1
|
Sa SW, Wang LL, Ma QH. Association of Zona Pellucida Gene Variants With Female Infertility: A Retrospective Genetic Analysis. BJOG 2025; 132 Suppl 2:75-82. [PMID: 39932488 DOI: 10.1111/1471-0528.18094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/10/2025] [Accepted: 01/26/2025] [Indexed: 04/16/2025]
Abstract
OBJECTIVE We investigated the clinical characteristics and pregnancy outcomes of patients with zona pellucida (ZP) gene variants undergoing assisted reproductive technology (ART) treatment, to identify variants associated with female infertility. DESIGN Retrospective study. SETTING University-based reproductive medicine centre. POPULATION Twelve patients in whom only empty follicles or degenerated oocytes were retrieved after controlled ovulation stimulation and for whom no successful pregnancies were achieved after ART treatment. METHODS Next-generation sequencing (NGS) and Sanger sequencing were performed on DNA obtained from peripheral blood of the patients. The VCF files generated by the Genome Analysis Toolkit were functionally annotated using SnpEff with reference to the refSeq, gnomAD, dbSNP, InhouseSNP, ClinVar and dbNSFP databases. MAIN OUTCOME MEASURES American College of Medical Genetics and Genomics (ACMG) annotation of the SnpEff results was performed using InterVar. RESULTS We identified 14 ZP variants, including eight novel variants. These included heterozygous variants in ZP1, ZP2 and ZP3. These findings contribute to the understanding of ZP gene variants and their roles in the diagnosis of an abnormal ZP. CONCLUSIONS ZP gene variants are associated with female infertility, which can potentially affect ART outcomes. Therefore, ZP gene variant screening should be performed in female patients experiencing ART failure with pertinent clinical and laboratory indicators to guide personalised treatment and enhance fertility outcomes. However, further research is required to confirm the functional impact of these variants.
Collapse
Affiliation(s)
- Sha-Wei Sa
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Obstetric, Gynecologic, and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Li-Li Wang
- Sichuan Jinxin Xinan Women & Children Hospital, Chengdu, China
| | - Qian-Hong Ma
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Obstetric, Gynecologic, and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Litscher ES, Wassarman PM. The mammalian egg's zona pellucida, fertilization, and fertility. Curr Top Dev Biol 2025; 162:207-258. [PMID: 40180510 DOI: 10.1016/bs.ctdb.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
The zona pellucida (ZP) is a relatively thick extracellular matrix (ECM) that surrounds all mammalian eggs and plays vital roles during oogenesis, fertilization, and preimplantation development. The ZP is a semi-permeable, viscous ECM that consists of three or four glycosylated proteins, called ZP1-4, that differ from proteoglycans and proteins of somatic cell ECM. Mammalian ZP proteins are encoded by single-copy genes on different chromosomes and synthesized and secreted by growing oocytes arrested in meiosis. Secreted ZP proteins assemble in the extracellular space into long fibrils that are crosslinked polymers of ZP proteins and exhibit a structural repeat. Several regions of nascent ZP proteins, the signal-sequence, ZP domain, internal and external hydrophobic patches, transmembrane domain, and consensus furin cleavage-site regulate secretion and assembly of the proteins. The ZP domain is required for assembly of ZP fibrils, as well as for assembly of other kinds of ZP domain-containing proteins. ZP proteins adopt immunoglobulin (Ig)-like folds that resemble C- and V-type Ig-like domains, but represent new immunoglobulin-superfamily subtype structures. Interference with synthesis, processing, or secretion of ZP proteins by either gene-targeting in mice or mutations in human ZP genes can result in failure to assemble a ZP and female infertility. ZP2 and ZP3 must be present to assemble a ZP during oocyte growth and both serve as receptors for binding of free-swimming sperm to ovulated eggs. Acrosome-reacted sperm bind to ZP2 polypeptide by inner-acrosomal membrane and acrosome-intact sperm bind to ZP3 oligosaccharides by plasma membrane overlying the sperm head. Binding of acrosome-intact sperm to ZP3 induces them to undergo cellular exocytosis, the acrosome reaction. Only acrosome-reacted sperm can penetrate the ZP, bind to, and then fuse with the egg's plasma membrane to produce a zygote. Following sperm-egg fusion (fertilization) the ZP undergoes structural and functional changes (zona reaction) induced by cortical granule components (cortical reaction) deposited into the ZP. The latter include zinc and ovastacin, a metalloendoprotease that cleaves ZP2 near its amino-terminus and hardens the egg's ZP. The changes prevent penetration of bound sperm through and binding of supernumerary sperm to the ZP of fertilized eggs as part of a secondary or slow block to polyspermy. Therefore, ZP proteins act as structural proteins and sperm receptors, and help to prevent fertilization by more than one sperm. Here we review some of this information and provide details about several key features of ZP proteins, ZP matrix, and mammalian fertilization.
