of Medicine, Department of Cell and Developmental Biology Chicago, IL 60611-3008
| | - Brad S Lee
- Northwestern University, Feinberg School of Medicine, Department of Cell and Developmental Biology Chicago, IL 60611-3008
| | - Vladimir I Gelfand
- Northwestern University, Feinberg School of Medicine, Department of Cell and Developmental Biology Chicago, IL 60611-3008
| |
Collapse
|
10
|
Spector JO, Chen J, Roll-Mecak A. Multi-camera Simultaneous Total Internal Reflection and Interference Reflection Microscopy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.28.610099. [PMID: 39372801 PMCID: PMC11451753 DOI: 10.1101/2024.08.28.610099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Interference Reflection Microscopy (IRM) is an optical technique that relies on the interference between the reflected light from an incident beam as it passes through materials of different refractive indices. This technique has been successfully used to image microtubules, biologically important biofilaments with a diameter of 25 nm. However, it is often desirable to image both the microtubule and microtubule interacting proteins simultaneously. Here we present a simple modification to a standard multi-color total internal reflection fluorescence (TIRF) microscope that enables simultaneous high-speed IRM and single molecule TIRF imaging. Our design utilizes a camera for each channel (IRM and TIRF) allowing independent optimization of camera parameters for the two different modalities. We illustrate its application by imaging unlabeled microtubules and GFP-labeled end-binding protein EB1 which forms comets on the tips of polymerizing microtubules. Our design is easily implemented, and with minimal cost, making it accessible to any laboratory with an existing fluorescence microscope.
Collapse
Affiliation(s)
- Jeffrey O. Spector
- Cell Biology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, U.S.A
| | - Jiayi Chen
- Cell Biology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, U.S.A
| | - Antonina Roll-Mecak
- Cell Biology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, U.S.A
- Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, Bethesda, MD 20892, U.S.A
| |
Collapse
|
11
|
Wang Z, Wang W, Liu S, Yang F, Liu X, Hua S, Zhu L, Xu A, Hill DL, Wang D, Jiang K, Lippincott-Schwartz J, Liu X, Yao X. CSPP1 stabilizes microtubules by capping both plus and minus ends. J Mol Cell Biol 2024; 16:mjae007. [PMID: 38389254 PMCID: PMC11285173 DOI: 10.1093/jmcb/mjae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/11/2023] [Accepted: 02/21/2024] [Indexed: 02/24/2024] Open
Abstract
Although the dynamic instability of microtubules (MTs) is fundamental to many cellular functions, quiescent MTs with unattached free distal ends are commonly present and play important roles in various events to power cellular dynamics. However, how these free MT tips are stabilized remains poorly understood. Here, we report that centrosome and spindle pole protein 1 (CSPP1) caps and stabilizes both plus and minus ends of static MTs. Real-time imaging of laser-ablated MTs in live cells showed deposition of CSPP1 at the newly generated MT ends, whose dynamic instability was concomitantly suppressed. Consistently, MT ends in CSPP1-overexpressing cells were hyper-stabilized, while those in CSPP1-depleted cells were much more dynamic. This CSPP1-elicited stabilization of MTs was demonstrated to be achieved by suppressing intrinsic MT catastrophe and restricting polymerization. Importantly, CSPP1-bound MTs were resistant to mitotic centromere-associated kinesin-mediated depolymerization. These findings delineate a previously uncharacterized CSPP1 activity that integrates MT end capping to orchestrate quiescent MTs.
Collapse
Affiliation(s)
- Zhikai Wang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Hefei 230027, China
| | - Wenwen Wang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Hefei 230027, China
| | - Shuaiyu Liu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Hefei 230027, China
| | - Fengrui Yang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Hefei 230027, China
| | - Xu Liu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Hefei 230027, China
| | - Shasha Hua
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Lijuan Zhu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Hefei 230027, China
| | - Aoqing Xu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Hefei 230027, China
| | - Donald L Hill
- Comprehensive Cancer Center, University of Alabama, Birmingham, AL 35233, USA
| | - Dongmei Wang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Hefei 230027, China
| | - Kai Jiang
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan 430071, China
| | | | - Xing Liu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Hefei 230027, China
| | - Xuebiao Yao
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
| |
Collapse
|
12
|
Meier SM, Steinmetz MO, Barral Y. Microtubule specialization by +TIP networks: from mechanisms to functional implications. Trends Biochem Sci 2024; 49:318-332. [PMID: 38350804 DOI: 10.1016/j.tibs.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/23/2023] [Accepted: 01/12/2024] [Indexed: 02/15/2024]
Abstract
To fulfill their actual cellular role, individual microtubules become functionally specialized through a broad range of mechanisms. The 'search and capture' model posits that microtubule dynamics and functions are specified by cellular targets that they capture (i.e., a posteriori), independently of the microtubule-organizing center (MTOC) they emerge from. However, work in budding yeast indicates that MTOCs may impart a functional identity to the microtubules they nucleate, a priori. Key effectors in this process are microtubule plus-end tracking proteins (+TIPs), which track microtubule tips to regulate their dynamics and facilitate their targeted interactions. In this review, we discuss potential mechanisms of a priori microtubule specialization, focusing on recent findings indicating that +TIP networks may undergo liquid biomolecular condensation in different cell types.
Collapse
Affiliation(s)
- Sandro M Meier
- Institute of Biochemistry, Department of Biology, and Bringing Materials to Life Initiative, ETH Zürich, Switzerland; Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen, Switzerland; Bringing Materials to Life Initiative, ETH Zürich, Switzerland
| | - Michel O Steinmetz
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen, Switzerland; University of Basel, Biozentrum, CH-4056 Basel, Switzerland.
| | - Yves Barral
- Institute of Biochemistry, Department of Biology, and Bringing Materials to Life Initiative, ETH Zürich, Switzerland; Bringing Materials to Life Initiative, ETH Zürich, Switzerland.
| |
Collapse
|
13
|
Venkatramani A, Ashtam A, Panda D. EB1 Increases the Dynamics of Tau Droplets and Inhibits Tau Aggregation: Implications in Tauopathies. ACS Chem Neurosci 2024; 15:1219-1233. [PMID: 38445984 DOI: 10.1021/acschemneuro.3c00815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024] Open
Abstract
EB1, a microtubule plus end-tracking protein (+TIP), regulates microtubule dynamics. Recent evidence indicates cross-talk between EB proteins and tau, a microtubule-associated neuronal protein that is important for the growth and stability of microtubules. We investigated the interaction between tau and EB1 and the effect of binding of EB1 on tau function and aggregation. EB1 colocalized with tau in SH-SY5Y cells and coimmunoprecipitated with tau. Further, purified EB1 impaired the ability of adult tau to induce tubulin polymerization in vitro. EB1 bound to tau with a dissociation constant of 2.5 ± 0.7 μM. EB1 reduced heparin-induced tau aggregation with a half-maximal inhibitory concentration of 4.3 ± 0.2 μM, and increased the dynamics of tau in phase-separated droplets. The fluorescence recovery rate in tau droplets increased from 0.02 ± 0.01 to 0.07 ± 0.03 s-1, while the half-time of recovery decreased from 44.5 ± 14 to 13.5 ± 6 s in the presence of 8 μM EB1, suggesting a delay in the transition of tau from the soluble to aggregated form in tau liquid-liquid phase separation. EB1 decreased the rate of aggregation and increased the critical concentration of tau aggregation. Dynamic light scattering, atomic force microscopy, dot blot assays, and SDS-PAGE analysis showed that EB1 inhibited the formation of oligomers and higher-order aggregates of tau. The data suggest a novel role for EB1 as a regulator of tau function and aggregation, and the findings indicated the role of the EB family proteins in neuronal function and neurodegeneration.
Collapse
Affiliation(s)
- Anuradha Venkatramani
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Anvesh Ashtam
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Dulal Panda
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
- National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160062, India
| |
Collapse
|
14
|
Brito C, Serna M, Guerra P, Llorca O, Surrey T. Transition of human γ-tubulin ring complex into a closed conformation during microtubule nucleation. Science 2024; 383:870-876. [PMID: 38305685 DOI: 10.1126/science.adk6160] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/22/2024] [Indexed: 02/03/2024]
Abstract
Microtubules are essential for intracellular organization and chromosome segregation. They are nucleated by the γ-tubulin ring complex (γTuRC). However, isolated vertebrate γTuRC adopts an open conformation that deviates from the microtubule structure, raising the question of the nucleation mechanism. In this study, we determined cryo-electron microscopy structures of human γTuRC bound to a nascent microtubule. Structural changes of the complex into a closed conformation ensure that γTuRC templates the 13-protofilament microtubules that exist in human cells. Closure is mediated by a latch that interacts with incorporating tubulin, making it part of the closing mechanism. Further rearrangements involve all γTuRC subunits and the removal of the actin-containing luminal bridge. Our proposed mechanism of microtubule nucleation by human γTuRC relies on large-scale structural changes that are likely the target of regulation in cells.
Collapse
Affiliation(s)
- Cláudia Brito
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Marina Serna
- Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Pablo Guerra
- Cryo-Electron Microscopy Platform-IBMB CSIC, Joint Electron Microscopy Center at ALBA (JEMCA), Barcelona, Spain
| | - Oscar Llorca
- Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Thomas Surrey
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
15
|
Gonzalez SJ, Heckel JM, Goldblum RR, Reid TA, McClellan M, Gardner MK. Rapid binding to protofilament edge sites facilitates tip tracking of EB1 at growing microtubule plus-ends. eLife 2024; 13:e91719. [PMID: 38385657 PMCID: PMC10883673 DOI: 10.7554/elife.91719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/31/2024] [Indexed: 02/23/2024] Open
Abstract
EB1 is a key cellular protein that delivers regulatory molecules throughout the cell via the tip-tracking of growing microtubule plus-ends. Thus, it is important to understand the mechanism for how EB1 efficiently tracks growing microtubule plus-ends. It is widely accepted that EB1 binds with higher affinity to GTP-tubulin subunits at the growing microtubule tip, relative to GDP-tubulin along the microtubule length. However, it is unclear whether this difference in affinity alone is sufficient to explain the tip-tracking of EB1 at growing microtubule tips. Previously, we found that EB1 binds to exposed microtubule protofilament-edge sites at a ~70 fold faster rate than to closed-lattice sites, due to diffusional steric hindrance to binding. Thus, we asked whether rapid protofilament-edge binding could contribute to efficient EB1 tip tracking. A computational simulation with differential EB1 on-rates based on closed-lattice or protofilament-edge binding, and with EB1 off-rates that were dependent on the tubulin hydrolysis state, robustly recapitulated experimental EB1 tip tracking. To test this model, we used cell-free biophysical assays, as well as live-cell imaging, in combination with a Designed Ankyrin Repeat Protein (DARPin) that binds exclusively to protofilament-edge sites, and whose binding site partially overlaps with the EB1 binding site. We found that DARPin blocked EB1 protofilament-edge binding, which led to a decrease in EB1 tip tracking on dynamic microtubules. We conclude that rapid EB1 binding to microtubule protofilament-edge sites contributes to robust EB1 tip tracking at the growing microtubule plus-end.
