1
|
Ito KK, Takumi K, Matsuhashi K, Sakamoto H, Nagai K, Fukuyama M, Yamamoto S, Chinen T, Hata S, Kitagawa D. Multimodal mechanisms of human centriole engagement and disengagement. EMBO J 2025; 44:1294-1321. [PMID: 39905228 PMCID: PMC11876316 DOI: 10.1038/s44318-024-00350-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 02/06/2025] Open
Abstract
Centrioles are unique cellular structures that replicate to produce identical copies, ensuring accurate chromosome segregation during mitosis. A new centriole, the "daughter", is assembled adjacent to an existing "mother" centriole. Only after the daughter centriole is fully developed as a complete replica, does it disengage and become the core of a new functional centrosome. The mechanisms preventing precocious disengagement of the immature daughter centriole have remained unclear. Here, we identify three key mechanisms maintaining mother-daughter centriole engagement: the cartwheel, the torus, and the pericentriolar material (PCM). Among these, the torus critically establishes the characteristic orthogonal engagement. We also demonstrate that engagement mediated by the cartwheel and torus is progressively released during centriole maturation. This release involves structural changes in the daughter, known as centriole blooming and distancing, respectively. Disrupting these structural transitions blocks subsequent steps, preventing centriole disengagement and centrosome conversion in the G1 phase. This study provides a comprehensive understanding of how the maturing daughter centriole progressively disengages from its mother through multiple steps, ensuring its complete structure and conversion into an independent centrosome.
Collapse
Grants
- 18K06246,19H05651,20K15987,20K22701,21H02623,21J22462,22H02629,22K20624,22KJ0633,22KJ0687,23K14176,23KJ0800,23H02627,24K02174 MEXT | Japan Society for the Promotion of Science (JSPS)
- 24H02284 MEXT | Japan Society for the Promotion of Science (JSPS)
- JPMJPR21EC MEXT | JST | Precursory Research for Embryonic Science and Technology (PRESTO)
- JPMJCR22E1 MEXT | JST | Core Research for Evolutional Science and Technology (CREST)
- Naito Foundation (内藤記念科学振興財団)
- Tokyo Foundation for Pharmaceutical Sciences
- Astellas Foundation for Research on Metabolic Disorders
- Takeda Science Foundation (TSF)
- Uehara Memorial Foundation (UMF)
- The Research Foundation for Pharmaceutical Sciences
- Koyanagi Zaidan
- Kanae Foundation for the Promotion of Medical Science (Kanae Foundation)
- Kato Memorial Bioscience Foundation
- Heiwa Nakajima Foundation (HNF)
- Sumitomo Foundation (SF)
- Inamori Foundation
Collapse
Affiliation(s)
- Kei K Ito
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan
| | - Kasuga Takumi
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan
| | - Kyohei Matsuhashi
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan
| | - Hirokazu Sakamoto
- Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO) Program, Japan Science and Technology Agency, Honcho Kawaguchi, 102-8666, Saitama, Japan
| | - Kaho Nagai
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan
| | - Masamitsu Fukuyama
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan
| | - Shohei Yamamoto
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan
| | - Takumi Chinen
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan
| | - Shoji Hata
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan.
- Precursory Research for Embryonic Science and Technology (PRESTO) Program, Japan Science and Technology Agency, Honcho Kawaguchi, 102-8666, Saitama, Japan.
| | - Daiju Kitagawa
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan.
| |
Collapse
|
2
|
Nagy A, Kovacs L, Rangone H, Fu J, Ladinsky M, Glover DM. Interactions of N- and C-terminal parts of Ana1 permitting centriole duplication but not elongation. Open Biol 2025; 15:240325. [PMID: 39904373 PMCID: PMC11793955 DOI: 10.1098/rsob.240325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/18/2024] [Accepted: 01/09/2025] [Indexed: 02/06/2025] Open
Abstract
The conserved process of centriole duplication requires the establishment of a Sas6-centred cartwheel initiated by Plk4's phosphorylation of Ana1/STIL. Subsequently, the centriole undergoes conversion to a centrosome requiring its radial expansion and elongation, mediated by a network requiring interactions between Cep135, Ana1/Cep295 and Asterless/Cep152. Here, we show that mutant alleles encoding overlapping N- and C-terminal parts of Ana1 are capable of intragenic complementation to rescue radial expansion. This permits the recruitment of Asl and thereby centriole duplication and mechanosensory cilia formation to restore the coordination defects of these mutants. This genetic combination also rescues centriole duplication in the male germ line but does not rescue the elongation of the triplet microtubule-containing centrioles of primary spermatocytes. Consequently, these males are coordinated but sterile. Such centriole elongation is rescued by the continuous, full-length Ana1 sequence. We define a region that when deleted within otherwise intact Ana1 does not permit primary spermatocyte centrioles to elongate but still allows recruitment of Asl. Our findings point to differing demands upon the physical organization of Ana1 for the distinct processes of radial expansion and elongation of centrioles.
Collapse
Affiliation(s)
- Agota Nagy
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125, USA
| | - Levente Kovacs
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125, USA
- Babeș-Bolyai University, Cluj-Napoca, Romania
| | - Helene Rangone
- Department of Genetics, University of Cambridge, CambridgeCB2 3EH, UK
| | - Jingyan Fu
- Department of Genetics, University of Cambridge, CambridgeCB2 3EH, UK
| | - Mark Ladinsky
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125, USA
| | - David M. Glover
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125, USA
- Department of Genetics, University of Cambridge, CambridgeCB2 3EH, UK
| |
Collapse
|
3
|
Nagy A, Kovacs L, Rangone H, Fu J, Ladinsky M, Glover DM. Interactions of N- and C-terminal parts of Ana1 permitting centriole duplication but not elongation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.28.620588. [PMID: 39554154 PMCID: PMC11565839 DOI: 10.1101/2024.10.28.620588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
The conserved process of centriole duplication requires establishment of a Sas6-centred cartwheel initiated by Plk4's phosphorylation of Ana1/STIL. Subsequently the centriole undergoes conversion to a centrosome requiring its radial expansion and elongation, mediated by a network requiring interactions between Cep135, Ana1/Cep295, and Asterless/Cep152. Here we show that mutant alleles encoding overlapping N- and C-terminal parts of Ana1 are capable of intragenic complementation to rescue radial expansion. This permits recruitment of Asl and thereby centriole duplication and mechanosensory cilia formation to restore the coordination defects of these mutants. This genetic combination also rescues centriole duplication in the male germ line but does not rescue the elongation of the triplet microtubule-containing centrioles of primary spermatocytes and consequently these males are coordinated but sterile. Such centriole elongation is rescued by the continuous, full-length Ana1 sequence. We define a region that when deleted within otherwise intact Ana1 does not permit primary spermatocyte centrioles to elongate but still allows recruitment of Asl. Our findings point to differing demands upon the physical organization of Ana1 for the distinct processes of radial expansion and elongation of centrioles.
Collapse
Affiliation(s)
- Agota Nagy
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Levente Kovacs
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
- Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Helene Rangone
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Jingyan Fu
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
- Present address: College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Mark Ladinsky
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - David M Glover
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| |
Collapse
|
4
|
Panda P, Ladinsky MS, Glover DM. 9-fold symmetry is not essential for centriole elongation and formation of new centriole-like structures. Nat Commun 2024; 15:4467. [PMID: 38796459 PMCID: PMC11127918 DOI: 10.1038/s41467-024-48831-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 05/14/2024] [Indexed: 05/28/2024] Open
Abstract
As daughter centrioles assemble during G2, they recruit conserved Ana3/RTTN followed by its partner Rcd4/PPP1R35. Together, this contributes to the subsequent recruitment of Ana1/CEP295, required for the centriole's conversion to a centrosome. Here, we show that Rcd4/PPP1R35 is also required to maintain 9-fold centriole symmetry in the Drosophila male germline; its absence causes microtubule triplets to disperse into a reduced number of doublet or singlet microtubules. rcd4-null mutant spermatocytes display skinny centrioles that elongate normally and localize centriolar components correctly. Mutant spermatocytes also have centrioles of normal girth that splay at their proximal ends when induced to elongate by Ana1 overexpression. Skinny and splayed spermatid centrioles can still recruit a proximal centriole-like (PCL) structure marking a capability to initiate features of centriole duplication in developing sperm. Thus, stable 9-fold symmetry of microtubule triplets is not essential for centriole growth, correct longitudinal association of centriole components, and aspects of centriole duplication.
Collapse
Affiliation(s)
- Pallavi Panda
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Mark S Ladinsky
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - David M Glover
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.
| |
Collapse
|
5
|
Vicente JJ, Wagenbach M, Decarreau J, Zelter A, MacCoss MJ, Davis TN, Wordeman L. The kinesin motor Kif9 regulates centriolar satellite positioning and mitotic progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.03.587821. [PMID: 38617353 PMCID: PMC11014612 DOI: 10.1101/2024.04.03.587821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Centrosomes are the principal microtubule-organizing centers of the cell and play an essential role in mitotic spindle function. Centrosome biogenesis is achieved by strict control of protein acquisition and phosphorylation prior to mitosis. Defects in this process promote fragmentation of pericentriolar material culminating in multipolar spindles and chromosome missegregation. Centriolar satellites, membrane-less aggrupations of proteins involved in the trafficking of proteins toward and away from the centrosome, are thought to contribute to centrosome biogenesis. Here we show that the microtubule plus-end directed kinesin motor Kif9 localizes to centriolar satellites and regulates their pericentrosomal localization during interphase. Lack of Kif9 leads to aggregation of satellites closer to the centrosome and increased centrosomal protein degradation that disrupts centrosome maturation and results in chromosome congression and segregation defects during mitosis. Our data reveal roles for Kif9 and centriolar satellites in the regulation of cellular proteostasis and mitosis.
Collapse
|
6
|
Takeda Y, Chinen T, Honda S, Takatori S, Okuda S, Yamamoto S, Fukuyama M, Takeuchi K, Tomita T, Hata S, Kitagawa D. Molecular basis promoting centriole triplet microtubule assembly. Nat Commun 2024; 15:2216. [PMID: 38519454 PMCID: PMC10960023 DOI: 10.1038/s41467-024-46454-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 02/28/2024] [Indexed: 03/25/2024] Open
Abstract
The triplet microtubule, a core structure of centrioles crucial for the organization of centrosomes, cilia, and flagella, consists of unclosed incomplete microtubules. The mechanisms of its assembly represent a fundamental open question in biology. Here, we discover that the ciliopathy protein HYLS1 and the β-tubulin isotype TUBB promote centriole triplet microtubule assembly. HYLS1 or a C-terminal tail truncated version of TUBB generates tubulin-based superstructures composed of centriole-like incomplete microtubule chains when overexpressed in human cells. AlphaFold-based structural models and mutagenesis analyses further suggest that the ciliopathy-related residue D211 of HYLS1 physically traps the wobbling C-terminal tail of TUBB, thereby suppressing its inhibitory role in the initiation of the incomplete microtubule assembly. Overall, our findings provide molecular insights into the biogenesis of atypical microtubule architectures conserved for over a billion years.