Collapse
Affiliation(s)
- Eveline S Litscher
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| | - Paul M Wassarman
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
3
|
Gao Y, Xue R, Guo R, Yang F, Sha X, Li Y, Hua R, Li G, Shen Q, Li K, Liu W, Xu Y, Zhou P, Wei Z, Zhang Z, Cao Y, He X, Wu H. CALR3 defects disrupt sperm-zona pellucida binding in humans: new insights into male factor fertilization failure and relevant clinical therapeutic approaches. Hum Reprod 2024; 39:2608-2617. [PMID: 39237102 DOI: 10.1093/humrep/deae205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/16/2024] [Indexed: 09/07/2024] Open
Abstract
STUDY QUESTION Do biallelic deleterious variants of Calreticulin 3 (CALR3) cause fertilization failure (FF), resulting in male infertility in humans? SUMMARY ANSWER Biallelic mutations in CALR3 were identified in two infertile men from unrelated families and were shown to cause FF associated with failed sperm-zona pellucida (ZP) binding. WHAT IS KNOWN ALREADY In male mice, the Calr3-knockout has been reported to cause male infertility and FF. However, the mechanism behind this remains unclear in humans. STUDY DESIGN, SIZE, DURATION Sequencing studies were conducted in a research hospital on samples from Han Chinese families with primary infertility and sperm head deformations to identify the underlying genetic causes. PARTICIPANTS/MATERIALS, SETTING, METHODS Data from two infertile probands characterized by sperm head deformation were collected through in silico analysis. Sperm cells from the probands were characterized using light and electron microscopy and used to verify the pathogenicity of genetic factors through functional assays. Subzonal insemination (SUZI) and IVF assays were performed to determine the exact pathogenesis of FF. ICSI were administered to overcome CALR3-affected male infertility. MAIN RESULTS AND THE ROLE OF CHANCE Novel biallelic deleterious mutations in CALR3 were identified in two infertile men from unrelated families. We found one homozygous frameshift CALR3 mutation (M1: c.17_27del, p.V6Gfs*34) and one compound heterozygous CALR3 mutation (M2: c.943A>G, p.N315D; M3: c.544T>C, p.Y182H). These mutations are rare in the general population and cause acrosomal ultrastructural defects in affected sperm. Furthermore, spermatozoa from patients harbouring the CALR3 mutations were unable to bind to the sperm-ZP or they disrupted gamete fusion or prevented oocyte activation. Molecular assays have revealed that CALR3 is crucial for the maturation of the ZP binding protein in humans. Notably, the successful fertilization via SUZI and ICSI attempts for two patients, as well as the normal expression of PLCζ in the mutant sperm, suggests that ICSI is an optimal treatment for CALR3-deficient FF. LIMITATIONS, REASONS FOR CAUTION The results are based on sperm-related findings from two patients. Further studies are required to gain insight into the developmental stage and function of CALR3 in human testis. WIDER IMPLICATIONS OF THE FINDINGS Our findings highlight the underlying risk of FF associated with sperm defects and provide a valuable reference for personalized genetic counselling and clinical treatment of these patients. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by the National Key R&D Program of China (2021YFC2700901), Hefei Comprehensive National Science Center Medical-Industrial Integration Medical Equipment Innovation Research Platform Project (4801001202), the National Natural Science Foundation of China (82201803, 82371621, 82271639), Foundation of the Education Department of Anhui Province (gxgwfx2022007), Key Project of Natural Science Research of Anhui Educational Committee (2023AH053287), and the Clinical Medical Research Transformation Project of Anhui Province (202204295107020037). The authors declare no competing interests. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Yang Gao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China
| | - Rufeng Xue
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China
| | - Rui Guo
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China
| | - Fan Yang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xuan Sha
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuqian Li
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Rong Hua
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China
- Anhui Province Key Laboratory of Reproductive Disorders and Obstetrics and Gynaecology Diseases, Hefei, China
| | - Guotong Li
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qunshan Shen
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Reproductive Disorders and Obstetrics and Gynaecology Diseases, Hefei, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, China
| | - Kuokuo Li
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Reproductive Disorders and Obstetrics and Gynaecology Diseases, Hefei, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, China
| | - Wenwen Liu
- Anhui Province Key Laboratory of Reproductive Disorders and Obstetrics and Gynaecology Diseases, Hefei, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, China
| | - Yuping Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Reproductive Disorders and Obstetrics and Gynaecology Diseases, Hefei, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, China
| | - Ping Zhou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Reproductive Disorders and Obstetrics and Gynaecology Diseases, Hefei, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, China
| | - Zhaolian Wei
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Reproductive Disorders and Obstetrics and Gynaecology Diseases, Hefei, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, China
| | - Zhiguo Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China
| | - Xiaojin He
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huan Wu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China
| |
Collapse
|
4
|
Nishio S, Emori C, Wiseman B, Fahrenkamp D, Dioguardi E, Zamora-Caballero S, Bokhove M, Han L, Stsiapanava A, Algarra B, Lu Y, Kodani M, Bainbridge RE, Komondor KM, Carlson AE, Landreh M, de Sanctis D, Yasumasu S, Ikawa M, Jovine L. ZP2 cleavage blocks polyspermy by modulating the architecture of the egg coat. Cell 2024; 187:1440-1459.e24. [PMID: 38490181 PMCID: PMC10976854 DOI: 10.1016/j.cell.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 11/07/2023] [Accepted: 02/09/2024] [Indexed: 03/17/2024]
Abstract
Following the fertilization of an egg by a single sperm, the egg coat or zona pellucida (ZP) hardens and polyspermy is irreversibly blocked. These events are associated with the cleavage of the N-terminal region (NTR) of glycoprotein ZP2, a major subunit of ZP filaments. ZP2 processing is thought to inactivate sperm binding to the ZP, but its molecular consequences and connection with ZP hardening are unknown. Biochemical and structural studies show that cleavage of ZP2 triggers its oligomerization. Moreover, the structure of a native vertebrate egg coat filament, combined with AlphaFold predictions of human ZP polymers, reveals that two protofilaments consisting of type I (ZP3) and type II (ZP1/ZP2/ZP4) components interlock into a left-handed double helix from which the NTRs of type II subunits protrude. Together, these data suggest that oligomerization of cleaved ZP2 NTRs extensively cross-links ZP filaments, rigidifying the egg coat and making it physically impenetrable to sperm.
Collapse
Affiliation(s)
- Shunsuke Nishio
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Chihiro Emori
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan; Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Benjamin Wiseman
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Dirk Fahrenkamp
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Elisa Dioguardi
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | | | - Marcel Bokhove
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Ling Han
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Alena Stsiapanava
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Blanca Algarra
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Yonggang Lu
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan; Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Mayo Kodani
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan; Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Rachel E Bainbridge
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kayla M Komondor
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anne E Carlson
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael Landreh
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; Department of Cell and Molecular Biology, Uppsala University, 75124 Uppsala, Sweden
| | | | - Shigeki Yasumasu
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo, Japan
| | - Masahito Ikawa
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan; Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan; Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan; Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Osaka, Japan
| | - Luca Jovine
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.
| |
Collapse
|
5
|
Pisciottano F, Campos MC, Penna C, Bruque CD, Gabaldón T, Saragüeta P. Positive selection in gamete interaction proteins in Carnivora. Mol Ecol 2024; 33:e17263. [PMID: 38318732 DOI: 10.1111/mec.17263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 02/07/2024]
Abstract
The absence of robust interspecific isolation barriers among pantherines, including the iconic South American jaguar (Panthera onca), led us to study molecular evolution of typically rapidly evolving reproductive proteins within this subfamily and related groups. In this study, we delved into the evolutionary forces acting on the zona pellucida (ZP) gamete interaction protein family and the sperm-oocyte fusion protein pair IZUMO1-JUNO across the Carnivora order, distinguishing between Caniformia and Feliformia suborders and anticipating few significant diversifying changes in the Pantherinae subfamily. A chromosome-resolved jaguar genome assembly facilitated coding sequences, enabling the reconstruction of protein evolutionary histories. Examining sequence variability across more than 30 Carnivora species revealed that Feliformia exhibited significantly lower diversity compared to its sister taxa, Caniformia. Molecular evolution analyses of ZP2 and ZP3, subunits directly involved in sperm-recognition, unveiled diversifying positive selection in Feliformia, Caniformia and Pantherinae, although no significant changes were linked to sperm binding. Structural cross-linking ZP subunits, ZP4 and ZP1 exhibited lower levels or complete absence of positive selection. Notably, the fusion protein IZUMO1 displayed prominent positive selection signatures and sites in basal lineages of both Caniformia and Feliformia, extending along the Caniformia subtree but absent in Pantherinae. Conversely, JUNO did not exhibit any positive selection signatures across tested lineages and clades. Eight Caniformia-specific positive selected sites in IZUMO1 were detected within two JUNO-interaction clusters. Our findings provide for the first time insights into the evolutionary trajectories of ZP proteins and the IZUMO1-JUNO gamete interaction pair within the Carnivora order.