Collapse
Affiliation(s)
- Samuel J Gonzalez
- Department of Genetics, Cell Biology, and Development, University of MinnesotaMinneapolisUnited States
| | - Julia M Heckel
- Department of Genetics, Cell Biology, and Development, University of MinnesotaMinneapolisUnited States
| | - Rebecca R Goldblum
- Department of Biophysics, Molecular Biology, and Biochemistry, University of MinnesotaMinneapolisUnited States
- Medical Scientist Training Program, University of MinnesotaMinneapolisUnited States
| | - Taylor A Reid
- Department of Genetics, Cell Biology, and Development, University of MinnesotaMinneapolisUnited States
| | - Mark McClellan
- Department of Genetics, Cell Biology, and Development, University of MinnesotaMinneapolisUnited States
| | - Melissa K Gardner
- Department of Genetics, Cell Biology, and Development, University of MinnesotaMinneapolisUnited States
| |
Collapse
|
16
|
Mao H, Wang L, Wang Y, Feng P, Song J, Jia B, Yang S, Zhang W, Wu M, Pei W, Ma J, Zhang B, Yu J. EB1C forms dimer and interacts with protein phosphatase 2A (PP2A) to regulate fiber elongation in upland cotton (Gossypium hirsutum). Int J Biol Macromol 2024; 256:128036. [PMID: 37972829 DOI: 10.1016/j.ijbiomac.2023.128036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
Cotton is the most economically important natural fiber crop grown in more than sixty-five countries of the world. Fiber length is the main factor affecting fiber quality, but the existing main varieties are short in length and cannot suit the higher demands of the textile industry. It is necessary to discover functional genes that enable fiber length improvement in cotton through molecular breeding. In this study, overexpression of GhEB1C in Arabidopsis thaliana significantly promotes trichomes, tap roots, and root hairs elongation. The molecular regulation of GhEB1C involves its interactions with itself and GhB'ETA, and the function of GhEB1C regulation mainly depends on the two cysteine residues located at the C-terminal. In particular, the function activity of GhEB1C protein triggered with the regulation of protein phosphatase 2A, while silencing of GhEB1C in cotton significantly influenced the fiber protrusions and elongation mechanisms., Further, influenced the expression of MYB-bHLH-WD40 complex, brassinosteroids, and jasmonic acid-related genes, which showed that transcriptional regulation of GhEB1C is indispensable for cotton fiber formation and elongation processes. Our study analyzed the brief molecular mechanism of GhEB1C regulation. Further elucidated that GhEB1C can be a potential target gene to improve cotton fiber length through transgenic breeding.
Collapse
Affiliation(s)
- Haoming Mao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Li Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Yanwen Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Pan Feng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Jikun Song
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Bing Jia
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Shuxian Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Wenqing Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Man Wu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Wenfeng Pei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Jianjiang Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Bingbing Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Jiwen Yu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
17
|
Danziger M, Xu F, Noble H, Yang P, Roque DM. Tubulin Complexity in Cancer and Metastasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1452:21-35. [PMID: 38805123 DOI: 10.1007/978-3-031-58311-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Tubulin plays a fundamental role in cellular function and as the subject for microtubule-active agents in the treatment of ovarian cancer. Microtubule-binding proteins (e.g., tau, MAP1/2/4, EB1, CLIP, TOG, survivin, stathmin) and posttranslational modifications (e.g., tyrosination, deglutamylation, acetylation, glycation, phosphorylation, polyamination) further diversify tubulin functionality and may permit additional opportunities to understand microtubule behavior in disease and to develop microtubule-modifying approaches to combat ovarian cancer. Tubulin-based structures that project from suspended ovarian cancer cells known as microtentacles may contribute to metastatic potential of ovarian cancer cells and could represent an exciting novel therapeutic target.
Collapse
Affiliation(s)
- Michael Danziger
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Fuhua Xu
- Division of Gynecologic Oncology, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Helen Noble
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Peixin Yang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Dana M Roque
- Division of Gynecologic Oncology, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
18
|
Volkov VA, Akhmanova A. Phase separation on microtubules: from droplet formation to cellular function? Trends Cell Biol 2024; 34:18-30. [PMID: 37453878 DOI: 10.1016/j.tcb.2023.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023]
Abstract
Microtubules are cytoskeletal polymers that play important roles in numerous cellular processes, ranging from the control of cell shape and polarity to cell division and intracellular transport. Many of these roles rely on proteins that bind to microtubule ends and shafts, carry intrinsically disordered regions, and form complex multivalent interaction networks. A flurry of recent studies demonstrated that these properties allow diverse microtubule-binding proteins to undergo liquid-liquid phase separation (LLPS) in vitro. It is proposed that LLPS could potentially affect multiple microtubule-related processes, such as microtubule nucleation, control of microtubule dynamics and organization, and microtubule-based transport. Here, we discuss the evidence in favor and against the occurrence of LLPS and its functional significance for microtubule-based processes in cells.
Collapse
Affiliation(s)
- Vladimir A Volkov
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, E1 4NS, UK.
| | - Anna Akhmanova
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584 CH, The Netherlands.
| |
Collapse
|
19
|
Lawrence EJ, Chatterjee S, Zanic M. More is different: Reconstituting complexity in microtubule regulation. J Biol Chem 2023; 299:105398. [PMID: 37898404 PMCID: PMC10694663 DOI: 10.1016/j.jbc.2023.105398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 10/30/2023] Open
Abstract
Microtubules are dynamic cytoskeletal filaments that undergo stochastic switching between phases of polymerization and depolymerization-a behavior known as dynamic instability. Many important cellular processes, including cell motility, chromosome segregation, and intracellular transport, require complex spatiotemporal regulation of microtubule dynamics. This coordinated regulation is achieved through the interactions of numerous microtubule-associated proteins (MAPs) with microtubule ends and lattices. Here, we review the recent advances in our understanding of microtubule regulation, focusing on results arising from biochemical in vitro reconstitution approaches using purified multiprotein ensembles. We discuss how the combinatory effects of MAPs affect both the dynamics of individual microtubule ends, as well as the stability and turnover of the microtubule lattice. In addition, we highlight new results demonstrating the roles of protein condensates in microtubule regulation. Our overall intent is to showcase how lessons learned from reconstitution approaches help unravel the regulatory mechanisms at play in complex cellular environments.
Collapse
Affiliation(s)
- Elizabeth J Lawrence
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Saptarshi Chatterjee
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Marija Zanic
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA; Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee, USA; Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA.
| |
Collapse
|
20
|
Lu W, Lakonishok M, Gelfand VI. The dynamic duo of microtubule polymerase Mini spindles/XMAP215 and cytoplasmic dynein is essential for maintaining Drosophila oocyte fate. Proc Natl Acad Sci U S A 2023; 120:e2303376120. [PMID: 37722034 PMCID: PMC10523470 DOI: 10.1073/pnas.2303376120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/11/2023] [Indexed: 09/20/2023] Open
Abstract
In many species, only one oocyte is specified among a group of interconnected germline sister cells. In Drosophila melanogaster, 16 interconnected cells form a germline cyst, where one cell differentiates into an oocyte, while the rest become nurse cells that supply the oocyte with mRNAs, proteins, and organelles through intercellular cytoplasmic bridges named ring canals via microtubule-based transport. In this study, we find that a microtubule polymerase Mini spindles (Msps), the Drosophila homolog of XMAP215, is essential for maintenance of the oocyte specification. mRNA encoding Msps is transported and concentrated in the oocyte by dynein-dependent transport along microtubules. Translated Msps stimulates microtubule polymerization in the oocyte, causing more microtubule plus ends to grow from the oocyte through the ring canals into nurse cells, further enhancing nurse cell-to-oocyte transport by dynein. Knockdown of msps blocks the oocyte growth and causes gradual loss of oocyte determinants. Thus, the Msps-dynein duo creates a positive feedback loop, ensuring oocyte fate maintenance by promoting high microtubule polymerization activity in the oocyte, and enhancing dynein-dependent nurse cell-to-oocyte transport.
Collapse
Affiliation(s)
- Wen Lu
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| | - Margot Lakonishok
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| | - Vladimir I. Gelfand
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| |
Collapse
|
21
|
Park J, Xie Y, Miller KG, De Camilli P, Yogev S. End-binding protein 1 promotes specific motor-cargo association in the cell body prior to axonal delivery of dense core vesicles. Curr Biol 2023; 33:3851-3864.e7. [PMID: 37586371 PMCID: PMC10529979 DOI: 10.1016/j.cub.2023.07.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/25/2023] [Accepted: 07/25/2023] [Indexed: 08/18/2023]
Abstract
Axonal transport is key to neuronal function. Efficient transport requires specific motor-cargo association in the soma, yet the mechanisms regulating this early step remain poorly understood. We found that EBP-1, the C. elegans ortholog of the canonical-microtubule-end-binding protein EB1, promotes the specific association between kinesin-3/KIF1A/UNC-104 and dense core vesicles (DCVs) prior to their axonal delivery. Using single-neuron, in vivo labeling of endogenous cargo and EBs, we observed reduced axonal abundance and reduced secretion of DCV cargo, but not other KIF1A/UNC-104 cargoes, in ebp-1 mutants. This reduction could be traced back to fewer exit events from the cell body, where EBP-1 colocalized with the DCV sorting machinery at the trans Golgi, suggesting that this is the site of EBP-1 function. EBP-1 calponin homology (CH) domain was required for directing microtubule growth on the Golgi, and mammalian EB1 interacted with KIF1A in an EBH-domain-dependent manner. Loss- and gain-of-function experiments suggest a model in which both kinesin-3 binding and guidance of microtubule growth at the trans Golgi by EBP-1 promote motor-cargo association at sites of DCV biogenesis. In support of this model, tethering either EBP-1 or a kinesin-3/KIF1A/UNC-104-interacting domain from an unrelated protein to the Golgi restored the axonal abundance of DCV proteins in ebp-1 mutants. These results uncover an unexpected role for a microtubule-associated protein and provide insights into how specific kinesin-3 cargo is delivered to the axon.