Collapse
Affiliation(s)
- Yutaka Takeda
- Laboratory of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan
| | - Takumi Chinen
- Laboratory of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan.
| | - Shunnosuke Honda
- Laboratory of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan
| | - Sho Takatori
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan
| | - Shotaro Okuda
- Laboratory of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan
| | - Shohei Yamamoto
- Laboratory of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan
| | - Masamitsu Fukuyama
- Laboratory of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan
| | - Koh Takeuchi
- Laboratory of Physical Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan
| | - Taisuke Tomita
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan
| | - Shoji Hata
- Laboratory of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan.
| | - Daiju Kitagawa
- Laboratory of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan.
| |
Collapse
|
7
|
Sperling AL, Fabian DK, Garrison E, Glover DM. A genetic basis for facultative parthenogenesis in Drosophila. Curr Biol 2023; 33:3545-3560.e13. [PMID: 37516115 PMCID: PMC11044649 DOI: 10.1016/j.cub.2023.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/04/2023] [Accepted: 07/05/2023] [Indexed: 07/31/2023]
Abstract
Facultative parthenogenesis enables sexually reproducing organisms to switch between sexual and asexual parthenogenetic reproduction. To gain insights into this phenomenon, we sequenced the genomes of sexually reproducing and parthenogenetic strains of Drosophila mercatorum and identified differences in the gene expression in their eggs. We then tested whether manipulating the expression of candidate gene homologs identified in Drosophila mercatorum could lead to facultative parthenogenesis in the non-parthenogenetic species Drosophila melanogaster. This identified a polygenic system whereby increased expression of the mitotic protein kinase polo and decreased expression of a desaturase, Desat2, caused facultative parthenogenesis in the non-parthenogenetic species that was enhanced by increased expression of Myc. The genetically induced parthenogenetic Drosophila melanogaster eggs exhibit de novo centrosome formation, fusion of the meiotic products, and the onset of development to generate predominantly triploid offspring. Thus, we demonstrate a genetic basis for sporadic facultative parthenogenesis in an animal.
Collapse
Affiliation(s)
- Alexis L Sperling
- University of Cambridge, Department of Genetics, Downing Street, Cambridge CB2 3EH, UK.
| | - Daniel K Fabian
- University of Cambridge, Department of Genetics, Downing Street, Cambridge CB2 3EH, UK
| | - Erik Garrison
- University of Tennessee Health Science Center, S Manassas Street, Memphis, TN 38103, USA
| | - David M Glover
- University of Cambridge, Department of Genetics, Downing Street, Cambridge CB2 3EH, UK; Division of Biology and Biological Engineering, California Institute of Technology, East California Boulevard, Pasadena, CA 91125, USA.
| |
Collapse
|
8
|
Atmakuru PS, Dhawan J. The cilium-centrosome axis in coupling cell cycle exit and cell fate. J Cell Sci 2023; 136:308872. [PMID: 37144419 DOI: 10.1242/jcs.260454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023] Open
Abstract
The centrosome is an evolutionarily conserved, ancient organelle whose role in cell division was first described over a century ago. The structure and function of the centrosome as a microtubule-organizing center, and of its extracellular extension - the primary cilium - as a sensory antenna, have since been extensively studied, but the role of the cilium-centrosome axis in cell fate is still emerging. In this Opinion piece, we view cellular quiescence and tissue homeostasis from the vantage point of the cilium-centrosome axis. We focus on a less explored role in the choice between distinct forms of mitotic arrest - reversible quiescence and terminal differentiation, which play distinct roles in tissue homeostasis. We outline evidence implicating the centrosome-basal body switch in stem cell function, including how the cilium-centrosome complex regulates reversible versus irreversible arrest in adult skeletal muscle progenitors. We then highlight exciting new findings in other quiescent cell types that suggest signal-dependent coupling of nuclear and cytoplasmic events to the centrosome-basal body switch. Finally, we propose a framework for involvement of this axis in mitotically inactive cells and identify future avenues for understanding how the cilium-centrosome axis impacts central decisions in tissue homeostasis.
Collapse
Affiliation(s)
- Priti S Atmakuru
- CSIR Centre for Cellular and Molecular Biology, Hyderabad 500 007, India
| | - Jyotsna Dhawan
- CSIR Centre for Cellular and Molecular Biology, Hyderabad 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
9
|
Piezo mechanosensory channels regulate centrosome integrity and mitotic entry. Proc Natl Acad Sci U S A 2023; 120:e2213846120. [PMID: 36574677 PMCID: PMC9910506 DOI: 10.1073/pnas.2213846120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Piezo1 and 2 are evolutionarily conserved mechanosensory cation channels known to function on the cell surface by responding to external pressure and transducing a mechanically activated Ca2+ current. Here we show that both Piezo1 and 2 also exhibit concentrated intracellular localization at centrosomes. Both Piezo1 and 2 loss-of-function and Piezo1 activation by the small molecule Yoda1 result in supernumerary centrosomes, premature centriole disengagement, multi-polar spindles, and mitotic delay. By using a GFP, Calmodulin and M13 Protein fusion (GCaMP) Ca2+-sensitive reporter, we show that perturbations in Piezo modulate Ca2+ flux at centrosomes. Moreover, the inhibition of Polo-like-kinase 1 eliminates Yoda1-induced centriole disengagement. Because previous studies have implicated force generation by microtubules as essential for maintaining centrosomal integrity, we propose that mechanotransduction by Piezo maintains pericentrosomal Ca2+ within a defined range, possibly through sensing cell intrinsic forces from microtubules.
Collapse
|
10
|
Bühler M, Fahrländer J, Sauter A, Becker M, Wistorf E, Steinfath M, Stolz A. GPER1 links estrogens to centrosome amplification and chromosomal instability in human colon cells. Life Sci Alliance 2022; 6:6/1/e202201499. [PMID: 36384894 PMCID: PMC9670797 DOI: 10.26508/lsa.202201499] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 11/17/2022] Open
Abstract
The role of the alternate G protein-coupled estrogen receptor 1 (GPER1) in colorectal cancer (CRC) development and progression is unclear, not least because of conflicting clinical and experimental evidence for pro- and anti-tumorigenic activities. Here, we show that low concentrations of the estrogenic GPER1 ligands, 17β-estradiol, bisphenol A, and diethylstilbestrol cause the generation of lagging chromosomes in normal colon and CRC cell lines, which manifest in whole chromosomal instability and aneuploidy. Mechanistically, (xeno)estrogens triggered centrosome amplification by inducing centriole overduplication that leads to transient multipolar mitotic spindles, chromosome alignment defects, and mitotic laggards. Remarkably, we could demonstrate a significant role of estrogen-activated GPER1 in centrosome amplification and increased karyotype variability. Indeed, both gene-specific knockdown and inhibition of GPER1 effectively restored normal centrosome numbers and karyotype stability in cells exposed to 17β-estradiol, bisphenol A, or diethylstilbestrol. Thus, our results reveal a novel link between estrogen-activated GPER1 and the induction of key CRC-prone lesions, supporting a pivotal role of the alternate estrogen receptor in colon neoplastic transformation and tumor progression.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ailine Stolz
- Department of Experimental Toxicology and ZEBET, German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), Berlin, Germany
| |
Collapse
|
11
|
Buss G, Stratton MB, Milenkovic L, Stearns T. Postmitotic centriole disengagement and maturation leads to centrosome amplification in polyploid trophoblast giant cells. Mol Biol Cell 2022; 33:ar118. [PMID: 36001376 PMCID: PMC9634975 DOI: 10.1091/mbc.e22-05-0182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
DNA replication is normally coupled with centriole duplication in the cell cycle. Trophoblast giant cells (TGCs) of the placenta undergo endocycles resulting in polyploidy but their centriole state is not known. We used a cell culture model for TGC differentiation to examine centriole and centrosome number and properties. Before differentiation, trophoblast stem cells (TSCs) have either two centrioles before duplication or four centrioles after. We find that the average nuclear area increases approximately eight-fold over differentiation, but most TGCs do not have more than four centrioles. However, these centrioles become disengaged, acquire centrosome proteins, and can nucleate microtubules. In addition, some TGCs undergo further duplication and disengagement of centrioles, resulting in substantially higher numbers. Live imaging revealed that disengagement and separation are centriole autonomous and can occur asynchronously. Centriole amplification, when present, occurs by the standard mechanism of one centriole generating one procentriole. PLK4 inhibition blocks centriole formation in differentiating TGCs but does not affect endocycle progression. In summary, centrioles in TGC endocycles undergo disengagement and conversion to centrosomes. This increases centrosome number but to a limited extent compared with DNA reduplication.
Collapse
Affiliation(s)
- Garrison Buss
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305
| | | | | | - Tim Stearns
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305,Department of Biology, Stanford University, Stanford, CA 94305,*Address correspondence to: Tim Stearns ()
| |
Collapse
|
12
|
Vásquez-Limeta A, Lukasik K, Kong D, Sullenberger C, Luvsanjav D, Sahabandu N, Chari R, Loncarek J. CPAP insufficiency leads to incomplete centrioles that duplicate but fragment. J Cell Biol 2022; 221:213119. [PMID: 35404385 PMCID: PMC9007748 DOI: 10.1083/jcb.202108018] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/13/2022] [Accepted: 02/28/2022] [Indexed: 11/22/2022] Open
Abstract
Centrioles are structures that assemble centrosomes. CPAP is critical for centrosome assembly, and its mutations are found in patients with diseases such as primary microcephaly. CPAP’s centrosomal localization, its dynamics, and the consequences of its insufficiency in human cells are poorly understood. Here we use human cells genetically engineered for fast degradation of CPAP, in combination with superresolution microscopy, to address these uncertainties. We show that three independent centrosomal CPAP populations are dynamically regulated during the cell cycle. We confirm that CPAP is critical for assembly of human centrioles, but not for recruitment of pericentriolar material on already assembled centrioles. Further, we reveal that CPAP insufficiency leads to centrioles with incomplete microtubule triplets that can convert to centrosomes, duplicate, and form mitotic spindle poles, but fragment owing to loss of cohesion between microtubule blades. These findings further our basic understanding of the role of CPAP in centrosome biogenesis and help understand how CPAP aberrations can lead to human diseases.