Collapse
Affiliation(s)
- Francisco Pisciottano
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Buenos Aires, Argentina
| | - María Clara Campos
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Buenos Aires, Argentina
| | - Clementina Penna
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Buenos Aires, Argentina
| | - Carlos David Bruque
- Unidad de Conocimiento Traslacional Hospitalaria Patagónica, Hospital de Alta Complejidad El Calafate SAMIC, El Calafate, Santa Cruz, Argentina
| | - Toni Gabaldón
- Barcelona Supercomputing Center (BSC), Institute for Research in Biomedicine (IRB), and Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Patricia Saragüeta
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Buenos Aires, Argentina
| |
Collapse
|
6
|
Gert KRB, Panser K, Surm J, Steinmetz BS, Schleiffer A, Jovine L, Moran Y, Kondrashov F, Pauli A. Divergent molecular signatures in fish Bouncer proteins define cross-fertilization boundaries. Nat Commun 2023; 14:3506. [PMID: 37316475 DOI: 10.1038/s41467-023-39317-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 06/05/2023] [Indexed: 06/16/2023] Open
Abstract
Molecular compatibility between gametes is a prerequisite for successful fertilization. As long as a sperm and egg can recognize and bind each other via their surface proteins, gamete fusion may occur even between members of separate species, resulting in hybrids that can impact speciation. The egg membrane protein Bouncer confers species specificity to gamete interactions between medaka and zebrafish, preventing their cross-fertilization. Here, we leverage this specificity to uncover distinct amino acid residues and N-glycosylation patterns that differentially influence the function of medaka and zebrafish Bouncer and contribute to cross-species incompatibility. Curiously, in contrast to the specificity observed for medaka and zebrafish Bouncer, seahorse and fugu Bouncer are compatible with both zebrafish and medaka sperm, in line with the pervasive purifying selection that dominates Bouncer's evolution. The Bouncer-sperm interaction is therefore the product of seemingly opposing evolutionary forces that, for some species, restrict fertilization to closely related fish, and for others, allow broad gamete compatibility that enables hybridization.
Collapse
Affiliation(s)
- Krista R B Gert
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, 1030, Vienna, Austria
| | - Karin Panser
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria
| | - Joachim Surm
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel
| | - Benjamin S Steinmetz
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, 8093, Zürich, Switzerland
| | - Alexander Schleiffer
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria
| | - Luca Jovine
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel
| | - Fyodor Kondrashov
- Institute of Science and Technology Austria, Klosterneuburg, Austria
- Evolutionary and Synthetic Biology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Andrea Pauli
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria.
| |
Collapse
|
7
|
Kashyap P, Solanki S, Datta TK, Kumar R. Buffalo sperm membrane glycan-binding proteins reveal precise and preferential binding signatures with specific glycans targets on oviduct epithelium and zona pellucida-an implication in fertilization. Theriogenology 2023; 207:96-109. [PMID: 37271105 DOI: 10.1016/j.theriogenology.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/04/2023] [Accepted: 05/07/2023] [Indexed: 06/06/2023]
Abstract
Sperm membrane glycan-binding proteins (lectins) interact with the counterpart glycans in the oviduct, oocytes, and vice-versa. It has already been well known that specific glycans are present on oviductal epithelium and zona pellucida (ZP) in different mammalian species. Some of these glycans are necessary for oviductal sperm reservoir formation and gamete recognition. The specific binding phenomenon of lectin-glycans is one of the vital factors for successful fertilization in mammals. We hypothesized that buffalo sperm membrane glycan-binding proteins have specific glycan targets in the oviduct and ZP supporting the fertilization event. In the present investigation, sperm membrane proteins were extracted and assessed for their binding capacity with glycans using a high-throughput glycan microarray. The most promising glycan binding signals were evaluated to confirm the sperm putative receptors for glycan targets in the oviductal epithelial cells (OEC) and on ZP using an in-vitro competitive binding inhibition assay. Based on an array of 100 glycans, we found that N-acetyllactosamine (LacNAc), Lewis-a trisaccharide, 3'-sialyllactosamine and LacdiNAc were the most promising glycans and selected for further in-vitro validation. We established an inhibitory concentration of 12 mM Lewis-a trisaccharide and 10 μg/ml Lotus tetragonolobus (LTL) lectin for the sperm-OEC binding interaction, indicating its specificity and sensitivity. We observed that 3 mM 3'-sialyllactosamine, and LacdiNAc were the most competitive inhibitory concentration in sperm-ZP binding, suggesting a specific and abundance-dependent binding affinity. The competitive binding affinity of Maackia amurensis (MAA) lectin with Neu5Ac(α2-3)Gal(β1-4)GlcNAc further supports the abundance of 3'-sialyllactosamine on ZP responsible for sperm binding. Our findings develop the strong evidence on buffalo sperm putative receptors underlying their locking specificities with Lewis-a trisaccharide in oviduct and 3'-sialyllactosamine on ZP. The functional interaction of buffalo sperm lectins with the target glycans in OEC and ZP appears to be accomplished in an abundance-dependent manner, facilitating the fertilization event in buffaloes.
Collapse
Affiliation(s)
- Poonam Kashyap
- Animal Genomics Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana, India
| | - Subhash Solanki
- Animal Genomics Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana, India
| | - Tirtha Kumar Datta
- Animal Genomics Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana, India.
| | - Rakesh Kumar
- Animal Genomics Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana, India.
| |
Collapse
|
8
|
Xu M, Wu W, Zhao M, Chung JPW, Li TC, Chan DYL. Common dysmorphic oocytes and embryos in assisted reproductive technology laboratory in association with gene alternations. Int J Biochem Cell Biol 2022; 152:106298. [PMID: 36122887 DOI: 10.1016/j.biocel.2022.106298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/29/2022]
Abstract
Amorphic or defected oocytes and embryos are commonly observed in assisted reproductive technology (ART) laboratories. It is believed that a proper gene expression at each stage of embryo development contributes to the possibility of a decent-quality embryo leading to successful implantation. Many studies reported that several defects in embryo morphology are associated with gene expressions during in vitro fertilization (IVF) treatment. There is lacking literature review on summarizing common morphological defects about gene alternations. In this review, we summarized the current literature. We selected 64 genes that have been reported to be involved in embryo morphological abnormalities in animals and humans, 30 of which were identified in humans and might be the causes of embryonic changes. Five papers focusing on associations of multiple gene expressions and embryo abnormalities using RNA transcriptomes were also included during the search. We have also reviewed our time-lapse image database with over 3000 oocytes/embryos to show morphological defects possibly related to gene alternations reported previously in the literature. This holistic review can better understand the associations between gene alternations and morphological changes. It is also beneficial to select important biomarkers with strong evidence in IVF practice and reveal their potential application in embryo selection. Also, identifying genes may help patients with genetic disorders avoid unnecessary treatments by providing preimplantation genetic testing for monogenic/single gene defects (PGT-M), reduce embryo replacements by less potential, and help scientists develop new methods for oocyte/embryo research in the near future.