Collapse
Affiliation(s)
- Junhyun Park
- Department of Neuroscience, Yale School of Medicine, 295 Congress Ave, New Haven, CT 06510, USA
| | - Yi Xie
- Department of Neuroscience, Yale School of Medicine, 295 Congress Ave, New Haven, CT 06510, USA
| | - Kenneth G Miller
- Genetic Models of Disease Laboratory, Oklahoma Medical Research Foundation, 825 N. E. 13th St, Oklahoma City, OK 73104, USA
| | - Pietro De Camilli
- Department of Neuroscience, Yale School of Medicine, 295 Congress Ave, New Haven, CT 06510, USA; Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Cell Biology, Yale School of Medicine, 295 Congress Ave, New Haven, CT 06510, USA; Howard Hughes Medical Institute, Yale University School of Medicine, 295 Congress Ave, New Haven, CT 06510, USA
| | - Shaul Yogev
- Department of Neuroscience, Yale School of Medicine, 295 Congress Ave, New Haven, CT 06510, USA; Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
22
|
Zeeshan M, Rea E, Abel S, Vukušić K, Markus R, Brady D, Eze A, Rashpa R, Balestra AC, Bottrill AR, Brochet M, Guttery DS, Tolić IM, Holder AA, Le Roch KG, Tromer EC, Tewari R. Plasmodium ARK2 and EB1 drive unconventional spindle dynamics, during chromosome segregation in sexual transmission stages. Nat Commun 2023; 14:5652. [PMID: 37704606 PMCID: PMC10499817 DOI: 10.1038/s41467-023-41395-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 08/30/2023] [Indexed: 09/15/2023] Open
Abstract
The Aurora family of kinases orchestrates chromosome segregation and cytokinesis during cell division, with precise spatiotemporal regulation of its catalytic activities by distinct protein scaffolds. Plasmodium spp., the causative agents of malaria, are unicellular eukaryotes with three unique and highly divergent aurora-related kinases (ARK1-3) that are essential for asexual cellular proliferation but lack most canonical scaffolds/activators. Here we investigate the role of ARK2 during sexual proliferation of the rodent malaria Plasmodium berghei, using a combination of super-resolution microscopy, mass spectrometry, and live-cell fluorescence imaging. We find that ARK2 is primarily located at spindle microtubules in the vicinity of kinetochores during both mitosis and meiosis. Interactomic and co-localisation studies reveal several putative ARK2-associated interactors including the microtubule-interacting protein EB1, together with MISFIT and Myosin-K, but no conserved eukaryotic scaffold proteins. Gene function studies indicate that ARK2 and EB1 are complementary in driving endomitotic division and thereby parasite transmission through the mosquito. This discovery underlines the flexibility of molecular networks to rewire and drive unconventional mechanisms of chromosome segregation in the malaria parasite.
Collapse
Affiliation(s)
- Mohammad Zeeshan
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Edward Rea
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Steven Abel
- Department of Molecular, Cell and Systems Biology, University of California Riverside, 900 University Ave., Riverside, CA, USA
| | - Kruno Vukušić
- Division of Molecular Biology, Ruđer Bošković Institute, 10000, Zagreb, Croatia
| | - Robert Markus
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Declan Brady
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Antonius Eze
- School of Life Sciences, University of Nottingham, Nottingham, UK
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Nigeria, Enugu Campus, Enugu, Nigeria
| | - Ravish Rashpa
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | - Andrew R Bottrill
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry, UK
| | - Mathieu Brochet
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - David S Guttery
- Department of Genetics and Genome Biology, College of Life Sciences, University of Leicester, Leicester, UK
| | - Iva M Tolić
- Division of Molecular Biology, Ruđer Bošković Institute, 10000, Zagreb, Croatia
| | - Anthony A Holder
- Malaria Parasitology Laboratory, The Francis Crick Institute, London, UK
| | - Karine G Le Roch
- Department of Molecular, Cell and Systems Biology, University of California Riverside, 900 University Ave., Riverside, CA, USA
| | - Eelco C Tromer
- Cell Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
| | - Rita Tewari
- School of Life Sciences, University of Nottingham, Nottingham, UK.
| |
Collapse
|
23
|
Miesch J, Wimbish RT, Velluz MC, Aumeier C. Phase separation of +TIP networks regulates microtubule dynamics. Proc Natl Acad Sci U S A 2023; 120:e2301457120. [PMID: 37603768 PMCID: PMC10469336 DOI: 10.1073/pnas.2301457120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/12/2023] [Indexed: 08/23/2023] Open
Abstract
Regulation of microtubule dynamics is essential for diverse cellular functions, and proteins that bind to dynamic microtubule ends can regulate network dynamics. Here, we show that two conserved microtubule end-binding proteins, CLIP-170 and EB3, undergo phase separation and form dense liquid networks. When CLIP-170 and EB3 act together, the multivalency of the network increases, which synergistically increases the amount of protein in the dense phase. In vitro and in cells, these liquid networks can concentrate tubulin. In vitro, in the presence of microtubules, phase separation of EB3/CLIP-170 can enrich tubulin all along the microtubule. In this condition, microtubule growth speed increases up to twofold and the frequency of depolymerization events are strongly reduced compared to conditions in which there is no phase separation. Our data show that phase separation of EB3/CLIP-170 adds an additional layer of regulation to the control of microtubule growth dynamics.
Collapse
Affiliation(s)
- Julie Miesch
- Department of Biochemistry, University of Geneva, Geneva1211, Switzerland
| | - Robert T. Wimbish
- Department of Biochemistry, University of Geneva, Geneva1211, Switzerland
| | | | - Charlotte Aumeier
- Department of Biochemistry, University of Geneva, Geneva1211, Switzerland
| |
Collapse
|
24
|
Ren X, Guo X, Liang Z, Guo R, Liang S, Liu H. Hax1 regulate focal adhesion dynamics through IQGAP1. Cell Commun Signal 2023; 21:182. [PMID: 37488602 PMCID: PMC10364419 DOI: 10.1186/s12964-023-01189-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/07/2023] [Indexed: 07/26/2023] Open
Abstract
Cell migration is a highly orchestrated process requiring the coordination between the cytoskeleton, cell membrane and extracellular matrix adhesions. Our previous study demonstrated that Hax1 interacts with EB2, a microtubule end-binding protein, and this interaction regulate cell migration in keratinocytes. However, little is known about the underlying regulatory mechanism. Here, we show that Hax1 links dynamic focal adhesions to regulate cell migration via interacting with IQGAP1, a multidomain scaffolding protein, which was identified by affinity purification coupled with LC-MS/MS. Biochemical characterizations revealed that C-terminal region of Hax1 and RGCT domain of IQGAP1 are the most critical binding determinants for its interaction. IQGAP1/Hax1 interaction is essential for cell migration in MCF7 cells. Knockdown of HAX1 not only stabilizes focal adhesions, but also impairs the accumulation of IQGAP in focal adhesions. Further study indicates that this interaction is critical for maintaining efficient focal adhesion turnover. Perturbation of the IQGAP1/Hax1 interaction in vivo using a membrane-permeable TAT-RGCT peptide results in impaired focal adhesion turnover, thus leading to inhibition of directional cell migration. Together, our findings unravel a novel interaction between IQGAP1 and Hax1, suggesting that IQGAP1 association with Hax1 plays a significant role in focal adhesion turnover and directional cell migration. Video Abstract.
Collapse
Affiliation(s)
- Xinyi Ren
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xiaopu Guo
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Zihan Liang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Renxian Guo
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Shaohui Liang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| | - Han Liu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
25
|
Li P, Messina G, Lehner CF. Nuclear elongation during spermiogenesis depends on physical linkage of nuclear pore complexes to bundled microtubules by Drosophila Mst27D. PLoS Genet 2023; 19:e1010837. [PMID: 37428798 PMCID: PMC10359004 DOI: 10.1371/journal.pgen.1010837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/22/2023] [Indexed: 07/12/2023] Open
Abstract
Spermatozoa in animal species are usually highly elongated cells with a long motile tail attached to a head that contains the haploid genome in a compact and often elongated nucleus. In Drosophila melanogaster, the nucleus is compacted two hundred-fold in volume during spermiogenesis and re-modeled into a needle that is thirty-fold longer than its diameter. Nuclear elongation is preceded by a striking relocalization of nuclear pore complexes (NPCs). While NPCs are initially located throughout the nuclear envelope (NE) around the spherical nucleus of early round spermatids, they are later confined to one hemisphere. In the cytoplasm adjacent to this NPC-containing NE, the so-called dense complex with a strong bundle of microtubules is assembled. While this conspicuous proximity argued for functional significance of NPC-NE and microtubule bundle, experimental confirmation of their contributions to nuclear elongation has not yet been reported. Our functional characterization of the spermatid specific Mst27D protein now resolves this deficit. We demonstrate that Mst27D establishes physical linkage between NPC-NE and dense complex. The C-terminal region of Mst27D binds to the nuclear pore protein Nup358. The N-terminal CH domain of Mst27D, which is similar to that of EB1 family proteins, binds to microtubules. At high expression levels, Mst27D promotes bundling of microtubules in cultured cells. Microscopic analyses indicated co-localization of Mst27D with Nup358 and with the microtubule bundles of the dense complex. Time-lapse imaging revealed that nuclear elongation is accompanied by a progressive bundling of microtubules into a single elongated bundle. In Mst27D null mutants, this bundling process does not occur and nuclear elongation is abnormal. Thus, we propose that Mst27D permits normal nuclear elongation by promoting the attachment of the NPC-NE to the microtubules of the dense complex, as well as the progressive bundling of these microtubules.
Collapse
Affiliation(s)
- Pengfei Li
- Department of Molecular Life Science (DMLS), University of Zurich, Zurich, Switzerland
| | - Giovanni Messina
- Department of Molecular Life Science (DMLS), University of Zurich, Zurich, Switzerland
| | - Christian F Lehner
- Department of Molecular Life Science (DMLS), University of Zurich, Zurich, Switzerland
| |
Collapse
|
26
|
Guan C, Hua S, Jiang K. The CEP170B-KIF2A complex destabilizes microtubule minus ends to generate polarized microtubule network. EMBO J 2023; 42:e112953. [PMID: 37014312 PMCID: PMC10233374 DOI: 10.15252/embj.2022112953] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/16/2023] [Accepted: 03/22/2023] [Indexed: 04/05/2023] Open
Abstract
Microtubule (MT) minus ends are stabilized by CAMSAP family proteins at noncentrosomal MT-organizing centers. Despite progress in identifying diverse positive regulators, knowledge on the negative regulation of the MT minus-end distribution is lacking. Here, we identify CEP170B as a MT minus-end-binding protein that colocalizes with the microtubule-stabilizing complex at the cortical patches. CEP170B depends on the scaffold protein liprin-α1 for its cortical targeting and requires liprin-α1-bound PP2A phosphatase for its MT localization. CEP170B excludes CAMSAPs-stabilized MT minus ends from the cell periphery in HeLa cells and the basal cortex in human epithelial cells and is required for directional vesicle trafficking and cyst formation in 3D culture. Reconstitution experiments demonstrate that CEP170B autonomously tracks growing MT minus ends and blocks minus-end growth. Furthermore, CEP170B in a complex with the kinesin KIF2A acts as a potent MT minus-end depolymerase capable of antagonizing the stabilizing effect of CAMSAPs. Our study uncovers an antagonistic mechanism for controlling the spatial distribution of MT minus ends, which contributes to the establishment of polarized MT network and cell polarity.