Collapse
Affiliation(s)
- Alejandra Vásquez-Limeta
- Laboratory of Protein Dynamics and Signaling, National Institutes of Health, National Cancer Institute, Center for Cancer Research, Frederick, MD
| | - Kimberly Lukasik
- Laboratory of Protein Dynamics and Signaling, National Institutes of Health, National Cancer Institute, Center for Cancer Research, Frederick, MD
| | - Dong Kong
- Laboratory of Protein Dynamics and Signaling, National Institutes of Health, National Cancer Institute, Center for Cancer Research, Frederick, MD
| | - Catherine Sullenberger
- Laboratory of Protein Dynamics and Signaling, National Institutes of Health, National Cancer Institute, Center for Cancer Research, Frederick, MD
| | - Delgermaa Luvsanjav
- Laboratory of Protein Dynamics and Signaling, National Institutes of Health, National Cancer Institute, Center for Cancer Research, Frederick, MD
| | - Natalie Sahabandu
- Laboratory of Protein Dynamics and Signaling, National Institutes of Health, National Cancer Institute, Center for Cancer Research, Frederick, MD
| | - Raj Chari
- Genome Modification Core, Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Jadranka Loncarek
- Laboratory of Protein Dynamics and Signaling, National Institutes of Health, National Cancer Institute, Center for Cancer Research, Frederick, MD
| |
Collapse
|
13
|
Takumi K, Kitagawa D. Experimental and Natural Induction of de novo Centriole Formation. Front Cell Dev Biol 2022; 10:861864. [PMID: 35445021 PMCID: PMC9014216 DOI: 10.3389/fcell.2022.861864] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/14/2022] [Indexed: 01/11/2023] Open
Abstract
In cycling cells, new centrioles are assembled in the vicinity of pre-existing centrioles. Although this canonical centriole duplication is a tightly regulated process in animal cells, centrioles can also form in the absence of pre-existing centrioles; this process is termed de novo centriole formation. De novo centriole formation is triggered by the removal of all pre-existing centrioles in the cell in various manners. Moreover, overexpression of polo-like kinase 4 (Plk4), a master regulatory kinase for centriole biogenesis, can induce de novo centriole formation in some cell types. Under these conditions, structurally and functionally normal centrioles can be formed de novo. While de novo centriole formation is normally suppressed in cells with intact centrioles, depletion of certain suppressor proteins leads to the ectopic formation of centriole-related protein aggregates in the cytoplasm. It has been shown that de novo centriole formation also occurs naturally in some species. For instance, during the multiciliogenesis of vertebrate epithelial cells, massive de novo centriole amplification occurs to form numerous motile cilia. In this review, we summarize the previous findings on de novo centriole formation, particularly under experimental conditions, and discuss its regulatory mechanisms.
Collapse
Affiliation(s)
- Kasuga Takumi
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Tokyo, Japan
| | - Daiju Kitagawa
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
14
|
Ching K, Wang JT, Stearns T. Long-range migration of centrioles to the apical surface of the olfactory epithelium. eLife 2022; 11:e74399. [PMID: 35420544 PMCID: PMC9064291 DOI: 10.7554/elife.74399] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 04/13/2022] [Indexed: 02/07/2023] Open
Abstract
Olfactory sensory neurons (OSNs) in vertebrates detect odorants using multiple cilia, which protrude from the end of the dendrite and require centrioles for their formation. In mouse olfactory epithelium, the centrioles originate in progenitor cells near the basal lamina, often 50-100 μm from the apical surface. It is unknown how centrioles traverse this distance or mature to form cilia. Using high-resolution expansion microscopy, we found that centrioles migrate together, with multiple centrioles per group and multiple groups per OSN, during dendrite outgrowth. Centrioles were found by live imaging to migrate slowly, with a maximum rate of 0.18 µm/minute. Centrioles in migrating groups were associated with microtubule nucleation factors, but acquired rootletin and appendages only in mature OSNs. The parental centriole had preexisting appendages, formed a single cilium before other centrioles, and retained its unique appendage configuration in the mature OSN. We developed an air-liquid interface explant culture system for OSNs and used it to show that centriole migration can be perturbed ex vivo by stabilizing microtubules. We consider these results in the context of a comprehensive model for centriole formation, migration, and maturation in this important sensory cell type.
Collapse
Affiliation(s)
- Kaitlin Ching
- Department of Biology, Stanford UniversityStanfordUnited States
| | - Jennifer T Wang
- Department of Biology, Stanford UniversityStanfordUnited States
| | - Tim Stearns
- Department of Biology, Stanford UniversityStanfordUnited States
- Department of Genetics, Stanford University School of MedicineStanfordUnited States
| |
Collapse
|
15
|
Alfaro-Mora Y, Domínguez-Gómez G, Cáceres-Gutiérrez RE, Tolentino-García L, Herrera LA, Castro-Hernández C, Bermúdez-Cruz RM, Díaz-Chávez J. MPS1 is involved in the HPV16-E7-mediated centrosomes amplification. Cell Div 2021; 16:6. [PMID: 34736484 PMCID: PMC8567613 DOI: 10.1186/s13008-021-00074-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/14/2021] [Indexed: 11/10/2022] Open
Abstract
Background It has been reported that the oncoprotein E7 from human papillomavirus type 16 (HPV16-E7) can induce the excessive synthesis of centrosomes through the increase in the expression of PLK4, which is a transcriptional target of E2F1. On the other hand, it has been reported that increasing MPS1 protein stability can also generate an excessive synthesis of centrosomes. In this work, we analyzed the possible role of MPS1 in the amplification of centrosomes mediated by HPV16-E7. Results Employing qRT-PCR, Western Blot, and Immunofluorescence techniques, we found that E7 induces an increase in the MPS1 transcript and protein levels in the U2OS cell line, as well as protein stabilization. Besides, we observed that inhibiting the expression of MPS1 in E7 protein-expressing cells leads to a significant reduction in the number of centrosomes. Conclusions These results indicate that the presence of the MPS1 protein is necessary for E7 protein to increase the number of centrosomes, and possible implications are discussed. Supplementary Information The online version contains supplementary material available at 10.1186/s13008-021-00074-9.
Collapse
Affiliation(s)
- Yair Alfaro-Mora
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados (CINVESTAV-IPN), Mexico City, Mexico.,Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, UNAM/Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | - Guadalupe Domínguez-Gómez
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, UNAM/Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | - Rodrigo E Cáceres-Gutiérrez
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, UNAM/Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | - Laura Tolentino-García
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, UNAM/Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | - Luis A Herrera
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, UNAM/Instituto Nacional de Cancerología (INCan), Mexico City, Mexico.,Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Clementina Castro-Hernández
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, UNAM/Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | - Rosa María Bermúdez-Cruz
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados (CINVESTAV-IPN), Mexico City, Mexico.
| | - José Díaz-Chávez
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, UNAM/Instituto Nacional de Cancerología (INCan), Mexico City, Mexico.
| |
Collapse
|
16
|
Shin B, Kim MS, Lee Y, Jung GI, Rhee K. Generation and Fates of Supernumerary Centrioles in Dividing Cells. Mol Cells 2021; 44:699-705. [PMID: 34711687 PMCID: PMC8560585 DOI: 10.14348/molcells.2021.0220] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/25/2021] [Accepted: 09/30/2021] [Indexed: 11/27/2022] Open
Abstract
The centrosome is a subcellular organelle from which a cilium assembles. Since centrosomes function as spindle poles during mitosis, they have to be present as a pair in a cell. How the correct number of centrosomes is maintained in a cell has been a major issue in the fields of cell cycle and cancer biology. Centrioles, the core of centrosomes, assemble and segregate in close connection to the cell cycle. Abnormalities in centriole numbers are attributed to decoupling from cell cycle regulation. Interestingly, supernumerary centrioles are commonly observed in cancer cells. In this review, we discuss how supernumerary centrioles are generated in diverse cellular conditions. We also discuss how the cells cope with supernumerary centrioles during the cell cycle.
Collapse
Affiliation(s)
- Byungho Shin
- Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Myung Se Kim
- Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Yejoo Lee
- Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Gee In Jung
- Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Kunsoo Rhee
- Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
17
|
Schweizer N, Haren L, Dutto I, Viais R, Lacasa C, Merdes A, Lüders J. Sub-centrosomal mapping identifies augmin-γTuRC as part of a centriole-stabilizing scaffold. Nat Commun 2021; 12:6042. [PMID: 34654813 PMCID: PMC8519919 DOI: 10.1038/s41467-021-26252-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 09/22/2021] [Indexed: 11/08/2022] Open
Abstract
Centriole biogenesis and maintenance are crucial for cells to generate cilia and assemble centrosomes that function as microtubule organizing centers (MTOCs). Centriole biogenesis and MTOC function both require the microtubule nucleator γ-tubulin ring complex (γTuRC). It is widely accepted that γTuRC nucleates microtubules from the pericentriolar material that is associated with the proximal part of centrioles. However, γTuRC also localizes more distally and in the centriole lumen, but the significance of these findings is unclear. Here we identify spatially and functionally distinct subpopulations of centrosomal γTuRC. Luminal localization is mediated by augmin, which is linked to the centriole inner scaffold through POC5. Disruption of luminal localization impairs centriole integrity and interferes with cilium assembly. Defective ciliogenesis is also observed in γTuRC mutant fibroblasts from a patient suffering from microcephaly with chorioretinopathy. These results identify a non-canonical role of augmin-γTuRC in the centriole lumen that is linked to human disease.
Collapse
Affiliation(s)
- Nina Schweizer
- Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain
| | - Laurence Haren
- Molecular, Cellular and Developmental Biology, Centre de Biologie Intégrative, CNRS-Université Toulouse III, 31062, Toulouse, France
| | - Ilaria Dutto
- Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain
| | - Ricardo Viais
- Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain
| | - Cristina Lacasa
- Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain
| | - Andreas Merdes
- Molecular, Cellular and Developmental Biology, Centre de Biologie Intégrative, CNRS-Université Toulouse III, 31062, Toulouse, France
| | - Jens Lüders
- Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain.
| |
Collapse
|
18
|
Nabais C, Pessoa D, de-Carvalho J, van Zanten T, Duarte P, Mayor S, Carneiro J, Telley IA, Bettencourt-Dias M. Plk4 triggers autonomous de novo centriole biogenesis and maturation. J Cell Biol 2021; 220:211915. [PMID: 33760919 PMCID: PMC7995200 DOI: 10.1083/jcb.202008090] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/14/2020] [Accepted: 02/18/2021] [Indexed: 12/23/2022] Open
Abstract
Centrioles form centrosomes and cilia. In most proliferating cells, centrioles assemble through canonical duplication, which is spatially, temporally, and numerically regulated by the cell cycle and the presence of mature centrioles. However, in certain cell types, centrioles assemble de novo, yet by poorly understood mechanisms. Herein, we established a controlled system to investigate de novo centriole biogenesis, using Drosophila melanogaster egg explants overexpressing Polo-like kinase 4 (Plk4), a trigger for centriole biogenesis. We show that at a high Plk4 concentration, centrioles form de novo, mature, and duplicate, independently of cell cycle progression and of the presence of other centrioles. Plk4 concentration determines the temporal onset of centriole assembly. Moreover, our results suggest that distinct biochemical kinetics regulate de novo and canonical biogenesis. Finally, we investigated which other factors modulate de novo centriole assembly and found that proteins of the pericentriolar material (PCM), and in particular γ-tubulin, promote biogenesis, likely by locally concentrating critical components.