Collapse
Affiliation(s)
- Murong Xu
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Waner Wu
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Mingpeng Zhao
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; Department of Reproductive Medicine, Department of Obstetrics and Gynaecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jacqueline Pui Wah Chung
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Tin Chiu Li
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - David Yiu Leung Chan
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
9
|
Fliniaux I, Marchand G, Molinaro C, Decloquement M, Martoriati A, Marin M, Bodart JF, Harduin-Lepers A, Cailliau K. Diversity of sialic acids and sialoglycoproteins in gametes and at fertilization. Front Cell Dev Biol 2022; 10:982931. [PMID: 36340022 PMCID: PMC9630641 DOI: 10.3389/fcell.2022.982931] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/10/2022] [Indexed: 09/22/2023] Open
Abstract
Sialic acids are a family of 9-carbon monosaccharides with particular physicochemical properties. They modulate the biological functions of the molecules that carry them and are involved in several steps of the reproductive process. Sialoglycoproteins participate in the balance between species recognition and specificity, and the mechanisms of these aspects remain an issue in gametes formation and binding in metazoan reproduction. Sialoglycoproteins form a specific coat at the gametes surface and specific polysialylated chains are present on marine species oocytes. Spermatozoa are submitted to critical sialic acid changes in the female reproductive tract facilitating their migration, their survival through the modulation of the female innate immune response, and the final oocyte-binding event. To decipher the role of sialic acids in gametes and at fertilization, the dynamical changes of enzymes involved in their synthesis and removal have to be further considered.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Katia Cailliau
- Univ. Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| |
Collapse
|
10
|
Gómez-Torres MJ, Sáez-Espinosa P, Manzano-Santiago P, Robles-Gómez L, Huerta-Retamal N, Aizpurua J. Sperm Adhesion Molecule 1 (SPAM1) Distribution in Selected Human Sperm by Hyaluronic Acid Test. Biomedicines 2022; 10:biomedicines10102553. [PMID: 36289815 PMCID: PMC9599839 DOI: 10.3390/biomedicines10102553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/05/2022] [Accepted: 10/11/2022] [Indexed: 11/26/2022] Open
Abstract
The failures of binding to the oocyte zona pellucida are commonly attributed to defects in the sperm recognition, adhesion, and fusion molecules. SPAM1 (sperm adhesion molecule 1) is a hyaluronidase implicated in the dispersion of the cumulus-oocyte matrix. Therefore, the aim of this study was to characterize the SPAM1 distribution in the different physiological conditions of human sperm. Specifically, we evaluated the location of the SPAM1 protein in human sperm before capacitation, at one and four hours of capacitation and after hyaluronic acid (HA) selection test by fluorescence microscopy. Sperm bound to HA were considered mature and those that crossed it immature. Our results detected three SPAM1 fluorescent patterns: label throughout the head (P1), equatorial segment with acrosomal faith label (P2), and postacrosomal label (P3). The data obtained after recovering the mature sperm by the HA selection significantly (p < 0.05) highlighted the P1 in both capacitation times, being 79.74 and 81.48% after one hour and four hours, respectively. Thus, the HA test identified that human sperm require the presence of SPAM1 throughout the sperm head (P1) to properly contact the cumulus-oocyte matrix. Overall, our results provide novel insights into the physiological basis of sperm capacitation and could contribute to the improvement of selection techniques.
Collapse
Affiliation(s)
- María José Gómez-Torres
- Departamento de Biotecnología, Universidad de Alicante, 03690 Alicante, Spain
- Cátedra Human Fertility, Universidad de Alicante, 03690 Alicante, Spain
- Correspondence: ; Tel.: +34-965-903-878
| | - Paula Sáez-Espinosa
- Departamento de Biotecnología, Universidad de Alicante, 03690 Alicante, Spain
| | | | - Laura Robles-Gómez
- Departamento de Biotecnología, Universidad de Alicante, 03690 Alicante, Spain
| | | | - Jon Aizpurua
- IVF Spain, Reproductive Medicine, 03540 Alicante, Spain
| |
Collapse
|
11
|
Li R, Qu J, Huang D, He Y, Niu J, Qi J. Expression Analysis of ZPB2a and Its Regulatory Role in Sperm-Binding in Viviparous Teleost Black Rockfish. Int J Mol Sci 2022; 23:ijms23169498. [PMID: 36012756 PMCID: PMC9409380 DOI: 10.3390/ijms23169498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
Black rockfish is a viviparous teleost whose sperm could be stored in the female ovary for five months. We previously proposed that zona pellucida (ZP) proteins of black rockfish play a similar sperm-binding role as in mammals. In this study, SsZPB2a and SsZPB2c were identified as the most similar genes with human ZPA, ZPB1 and ZPB2 by Blastp method. Immunohistochemistry showed that ovary-specific SsZPB2a was initially expressed in the cytoplasm of oocytes at stage III. Then it gradually transferred to the region close to the cell membrane and zona pellucida of oocytes at stage IV. The most obvious protein signal was observed at the zona pellucida region of oocytes at stage V. Furthermore, we found that the recombinant prokaryotic proteins rSsZPB2a and rSsZPB2c could bind with the posterior end of sperm head and rSsZPB2a was able to facilitate the sperm survival in vitro. After knocking down Sszpb2a in ovarian tissues cultivated in vitro, the expressions of sperm-specific genes were down-regulated (p < 0.05). These results illustrated the regulatory role of ZP protein to the sperm in viviparous teleost for the first time, which could advance our understanding about the biological function of ZP proteins in the teleost.