Collapse
Affiliation(s)
- Cuirong Guan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Medical Research InstituteWuhan UniversityWuhanChina
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhanChina
| | - Shasha Hua
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Medical Research InstituteWuhan UniversityWuhanChina
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhanChina
| | - Kai Jiang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Medical Research InstituteWuhan UniversityWuhanChina
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhanChina
| |
Collapse
|
27
|
Yang S, Cai M, Huang J, Zhang S, Mo X, Jiang K, Cui H, Yuan J. EB1 decoration of microtubule lattice facilitates spindle-kinetochore lateral attachment in Plasmodium male gametogenesis. Nat Commun 2023; 14:2864. [PMID: 37208365 DOI: 10.1038/s41467-023-38516-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/04/2023] [Indexed: 05/21/2023] Open
Abstract
Faithful chromosome segregation of 8 duplicated haploid genomes into 8 daughter gametes is essential for male gametogenesis and mosquito transmission of Plasmodium. Plasmodium undergoes endomitosis in this multinucleated cell division, which is highly reliant on proper spindle-kinetochore attachment. However, the mechanisms underlying the spindle-kinetochore attachment remain elusive. End-binding proteins (EBs) are conserved microtubule (MT) plus-end binding proteins and play an important role in regulating MT plus-end dynamics. Here, we report that the Plasmodium EB1 is an orthologue distinct from the canonical eukaryotic EB1. Both in vitro and in vivo assays reveal that the Plasmodium EB1 losses MT plus-end tracking but possesses MT-lattice affinity. This MT-binding feature of Plasmodium EB1 is contributed by both CH domain and linker region. EB1-deficient parasites produce male gametocytes that develop to the anucleated male gametes, leading to defective mosquito transmission. EB1 is localized at the nucleoplasm of male gametocytes. During the gametogenesis, EB1 decorates the full-length of spindle MTs and regulates spindle structure. The kinetochores attach to spindle MTs laterally throughout endomitosis and this attachment is EB1-dependent. Consequently, impaired spindle-kinetochore attachment is observed in EB1-deficient parasites. These results indicate that a parasite-specific EB1 with MT-lattice binding affinity fulfills the spindle-kinetochore lateral attachment in male gametogenesis.
Collapse
Affiliation(s)
- Shuzhen Yang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Mengya Cai
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Junjie Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Medical Research Institute, Wuhan University, Wuhan, China
| | - Shengnan Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Xiaoli Mo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Kai Jiang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Medical Research Institute, Wuhan University, Wuhan, China.
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China.
| | - Huiting Cui
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China.
| | - Jing Yuan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China.
| |
Collapse
|
28
|
Carmona B, Marinho HS, Matos CL, Nolasco S, Soares H. Tubulin Post-Translational Modifications: The Elusive Roles of Acetylation. BIOLOGY 2023; 12:biology12040561. [PMID: 37106761 PMCID: PMC10136095 DOI: 10.3390/biology12040561] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/27/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023]
Abstract
Microtubules (MTs), dynamic polymers of α/β-tubulin heterodimers found in all eukaryotes, are involved in cytoplasm spatial organization, intracellular transport, cell polarity, migration and division, and in cilia biology. MTs functional diversity depends on the differential expression of distinct tubulin isotypes and is amplified by a vast number of different post-translational modifications (PTMs). The addition/removal of PTMs to α- or β-tubulins is catalyzed by specific enzymes and allows combinatory patterns largely enriching the distinct biochemical and biophysical properties of MTs, creating a code read by distinct proteins, including microtubule-associated proteins (MAPs), which allow cellular responses. This review is focused on tubulin-acetylation, whose cellular roles continue to generate debate. We travel through the experimental data pointing to α-tubulin Lys40 acetylation role as being a MT stabilizer and a typical PTM of long lived MTs, to the most recent data, suggesting that Lys40 acetylation enhances MT flexibility and alters the mechanical properties of MTs, preventing MTs from mechanical aging characterized by structural damage. Additionally, we discuss the regulation of tubulin acetyltransferases/desacetylases and their impacts on cell physiology. Finally, we analyze how changes in MT acetylation levels have been found to be a general response to stress and how they are associated with several human pathologies.
Collapse
Affiliation(s)
- Bruno Carmona
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
- Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Av. D. João II, Lote 4.69.01, 1990-096 Lisboa, Portugal
| | - H Susana Marinho
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Catarina Lopes Matos
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Sofia Nolasco
- Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Av. D. João II, Lote 4.69.01, 1990-096 Lisboa, Portugal
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Helena Soares
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
- Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Av. D. João II, Lote 4.69.01, 1990-096 Lisboa, Portugal
| |
Collapse
|
29
|
Lu W, Lakonishok M, Gelfand VI. Drosophila oocyte specification is maintained by the dynamic duo of microtubule polymerase Mini spindles/XMAP215 and dynein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.09.531953. [PMID: 36945460 PMCID: PMC10028982 DOI: 10.1101/2023.03.09.531953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
In many species, only one oocyte is specified among a group of interconnected germline sister cells. In Drosophila melanogaster , 16-cell interconnected cells form a germline cyst, where one cell differentiates into an oocyte, while the rest become nurse cells that supply the oocyte with mRNAs, proteins, and organelles through intercellular cytoplasmic bridges named ring canals via microtubule-based transport. In this study, we find that a microtubule polymerase Mini spindles (Msps), the Drosophila homolog of XMAP215, is essential for the oocyte fate determination. mRNA encoding Msps is concentrated in the oocyte by dynein-dependent transport along microtubules. Translated Msps stimulates microtubule polymerization in the oocyte, causing more microtubule plus ends to grow from the oocyte through the ring canals into nurse cells, further enhancing nurse cell-to-oocyte transport by dynein. Knockdown of msps blocks the oocyte growth and causes gradual loss of oocyte determinants. Thus, the Msps-dynein duo creates a positive feedback loop, enhancing dynein-dependent nurse cell-to-oocyte transport and transforming a small stochastic difference in microtubule polarity among sister cells into a clear oocyte fate determination. Significance statement Oocyte determination in Drosophila melanogaster provides a valuable model for studying cell fate specification. We describe the crucial role of the duo of microtubule polymerase Mini spindles (Msps) and cytoplasmic dynein in this process. We show that Msps is essential for oocyte fate determination. Msps concentration in the oocyte is achieved through dynein-dependent transport of msps mRNA along microtubules. Translated Msps stimulates microtubule polymerization in the oocyte, further enhancing nurse cell-to-oocyte transport by dynein. This creates a positive feedback loop that transforms a small stochastic difference in microtubule polarity among sister cells into a clear oocyte fate determination. Our findings provide important insights into the mechanisms of oocyte specification and have implications for understanding the development of multicellular organisms.
Collapse
Affiliation(s)
- Wen Lu
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Margot Lakonishok
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Vladimir I Gelfand
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| |
Collapse
|
30
|
Zaqout S, Mannaa A, Klein O, Krajewski A, Klose J, Luise-Becker L, Elsabagh A, Ferih K, Kraemer N, Ravindran E, Makridis K, Kaindl AM. Proteome changes in autosomal recessive primary microcephaly. Ann Hum Genet 2023; 87:50-62. [PMID: 36448252 DOI: 10.1111/ahg.12489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 12/05/2022]
Abstract
BACKGROUND/AIM Autosomal recessive primary microcephaly (MCPH) is a rare and genetically heterogeneous group of disorders characterized by intellectual disability and microcephaly at birth, classically without further organ involvement. MCPH3 is caused by biallelic variants in the cyclin-dependent kinase 5 regulatory subunit-associated protein 2 gene CDK5RAP2. In the corresponding Cdk5rap2 mutant or Hertwig's anemia mouse model, congenital microcephaly as well as defects in the hematopoietic system, germ cells and eyes have been reported. The reduction in brain volume, particularly affecting gray matter, has been attributed mainly to disturbances in the proliferation and survival of early neuronal progenitors. In addition, defects in dendritic development and synaptogenesis exist that affect the excitation-inhibition balance. Here, we studied proteomic changes in cerebral cortices of Cdk5rap2 mutant mice. MATERIAL AND METHODS We used large-gel two-dimensional gel (2-DE) electrophoresis to separate cortical proteins. 2-DE gels were visualized by a trained observer on a light box. Spot changes were considered with respect to presence/absence, quantitative variation and altered mobility. RESULT We identified a reduction in more than 30 proteins that play a role in processes such as cell cytoskeleton dynamics, cell cycle progression, ciliary functions and apoptosis. These proteome changes in the MCPH3 model can be associated with various functional and morphological alterations of the developing brain. CONCLUSION Our results shed light on potential protein candidates for the disease-associated phenotype reported in MCPH3.
Collapse
Affiliation(s)
- Sami Zaqout
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Atef Mannaa
- Higher Institute of Engineering and Technology, New Borg AlArab City, Alexandria, Egypt.,Inserm U1192, Laboratoire Protéomique, Réponse Inflammatoire & Spectrométrie de Masse (PRISM), Université de Lille, Lille, France
| | - Oliver Klein
- BIH Center for Regenerative Therapies BCRT, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health, Charité-Universitätsmedizin Berlin (BIH), Berlin, Germany
| | - Angelika Krajewski
- BIH Center for Regenerative Therapies BCRT, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health, Charité-Universitätsmedizin Berlin (BIH), Berlin, Germany
| | - Joachim Klose
- Charité-Universitätsmedizin, Institute of Human Genetics, Berlin, Germany
| | - Lena Luise-Becker
- Charité-Universitätsmedizin Berlin, Institute of Cell Biology and Neurobiology, Berlin, Germany.,Charité-Universitätsmedizin Berlin, Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Berlin, Germany.,Department of Pediatric Neurology, Charité-Universitätsmedizin, Berlin, Germany
| | - Ahmed Elsabagh
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Khaled Ferih
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Nadine Kraemer
- Charité-Universitätsmedizin Berlin, Institute of Cell Biology and Neurobiology, Berlin, Germany.,Charité-Universitätsmedizin Berlin, Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Berlin, Germany.,Department of Pediatric Neurology, Charité-Universitätsmedizin, Berlin, Germany
| | - Ethiraj Ravindran
- Charité-Universitätsmedizin Berlin, Institute of Cell Biology and Neurobiology, Berlin, Germany.,Charité-Universitätsmedizin Berlin, Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Berlin, Germany.,Department of Pediatric Neurology, Charité-Universitätsmedizin, Berlin, Germany
| | - Konstantin Makridis
- Charité-Universitätsmedizin Berlin, Institute of Cell Biology and Neurobiology, Berlin, Germany.,Charité-Universitätsmedizin Berlin, Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Berlin, Germany.,Department of Pediatric Neurology, Charité-Universitätsmedizin, Berlin, Germany
| | - Angela M Kaindl
- Charité-Universitätsmedizin Berlin, Institute of Cell Biology and Neurobiology, Berlin, Germany.,Charité-Universitätsmedizin Berlin, Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Berlin, Germany.,Department of Pediatric Neurology, Charité-Universitätsmedizin, Berlin, Germany
| |
Collapse
|
31
|
van den Berg CM, Volkov VA, Schnorrenberg S, Huang Z, Stecker KE, Grigoriev I, Gilani S, Frikstad KAM, Patzke S, Zimmermann T, Dogterom M, Akhmanova A. CSPP1 stabilizes growing microtubule ends and damaged lattices from the luminal side. J Cell Biol 2023; 222:213861. [PMID: 36752787 PMCID: PMC9948759 DOI: 10.1083/jcb.202208062] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/14/2022] [Accepted: 01/13/2023] [Indexed: 02/09/2023] Open
Abstract
Microtubules are dynamic cytoskeletal polymers, and their organization and stability are tightly regulated by numerous cellular factors. While regulatory proteins controlling the formation of interphase microtubule arrays and mitotic spindles have been extensively studied, the biochemical mechanisms responsible for generating stable microtubule cores of centrioles and cilia are poorly understood. Here, we used in vitro reconstitution assays to investigate microtubule-stabilizing properties of CSPP1, a centrosome and cilia-associated protein mutated in the neurodevelopmental ciliopathy Joubert syndrome. We found that CSPP1 preferentially binds to polymerizing microtubule ends that grow slowly or undergo growth perturbations and, in this way, resembles microtubule-stabilizing compounds such as taxanes. Fluorescence microscopy and cryo-electron tomography showed that CSPP1 is deposited in the microtubule lumen and inhibits microtubule growth and shortening through two separate domains. CSPP1 also specifically recognizes and stabilizes damaged microtubule lattices. These data help to explain how CSPP1 regulates the elongation and stability of ciliary axonemes and other microtubule-based structures.