Collapse
Affiliation(s)
| | | | | | | | - Paulo Duarte
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Satyajit Mayor
- National Centre for Biological Sciences, Bangalore, India
| | | | - Ivo A Telley
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | |
Collapse
|
19
|
Tian Y, Wei C, He J, Yan Y, Pang N, Fang X, Liang X, Fu J. Superresolution characterization of core centriole architecture. J Cell Biol 2021; 220:211748. [PMID: 33533934 PMCID: PMC7863704 DOI: 10.1083/jcb.202005103] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 11/29/2020] [Accepted: 01/06/2021] [Indexed: 12/31/2022] Open
Abstract
The centrosome is the main microtubule-organizing center in animal cells. It comprises of two centrioles and the surrounding pericentriolar material. Protein organization at the outer layer of the centriole and outward has been studied extensively; however, an overall picture of the protein architecture at the centriole core has been missing. Here we report a direct view of Drosophila centriolar proteins at ∼50-nm resolution. This reveals a Sas6 ring at the C-terminus, where it overlaps with the C-terminus of Cep135. The ninefold symmetrical pattern of Cep135 is further conveyed through Ana1-Asterless axes that extend past the microtubule wall from between the blades. Ana3 and Rcd4, whose termini are close to Cep135, are arranged in ninefold symmetry that does not match the above axes. During centriole biogenesis, Ana3 and Rcd4 are sequentially loaded on the newly formed centriole and are required for centriole-to-centrosome conversion through recruiting the Cep135-Ana1-Asterless complex. Together, our results provide a spatiotemporal map of the centriole core and implications of how the structure might be built.
Collapse
Affiliation(s)
- Yuan Tian
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Chenxi Wei
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jianfeng He
- Tsinghua-Peking Joint Center for Life Sciences and Max Planck Partner Group, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yuxuan Yan
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Nan Pang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiaomin Fang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xin Liang
- Tsinghua-Peking Joint Center for Life Sciences and Max Planck Partner Group, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jingyan Fu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
20
|
Coding variants in the PCNT and CEP295 genes contribute to breast cancer risk in Chinese women. Pathol Res Pract 2021; 225:153581. [PMID: 34418690 DOI: 10.1016/j.prp.2021.153581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/02/2021] [Accepted: 08/02/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND Centrioles play pivotal roles in the assembly of centrosomes, their dysfunction is associated with multiple inherited diseases or cancers. To date, few studies have focused on the associations between coding single nucleotide polymorphisms (SNPs) in the centriole duplication cycle genes and the risk of breast cancer in Chinese women. METHODS Twenty-one SNPs were selected from the coding regions of 10 critical centriole genes. The associations between the selected SNPs and breast cancer susceptibility were assessed in a case-control study of Chinese women, which included 1032 cases and 1063 controls. Potential biological functions in the influence of protein stability and the profile of expression quantitative trait loci (eQTL) of the identified SNPs were further evaluated using in silico databases. RESULTS Multivariate logistic regression analyses revealed that a missense SNP rs7279204 in PCNT was significantly associated with an increased risk of breast cancer (additive model: adjusted OR=1.19, 95% CI: 1.02-1.38), while a missense SNP rs77922978 in CEP295 was significantly associated with a decreased risk of breast cancer (additive model: adjusted OR=0.74, 95% CI: 0.56-0.97). Stratification analyses suggested that rs7279204 and rs77922978 exhibited different effects among later first live birth, ER-negative and PR-negative women (P<0.05). Moreover, rs77922978 showed significant differences for ER and PR status strata (heterogeneity test P=0.028, P=0.046). In addition, bioinformatic analyses indicated that the two variants may possess potential functions of reducing the protein stability of their host genes. Further eQTL analysis showed that the rs7279204 was not only correlated with the expression of its host gene PCNT, but also correlated with the expression of its nearby genes, implying its potential roles in regulation of some cancer susceptibility genes. CONCLUSIONS The SNPs rs7279204 and rs77922978 within the coding region of the PCNT and CEP295 genes may contribute to the susceptibility of breast cancer in Han Chinese population.
Collapse
|
21
|
Abstract
Centrioles are microtubule-based cylindrical structures that assemble the centrosome and template the formation of cilia. The proximal part of centrioles is associated with the pericentriolar material, a protein scaffold from which microtubules are nucleated. This activity is mediated by the γ-tubulin ring complex (γTuRC) whose central role in centrosomal microtubule organization has been recognized for decades. However, accumulating evidence suggests that γTuRC activity at this organelle is neither restricted to the pericentriolar material nor limited to microtubule nucleation. Instead, γTuRC is found along the entire centriole cylinder, at subdistal appendages, and inside the centriole lumen, where its canonical function as a microtubule nucleator might be supplemented or replaced by a function in microtubule anchoring and centriole stabilization, respectively. In this Opinion, we discuss recent insights into the expanded repertoire of γTuRC activities at centrioles and how distinct subpopulations of γTuRC might act in concert to ensure centrosome and cilia biogenesis and function, ultimately supporting cell proliferation, differentiation and homeostasis. We propose that the classical view of centrosomal γTuRC as a pericentriolar material-associated microtubule nucleator needs to be revised.
Collapse
Affiliation(s)
- Nina Schweizer
- Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Jens Lüders
- Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain
| |
Collapse
|
22
|
Jiang X, Ho DBT, Mahe K, Mia J, Sepulveda G, Antkowiak M, Jiang L, Yamada S, Jao LE. Condensation of pericentrin proteins in human cells illuminates phase separation in centrosome assembly. J Cell Sci 2021; 134:jcs258897. [PMID: 34308971 PMCID: PMC8349556 DOI: 10.1242/jcs.258897] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/08/2021] [Indexed: 11/24/2022] Open
Abstract
At the onset of mitosis, centrosomes expand the pericentriolar material (PCM) to maximize their microtubule-organizing activity. This step, termed centrosome maturation, ensures proper spindle organization and faithful chromosome segregation. However, as the centrosome expands, how PCM proteins are recruited and held together without membrane enclosure remains elusive. We found that endogenously expressed pericentrin (PCNT), a conserved PCM scaffold protein, condenses into dynamic granules during late G2/early mitosis before incorporating into mitotic centrosomes. Furthermore, the N-terminal portion of PCNT, enriched with conserved coiled-coils (CCs) and low-complexity regions (LCRs), phase separates into dynamic condensates that selectively recruit PCM proteins and nucleate microtubules in cells. We propose that CCs and LCRs, two prevalent sequence features in the centrosomal proteome, are preserved under evolutionary pressure in part to mediate liquid-liquid phase separation, a process that bestows upon the centrosome distinct properties critical for its assembly and functions.
Collapse
Affiliation(s)
- Xueer Jiang
- Department of Cell Biology and Human Anatomy, University of California, Davis, School of Medicine, Davis, CA 95616, USA
| | - Dac Bang Tam Ho
- Department of Cell Biology and Human Anatomy, University of California, Davis, School of Medicine, Davis, CA 95616, USA
| | - Karan Mahe
- Department of Cell Biology and Human Anatomy, University of California, Davis, School of Medicine, Davis, CA 95616, USA
| | - Jennielee Mia
- Department of Cell Biology and Human Anatomy, University of California, Davis, School of Medicine, Davis, CA 95616, USA
| | - Guadalupe Sepulveda
- Department of Cell Biology and Human Anatomy, University of California, Davis, School of Medicine, Davis, CA 95616, USA
| | - Mark Antkowiak
- Department of Cell Biology and Human Anatomy, University of California, Davis, School of Medicine, Davis, CA 95616, USA
| | - Linhao Jiang
- Department of Cell Biology and Human Anatomy, University of California, Davis, School of Medicine, Davis, CA 95616, USA
| | - Soichiro Yamada
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, USA
| | - Li-En Jao
- Department of Cell Biology and Human Anatomy, University of California, Davis, School of Medicine, Davis, CA 95616, USA
| |
Collapse
|
23
|
Alvarez-Rodrigo I, Wainman A, Saurya S, Raff JW. Ana1 helps recruit Polo to centrioles to promote mitotic PCM assembly and centriole elongation. J Cell Sci 2021; 134:jcs258987. [PMID: 34156068 PMCID: PMC8325959 DOI: 10.1242/jcs.258987] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/08/2021] [Indexed: 01/12/2023] Open
Abstract
Polo kinase (PLK1 in mammals) is a master cell cycle regulator that is recruited to various subcellular structures, often by its polo-box domain (PBD), which binds to phosphorylated S-pS/pT motifs. Polo/PLK1 kinases have multiple functions at centrioles and centrosomes, and we have previously shown that in Drosophila phosphorylated Sas-4 initiates Polo recruitment to newly formed centrioles, while phosphorylated Spd-2 recruits Polo to the pericentriolar material (PCM) that assembles around mother centrioles in mitosis. Here, we show that Ana1 (Cep295 in humans) also helps to recruit Polo to mother centrioles in Drosophila. If Ana1-dependent Polo recruitment is impaired, mother centrioles can still duplicate, disengage from their daughters and form functional cilia, but they can no longer efficiently assemble mitotic PCM or elongate during G2. We conclude that Ana1 helps recruit Polo to mother centrioles to specifically promote mitotic centrosome assembly and centriole elongation in G2, but not centriole duplication, centriole disengagement or cilia assembly. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
| | | | | | - Jordan W. Raff
- The Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| |
Collapse
|
24
|
Jung GI, Rhee K. Triple deletion of TP53, PCNT, and CEP215 promotes centriole amplification in the M phase. Cell Cycle 2021; 20:1500-1517. [PMID: 34233584 DOI: 10.1080/15384101.2021.1950386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Supernumerary centrioles are frequently observed in diverse types of cancer cells. In this study, we investigated the mechanism underlying the generation of supernumerary centrioles during the M phase. We generated the TP53;PCNT;CEP215 triple knockout (KO) cells and determined the configurations of the centriole during the cell cycle. The triple KO cells exhibited a precocious separation of centrioles and unscheduled centriole assembly in the M phase. Supernumerary centrioles in the triple KO cells were present throughout the cell cycle; however, among all the centrioles, only two maintained an intact composition, including CEP135, CEP192, CEP295 and CEP152. Intact centrioles were formed during the S phase and the rest of the centrioles may be generated during the M phase. M-phase-assembled centrioles lacked the ability to organize microtubules in the interphase; however, a fraction of them may acquire pericentriolar material to organize microtubules during the M phase. Taken together, our work reveals the heterogeneity of the supernumerary centrioles in the triple KO cells. .