Collapse
Affiliation(s)
- Rui Li
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Jiangbo Qu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Dan Huang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| | - Yan He
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| | - Jingjing Niu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Correspondence: (J.N.); (J.Q.)
| | - Jie Qi
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
- Correspondence: (J.N.); (J.Q.)
| |
Collapse
|
12
|
Hou M, Zhu L, Jiang J, Liu Z, Li Z, Jia W, Hu J, Zhou X, Zhang D, Luo Y, Peng X, Xi Q, Jin L, Zhang X. Novel Heterozygous Mutations in ZP2 Cause Abnormal Zona Pellucida and Female Infertility. Reprod Sci 2022; 29:3047-3054. [PMID: 35595959 DOI: 10.1007/s43032-022-00958-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 04/23/2022] [Indexed: 11/24/2022]
Abstract
Zona pellucida (ZP) which is an extracellular matrix consisting of ZP1, ZP2, ZP3, and ZP4 plays a vital role in oocyte maturity, early embryonic development, and fertilization process. Any alterations of structure or function may lead to the abnormal formation of ZP and female infertility. Two novel heterozygous mutations c.1859G > A (p.Cys620Tyr) and c.1421 T > C (p.Leu474Pro) in ZP2 gene were recognized in three patients from two unrelated families with abnormal ZP and female infertility in this study. The expression constructs carrying wild-type ZP2 gene, c.1859G > A (p.Cys620Tyr) mutant ZP2 gene, and c.1421 T > C (p.Leu474Pro) mutant ZP2 gene were transfected into CHO cells respectively. There was a remarkable decrease in the expression of p.Cys620Tyr mutant protein with western blot. In addition, secretion of p.Leu474Pro mutant protein in the culture medium reduced markedly compared with that of wild-type ZP2 protein. Furthermore, co-immunoprecipitation showed that the p.Leu474Pro mutation affected the interaction between ZP2 and ZP3. Prediction of three-dimensional (3D) structure of the proteins showed that p.Cys620Tyr mutation altered the disulfide bond of ZP2 protein and may affect its function. These findings extend the ranges of mutations of ZP2 gene. Meanwhile, it will be helpful to the precise diagnosis of abnormal ZP.
Collapse
Affiliation(s)
- Meiqi Hou
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Lixia Zhu
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jinghang Jiang
- Reproductive Medicine Center, Jingmen No. 2 People's Hospital, Jingmen, Hubei, China
| | - Zhenxing Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Zhou Li
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Weimin Jia
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Juan Hu
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaopei Zhou
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Dazhi Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Yalin Luo
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Xuejie Peng
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Qingsong Xi
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lei Jin
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xianqin Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
| |
Collapse
|
13
|
Wiesehöfer C, Wiesehöfer M, Dankert JT, Chung JJ, von Ostau NE, Singer BB, Wennemuth G. CatSper and its CaM-like Ca 2+ sensor EFCAB9 are necessary for the path chirality of sperm. FASEB J 2022; 36:e22288. [PMID: 35438819 PMCID: PMC9835897 DOI: 10.1096/fj.202101656rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/11/2022] [Accepted: 03/17/2022] [Indexed: 01/14/2023]
Abstract
Successful fertilization depends on sperm motility adaptation. Ejaculated and activated sperm beat symmetrically in high frequency, move linearly, and swim with clockwise chirality. After capacitation, sperm beat asymmetrically with lower amplitude and a high lateral head excursion. This motility change called hyperactivation requires CatSper activation and an increase in intracellular Ca2+ . However, whether CatSper-mediated Ca2+ influx participates in controlling the swim path chirality is unknown. In this study, we show that the clockwise path chirality is preserved in mouse sperm regardless of capacitation state but is lost in the sperm either lacking the entire CatSper channel or its Ca2+ sensor EFCAB9. Pharmacological inhibition of CatSper with either mibefradil or NNC 55-0396 leads to the same loss in swim path chirality. Exposure of sperm to the recombinant N-terminal part of the zona pellucida protein 2 randomizes chirality in capacitated cells, but not in non-capacitated ones. We conclude that Ca2+ sensitive regulation of CatSper activity orchestrates clockwise swim path chirality of sperm and any substantial change, such as the physiological stimulus of zona pellucida glycoproteins, results in a loss of chirality.
Collapse
Affiliation(s)
| | - Marc Wiesehöfer
- Department of Anatomy, University Duisburg-Essen, D-45147 Essen, Germany
| | | | - Jean-Ju Chung
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Nicola Edith von Ostau
- Department of Anatomy, University Duisburg-Essen, D-45147 Essen, Germany,Department of Urology, University Hospital Essen, D-45147 Essen, Germany
| | | | - Gunther Wennemuth
- Department of Anatomy, University Duisburg-Essen, D-45147 Essen, Germany,Correspondence to
| |
Collapse
|
14
|
Satouh Y, Inoue N. Involvement of cellular protrusions in gamete interactions. Semin Cell Dev Biol 2022; 129:93-102. [PMID: 35370088 DOI: 10.1016/j.semcdb.2022.03.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/15/2022] [Accepted: 03/25/2022] [Indexed: 12/24/2022]
Abstract
Gamete fusion is of considerable importance in reproductive events, as it determines the gamete pairs or chromosomes that the next generation will inherit. To preserve species specificity with an appropriate karyotype, the fusion between gametes requires regulatory mechanisms to ensure limited fusion competency. In many organisms, gamete surfaces are not smooth, but present constitutive or transient cellular protrusions suggested to be involved in gamete fusion. However, the molecular mechanisms and the factors essential for the membrane-membrane fusion process and cellular protrusion involvement have remained unclear. Recent advances in the identification and functional analysis of the essential factors for gamete interaction have revealed the molecular mechanisms underlying their activity regulation and dynamics. In homogametic fertilization, dynamic regulation of the fusion core machinery on cellular protrusions was precisely uncovered. In heterogametic fertilization, oocyte fusion competency was suggested to correlate with the compartmentalization of the fusion essential factor and protrusion formation. These findings shed light on the significance of cellular protrusions in gamete fusion as a physically and functionally specialized site for cellular fusion. In this review, we consider the developments in gamete interaction research in various species with different fertilization modes, highlighting the commonalities in the relationship between gamete fusion and cellular protrusions.