Collapse
Affiliation(s)
- Cyntha M. van den Berg
- https://ror.org/04pp8hn57Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Vladimir A. Volkov
- https://ror.org/04pp8hn57Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands,https://ror.org/02e2c7k09Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | | | - Ziqiang Huang
- EMBL Imaging Centre, EMBL-Heidelberg, Heidelberg, Germany
| | - Kelly E. Stecker
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands,Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Ilya Grigoriev
- https://ror.org/04pp8hn57Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Sania Gilani
- https://ror.org/00j9c2840Department of Radiation Biology, Institute of Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway,Department of Molecular Cell Biology, Institute of Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Kari-Anne M. Frikstad
- https://ror.org/00j9c2840Department of Radiation Biology, Institute of Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Sebastian Patzke
- https://ror.org/00j9c2840Department of Radiation Biology, Institute of Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | | | - Marileen Dogterom
- https://ror.org/02e2c7k09Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Anna Akhmanova
- https://ror.org/04pp8hn57Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands,Correspondence to Anna Akhmanova:
| |
Collapse
|
32
|
Zeeshan M, Rea E, Abel S, Vukušić K, Markus R, Brady D, Eze A, Rashpa R, Balestra AC, Bottrill AR, Brochet M, Guttery DS, Tolić IM, Holder AA, Le Roch KG, Tromer EC, Tewari R. Plasmodium ARK2-EB1 axis drives the unconventional spindle dynamics, scaffold formation and chromosome segregation of sexual transmission stages. RESEARCH SQUARE 2023:rs.3.rs-2539372. [PMID: 36798191 PMCID: PMC9934748 DOI: 10.21203/rs.3.rs-2539372/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Mechanisms of cell division are remarkably diverse, suggesting the underlying molecular networks among eukaryotes differ extensively. The Aurora family of kinases orchestrates the process of chromosome segregation and cytokinesis during cell division through precise spatiotemporal regulation of their catalytic activities by distinct scaffolds. Plasmodium spp., the causative agents of malaria, are unicellular eukaryotes that have three divergent aurora-related kinases (ARKs) and lack most canonical scaffolds/activators. The parasite uses unconventional modes of chromosome segregation during endomitosis and meiosis in sexual transmission stages within mosquito host. This includes a rapid threefold genome replication from 1N to 8N with successive cycles of closed mitosis, spindle formation and chromosome segregation within eight minutes (termed male gametogony). Kinome studies had previously suggested likely essential functions for all three Plasmodium ARKs during asexual mitotic cycles; however, little is known about their location, function, or their scaffolding molecules during unconventional sexual proliferative stages. Using a combination of super-resolution microscopy, mass spectrometry, omics and live-cell fluorescence imaging, we set out to investigate the contribution of the atypical Aurora paralog ARK2 to proliferative sexual stages using rodent malaria model Plasmodium berghei. We find that ARK2 primarily localises to the spindle apparatus associated with kinetochores during both mitosis and meiosis. Interactomics and co-localisation studies reveal a unique ARK2 scaffold at the spindle including the microtubule plus end-binding protein EB1 and lacking some other conserved molecules. Gene function studies indicate complementary functions of ARK2 and EB1 in driving endomitotic divisions and thereby parasite transmission. Our discovery of a novel Aurora spindle scaffold underlines the emerging flexibility of molecular networks to rewire and drive unconventional mechanisms of chromosome segregation in the malaria parasite Plasmodium.
Collapse
Affiliation(s)
- Mohammad Zeeshan
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Edward Rea
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Steven Abel
- Department of Molecular, Cell and Systems Biology, University of California Riverside, 900 University Ave., Riverside, USA
| | - Kruno Vukušić
- Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Robert Markus
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Declan Brady
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Antonius Eze
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Ravish Rashpa
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | - Andrew R. Bottrill
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry, UK
| | - Mathieu Brochet
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - David S. Guttery
- Department of Genetics and Genome Biology, College of Life Sciences, University of Leicester, Leicester, UK
| | - Iva M. Tolić
- Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Anthony A. Holder
- Malaria Parasitology Laboratory, The Francis Crick Institute, London, UK
| | - Karine G. Le Roch
- Department of Molecular, Cell and Systems Biology, University of California Riverside, 900 University Ave., Riverside, USA
| | - Eelco C. Tromer
- Faculty of Science and Engineering, University of Groningen, Groningen Biomolecular Sciences and Biotechnology Institute, Cell Biochemistry, Groningen, The Netherlands
| | - Rita Tewari
- School of Life Sciences, University of Nottingham, Nottingham, UK
| |
Collapse
|
33
|
KYOGOKU H, KITAJIMA TS. The large cytoplasmic volume of oocyte. J Reprod Dev 2023; 69:1-9. [PMID: 36436912 PMCID: PMC9939283 DOI: 10.1262/jrd.2022-101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The study of the size of cells and organelles has a long history, dating back to the 1600s when cells were defined. In particular, various methods have elucidated the size of the nucleus and the mitotic spindle in several species. However, little research has been conducted on oocyte size and organelles in mammals, and many questions remain to be answered. The appropriate size is essential to cell function properly. Oocytes have a very large cytoplasm, which is more than 100 times larger than that of general somatic cells in mammals. In this review, we discuss how oocytes acquire an enormous cytoplasmic size and the adverse effects of a large cytoplasmic size on cellular functions.
Collapse
Affiliation(s)
- Hirohisa KYOGOKU
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan,Laboratory for Chromosome Segregation, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Tomoya S KITAJIMA
- Laboratory for Chromosome Segregation, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| |
Collapse
|
34
|
Zeeshan M, Rea E, Abel S, Vukušić K, Markus R, Brady D, Eze A, Raspa R, Balestra A, Bottrill AR, Brochet M, Guttery DS, Tolić IM, Holder AA, Roch KGL, Tromer EC, Tewari R. Plasmodium ARK2-EB1 axis drives the unconventional spindle dynamics, scaffold formation and chromosome segregation of sexual transmission stages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.29.526106. [PMID: 36778504 PMCID: PMC9915484 DOI: 10.1101/2023.01.29.526106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mechanisms of cell division are remarkably diverse, suggesting the underlying molecular networks among eukaryotes differ extensively. The Aurora family of kinases orchestrates the process of chromosome segregation and cytokinesis during cell division through precise spatiotemporal regulation of their catalytic activities by distinct scaffolds. Plasmodium spp., the causative agents of malaria, are unicellular eukaryotes that have three divergent aurora-related kinases (ARKs) and lack most canonical scaffolds/activators. The parasite uses unconventional modes of chromosome segregation during endomitosis and meiosis in sexual transmission stages within mosquito host. This includes a rapid threefold genome replication from 1N to 8N with successive cycles of closed mitosis, spindle formation and chromosome segregation within eight minutes (termed male gametogony). Kinome studies had previously suggested likely essential functions for all three Plasmodium ARKs during asexual mitotic cycles; however, little is known about their location, function, or their scaffolding molecules during unconventional sexual proliferative stages. Using a combination of super-resolution microscopy, mass spectrometry, and live-cell fluorescence imaging, we set out to investigate the role of the atypical Aurora paralog ARK2 to proliferative sexual stages using rodent malaria model Plasmodium berghei . We find that ARK2 primarily localises to the spindle apparatus in the vicinity of kinetochores during both mitosis and meiosis. Interactomics and co-localisation studies reveal a unique ARK2 scaffold at the spindle including the microtubule plus end-binding protein EB1, lacking conserved Aurora scaffold proteins. Gene function studies indicate complementary functions of ARK2 and EB1 in driving endomitotic divisions and thereby parasite transmission. Our discovery of a novel Aurora kinase spindle scaffold underlines the emerging flexibility of molecular networks to rewire and drive unconventional mechanisms of chromosome segregation in the malaria parasite Plasmodium .
Collapse
|
35
|
Schaer J, Andreu-Carbó M, Kruse K, Aumeier C. The effect of motor-induced shaft dynamics on microtubule stability and length. Biophys J 2023; 122:346-359. [PMID: 36502273 PMCID: PMC9892620 DOI: 10.1016/j.bpj.2022.12.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/17/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Control of microtubule abundance, stability, and length is crucial to regulate intracellular transport as well as cell polarity and division. How microtubule stability depends on tubulin addition or removal at the dynamic ends is well studied. However, microtubule rescue, the event when a microtubule switches from shrinking to growing, occurs at tubulin exchange sites along the shaft. Molecular motors have recently been shown to promote such exchanges. Using a stochastic theoretical description, we study how microtubule stability and length depend on motor-induced tubulin exchange and thus rescue. Our theoretical description matches our in vitro experiments on microtubule dynamics in the presence of kinesin-1 molecular motors. Although the overall dynamics of a population of microtubules can be captured by an effective rescue rate, by assigning rescue to exchange sites, we reveal that the dynamics of individual microtubules within the population differ dramatically. Furthermore, we study in detail a transition from bounded to unbounded microtubule growth. Our results provide novel insights into how molecular motors imprint information of microtubule stability on the microtubule network.
Collapse
Affiliation(s)
- Joël Schaer
- Department of Biochemistry, University of Geneva, Geneva, Switzerland; Department of Theoretical Physics, University of Geneva, Geneva, Switzerland
| | | | - Karsten Kruse
- Department of Biochemistry, University of Geneva, Geneva, Switzerland; Department of Theoretical Physics, University of Geneva, Geneva, Switzerland; National Center for Competence in Research Chemical Biology, University of Geneva, Geneva, Switzerland.
| | - Charlotte Aumeier
- Department of Biochemistry, University of Geneva, Geneva, Switzerland; National Center for Competence in Research Chemical Biology, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
36
|
Park J, Miller KG, De Camilli P, Yogev S. End Binding protein 1 promotes specific motor-cargo association in the cell body prior to axonal delivery of Dense Core Vesicles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.12.523768. [PMID: 36711860 PMCID: PMC9882160 DOI: 10.1101/2023.01.12.523768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Axonal transport is key to neuronal function. Efficient transport requires specific motor-cargo association in the soma, yet the mechanisms regulating this early step remain poorly understood. We found that EBP-1, the C. elegans ortholog of the canonical microtubule end binding protein EB1, promotes the specific association between kinesin-3/KIF1A/UNC-104 and Dense Core Vesicles (DCVs) prior to their axonal delivery. Using single-neuron, in vivo labelling of endogenous cargo and EBs, we observed reduced axonal abundance and reduced secretion of DCV cargo, but not other KIF1A/UNC-104 cargo, in ebp-1 mutants. This reduction could be traced back to fewer exit events from the cell body, where EBP-1 colocalized with the DCV sorting machinery at the trans Golgi, suggesting that this is the site of EBP-1 function. In addition to its microtubule binding CH domain, mammalian EB1 interacted with mammalian KIF1A in an EBH domain dependent manner, and expression of mammalian EB1 or the EBH domain was sufficient to rescue DCV transport in ebp-1 mutants. Our results suggest a model in which kinesin-3 binding and microtubule binding by EBP-1 cooperate to transiently enrich the motor near sites of DCV biogenesis to promote motor-cargo association. In support of this model, tethering either EBP-1 or a kinesin-3 KIF1A/UNC-104 interacting domain from an unrelated protein to the Golgi restored the axonal abundance of DCV proteins in ebp-1 mutants. These results uncover an unexpected role for a microtubule associated protein and provide insight into how specific kinesin-3 cargo are delivered to the axon.