Collapse
Affiliation(s)
- Gee In Jung
- Department of Biological Sciences, Seoul National University, Seoul, Korea
| | - Kunsoo Rhee
- Department of Biological Sciences, Seoul National University, Seoul, Korea
| |
Collapse
|
25
|
Vasquez-Limeta A, Loncarek J. Human centrosome organization and function in interphase and mitosis. Semin Cell Dev Biol 2021; 117:30-41. [PMID: 33836946 DOI: 10.1016/j.semcdb.2021.03.020] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 01/15/2023]
Abstract
Centrosomes were first described by Edouard Van Beneden and named and linked to chromosome segregation by Theodor Boveri around 1870. In the 1960-1980s, electron microscopy studies have revealed the remarkable ultrastructure of a centriole -- a nine-fold symmetrical microtubular assembly that resides within a centrosome and organizes it. Less than two decades ago, proteomics and genomic screens conducted in multiple species identified hundreds of centriole and centrosome core proteins and revealed the evolutionarily conserved nature of the centriole assembly pathway. And now, super resolution microscopy approaches and improvements in cryo-tomography are bringing an unparalleled nanoscale-detailed picture of the centriole and centrosome architecture. In this chapter, we summarize the current knowledge about the architecture of human centrioles. We discuss the structured organization of centrosome components in interphase, focusing on localization/function relationship. We discuss the process of centrosome maturation and mitotic spindle pole assembly in centriolar and acentriolar cells, emphasizing recent literature.
Collapse
Affiliation(s)
| | - Jadranka Loncarek
- Laboratory of Protein Dynamics and Signaling, NIH/NCI, Frederick 21702, MD, USA.
| |
Collapse
|
26
|
Ito KK, Watanabe K, Ishida H, Matsuhashi K, Chinen T, Hata S, Kitagawa D. Cep57 and Cep57L1 maintain centriole engagement in interphase to ensure centriole duplication cycle. J Cell Biol 2021; 220:e202005153. [PMID: 33492359 PMCID: PMC7836272 DOI: 10.1083/jcb.202005153] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 10/27/2020] [Accepted: 12/15/2020] [Indexed: 11/22/2022] Open
Abstract
Centrioles duplicate in interphase only once per cell cycle. Newly formed centrioles remain associated with their mother centrioles. The two centrioles disengage at the end of mitosis, which licenses centriole duplication in the next cell cycle. Therefore, timely centriole disengagement is critical for the proper centriole duplication cycle. However, the mechanisms underlying centriole engagement during interphase are poorly understood. Here, we show that Cep57 and Cep57L1 cooperatively maintain centriole engagement during interphase. Codepletion of Cep57 and Cep57L1 induces precocious centriole disengagement in interphase without compromising cell cycle progression. The disengaged daughter centrioles convert into centrosomes during interphase in a Plk1-dependent manner. Furthermore, the centrioles reduplicate and the centriole number increases, which results in chromosome segregation errors. Overall, these findings demonstrate that the maintenance of centriole engagement by Cep57 and Cep57L1 during interphase is crucial for the tight control of centriole copy number and thus for proper chromosome segregation.
Collapse
Affiliation(s)
- Kei K. Ito
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Koki Watanabe
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Haruki Ishida
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Kyohei Matsuhashi
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Takumi Chinen
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Shoji Hata
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Daiju Kitagawa
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| |
Collapse
|
27
|
Sala R, Farrell KC, Stearns T. Growth disadvantage associated with centrosome amplification drives population-level centriole number homeostasis. Mol Biol Cell 2020; 31:2646-2656. [PMID: 32966175 PMCID: PMC7927180 DOI: 10.1091/mbc.e19-04-0195] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The centriole duplication cycle normally ensures that centriole number is maintained at two centrioles per G1 cell. However, some circumstances can result in an aberrant increase in centriole number—a phenotype that is particularly prevalent in several types of cancer. Following an artificial increase in centriole number without tetraploidization due to transient overexpression of the kinase PLK4, human cells return to a normal centriole number during the proliferation of the population. We examine the mechanisms responsible for this return to normal centriole number at the population level in human retinal pigment epithelial cells. We find that the return to normal centriole number in the population of induced cells cannot be explained by limited duplication of centrioles, instability of extra centrioles, or by grossly asymmetric segregation of extra centrioles in mitosis. However, cells with extra centrioles display heterogenous phenotypes including extended cell cycle arrest, longer interphase durations, and death, which overall results in a proliferative disadvantage relative to normal cells in the population. Although about half of cells with extra centrioles in a population were able to divide, the extent of the disadvantages conferred by other fates is sufficient to account for the observed rate of return to normal centriole number. These results suggest that only under conditions of positive selection for cells with extra centrioles, continuous generation of such centrioles, or alleviation of the disadvantageous growth phenotypes would they be maintained in a population.
Collapse
Affiliation(s)
- Roberta Sala
- Department of Biology, Stanford University, Stanford, CA 94305
| | - K C Farrell
- Department of Biology, Stanford University, Stanford, CA 94305
| | - Tim Stearns
- Department of Biology, Stanford University, Stanford, CA 94305.,Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
28
|
McLamarrah TA, Speed SK, Ryniawec JM, Buster DW, Fagerstrom CJ, Galletta BJ, Rusan NM, Rogers GC. A molecular mechanism for the procentriole recruitment of Ana2. J Cell Biol 2020; 219:132764. [PMID: 31841145 PMCID: PMC7041687 DOI: 10.1083/jcb.201905172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 10/24/2019] [Accepted: 11/12/2019] [Indexed: 12/15/2022] Open
Abstract
McLamarrah et al. characterize an early step in centriole duplication. They show that Plk4 hyperphosphorylates Ana2, which increases the affinity of Ana2 for the G-box domain of Sas4, promoting Ana2’s accumulation at the procentriole and, consequently, daughter centriole formation. During centriole duplication, a preprocentriole forms at a single site on the mother centriole through a process that includes the hierarchical recruitment of a conserved set of proteins, including the Polo-like kinase 4 (Plk4), Ana2/STIL, and the cartwheel protein Sas6. Ana2/STIL is critical for procentriole assembly, and its recruitment is controlled by the kinase activity of Plk4, but how this works remains poorly understood. A structural motif called the G-box in the centriole outer wall protein Sas4 interacts with a short region in the N terminus of Ana2/STIL. Here, we show that binding of Ana2 to the Sas4 G-box enables hyperphosphorylation of the Ana2 N terminus by Plk4. Hyperphosphorylation increases the affinity of the Ana2–G-box interaction, and, consequently, promotes the accumulation of Ana2 at the procentriole to induce daughter centriole formation.
Collapse
Affiliation(s)
- Tiffany A McLamarrah
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ
| | - Sarah K Speed
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - John M Ryniawec
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ
| | - Daniel W Buster
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ
| | - Carey J Fagerstrom
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Brian J Galletta
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Nasser M Rusan
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Gregory C Rogers
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ
| |
Collapse
|
29
|
Panda P, Kovacs L, Dzhindzhev N, Fatalska A, Persico V, Geymonat M, Riparbelli MG, Callaini G, Glover DM. Tissue specific requirement of Drosophila Rcd4 for centriole duplication and ciliogenesis. J Cell Biol 2020; 219:151861. [PMID: 32543652 PMCID: PMC7401805 DOI: 10.1083/jcb.201912154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 04/01/2020] [Accepted: 05/13/2020] [Indexed: 12/22/2022] Open
Abstract
Rcd4 is a poorly characterized Drosophila centriole component whose mammalian counterpart, PPP1R35, is suggested to function in centriole elongation and conversion to centrosomes. Here, we show that rcd4 mutants exhibit fewer centrioles, aberrant mitoses, and reduced basal bodies in sensory organs. Rcd4 interacts with the C-terminal part of Ana3, which loads onto the procentriole during interphase, ahead of Rcd4 and before mitosis. Accordingly, depletion of Ana3 prevents Rcd4 recruitment but not vice versa. We find that neither Ana3 nor Rcd4 participates directly in the mitotic conversion of centrioles to centrosomes, but both are required to load Ana1, which is essential for such conversion. Whereas ana3 mutants are male sterile, reflecting a requirement for Ana3 for centriole development in the male germ line, rcd4 mutants are fertile and have male germ line centrioles of normal length. Thus, Rcd4 is essential in somatic cells but is not absolutely required in spermatogenesis, indicating tissue-specific roles in centriole and basal body formation.
Collapse
Affiliation(s)
- Pallavi Panda
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Levente Kovacs
- Department of Genetics, University of Cambridge, Cambridge, UK
| | | | - Agnieszka Fatalska
- Department of Genetics, University of Cambridge, Cambridge, UK.,Institute of Biochemistry and Biophysics, Polish Academy of Science, Warsaw, Poland.,Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA
| | - Veronica Persico
- Department of Genetics, University of Cambridge, Cambridge, UK.,Department of Life Sciences, University of Siena, Siena, Italy
| | - Marco Geymonat
- Department of Genetics, University of Cambridge, Cambridge, UK
| | | | | | - David M Glover
- Department of Genetics, University of Cambridge, Cambridge, UK.,Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA
| |
Collapse
|
30
|
Ching K, Stearns T. Centrioles are amplified in cycling progenitors of olfactory sensory neurons. PLoS Biol 2020; 18:e3000852. [PMID: 32931487 PMCID: PMC7518617 DOI: 10.1371/journal.pbio.3000852] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/25/2020] [Accepted: 08/20/2020] [Indexed: 11/19/2022] Open
Abstract
Olfaction in most animals is mediated by neurons bearing cilia that are accessible to the environment. Olfactory sensory neurons (OSNs) in chordates usually have multiple cilia, each with a centriole at its base. OSNs differentiate from stem cells in the olfactory epithelium, and how the epithelium generates cells with many centrioles is not yet understood. We show that centrioles are amplified via centriole rosette formation in both embryonic development and turnover of the olfactory epithelium in adult mice, and rosette-bearing cells often have free centrioles in addition. Cells with amplified centrioles can go on to divide, with centrioles clustered at each pole. Additionally, we found that centrioles are amplified in immediate neuronal precursors (INPs) concomitant with elevation of mRNA for polo-like kinase 4 (Plk4) and SCL/Tal1-interrupting locus gene (Stil), key regulators of centriole duplication. These results support a model in which centriole amplification occurs during a transient state characterized by elevated Plk4 and Stil in early INP cells. These cells then go on to divide at least once to become OSNs, demonstrating that cell division with amplified centrioles, known to be tolerated in disease states, can occur as part of a normal developmental program.