Collapse
Affiliation(s)
- Yuhkoh Satouh
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan.
| | - Naokazu Inoue
- Department of Cell Science, Institute of Biomedical Sciences, School of Medicine, Fukushima Medical University, Fukushima, Fukushima, Japan.
| |
Collapse
|
15
|
Dilimulati K, Orita M, Yonahara Y, Imai FL, Yonezawa N. Identification of Sperm-Binding Sites in the N-Terminal Domain of Bovine Egg Coat Glycoprotein ZP4. Int J Mol Sci 2022; 23:ijms23020762. [PMID: 35054946 PMCID: PMC8775842 DOI: 10.3390/ijms23020762] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/05/2022] [Accepted: 01/09/2022] [Indexed: 11/16/2022] Open
Abstract
The species-selective interaction between sperm and egg at the beginning of mammalian fertilisation is partly mediated by a transparent envelope called the zona pellucida (ZP). The ZP is composed of three or four glycoproteins (ZP1-ZP4). The functions of the three proteins present in mice (ZP1-ZP3) have been extensively studied. However, the biological role of ZP4, which was found in all other mammals studied so far, has remained largely unknown. Previously, by developing a solid support assay system, we showed that ZP4 exhibits sperm-binding activity in bovines and the N-terminal domain of bovine ZP4 (bZP4 ZP-N1 domain) is a sperm-binding region. Here, we show that bovine sperm bind to the bZP4 ZP-N1 domain in a species-selective manner and that N-glycosylation is not required for sperm-binding activity. Moreover, we identified three sites involved in sperm binding (site I: from Gln-41 to Pro-46, site II: from Leu-65 to Ser-68 and site III: from Thr-108 to Ile-123) in the bZP4 ZP-N1 domain using chimeric bovine/porcine and bovine/human ZP4 recombinant proteins. These results provide in vitro experimental evidence for the role of the bZP4 ZP-N1 domain in mediating sperm binding to the ZP.
Collapse
Affiliation(s)
- Kamila Dilimulati
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba 263-8522, Japan; (K.D.); (M.O.); (F.L.I.)
| | - Misaki Orita
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba 263-8522, Japan; (K.D.); (M.O.); (F.L.I.)
| | - Yoshiki Yonahara
- Department of Chemistry, Faculty of Science, Chiba University, Chiba 263-8522, Japan;
| | - Fabiana Lica Imai
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba 263-8522, Japan; (K.D.); (M.O.); (F.L.I.)
| | - Naoto Yonezawa
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba 263-8522, Japan; (K.D.); (M.O.); (F.L.I.)
- Correspondence:
| |
Collapse
|
16
|
Lee S, Kim HJ, Park JI, Cho HB, Park JS, Park KH. Organelle targeting using a fluorescent probe that selectively penetrates the zona pellucida. Int J Pharm 2021; 610:121282. [PMID: 34774691 DOI: 10.1016/j.ijpharm.2021.121282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/02/2021] [Accepted: 11/06/2021] [Indexed: 11/28/2022]
Abstract
The characteristics of oocytes, which are female germ cells, have not been studied using optical materials. The structural layers (zona pellucida, ZP) around oocytes make it difficult to deliver drugs aimed at treating infertility. Here, we investigated whether the fluorescent probes sulforhodamine, fluorescein 5(6)-isothiocyanate, tetramethylrhodamine isothiocyanate, cyanine 3 carboxylic acid, and cyanine 5 carboxylic acid penetrate oocytes. By targeting the ZP layer of the oocyte, the characteristics of the model drug, a fluorescent probe, were analyzed, and the position of the probe in the oocyte was confirmed for differences in the characteristics. Penetration of the ZP and delivery into the cytoplasm differed between the fluorescent probes. This was due to their different physiochemical properties, including hydrophobicity (contact angle and surface tension), surfactant activity, and electrical charge. Among the fluorescent probes delivered to cytoplasm, unlike TRITC, Cy3 and Cy5 perturbed oocyte development. These results suggest that in oocytes with high physical barriers (cell membrane, zona pellucida), the delivery efficiency can be estimated by considering the properties (molecular weight and structure, solubility and functional structure, etc.) of the drug. In addition, it suggests that an encapsulated or bound carrier of a drug with properties similar to that of a fluorescent probe can be efficiently delivered into oocytes.
Collapse
Affiliation(s)
- Sujin Lee
- Laboratory of Nano-regenerative Medical Engineering, Department of Biomedical Science, College of Life Science, CHA University, 618, CHA Biocomplex, Sampyeong-Dong, Bundang-gu, Seongnam-si 13488, Republic of Korea
| | - Hye Jin Kim
- Laboratory of Nano-regenerative Medical Engineering, Department of Biomedical Science, College of Life Science, CHA University, 618, CHA Biocomplex, Sampyeong-Dong, Bundang-gu, Seongnam-si 13488, Republic of Korea
| | - Ji-In Park
- Laboratory of Nano-regenerative Medical Engineering, Department of Biomedical Science, College of Life Science, CHA University, 618, CHA Biocomplex, Sampyeong-Dong, Bundang-gu, Seongnam-si 13488, Republic of Korea
| | - Hui Bang Cho
- Laboratory of Nano-regenerative Medical Engineering, Department of Biomedical Science, College of Life Science, CHA University, 618, CHA Biocomplex, Sampyeong-Dong, Bundang-gu, Seongnam-si 13488, Republic of Korea
| | - Ji Sun Park
- Laboratory of Nano-regenerative Medical Engineering, Department of Biomedical Science, College of Life Science, CHA University, 618, CHA Biocomplex, Sampyeong-Dong, Bundang-gu, Seongnam-si 13488, Republic of Korea.
| | - Keun-Hong Park
- Laboratory of Nano-regenerative Medical Engineering, Department of Biomedical Science, College of Life Science, CHA University, 618, CHA Biocomplex, Sampyeong-Dong, Bundang-gu, Seongnam-si 13488, Republic of Korea.
| |
Collapse
|
17
|
Rajput N, Gahlay GK. Identification and in silico Characterization of Deleterious Single Nucleotide Variations in Human ZP2 Gene. Front Cell Dev Biol 2021; 9:763166. [PMID: 34869353 PMCID: PMC8635754 DOI: 10.3389/fcell.2021.763166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/25/2021] [Indexed: 12/15/2022] Open
Abstract
ZP2, an important component of the zona matrix, surrounds mammalian oocytes and facilitates fertilization. Recently, some studies have documented the association of mutations in genes encoding the zona matrix with the infertile status of human females. Single nucleotide polymorphisms are the most common type of genetic variations observed in a population and as per the dbSNP database, around 5,152 SNPs are reported to exist in the human ZP2 (hZP2) gene. Although a wide range of computational tools are publicly available, yet no computational studies have been done to date to identify and analyze structural and functional effects of deleterious SNPs on hZP2. In this study, we conducted a comprehensive in silico analysis of all the SNPs found in hZP2. Six different computational tools including SIFT and PolyPhen-2 predicted 18 common nsSNPs as deleterious of which 12 were predicted to most likely affect the structure/functional properties. These were either present in the N-term region crucial for sperm-zona interaction or in the zona domain. 31 additional SNPs in both coding and non-coding regions were also identified. Interestingly, some of these SNPs have been found to be present in infertile females in some recent studies.