Collapse
Affiliation(s)
- Junhyun Park
- Department of Neuroscience, Yale School of Medicine, 295 Congress Ave, New Haven, CT 06510
| | - Kenneth G. Miller
- Genetic Models of Disease Laboratory, Oklahoma Medical Research Foundation, 825 N. E. 13th St, Oklahoma City, OK 73104
| | - Pietro De Camilli
- Department of Neuroscience, Yale School of Medicine, 295 Congress Ave, New Haven, CT 06510
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT06510
- Department of Cell Biology, Yale School of Medicine, 295 Congress Ave, New Haven CT 06510
- Howard Hughes Medical Institute
| | - Shaul Yogev
- Department of Neuroscience, Yale School of Medicine, 295 Congress Ave, New Haven, CT 06510
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT06510
| |
Collapse
|
37
|
Song X, Yang F, Yang T, Wang Y, Ding M, Li L, Xu P, Liu S, Dai M, Chi C, Xiang S, Xu C, Li D, Wang Z, Li L, Hill DL, Fu C, Yuan K, Li P, Zang J, Hou Z, Jiang K, Shi Y, Liu X, Yao X. Phase separation of EB1 guides microtubule plus-end dynamics. Nat Cell Biol 2023; 25:79-91. [PMID: 36536176 DOI: 10.1038/s41556-022-01033-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 10/21/2022] [Indexed: 12/24/2022]
Abstract
In eukaryotes, end-binding (EB) proteins serve as a hub for orchestrating microtubule dynamics and are essential for cellular dynamics and organelle movements. EB proteins modulate structural transitions at growing microtubule ends by recognizing and promoting an intermediate state generated during GTP hydrolysis. However, the molecular mechanisms and physiochemical properties of the EB1 interaction network remain elusive. Here we show that EB1 formed molecular condensates through liquid-liquid phase separation (LLPS) to constitute the microtubule plus-end machinery. EB1 LLPS is driven by multivalent interactions among different segments, which are modulated by charged residues in the linker region. Phase-separated EB1 provided a compartment for enriching tubulin dimers and other plus-end tracking proteins. Real-time imaging of chromosome segregation in HeLa cells expressing LLPS-deficient EB1 mutants revealed the importance of EB1 LLPS dynamics in mitotic chromosome movements. These findings demonstrate that EB1 forms a distinct physical and biochemical membraneless-organelle via multivalent interactions that guide microtubule dynamics.
Collapse
Affiliation(s)
- Xiaoyu Song
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Center for Cross-disciplinary Sciences, University of Science & Technology of China School of Life Sciences, Hefei, China.,Keck Center for Organoids Plasticity, Morehouse School of Medicine, Atlanta, GA, USA
| | - Fengrui Yang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Center for Cross-disciplinary Sciences, University of Science & Technology of China School of Life Sciences, Hefei, China.,Keck Center for Organoids Plasticity, Morehouse School of Medicine, Atlanta, GA, USA
| | - Tongtong Yang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Center for Cross-disciplinary Sciences, University of Science & Technology of China School of Life Sciences, Hefei, China
| | - Yong Wang
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Mingrui Ding
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Center for Cross-disciplinary Sciences, University of Science & Technology of China School of Life Sciences, Hefei, China.,Keck Center for Organoids Plasticity, Morehouse School of Medicine, Atlanta, GA, USA
| | - Linge Li
- Anhui Key Laboratory for Chemical Biology & Hefei National Center for Cross-disciplinary Sciences, Hefei, China
| | - Panpan Xu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Center for Cross-disciplinary Sciences, University of Science & Technology of China School of Life Sciences, Hefei, China
| | - Shuaiyu Liu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Center for Cross-disciplinary Sciences, University of Science & Technology of China School of Life Sciences, Hefei, China.,Anhui Key Laboratory for Chemical Biology & Hefei National Center for Cross-disciplinary Sciences, Hefei, China
| | - Ming Dai
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Center for Cross-disciplinary Sciences, University of Science & Technology of China School of Life Sciences, Hefei, China
| | - Changbiao Chi
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Center for Cross-disciplinary Sciences, University of Science & Technology of China School of Life Sciences, Hefei, China
| | - Shengqi Xiang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Center for Cross-disciplinary Sciences, University of Science & Technology of China School of Life Sciences, Hefei, China
| | - Chao Xu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Center for Cross-disciplinary Sciences, University of Science & Technology of China School of Life Sciences, Hefei, China
| | - Dong Li
- Institute of Biophysics, Beijing, China
| | - Zhikai Wang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Center for Cross-disciplinary Sciences, University of Science & Technology of China School of Life Sciences, Hefei, China.,Keck Center for Organoids Plasticity, Morehouse School of Medicine, Atlanta, GA, USA
| | - Lin Li
- CAS Center of Excellence in Molecular Cell Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Donald L Hill
- Department of Pathology, University of Alabama, Birmingham, AL, USA
| | - Chuanhai Fu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Center for Cross-disciplinary Sciences, University of Science & Technology of China School of Life Sciences, Hefei, China
| | - Kai Yuan
- Hunan Key Laboratory of Molecular Precision Medicine, Central South University School of Life Sciences, Changsha, China
| | - Pilong Li
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Jianye Zang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Center for Cross-disciplinary Sciences, University of Science & Technology of China School of Life Sciences, Hefei, China
| | - Zhonghuai Hou
- Anhui Key Laboratory for Chemical Biology & Hefei National Center for Cross-disciplinary Sciences, Hefei, China
| | - Kai Jiang
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Yunyu Shi
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Center for Cross-disciplinary Sciences, University of Science & Technology of China School of Life Sciences, Hefei, China
| | - Xing Liu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Center for Cross-disciplinary Sciences, University of Science & Technology of China School of Life Sciences, Hefei, China. .,Keck Center for Organoids Plasticity, Morehouse School of Medicine, Atlanta, GA, USA.
| | - Xuebiao Yao
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Center for Cross-disciplinary Sciences, University of Science & Technology of China School of Life Sciences, Hefei, China.
| |
Collapse
|
38
|
Guru A, Saravanan S, Sharma D, Narasimha M. The microtubule end-binding proteins EB1 and Patronin modulate the spatiotemporal dynamics of myosin and pattern pulsed apical constriction. Development 2022; 149:284823. [PMID: 36440630 DOI: 10.1242/dev.199759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 10/31/2022] [Indexed: 11/29/2022]
Abstract
Apical constriction powers amnioserosa contraction during Drosophila dorsal closure. The nucleation, movement and dispersal of apicomedial actomyosin complexes generates pulsed apical constrictions during early closure. Persistent apicomedial and circumapical actomyosin complexes drive unpulsed constrictions that follow. Here, we show that the microtubule end-binding proteins EB1 and Patronin pattern constriction dynamics and contraction kinetics by coordinating the balance of actomyosin forces in the apical plane. We find that microtubule growth from moving Patronin platforms governs the spatiotemporal dynamics of apicomedial myosin through the regulation of RhoGTPase signaling by transient EB1-RhoGEF2 interactions. We uncover the dynamic reorganization of a subset of short non-centrosomally nucleated apical microtubules that surround the coalescing apicomedial myosin complex, trail behind it as it moves and disperse as the complex dissolves. We demonstrate that apical microtubule reorganization is sensitive to Patronin levels. Microtubule depolymerization compromised apical myosin enrichment and altered constriction dynamics. Together, our findings uncover the importance of reorganization of an intact apical microtubule meshwork, by moving Patronin platforms and growing microtubule ends, in enabling the spatiotemporal modulation of actomyosin contractility and, through it, apical constriction.
Collapse
Affiliation(s)
- Anwesha Guru
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai 400005, India
| | - Surat Saravanan
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai 400005, India
| | - Deepanshu Sharma
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai 400005, India
| | - Maithreyi Narasimha
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai 400005, India
| |
Collapse
|
39
|
Zheng Y, Yang M, Chen X, Zhang G, Wan S, Zhang B, Huo J, Liu H. Decreased tubulin-binding cofactor B was involved in the formation disorder of nascent astrocyte processes by regulating microtubule plus-end growth through binding with end-binding proteins 1 and 3 after chronic alcohol exposure. Front Cell Neurosci 2022; 16:989945. [PMID: 36385945 PMCID: PMC9641617 DOI: 10.3389/fncel.2022.989945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/21/2022] [Indexed: 11/30/2022] Open
Abstract
Fetal alcohol syndrome (FAS) is a neurological disease caused by excessive drinking during pregnancy and characterized by congenital abnormalities in the structure and function of the fetal brain. This study was proposed to provide new insights into the pathogenesis of FAS by revealing the possible mechanisms of alcohol-induced astrocyte injury. First, a chronic alcohol exposure model of astrocytes was established, and the formation disorder was found in astrocyte processes where tubulin-binding cofactor B (TBCB) was decreased or lost, accompanied by disorganized microtubules (MT). Second, to understand the relationship between TBCB reduction and the formation disorder of astrocyte processes, TBCB was silenced or overexpressed. It caused astrocyte processes to retract or lose after silencing, while the processes increased with expending basal part and obtuse tips after overexpressing. It confirmed that TBCB was one of the critical factors for the formation of astrocyte processes through regulating MT plus-end and provided a new view on the pathogenesis of FAS. Third, to explore the mechanism of TBCB regulating MT plus-ends, we first proved end-binding proteins 1 and 3 (EB1/3) were bound at MT plus-ends in astrocytes. Then, through interference experiments, we found that both EB1 and EB3, which formed in heterodimers, were necessary to mediate TBCB binding to MT plus-ends and thus regulated the formation of astrocyte processes. Finally, the regulatory mechanism was studied and the ERK1/2 signaling pathway was found as one of the main pathways regulating the expression of TBCB in astrocytes after alcohol injury.