Collapse
Affiliation(s)
- Kaitlin Ching
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Tim Stearns
- Department of Biology, Stanford University, Stanford, California, United States of America
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
31
|
Gallaud E, Ramdas Nair A, Horsley N, Monnard A, Singh P, Pham TT, Salvador Garcia D, Ferrand A, Cabernard C. Dynamic centriolar localization of Polo and Centrobin in early mitosis primes centrosome asymmetry. PLoS Biol 2020; 18:e3000762. [PMID: 32760088 PMCID: PMC7433902 DOI: 10.1371/journal.pbio.3000762] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 08/18/2020] [Accepted: 07/13/2020] [Indexed: 01/30/2023] Open
Abstract
Centrosomes, the main microtubule organizing centers (MTOCs) of metazoan cells, contain an older "mother" and a younger "daughter" centriole. Stem cells either inherit the mother or daughter-centriole-containing centrosome, providing a possible mechanism for biased delivery of cell fate determinants. However, the mechanisms regulating centrosome asymmetry and biased centrosome segregation are unclear. Using 3D-structured illumination microscopy (3D-SIM) and live-cell imaging, we show in fly neural stem cells (neuroblasts) that the mitotic kinase Polo and its centriolar protein substrate Centrobin (Cnb) accumulate on the daughter centriole during mitosis, thereby generating molecularly distinct mother and daughter centrioles before interphase. Cnb's asymmetric localization, potentially involving a direct relocalization mechanism, is regulated by Polo-mediated phosphorylation, whereas Polo's daughter centriole enrichment requires both Wdr62 and Cnb. Based on optogenetic protein mislocalization experiments, we propose that the establishment of centriole asymmetry in mitosis primes biased interphase MTOC activity, necessary for correct spindle orientation.
Collapse
Affiliation(s)
- Emmanuel Gallaud
- Biozentrum, University of Basel, Klingelbergstrasse, Basel, Switzerland
| | | | - Nicole Horsley
- Department of Biology, University of Washington, Life Science Building, Seattle, Washington State, United States of America
| | - Arnaud Monnard
- Biozentrum, University of Basel, Klingelbergstrasse, Basel, Switzerland
- Department of Biology, University of Washington, Life Science Building, Seattle, Washington State, United States of America
| | - Priyanka Singh
- Biozentrum, University of Basel, Klingelbergstrasse, Basel, Switzerland
| | - Tri Thanh Pham
- Department of Biology, University of Washington, Life Science Building, Seattle, Washington State, United States of America
| | | | - Alexia Ferrand
- Biozentrum, University of Basel, Klingelbergstrasse, Basel, Switzerland
| | - Clemens Cabernard
- Department of Biology, University of Washington, Life Science Building, Seattle, Washington State, United States of America
| |
Collapse
|
32
|
Sullenberger C, Vasquez-Limeta A, Kong D, Loncarek J. With Age Comes Maturity: Biochemical and Structural Transformation of a Human Centriole in the Making. Cells 2020; 9:cells9061429. [PMID: 32526902 PMCID: PMC7349492 DOI: 10.3390/cells9061429] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 05/29/2020] [Accepted: 06/04/2020] [Indexed: 12/14/2022] Open
Abstract
Centrioles are microtubule-based cellular structures present in most human cells that build centrosomes and cilia. Proliferating cells have only two centrosomes and this number is stringently maintained through the temporally and spatially controlled processes of centriole assembly and segregation. The assembly of new centrioles begins in early S phase and ends in the third G1 phase from their initiation. This lengthy process of centriole assembly from their initiation to their maturation is characterized by numerous structural and still poorly understood biochemical changes, which occur in synchrony with the progression of cells through three consecutive cell cycles. As a result, proliferating cells contain three structurally, biochemically, and functionally distinct types of centrioles: procentrioles, daughter centrioles, and mother centrioles. This age difference is critical for proper centrosome and cilia function. Here we discuss the centriole assembly process as it occurs in somatic cycling human cells with a focus on the structural, biochemical, and functional characteristics of centrioles of different ages.
Collapse
|
33
|
Ko D, Kim J, Rhee K, Choi HJ. Identification of a Structurally Dynamic Domain for Oligomer Formation in Rootletin. J Mol Biol 2020; 432:3915-3932. [DOI: 10.1016/j.jmb.2020.04.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/10/2020] [Accepted: 04/13/2020] [Indexed: 10/24/2022]
|
34
|
Kong D, Sahabandu N, Sullenberger C, Vásquez-Limeta A, Luvsanjav D, Lukasik K, Loncarek J. Prolonged mitosis results in structurally aberrant and over-elongated centrioles. J Cell Biol 2020; 219:e201910019. [PMID: 32271878 PMCID: PMC7265320 DOI: 10.1083/jcb.201910019] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 01/29/2020] [Accepted: 03/06/2020] [Indexed: 12/12/2022] Open
Abstract
Centrioles are precisely built microtubule-based structures that assemble centrosomes and cilia. Aberrations in centriole structure are common in tumors, yet how these aberrations arise is unknown. Analysis of centriole structure is difficult because it requires demanding electron microscopy. Here we employ expansion microscopy to study the origins of centriole structural aberrations in large populations of human cells. We discover that centrioles do not have an elongation monitoring mechanism, which renders them prone to over-elongation, especially during prolonged mitosis induced by various factors, importantly including supernumerary centrioles. We identify that mitotic centriole over-elongation is dependent on mitotic Polo-like kinase 1, which we uncover as a novel regulator of centriole elongation in human cycling cells. While insufficient Plk1 levels lead to the formation of shorter centrioles lacking a full set of microtubule triplets, its overactivity results in over-elongated and structurally aberrant centrioles. Our data help explain the origin of structurally aberrant centrioles and why centriole numerical and structural defects coexist in tumors.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jadranka Loncarek
- Laboratory of Protein Dynamics and Signaling, National Institutes of Health/National Cancer Institute/Center for Cancer Research, Frederick, MD
| |
Collapse
|
35
|
Vitre B, Taulet N, Guesdon A, Douanier A, Dosdane A, Cisneros M, Maurin J, Hettinger S, Anguille C, Taschner M, Lorentzen E, Delaval B. IFT proteins interact with HSET to promote supernumerary centrosome clustering in mitosis. EMBO Rep 2020; 21:e49234. [PMID: 32270908 PMCID: PMC7271317 DOI: 10.15252/embr.201949234] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 02/25/2020] [Accepted: 03/12/2020] [Indexed: 11/10/2022] Open
Abstract
Centrosome amplification is a hallmark of cancer, and centrosome clustering is essential for cancer cell survival. The mitotic kinesin HSET is an essential contributor to this process. Recent studies have highlighted novel functions for intraflagellar transport (IFT) proteins in regulating motors and mitotic processes. Here, using siRNA knock‐down of various IFT proteins or AID‐inducible degradation of endogenous IFT88 in combination with small‐molecule inhibition of HSET, we show that IFT proteins together with HSET are required for efficient centrosome clustering. We identify a direct interaction between the kinesin HSET and IFT proteins, and we define how IFT proteins contribute to clustering dynamics during mitosis using high‐resolution live imaging of centrosomes. Finally, we demonstrate the requirement of IFT88 for efficient centrosome clustering in a variety of cancer cell lines naturally harboring supernumerary centrosomes and its importance for cancer cell proliferation. Overall, our data unravel a novel role for the IFT machinery in centrosome clustering during mitosis in cells harboring supernumerary centrosomes.
Collapse
Affiliation(s)
- Benjamin Vitre
- CRBM, University of Montpellier, CNRS, Montpellier, France.,Centrosome, Cilia and Pathologies Lab, Montpellier, France
| | - Nicolas Taulet
- CRBM, University of Montpellier, CNRS, Montpellier, France.,Centrosome, Cilia and Pathologies Lab, Montpellier, France
| | - Audrey Guesdon
- CRBM, University of Montpellier, CNRS, Montpellier, France.,Centrosome, Cilia and Pathologies Lab, Montpellier, France
| | - Audrey Douanier
- CRBM, University of Montpellier, CNRS, Montpellier, France.,Centrosome, Cilia and Pathologies Lab, Montpellier, France
| | - Aurelie Dosdane
- CRBM, University of Montpellier, CNRS, Montpellier, France.,Centrosome, Cilia and Pathologies Lab, Montpellier, France
| | - Melanie Cisneros
- CRBM, University of Montpellier, CNRS, Montpellier, France.,Centrosome, Cilia and Pathologies Lab, Montpellier, France
| | - Justine Maurin
- CRBM, University of Montpellier, CNRS, Montpellier, France.,Centrosome, Cilia and Pathologies Lab, Montpellier, France
| | - Sabrina Hettinger
- CRBM, University of Montpellier, CNRS, Montpellier, France.,Centrosome, Cilia and Pathologies Lab, Montpellier, France
| | - Christelle Anguille
- CRBM, University of Montpellier, CNRS, Montpellier, France.,Centrosome, Cilia and Pathologies Lab, Montpellier, France
| | - Michael Taschner
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Esben Lorentzen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Benedicte Delaval
- CRBM, University of Montpellier, CNRS, Montpellier, France.,Centrosome, Cilia and Pathologies Lab, Montpellier, France
| |
Collapse
|
36
|
Sterpka A, Yang J, Strobel M, Zhou Y, Pauplis C, Chen X. Diverged morphology changes of astrocytic and neuronal primary cilia under reactive insults. Mol Brain 2020; 13:28. [PMID: 32122360 PMCID: PMC7053156 DOI: 10.1186/s13041-020-00571-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/24/2020] [Indexed: 12/13/2022] Open
Abstract
Primary cilia are centriole-derived sensory organelles that are present in most mammalian cells, including astrocytes and neurons. Evidence is emerging that astrocyte and neuronal primary cilia demonstrate a dichotomy in the mature mouse brain. However, it is unknown how astrocytic and neuronal primary cilia change their morphology and ciliary proteins when exposed to reactive insults including epilepsy and traumatic brain injury. We used a double transgenic mouse strain (Arl13b-mCherry; Centrin2-GFP), in which we found spontaneous seizures, and a cortical injury model to examine the morphological changes of astrocytic and neuronal primary cilia under reactive conditions. Transgenic overexpression of Arl13b drastically increases the length of astrocytic and neuronal primary cilia in the hippocampus, as well as the cilia lengths of cultured astrocytes and neurons. Spontaneous seizures shorten Arl13b-positive astrocytic cilia and AC3-positive neuronal cilia in the hippocampus. In a cortical injury model, Arl13b is not detectable in primary cilia, but Arl13b protein relocates to the cell body and has robust expression in the proximity of injured tissues. In contrast, the number of AC3-positive cilia near injured tissues remains unchanged, but their lengths become shorter. These results on astrocytic cilia implicate Arl13b in regulating astrocyte proliferation and tissue regeneration, while the shortening of AC3-positive cilia suggests adaptive changes of neuronal primary cilia under excitotoxicity.