Collapse
Affiliation(s)
- Neha Rajput
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, INDIA
| | - Gagandeep Kaur Gahlay
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, INDIA
| |
Collapse
|
18
|
Robles-Gómez L, Sáez-Espinosa P, López-Viloria EM, López-Botella A, Aizpurua J, Gómez-Torres MJ. Quantification and Topographical Distribution of Terminal and Linked Fucose Residues in Human Spermatozoa by Using Field Emission Scanning Electron Microscopy (FE-SEM). Int J Mol Sci 2021; 22:ijms222111947. [PMID: 34769375 PMCID: PMC8584901 DOI: 10.3390/ijms222111947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/29/2021] [Accepted: 10/31/2021] [Indexed: 11/16/2022] Open
Abstract
The modification of sperm glycocalyx is an essential process during sperm capacitation. The presence and redistribution of terminal and linked fucose have been described during in vitro capacitation in humans. However, the influence of the capacitation time on the quantification and localization of terminal and linked fucose is still unknown. In this study, the quantitative and qualitative changes in fucosyl residues during different in vitro capacitation times (1 and 4 h), are simultaneously characterized by using Aleuria aurantia (AAA) lectin-gold labelling and high-resolution field emission scanning electron microscopy (FE-SEM) in human sperm. A significant decrease was found in the number of terminal fucose registered in the whole sperm head during the in vitro capacitation. Nevertheless, the quantification of fucose residues after 1 h of in vitro capacitation was very similar to those found after 4 h. Therefore, the changes observed in terminal and linked fucose during capacitation were not time-dependent. Furthermore, the comprehensive analysis of the topographic distribution showed the preferential fucosyl location in the acrosomal region and the presence of distinct clusters distributed over the head in all the studied conditions. Overall, these findings corroborate the validity of FE-SEM combined with gold labelling to register changes in surface molecules during in vitro sperm capacitation.
Collapse
Affiliation(s)
- Laura Robles-Gómez
- Departamento de Biotecnología, Universidad de Alicante, 03080 Alicante, Spain; (L.R.-G.); (P.S.-E.); (E.M.L.-V.); (A.L.-B.)
| | - Paula Sáez-Espinosa
- Departamento de Biotecnología, Universidad de Alicante, 03080 Alicante, Spain; (L.R.-G.); (P.S.-E.); (E.M.L.-V.); (A.L.-B.)
| | - Eliana Marina López-Viloria
- Departamento de Biotecnología, Universidad de Alicante, 03080 Alicante, Spain; (L.R.-G.); (P.S.-E.); (E.M.L.-V.); (A.L.-B.)
| | - Andrea López-Botella
- Departamento de Biotecnología, Universidad de Alicante, 03080 Alicante, Spain; (L.R.-G.); (P.S.-E.); (E.M.L.-V.); (A.L.-B.)
| | - Jon Aizpurua
- IVF Spain, Reproductive Medicine, 03540 Alicante, Spain;
| | - María José Gómez-Torres
- Departamento de Biotecnología, Universidad de Alicante, 03080 Alicante, Spain; (L.R.-G.); (P.S.-E.); (E.M.L.-V.); (A.L.-B.)
- Cátedra Human Fertility, Universidad de Alicante, 03080 Alicante, Spain
- Correspondence: ; Tel.: +34-965-903-878
| |
Collapse
|
19
|
Sáez-Espinosa P, Huerta-Retamal N, Robles-Gómez L, Avilés M, Aizpurua J, Velasco I, Romero A, Gómez-Torres MJ. Influence of in vitro capacitation time on structural and functional human sperm parameters. Asian J Androl 2021; 22:447-453. [PMID: 31621655 PMCID: PMC7523607 DOI: 10.4103/aja.aja_104_19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
A cascade of dramatic physiological events is linked to the sperm acrosome reaction and binding to the oocyte's zona pellucida during human sperm capacitation. However, structural and functional sperm changes during capacitation currently remain poorly defined. Here, we performed a multibiomarker approach based on the utilization of sperm concentration, motility, viability, morphology, acrosome reaction, tyrosine phosphorylation, DNA fragmentation, and lectin-binding sites to analyze the impact caused by swim-up selection times (uncapacitated, 1 h capacitated, and 4 h capacitated) on sperm function and structure in normozoospermic samples. We found that a 4 h swim-up capacitation increased sperm quality, because a large number of cells with normal morphology and lower DNA fragmentation rates were recovered. Furthermore, the long-term capacitation induced a higher percentage of cells with tyrosine phosphorylation of the principal piece as well as a redistribution of lectin-binding sites. Overall, the multivariate biomarkers analyzed showed a less variable distribution on spermatozoa recovered after 4 h capacitation than that with the shorter capacitation time. These findings stress the importance of capacitation time as a relevant factor in sperm quality with potential biological reproductive implications both for basic research and in assisted reproduction techniques.
Collapse
Affiliation(s)
- Paula Sáez-Espinosa
- Department of Biotechnology, Faculty of Science, University of Alicante, Alicante 03080, Spain.,FISABIO - University Hospital of San Juan de Alicante, Service of Gynecology and Obstetrics, San Juan de Alicante 03550, Spain
| | - Natalia Huerta-Retamal
- Department of Biotechnology, Faculty of Science, University of Alicante, Alicante 03080, Spain
| | - Laura Robles-Gómez
- Department of Biotechnology, Faculty of Science, University of Alicante, Alicante 03080, Spain
| | - Manuel Avilés
- Department of Cell Biology and Histology, Faculty of Medicine, University of Murcia and IMIB-Arrixaca, Murcia 30100, Spain
| | - Jon Aizpurua
- IVF Spain, Reproductive Medicine, Alicante 03540, Spain
| | - Irene Velasco
- Department of Biotechnology, Faculty of Science, University of Alicante, Alicante 03080, Spain.,University Hospital of San Juan de Alicante, Service of Gynecology and Obstetrics, San Juan de Alicante 03550, Spain
| | - Alejandro Romero
- Department of Biotechnology, Faculty of Science, University of Alicante, Alicante 03080, Spain
| | - María José Gómez-Torres
- Department of Biotechnology, Faculty of Science, University of Alicante, Alicante 03080, Spain.,Human Fertility Cathedra, University of Alicante, Alicante 03080, Spain
| |
Collapse
|
20
|
Wang Y, Zhao W, Mei S, Chen P, Leung TY, Lee CL, Yeung WSB, Ou JP, Liang X, Chiu PCN. Identification of Sialyl-Lewis(x)-Interacting Protein on Human Spermatozoa. Front Cell Dev Biol 2021; 9:700396. [PMID: 34354992 PMCID: PMC8329450 DOI: 10.3389/fcell.2021.700396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/28/2021] [Indexed: 01/12/2023] Open
Abstract
Capacitated spermatozoa initiate fertilization by binding to the zona pellucida (ZP). Defective spermatozoa-ZP binding causes infertility. The sialyl-Lewis(x) (SLeX) sequence is the most abundant terminal sequence on the glycans of human ZP glycoproteins involving in spermatozoa-ZP binding. This study aimed to identify and characterize the SLeX-binding proteins on human spermatozoa. By using affinity chromatography followed by mass spectrometric analysis, chromosome 1 open reading frame 56 (C1orf56) was identified to be a SLeX-binding protein of capacitated spermatozoa. The acrosomal region of spermatozoa possessed C1orf56 immunoreactive signals with intensities that increased after capacitation indicating translocation of C1orf56 to the cell surface during capacitation. Treatment with antibody against C1orf56 inhibited spermatozoa-ZP binding and ZP-induced acrosome reaction. Purified C1orf56 from capacitated spermatozoa bound to human ZP. A pilot clinical study was conducted and found no association between the percentage of capacitated spermatozoa with C1orf56 expression and in vitro fertilization (IVF) rate in assisted reproduction treatment. However, the percentage of C1orf56 positive spermatozoa in the acrosome-reacted population was significantly (P < 0.05) lower in cycles with a fertilization rate < 60% when compared to those with a higher fertilization rate, suggesting that C1orf56 may have functions after ZP-binding and acrosome reaction. A larger clinical trial is needed to determine the possible use of sperm C1orf56 content for the prediction of fertilization potential of sperm samples.