Collapse
Affiliation(s)
- Yin Zheng
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
- Department of Basic Medicine, Chongqing College of Traditional Chinese Medicine, Chongqing, China
| | - Mei Yang
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Xiaoqiao Chen
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Gaoli Zhang
- Institute for Viral Hepatitis, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shanshan Wan
- Department of Blood Transfusion, Sichuan Cancer Hospital and Institute, Chengdu, China
| | - Bingqiu Zhang
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Jiechao Huo
- Fujian Province University Engineering Research Center of Mindong She Medicine, Medical College, Ningde Normal University, Ningde, China
| | - Hui Liu
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
- *Correspondence: Hui Liu
| |
Collapse
|
40
|
Kawano D, Pinter K, Chlebowski M, Petralia RS, Wang YX, Nechiporuk AV, Drerup CM. NudC regulated Lis1 stability is essential for the maintenance of dynamic microtubule ends in axon terminals. iScience 2022; 25:105072. [PMID: 36147950 PMCID: PMC9485903 DOI: 10.1016/j.isci.2022.105072] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/26/2022] [Accepted: 08/30/2022] [Indexed: 11/28/2022] Open
Abstract
In the axon terminal, microtubule stability is decreased relative to the axon shaft. The dynamic microtubule plus ends found in the axon terminal have many functions, including serving as a docking site for the Cytoplasmic dynein motor. Here, we report an unexplored function of dynein in microtubule regulation in axon terminals: regulation of microtubule stability. Using a forward genetic screen, we identified a mutant with an abnormal axon terminal structure owing to a loss of function mutation in NudC. We show that, in the axon terminal, NudC is a chaperone for the protein Lis1. Decreased Lis1 in nudc axon terminals causes dynein/dynactin accumulation and increased microtubule stability. Microtubule dynamics can be restored by pharmacologically inhibiting dynein, implicating excess dynein motor function in microtubule stabilization. Together, our data support a model in which local NudC-Lis1 modulation of the dynein motor is critical for the regulation of microtubule stability in the axon terminal. NudC, a dynein regulator, is crucial for axon terminal structure NudC mutation leads to a near complete loss of Lis1 protein in axon terminals Lis1 deficits cause accumulation of dynein and cargo in axon terminals Local elevation of dynein increases axon terminal microtubule stability
Collapse
Affiliation(s)
- Dane Kawano
- Unit on Neuronal Cell Biology, National Institute of Child Health & Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Katherine Pinter
- Unit on Neuronal Cell Biology, National Institute of Child Health & Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Madison Chlebowski
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ronald S Petralia
- Advanced Imaging Core, National Institute of Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ya-Xian Wang
- Advanced Imaging Core, National Institute of Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alex V Nechiporuk
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Catherine M Drerup
- Unit on Neuronal Cell Biology, National Institute of Child Health & Human Development, National Institutes of Health, Bethesda, MD 20892, USA.,Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
41
|
The augmin complex architecture reveals structural insights into microtubule branching. Nat Commun 2022; 13:5635. [PMID: 36163468 PMCID: PMC9512787 DOI: 10.1038/s41467-022-33228-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/05/2022] [Indexed: 11/24/2022] Open
Abstract
In mitosis, the augmin complex binds to spindle microtubules to recruit the γ-tubulin ring complex (γ-TuRC), the principal microtubule nucleator, for the formation of branched microtubules. Our understanding of augmin-mediated microtubule branching is hampered by the lack of structural information on the augmin complex. Here, we elucidate the molecular architecture and conformational plasticity of the augmin complex using an integrative structural biology approach. The elongated structure of the augmin complex is characterised by extensive coiled-coil segments and comprises two structural elements with distinct but complementary functions in γ-TuRC and microtubule binding, linked by a flexible hinge. The augmin complex is recruited to microtubules via a composite microtubule binding site comprising a positively charged unordered extension and two calponin homology domains. Our study provides the structural basis for augmin function in branched microtubule formation, decisively fostering our understanding of spindle formation in mitosis. The formation of branched microtubule networks in mitotic spindles depends on the augmin complex. Zupa, Würtz et al. elucidate the molecular architecture and conformational plasticity of the augmin complex using integrative structural biology, providing structural insights into microtubule branching.
Collapse
|
42
|
Meiring JCM, Grigoriev I, Nijenhuis W, Kapitein LC, Akhmanova A. Opto-katanin, an optogenetic tool for localized, microtubule disassembly. Curr Biol 2022; 32:4660-4674.e6. [PMID: 36174574 DOI: 10.1016/j.cub.2022.09.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 08/01/2022] [Accepted: 09/06/2022] [Indexed: 11/30/2022]
Abstract
Microtubules are cytoskeletal polymers that separate chromosomes during mitosis and serve as rails for intracellular transport and organelle positioning. Manipulation of microtubules is widely used in cell and developmental biology, but tools for precise subcellular spatiotemporal control of microtubules are currently lacking. Here, we describe a light-activated system for localized recruitment of the microtubule-severing enzyme katanin. This system, named opto-katanin, uses targeted illumination with blue light to induce rapid, localized, and reversible microtubule depolymerization. This tool allows precise clearing of a subcellular region of microtubules while preserving the rest of the microtubule network, demonstrating that regulation of katanin recruitment to microtubules is sufficient to control its severing activity. The tool is not toxic in the absence of blue light and can be used to disassemble both dynamic and stable microtubules in primary neurons as well as in dividing cells. We show that opto-katanin can be used to locally block vesicle transport and to clarify the dependence of organelle morphology and dynamics on microtubules. Specifically, our data indicate that microtubules are not required for the maintenance of the Golgi stacks or the tubules of the endoplasmic reticulum but are needed for the formation of new membrane tubules. Finally, we demonstrate that this tool can be applied to study the contribution of microtubules to cell mechanics by showing that microtubule bundles can exert forces constricting the nucleus.
Collapse
Affiliation(s)
- Joyce C M Meiring
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan, Utrecht 3584 CS, the Netherlands
| | - Ilya Grigoriev
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan, Utrecht 3584 CS, the Netherlands
| | - Wilco Nijenhuis
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan, Utrecht 3584 CS, the Netherlands; Center for Living Technologies, Eindhoven-Wageningen-Utrecht Alliance, UMC Utrecht, Utrecht 3584 CB, the Netherlands
| | - Lukas C Kapitein
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan, Utrecht 3584 CS, the Netherlands; Center for Living Technologies, Eindhoven-Wageningen-Utrecht Alliance, UMC Utrecht, Utrecht 3584 CB, the Netherlands
| | - Anna Akhmanova
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan, Utrecht 3584 CS, the Netherlands.
| |
Collapse
|
43
|
Hirano M, Ando R, Shimozono S, Sugiyama M, Takeda N, Kurokawa H, Deguchi R, Endo K, Haga K, Takai-Todaka R, Inaura S, Matsumura Y, Hama H, Okada Y, Fujiwara T, Morimoto T, Katayama K, Miyawaki A. A highly photostable and bright green fluorescent protein. Nat Biotechnol 2022; 40:1132-1142. [PMID: 35468954 PMCID: PMC9287174 DOI: 10.1038/s41587-022-01278-2] [Citation(s) in RCA: 130] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 03/14/2022] [Indexed: 12/20/2022]
Abstract
The low photostability of fluorescent proteins is a limiting factor in many applications of fluorescence microscopy. Here we present StayGold, a green fluorescent protein (GFP) derived from the jellyfish Cytaeis uchidae. StayGold is over one order of magnitude more photostable than any currently available fluorescent protein and has a cellular brightness similar to mNeonGreen. We used StayGold to image the dynamics of the endoplasmic reticulum (ER) with high spatiotemporal resolution over several minutes using structured illumination microscopy (SIM) and observed substantially less photobleaching than with a GFP variant optimized for stability in the ER. Using StayGold fusions and SIM, we also imaged the dynamics of mitochondrial fusion and fission and mapped the viral spike proteins in fixed cells infected with severe acute respiratory syndrome coronavirus 2. As StayGold is a dimer, we created a tandem dimer version that allowed us to observe the dynamics of microtubules and the excitatory post-synaptic density in neurons. StayGold will substantially reduce the limitations imposed by photobleaching, especially in live cell or volumetric imaging.
Collapse
Affiliation(s)
- Masahiko Hirano
- Biotechnological Optics Research Team, RIKEN Center for Advanced Photonics, Saitama, Japan
| | - Ryoko Ando
- Laboratory for Cell Function Dynamics, RIKEN Center for Brain Science, Saitama, Japan
| | - Satoshi Shimozono
- Laboratory for Cell Function Dynamics, RIKEN Center for Brain Science, Saitama, Japan
| | - Mayu Sugiyama
- Laboratory for Cell Function Dynamics, RIKEN Center for Brain Science, Saitama, Japan
| | - Noriyo Takeda
- Asamushi Research Center for Marine Biology, Tohoku University, Aomori, Japan
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Hiroshi Kurokawa
- Laboratory for Cell Function Dynamics, RIKEN Center for Brain Science, Saitama, Japan
| | - Ryusaku Deguchi
- Department of Biology, Miyagi University of Education, Sendai, Japan
| | - Kazuki Endo
- Department of Biology, Miyagi University of Education, Sendai, Japan
- Narita Elementary School, Miyagi, Japan
| | - Kei Haga
- Department of Infection Control and Immunology, Ōmura Satoshi Memorial Institute, Kitasato University, Tokyo, Japan
| | - Reiko Takai-Todaka
- Department of Infection Control and Immunology, Ōmura Satoshi Memorial Institute, Kitasato University, Tokyo, Japan
| | | | - Yuta Matsumura
- Safety Science Laboratories, Kao Corporation, Tokyo, Japan
| | - Hiroshi Hama
- Laboratory for Cell Function Dynamics, RIKEN Center for Brain Science, Saitama, Japan
| | - Yasushi Okada
- Laboratory for Cell Polarity Regulation, RIKEN Center for Biosystems Dynamics Research, Osaka, Japan
- Department of Cell Biology and Department of Physics, UBI and WPI-IRCN, The University of Tokyo, Tokyo, Japan
| | - Takahiro Fujiwara
- Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, Japan
| | | | - Kazuhiko Katayama
- Department of Infection Control and Immunology, Ōmura Satoshi Memorial Institute, Kitasato University, Tokyo, Japan.
| | - Atsushi Miyawaki
- Biotechnological Optics Research Team, RIKEN Center for Advanced Photonics, Saitama, Japan.
- Laboratory for Cell Function Dynamics, RIKEN Center for Brain Science, Saitama, Japan.
| |
Collapse
|
44
|
Sen S, Lagas S, Roy A, Kumar H. Cytoskeleton saga: Its regulation in normal physiology and modulation in neurodegenerative disorders. Eur J Pharmacol 2022; 925:175001. [PMID: 35525310 DOI: 10.1016/j.ejphar.2022.175001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/31/2022] [Accepted: 04/29/2022] [Indexed: 11/25/2022]
Abstract
Cells are fundamental units of life. To ensure the maintenance of homeostasis, integrity of structural and functional counterparts is needed to be essentially balanced. The cytoskeleton plays a vital role in regulating the cellular morphology, signalling and other factors involved in pathological conditions. Microtubules, actin (microfilaments), intermediate filaments (IF) and their interactions are required for these activities. Various proteins associated with these components are primary requirements for directing their functions. Disruption of this organization due to faulty genetics, oxidative stress or impaired transport mechanisms are the major causes of dysregulated signalling cascades leading to various pathological conditions like Alzheimer's (AD), Parkinson's (PD), Huntington's disease (HD) or amyotrophic lateral sclerosis (ALS), hereditary spastic paraplegia (HSP) or any traumatic injury like spinal cord injury (SCI). Novel or conventional therapeutic approaches may be specific or non-specific, targeting either three basic components of the cytoskeleton or various cascades that serve as a cue to numerous pathways like ROCK signalling or the GSK-3β pathway. An enormous number of drugs have been redirected for modulating the cytoskeletal dynamics and thereby may pave the way for inhibiting the progression of these diseases and their complications.