Collapse
Affiliation(s)
- Ashley Sterpka
- Department of Molecular, Cellular and Biomedical Sciences, College of Life Sciences and Agriculture, University of New Hampshire, 389 Rudman Hall, 46 College Road, Durham, NH, 03824, USA
| | - Juan Yang
- Department of Molecular, Cellular and Biomedical Sciences, College of Life Sciences and Agriculture, University of New Hampshire, 389 Rudman Hall, 46 College Road, Durham, NH, 03824, USA
| | - Matthew Strobel
- Department of Molecular, Cellular and Biomedical Sciences, College of Life Sciences and Agriculture, University of New Hampshire, 389 Rudman Hall, 46 College Road, Durham, NH, 03824, USA
| | - Yuxin Zhou
- Department of Molecular, Cellular and Biomedical Sciences, College of Life Sciences and Agriculture, University of New Hampshire, 389 Rudman Hall, 46 College Road, Durham, NH, 03824, USA
| | - Connor Pauplis
- Department of Molecular, Cellular and Biomedical Sciences, College of Life Sciences and Agriculture, University of New Hampshire, 389 Rudman Hall, 46 College Road, Durham, NH, 03824, USA
| | - Xuanmao Chen
- Department of Molecular, Cellular and Biomedical Sciences, College of Life Sciences and Agriculture, University of New Hampshire, 389 Rudman Hall, 46 College Road, Durham, NH, 03824, USA.
| |
Collapse
|
37
|
Ramani A, Mariappan A, Gottardo M, Mandad S, Urlaub H, Avidor-Reiss T, Riparbelli M, Callaini G, Debec A, Feederle R, Gopalakrishnan J. Plk1/Polo Phosphorylates Sas-4 at the Onset of Mitosis for an Efficient Recruitment of Pericentriolar Material to Centrosomes. Cell Rep 2019; 25:3618-3630.e6. [PMID: 30590037 DOI: 10.1016/j.celrep.2018.11.102] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 09/19/2018] [Accepted: 11/29/2018] [Indexed: 01/03/2023] Open
Abstract
Centrosomes are the major microtubule-organizing centers, consisting of centrioles surrounded by a pericentriolar material (PCM). Centrosomal PCM is spatiotemporally regulated to be minimal during interphase and expands as cells enter mitosis. It is unclear how PCM expansion is initiated at the onset of mitosis. Here, we identify that, in Drosophila, Plk1/Polo kinase phosphorylates the conserved centrosomal protein Sas-4 in vitro. This phosphorylation appears to occur at the onset of mitosis, enabling Sas-4's localization to expand outward from meiotic and mitotic centrosomes. The Plk1/Polo kinase site of Sas-4 is then required for an efficient recruitment of Cnn and γ-tubulin, bona fide PCM proteins that are essential for PCM expansion and centrosome maturation. Point mutations at Plk1/Polo sites of Sas-4 affect neither centrosome structure nor centriole duplication but specifically reduce the affinity to bind Cnn and γ-tubulin. These observations identify Plk1/Polo kinase regulation of Sas-4 as essential for efficient PCM expansion.
Collapse
Affiliation(s)
- Anand Ramani
- Institute of Human Genetics, Universitätsklinikum Heinrich-Heine-Universität Düsseldorf, Universität Str. 1, 40225 Düsseldorf, Germany; Center for Molecular Medicine Cologne, University of Cologne, Robert-Koch-Str. 21, 50931 Cologne, Germany; IUF-Leibniz-Institut für umweltmedizinische Forschung gGmbH, Auf'm Hennekamp 50, 40225 Düsseldorf, Germany
| | - Aruljothi Mariappan
- Institute of Human Genetics, Universitätsklinikum Heinrich-Heine-Universität Düsseldorf, Universität Str. 1, 40225 Düsseldorf, Germany; Center for Molecular Medicine Cologne, University of Cologne, Robert-Koch-Str. 21, 50931 Cologne, Germany
| | - Marco Gottardo
- Institute of Human Genetics, Universitätsklinikum Heinrich-Heine-Universität Düsseldorf, Universität Str. 1, 40225 Düsseldorf, Germany; Center for Molecular Medicine Cologne, University of Cologne, Robert-Koch-Str. 21, 50931 Cologne, Germany
| | - Sunit Mandad
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany; Bioanalytics, University Medical Center Goettingen, Robert-Koch-Strasse 40, 37075 Goettingen, Germany; Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany; Bioanalytics, University Medical Center Goettingen, Robert-Koch-Strasse 40, 37075 Goettingen, Germany
| | - Tomer Avidor-Reiss
- Department of Biological Sciences, College of Natural Sciences and Mathematics, University of Toledo, Toledo, OH 43606
| | - Maria Riparbelli
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Giuliano Callaini
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Alain Debec
- Polarity and Morphogenesis Group, Institut Jacques Monod, Centre National de la Recherche Scientifique, University Paris Diderot, 75013 Paris, France
| | - Regina Feederle
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute for Diabetes and Obesity, Core Facility, 81377 Munich, Germany
| | - Jay Gopalakrishnan
- Institute of Human Genetics, Universitätsklinikum Heinrich-Heine-Universität Düsseldorf, Universität Str. 1, 40225 Düsseldorf, Germany; Center for Molecular Medicine Cologne, University of Cologne, Robert-Koch-Str. 21, 50931 Cologne, Germany; IUF-Leibniz-Institut für umweltmedizinische Forschung gGmbH, Auf'm Hennekamp 50, 40225 Düsseldorf, Germany.
| |
Collapse
|
38
|
Hata S, Pastor Peidro A, Panic M, Liu P, Atorino E, Funaya C, Jäkle U, Pereira G, Schiebel E. The balance between KIFC3 and EG5 tetrameric kinesins controls the onset of mitotic spindle assembly. Nat Cell Biol 2019; 21:1138-1151. [DOI: 10.1038/s41556-019-0382-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 07/25/2019] [Indexed: 01/01/2023]
|
39
|
Cep131 overexpression promotes centrosome amplification and colon cancer progression by regulating Plk4 stability. Cell Death Dis 2019; 10:570. [PMID: 31358734 PMCID: PMC6662699 DOI: 10.1038/s41419-019-1778-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/18/2019] [Accepted: 04/23/2019] [Indexed: 12/22/2022]
Abstract
The initiation of centrosome duplication is regulated by the Plk4/STIL/hsSAS-6 axis; however, the involvement of other centrosomal proteins in this process remains unclear. In this study, we demonstrate that Cep131 physically interacts with Plk4 following phosphorylation of residues S21 and T205. Localizing at the centriole, phosphorylated Cep131 has an increased capability to interact with STIL, leading to further activation and stabilization of Plk4 for initiating centrosome duplication. Moreover, we found that Cep131 overexpression resulted in centrosome amplification by excessive recruitment of STIL to the centriole and subsequent stabilization of Plk4, contributing to centrosome amplification. The xenograft mouse model also showed that both centrosome amplification and colon cancer growth were significantly increased by Cep131 overexpression. These findings demonstrate that Cep131 is a novel substrate of Plk4, and that phosphorylation or dysregulated Cep131 overexpression promotes Plk4 stabilization and therefore centrosome amplification, establishing a perspective in understanding a relationship between centrosome amplification and cancer development.
Collapse
|
40
|
Antao NV, Marcet-Ortega M, Cifani P, Kentsis A, Foley EA. A Cancer-Associated Missense Mutation in PP2A-Aα Increases Centrosome Clustering during Mitosis. iScience 2019; 19:74-82. [PMID: 31357169 PMCID: PMC6664223 DOI: 10.1016/j.isci.2019.07.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/27/2019] [Accepted: 07/12/2019] [Indexed: 12/21/2022] Open
Abstract
Whole-genome doubling (WGD) is common early in tumorigenesis. WGD doubles ploidy and centrosome number. In the ensuing mitoses, excess centrosomes form a multipolar spindle, resulting in a lethal multipolar cell division. To survive, cells must cluster centrosomes to allow bipolar cell division. Cancer cells are often more proficient at centrosome clustering than untransformed cells, but the mechanism behind increased clustering ability is not well understood. Heterozygous missense mutations in PPP2R1A, which encodes the alpha isoform of the "scaffolding" subunit of PP2A (PP2A-Aα), positively correlate with WGD. We introduced a heterozygous hotspot mutation, P179R, into PPP2R1A in human RPE-1 cells. PP2A-AαP179R decreases PP2A assembly and intracellular targeting in mitosis. Strikingly, PP2A-AαP179R enhances centrosome clustering when centrosome number is increased either by cytokinesis failure or centrosome amplification, likely through PP2A-Aα loss of function. Thus cancer-associated mutations in PP2A-Aα may increase cellular fitness after WGD by enhancing centrosome clustering.
Collapse
Affiliation(s)
- Noelle V Antao
- Program in Biochemistry and Structural Biology, Cell and Developmental Biology, and Molecular Biology, Weill Cornell Medicine Graduate School of Medical Sciences, Cornell University, New York, NY 10065, USA; Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Marina Marcet-Ortega
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Paolo Cifani
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Alex Kentsis
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Emily A Foley
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
41
|
Joukov V, De Nicolo A. The Centrosome and the Primary Cilium: The Yin and Yang of a Hybrid Organelle. Cells 2019; 8:E701. [PMID: 31295970 PMCID: PMC6678760 DOI: 10.3390/cells8070701] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/04/2019] [Accepted: 07/06/2019] [Indexed: 12/27/2022] Open
Abstract
Centrosomes and primary cilia are usually considered as distinct organelles, although both are assembled with the same evolutionary conserved, microtubule-based templates, the centrioles. Centrosomes serve as major microtubule- and actin cytoskeleton-organizing centers and are involved in a variety of intracellular processes, whereas primary cilia receive and transduce environmental signals to elicit cellular and organismal responses. Understanding the functional relationship between centrosomes and primary cilia is important because defects in both structures have been implicated in various diseases, including cancer. Here, we discuss evidence that the animal centrosome evolved, with the transition to complex multicellularity, as a hybrid organelle comprised of the two distinct, but intertwined, structural-functional modules: the centriole/primary cilium module and the pericentriolar material/centrosome module. The evolution of the former module may have been caused by the expanding cellular diversification and intercommunication, whereas that of the latter module may have been driven by the increasing complexity of mitosis and the requirement for maintaining cell polarity, individuation, and adhesion. Through its unique ability to serve both as a plasma membrane-associated primary cilium organizer and a juxtanuclear microtubule-organizing center, the animal centrosome has become an ideal integrator of extracellular and intracellular signals with the cytoskeleton and a switch between the non-cell autonomous and the cell-autonomous signaling modes. In light of this hypothesis, we discuss centrosome dynamics during cell proliferation, migration, and differentiation and propose a model of centrosome-driven microtubule assembly in mitotic and interphase cells. In addition, we outline the evolutionary benefits of the animal centrosome and highlight the hierarchy and modularity of the centrosome biogenesis networks.
Collapse
Affiliation(s)
- Vladimir Joukov
- N.N. Petrov National Medical Research Center of Oncology, 197758 Saint-Petersburg, Russia.
| | | |
Collapse
|
42
|
Raff JW. Phase Separation and the Centrosome: A Fait Accompli? Trends Cell Biol 2019; 29:612-622. [PMID: 31076235 DOI: 10.1016/j.tcb.2019.04.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/08/2019] [Accepted: 04/08/2019] [Indexed: 12/28/2022]
Abstract
There is currently intense interest in the idea that many membraneless organelles might assemble through phase separation of their constituent molecules into biomolecular 'condensates' that have liquid-like properties. This idea is intuitively appealing, especially for complex organelles such as centrosomes, where a liquid-like structure would allow the many constituent molecules to diffuse and interact with one another efficiently. I discuss here recent studies that either support the concept of a liquid-like centrosome or suggest that centrosomes are assembled upon a more solid, stable scaffold. I suggest that it may be difficult to distinguish between these possibilities. I argue that the concept of biomolecular condensates is an important advance in cell biology, with potentially wide-ranging implications, but it seems premature to conclude that centrosomes, and perhaps other membraneless organelles, are necessarily best described as liquid-like phase-separated condensates.
Collapse
Affiliation(s)
- Jordan W Raff
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| |
Collapse
|
43
|
Abstract
The centriole organelle consists of microtubules (MTs) that exhibit a striking 9-fold radial symmetry. Centrioles play fundamental roles across eukaryotes, notably in cell signaling, motility and division. In this Cell Science at a Glance article and accompanying poster, we cover the cellular life cycle of this organelle - from assembly to disappearance - focusing on human centrioles. The journey begins at the end of mitosis when centriole pairs disengage and the newly formed centrioles mature to begin a new duplication cycle. Selection of a single site of procentriole emergence through focusing of polo-like kinase 4 (PLK4) and the resulting assembly of spindle assembly abnormal protein 6 (SAS-6) into a cartwheel element are evoked next. Subsequently, we cover the recruitment of peripheral components that include the pinhead structure, MTs and the MT-connecting A-C linker. The function of centrioles in recruiting pericentriolar material (PCM) and in forming the template of the axoneme are then introduced, followed by a mention of circumstances in which centrioles form de novo or are eliminated.
Collapse
Affiliation(s)
- Pierre Gönczy
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne, Switzerland
| | - Georgios N Hatzopoulos
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
44
|
Abstract
The centriole is an ancient microtubule-based organelle with a conserved nine-fold symmetry. Centrioles form the core of centrosomes, which organize the interphase microtubule cytoskeleton of most animal cells and form the poles of the mitotic spindle. Centrioles can also be modified to form basal bodies, which template the formation of cilia and play central roles in cellular signaling, fluid movement, and locomotion. In this review, we discuss developments in our understanding of the biogenesis of centrioles and cilia and the regulatory controls that govern their structure and number. We also discuss how defects in these processes contribute to a spectrum of human diseases and how new technologies have expanded our understanding of centriole and cilium biology, revealing exciting avenues for future exploration.
Collapse
Affiliation(s)
- David K Breslow
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06511, USA;
| | - Andrew J Holland
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA;
| |
Collapse
|
45
|
Abstract
Centrosome amplification is a feature of multiple tumour types and has been postulated to contribute to both tumour initiation and tumour progression. This chapter focuses on the mechanisms by which an increase in centrosome number might lead to an increase or decrease in tumour progression and the role of proteins that regulate centrosome number in driving tumorigenesis.
Collapse
Affiliation(s)
- Arunabha Bose
- KS215, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Sorab N Dalal
- KS215, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, Maharashtra, India.
- Homi Bhabha National Institute, Mumbai, Maharashtra, India.
| |
Collapse
|
46
|
Kim J, Kim J, Rhee K. PCNT is critical for the association and conversion of centrioles to centrosomes during mitosis. J Cell Sci 2019; 132:jcs.225789. [DOI: 10.1242/jcs.225789] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 02/14/2019] [Indexed: 01/28/2023] Open
Abstract
A centrosome consists of a pair of centrioles and pericentriolar material (PCM). We manipulated expression of PCNT, a key PCM protein, and investigated roles of PCM in centriole behavior during mitosis. Deletion of PCNT had little effect on the interphase centrosomes. However, centrioles in PCNT-deleted mitotic cells prematurely separated and frequently amplified, revealing that centrioles are limited within the spindle poles by PCNT during mitosis. It is known that specific cleavage of PCNT is necessary for centriole separation during mitotic exit. Delayed centriole separation was observed in G0 phase when a noncleavable PCNT was removed or when PCNT was artificially cleaved by TEV protease. Furthermore, a daughter centriole converts to a mother centriole only after experiencing both mitotic exit and specific PCNT cleavage. Based on the results, we propose that a centriole pair disengages upon entering mitosis but remains associated with the surrounding PCM proteins throughout mitosis. During mitotic exit, specific cleavage of PCNT induces PCM disintegration. As a result, a daughter centriole separates from the mother centriole and converts to a young mother centriole.
Collapse
Affiliation(s)
- Jaeyoun Kim
- Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Jeongjin Kim
- Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Kunsoo Rhee
- Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
47
|
Leda M, Holland AJ, Goryachev AB. Autoamplification and Competition Drive Symmetry Breaking: Initiation of Centriole Duplication by the PLK4-STIL Network. iScience 2018; 8:222-235. [PMID: 30340068 PMCID: PMC6197440 DOI: 10.1016/j.isci.2018.10.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/26/2018] [Accepted: 10/04/2018] [Indexed: 12/17/2022] Open
Abstract
Centrioles, the cores of centrosomes and cilia, duplicate every cell cycle to ensure their faithful inheritance. How only a single procentriole is produced on each mother centriole remains enigmatic. We propose the first mechanistic biophysical model for procentriole initiation which posits that interactions between kinase PLK4 and its activator-substrate STIL are central for procentriole initiation. The model recapitulates the transition from a uniform "ring" of PLK4 surrounding the mother centriole to a single PLK4 "spot" that initiates procentriole assembly. This symmetry breaking requires autocatalytic activation of PLK4 and enhanced centriolar anchoring of PLK4 by phosphorylated STIL. We find that in situ degradation of active PLK4 cannot break symmetry. The model predicts that competition between transient PLK4 activity maxima for PLK4-STIL complexes destabilizes the PLK4 ring and produces instead a single PLK4 spot. Weakening of competition by overexpression of PLK4 and STIL causes progressive addition of supernumerary procentrioles, as observed experimentally.
Collapse
Affiliation(s)
- Marcin Leda
- Centre for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF UK
| | - Andrew J Holland
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Andrew B Goryachev
- Centre for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF UK.
| |
Collapse
|
48
|
Fong CS, Ozaki K, Tsou MFB. PPP1R35 ensures centriole homeostasis by promoting centriole-to-centrosome conversion. Mol Biol Cell 2018; 29:2801-2808. [PMID: 30230954 PMCID: PMC6249868 DOI: 10.1091/mbc.e18-08-0525] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Centriole-to-centrosome conversion (CCC) safeguards centriole homeostasis by coupling centriole duplication with segregation, and is essential for stabilization of mature vertebrate centrioles naturally devoid of the geometric scaffold or the cartwheel. Here we identified PPP1R35, a putative regulator of the protein phosphatase PP1, as a novel centriolar protein required for CCC. We found that PPP1R35 is enriched at newborn daughter centrioles in S or G2 phase. In the absence of PPP1R35, centriole assembly initiates normally in S phase, but none of the nascent centrioles can form active centrosomes or recruit CEP295, an essential factor for CCC. Instead, all PPP1R35-null centrioles, although stable during their birth in interphase, become disintegrated after mitosis upon cartwheel removal. Surprisingly, we found that neither the centriolar localization nor the function of PPP1R35 in CCC requires the putative PP1-interacting motif. PPP1R35 is thus acting upstream of CEP295 to induce CCC for proper centriole maintenance.
Collapse
Affiliation(s)
- Chii Shyang Fong
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Kanako Ozaki
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Meng-Fu Bryan Tsou
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065.,Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY 10065
| |
Collapse
|
49
|
Abstract
Mitosis is controlled by reversible protein phosphorylation involving specific kinases and phosphatases. A handful of major mitotic protein kinases, such as the cyclin B-CDK1 complex, the Aurora kinases, and Polo-like kinase 1 (PLK1), cooperatively regulate distinct mitotic processes. Research has identified proteins and mechanisms that integrate these kinases into signaling cascades that guide essential mitotic events. These findings have important implications for our understanding of the mechanisms of mitotic regulation and may advance the development of novel antimitotic drugs. We review collected evidence that in vertebrates, the Aurora kinases serve as catalytic subunits of distinct complexes formed with the four scaffold proteins Bora, CEP192, INCENP, and TPX2, which we deem "core" Aurora cofactors. These complexes and the Aurora-PLK1 cascades organized by Bora, CEP192, and INCENP control crucial aspects of mitosis and all pathways of spindle assembly. We compare the mechanisms of Aurora activation in relation to the different spindle assembly pathways and draw a functional analogy between the CEP192 complex and the chromosomal passenger complex that may reflect the coevolution of centrosomes, kinetochores, and the actomyosin cleavage apparatus. We also analyze the roles and mechanisms of Aurora-PLK1 signaling in the cell and centrosome cycles and in the DNA damage response.
Collapse
Affiliation(s)
- Vladimir Joukov
- N.N. Petrov National Medical Research Center of Oncology, Saint-Petersburg 197758, Russian Federation.
| | | |
Collapse
|
50
|
Kovacs L, Chao-Chu J, Schneider S, Gottardo M, Tzolovsky G, Dzhindzhev NS, Riparbelli MG, Callaini G, Glover DM. Gorab is a Golgi protein required for structure and duplication of Drosophila centrioles. Nat Genet 2018; 50:1021-1031. [PMID: 29892014 PMCID: PMC6097609 DOI: 10.1038/s41588-018-0149-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 04/17/2018] [Indexed: 11/09/2022]
Abstract
We demonstrate that a Drosophila Golgi protein, Gorab, is present not only in the trans-Golgi but also in the centriole cartwheel where, complexed to Sas6, it is required for centriole duplication. In addition to centriole defects, flies lacking Gorab are uncoordinated due to defects in sensory cilia, which lose their nine-fold symmetry. We demonstrate the separation of centriole and Golgi functions of Drosophila Gorab in two ways: first, we have created Gorab variants that are unable to localize to trans-Golgi but can still rescue the centriole and cilia defects of gorab null flies; second, we show that expression of C-terminally tagged Gorab disrupts Golgi functions in cytokinesis of male meiosis, a dominant phenotype overcome by mutations preventing Golgi targeting. Our findings suggest that during animal evolution, a Golgi protein has arisen with a second, apparently independent, role in centriole duplication.
Collapse
Affiliation(s)
| | - Jennifer Chao-Chu
- University of Cambridge, Cambridge, UK
- The University of Hong Kong, Hong Kong, China
| | | | - Marco Gottardo
- University of Siena, Siena, Italy
- Alexander von Humboldt Foundation Fellow, Center for Molecular Medicine and Institute for Biochemistry of the University of Cologne, Cologne, Germany
| | - George Tzolovsky
- University of Cambridge, Cambridge, UK
- Carl Zeiss Microscopy Ltd, ZEISS Group, Cambridge, UK
| | | | | | | | | |
Collapse
|