Collapse
Affiliation(s)
- Santimoy Sen
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Sheetal Lagas
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Abhishek Roy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Hemant Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India.
| |
Collapse
|
45
|
Meka DP, Kobler O, Hong S, Friedrich CM, Wuesthoff S, Henis M, Schwanke B, Krisp C, Schmuelling N, Rueter R, Ruecker T, Betleja E, Cheng T, Mahjoub MR, Soba P, Schlüter H, Fornasiero EF, Calderon de Anda F. Centrosome-dependent microtubule modifications set the conditions for axon formation. Cell Rep 2022; 39:110686. [PMID: 35443171 PMCID: PMC10150443 DOI: 10.1016/j.celrep.2022.110686] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 12/27/2021] [Accepted: 03/24/2022] [Indexed: 11/29/2022] Open
Abstract
Microtubule (MT) modifications are critical during axon development, with stable MTs populating the axon. How these modifications are spatially coordinated is unclear. Here, via high-resolution microscopy, we show that early developing neurons have fewer somatic acetylated MTs restricted near the centrosome. At later stages, however, acetylated MTs spread out in soma and concentrate in growing axon. Live imaging in early plated neurons of the MT plus-end protein, EB3, show increased displacement and growth rate near the MTOC, suggesting local differences that might support axon selection. Moreover, F-actin disruption in early developing neurons, which show fewer somatic acetylated MTs, does not induce multiple axons, unlike later stages. Overexpression of centrosomal protein 120 (Cep120), which promotes MT acetylation/stabilization, induces multiple axons, while its knockdown downregulates proteins modulating MT dynamics and stability, hampering axon formation. Collectively, we show how centrosome-dependent MT modifications contribute to axon formation.
Collapse
Affiliation(s)
- Durga Praveen Meka
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Oliver Kobler
- Combinatorial Neuroimaging Core Facility, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
| | - Shuai Hong
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Carina Meta Friedrich
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Souhaila Wuesthoff
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Melad Henis
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; Department of Anatomy and Histology, Faculty of Veterinary Medicine, New Valley University, 72511 El-Kharga, Egypt
| | - Birgit Schwanke
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Christoph Krisp
- Institute for Clinical Chemistry and Laboratory Medicine, Mass Spectrometric Proteomics Group, Campus Forschung, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Nessa Schmuelling
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - René Rueter
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Tabitha Ruecker
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Ewelina Betleja
- Department of Medicine (Nephrology Division), Washington University, St. Louis, MO 63110, USA
| | - Tao Cheng
- Department of Medicine (Nephrology Division), Washington University, St. Louis, MO 63110, USA
| | - Moe R Mahjoub
- Department of Medicine (Nephrology Division), Washington University, St. Louis, MO 63110, USA
| | - Peter Soba
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, 53115 Bonn, Germany; Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Hartmut Schlüter
- Institute for Clinical Chemistry and Laboratory Medicine, Mass Spectrometric Proteomics Group, Campus Forschung, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Eugenio F Fornasiero
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Froylan Calderon de Anda
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.
| |
Collapse
|
46
|
MAPRE2 regulates the first meiotic progression in mouse oocytes. Exp Cell Res 2022; 416:113135. [DOI: 10.1016/j.yexcr.2022.113135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 11/22/2022]
|
47
|
Structural transitions in the GTP cap visualized by cryo-electron microscopy of catalytically inactive microtubules. Proc Natl Acad Sci U S A 2022; 119:2114994119. [PMID: 34996871 PMCID: PMC8764682 DOI: 10.1073/pnas.2114994119] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2021] [Indexed: 01/27/2023] Open
Abstract
Microtubules (MTs) are polymers of αβ-tubulin heterodimers that stochastically switch between growth and shrinkage phases. This dynamic instability is critically important for MT function. It is believed that GTP hydrolysis within the MT lattice is accompanied by destabilizing conformational changes and that MT stability depends on a transiently existing GTP cap at the growing MT end. Here, we use cryo-electron microscopy and total internal reflection fluorescence microscopy of GTP hydrolysis-deficient MTs assembled from mutant recombinant human tubulin to investigate the structure of a GTP-bound MT lattice. We find that the GTP-MT lattice of two mutants in which the catalytically active glutamate in α-tubulin was substituted by inactive amino acids (E254A and E254N) is remarkably plastic. Undecorated E254A and E254N MTs with 13 protofilaments both have an expanded lattice but display opposite protofilament twists, making these lattices distinct from the compacted lattice of wild-type GDP-MTs. End-binding proteins of the EB family have the ability to compact both mutant GTP lattices and to stabilize a negative twist, suggesting that they promote this transition also in the GTP cap of wild-type MTs, thereby contributing to the maturation of the MT structure. We also find that the MT seam appears to be stabilized in mutant GTP-MTs and destabilized in GDP-MTs, supporting the proposal that the seam plays an important role in MT stability. Together, these structures of catalytically inactive MTs add mechanistic insight into the GTP state of MTs, the stability of the GTP- and GDP-bound lattice, and our overall understanding of MT dynamic instability.
Collapse
|
48
|
Lattice defects induced by microtubule-stabilizing agents exert a long-range effect on microtubule growth by promoting catastrophes. Proc Natl Acad Sci U S A 2021; 118:2112261118. [PMID: 34916292 PMCID: PMC8713758 DOI: 10.1073/pnas.2112261118] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2021] [Indexed: 11/18/2022] Open
Abstract
Microtubules are major cytoskeletal filaments important for cell division, growth, and differentiation. Microtubules can rapidly switch between phases of growth and shortening, and this dynamic behavior is essential for shaping microtubule arrays. To obtain insights into mechanisms controlling microtubule dynamics, here we used microtubule-stabilizing agents such as Taxol and their fluorescent analogs to manipulate microtubule protofilament number and generate stable defects in microtubule lattices that can be visualized using fluorescence microscopy. We show that microtubule polymerization rate increases with protofilament number and that drug-induced microtubule lattice discontinuities can promote plus-end catastrophes at a distance of several micrometers. Our data indicate that structural defects in the microtubule wall can have long-range propagating effects on microtubule tip dynamics. Microtubules are dynamic cytoskeletal polymers that spontaneously switch between phases of growth and shrinkage. The probability of transitioning from growth to shrinkage, termed catastrophe, increases with microtubule age, but the underlying mechanisms are poorly understood. Here, we set out to test whether microtubule lattice defects formed during polymerization can affect growth at the plus end. To generate microtubules with lattice defects, we used microtubule-stabilizing agents that promote formation of polymers with different protofilament numbers. By employing different agents during nucleation of stable microtubule seeds and the subsequent polymerization phase, we could reproducibly induce switches in protofilament number and induce stable lattice defects. Such drug-induced defects led to frequent catastrophes, which were not observed when microtubules were grown in the same conditions but without a protofilament number mismatch. Microtubule severing at the site of the defect was sufficient to suppress catastrophes. We conclude that structural defects within the microtubule lattice can exert effects that can propagate over long distances and affect the dynamic state of the microtubule end.
Collapse
|
49
|
Eira J, Magalhães J, Macedo N, Pero ME, Misgeld T, Sousa MM, Bartolini F, Liz MA. Transthyretin Promotes Axon Growth via Regulation of Microtubule Dynamics and Tubulin Acetylation. Front Cell Dev Biol 2021; 9:747699. [PMID: 34820375 PMCID: PMC8606651 DOI: 10.3389/fcell.2021.747699] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/13/2021] [Indexed: 11/13/2022] Open
Abstract
Transthyretin (TTR), a plasma and cerebrospinal fluid protein, increases axon growth and organelle transport in sensory neurons. While neurons extend their axons, the microtubule (MT) cytoskeleton is crucial for the segregation of functional compartments and axonal outgrowth. Herein, we investigated whether TTR promotes axon elongation by modulating MT dynamics. We found that TTR KO mice have an intrinsic increase in dynamic MTs and reduced levels of acetylated α-tubulin in peripheral axons. In addition, they failed to modulate MT dynamics in response to sciatic nerve injury, leading to decreased regenerative capacity. Importantly, restoring acetylated α-tubulin levels of TTR KO dorsal root ganglia (DRG) neurons using an HDAC6 inhibitor is sufficient to completely revert defective MT dynamics and neurite outgrowth. In summary, our results reveal a new role for TTR in the modulation of MT dynamics by regulating α-tubulin acetylation via modulation of the acetylase ATAT1, and suggest that this activity underlies TTR neuritogenic function.
Collapse
Affiliation(s)
- Jessica Eira
- ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal.,Neurodegeneration Team, Nerve Regeneration Group, Instituto de Biologia Molecular e Celular-IBMC, and i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Joana Magalhães
- Neurodegeneration Team, Nerve Regeneration Group, Instituto de Biologia Molecular e Celular-IBMC, and i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Nídia Macedo
- Neurodegeneration Team, Nerve Regeneration Group, Instituto de Biologia Molecular e Celular-IBMC, and i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Maria Elena Pero
- Department of Pathology & Cell Biology, Columbia University, New York, NY, United States.,Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Thomas Misgeld
- Institute of Neuronal Cell Biology, Technical University of Munich, German Center for Neurodegenerative Diseases (DZNE), Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Mónica M Sousa
- Nerve Regeneration Group, Instituto de Biologia Molecular e Celular-IBMC, and i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Francesca Bartolini
- Department of Pathology & Cell Biology, Columbia University, New York, NY, United States
| | - Márcia A Liz
- Neurodegeneration Team, Nerve Regeneration Group, Instituto de Biologia Molecular e Celular-IBMC, and i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| |
Collapse
|
50
|
Terzic B, Davatolhagh MF, Ho Y, Tang S, Liu YT, Xia Z, Cui Y, Fuccillo MV, Zhou Z. Temporal manipulation of Cdkl5 reveals essential postdevelopmental functions and reversible CDKL5 deficiency disorder-related deficits. J Clin Invest 2021; 131:143655. [PMID: 34651584 DOI: 10.1172/jci143655] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 08/05/2021] [Indexed: 12/23/2022] Open
Abstract
CDKL5 deficiency disorder (CDD) is an early onset, neurodevelopmental syndrome associated with pathogenic variants in the X-linked gene encoding cyclin-dependent kinase-like 5 (CDKL5). CDKL5 has been implicated in neuronal synapse maturation, yet its postdevelopmental necessity and the reversibility of CDD-associated impairments remain unknown. We temporally manipulated endogenous Cdkl5 expression in male mice and found that postdevelopmental loss of CDKL5 disrupts numerous behavioral domains, hippocampal circuit communication, and dendritic spine morphology, demonstrating an indispensable role for CDKL5 in the adult brain. Accordingly, restoration of Cdkl5 after the early stages of brain development using a conditional rescue mouse model ameliorated CDD-related behavioral impairments and aberrant NMDA receptor signaling. These findings highlight the requirement of CDKL5 beyond early development, underscore the potential for disease reversal in CDD, and suggest that a broad therapeutic time window exists for potential treatment of CDD-related deficits.
Collapse
Affiliation(s)
| | - M Felicia Davatolhagh
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | - Marc V Fuccillo
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|