Collapse
Affiliation(s)
- Ying Wang
- Department of Obstetrics and Gynecology, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong.,Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Peking University Third Hospital, Beijing, China
| | - Weie Zhao
- Department of Obstetrics and Gynecology, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong.,The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Si Mei
- Department of Obstetrics and Gynecology, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong.,Department of Physiology, Medical College, Hunan University of Chinese Medicine, Changsha, China
| | - Panyu Chen
- The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Tsz-Ying Leung
- Department of Obstetrics and Gynecology, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong.,Shenzhen Key Laboratory of Fertility Regulation, Department of Obstetrics and Gynecology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Cheuk-Lun Lee
- Department of Obstetrics and Gynecology, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong.,Shenzhen Key Laboratory of Fertility Regulation, Department of Obstetrics and Gynecology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - William S B Yeung
- Department of Obstetrics and Gynecology, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong.,Shenzhen Key Laboratory of Fertility Regulation, Department of Obstetrics and Gynecology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Jian-Ping Ou
- Department of Obstetrics and Gynecology, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong.,Center for Reproductive Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoyan Liang
- The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Philip C N Chiu
- Department of Obstetrics and Gynecology, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong.,Shenzhen Key Laboratory of Fertility Regulation, Department of Obstetrics and Gynecology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
21
|
Dilimulati K, Orita M, Undram G, Yonezawa N. Sperm-binding regions on bovine egg zona pellucida glycoprotein ZP4 studied in a solid supported form on plastic plate. PLoS One 2021; 16:e0254234. [PMID: 34242308 PMCID: PMC8270413 DOI: 10.1371/journal.pone.0254234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/22/2021] [Indexed: 11/23/2022] Open
Abstract
The zona pellucida (ZP) is a transparent envelope that surrounds the mammalian oocyte and mediates species-selective sperm-oocyte interactions. The bovine ZP consists of the glycoproteins ZP2, ZP3, and ZP4. Sperm-binding mechanisms of the bovine ZP are not yet fully elucidated. In a previous report, we established the expression system of bovine ZP glycoproteins using Sf9 insect cells and found that the ZP3/ZP4 heterocomplex inhibits the binding of sperm to the ZP in a competitive inhibition assay, while ZP2, ZP3, ZP4, the ZP2/ZP3 complex, and the ZP2/ZP4 complex do not exhibit this activity. Here, we show that bovine sperm binds to plastic plates coated with ZP4 in the absence of ZP3. We made a series of ZP4 deletion mutants to study the sperm-binding sites. The N-terminal region, Lys-25 to Asp-136, and the middle region, Ser-290 to Lys-340, of ZP4 exhibit sperm-binding activity. These results suggest that among the three components of bovine ZP glycoproteins, ZP4 contains the major potential sperm-binding sites, and the formation of a multivalent complex is necessary for the sperm-binding activity of ZP4.
Collapse
Affiliation(s)
- Kamila Dilimulati
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
| | - Misaki Orita
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
| | - Ganbat Undram
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
| | - Naoto Yonezawa
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
| |
Collapse
|
22
|
Killingbeck EE, Wilburn DB, Merrihew GE, MacCoss MJ, Swanson WJ. Proteomics support the threespine stickleback egg coat as a protective oocyte envelope. Mol Reprod Dev 2021; 88:500-515. [PMID: 34148267 PMCID: PMC8362008 DOI: 10.1002/mrd.23517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 05/20/2021] [Accepted: 05/22/2021] [Indexed: 12/20/2022]
Abstract
Ancestrally marine threespine stickleback fish (Gasterosteus aculeatus) have undergone an adaptive radiation into freshwater environments throughout the Northern Hemisphere, creating an excellent model system for studying molecular adaptation and speciation. Ecological and behavioral factors have been suggested to underlie stickleback reproductive isolation and incipient speciation, but reproductive proteins mediating gamete recognition during fertilization have so far remained unexplored. To begin to investigate the contribution of reproductive proteins to stickleback reproductive isolation, we have characterized the stickleback egg coat proteome. We find that stickleback egg coats are comprised of homologs to the zona pellucida (ZP) proteins ZP1 and ZP3, as in other teleost fish. Our molecular evolutionary analyses indicate that across teleosts, ZP3 but not ZP1 has experienced positive Darwinian selection. Mammalian ZP3 is also rapidly evolving, and surprisingly some residues under selection in stickleback and mammalian ZP3 directly align. Despite broad homology, however, we find differences between mammalian and stickleback ZP proteins with respect to glycosylation, disulfide bonding, and sites of synthesis. Taken together, the changes we observe in stickleback ZP protein architecture suggest that the egg coats of stickleback fish, and perhaps fish more generally, have evolved to fulfill a more protective functional role than their mammalian counterparts.
Collapse
Affiliation(s)
- Emily E Killingbeck
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Damien B Wilburn
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Gennifer E Merrihew
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Michael J MacCoss
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Willie J Swanson
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| |
Collapse
|
23
|
Jiménez-Movilla M, Hamze JG, Romar R. Oolemma Receptors in Mammalian Molecular Fertilization: Function and New Methods of Study. Front Cell Dev Biol 2021; 9:662032. [PMID: 34095128 PMCID: PMC8170029 DOI: 10.3389/fcell.2021.662032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/07/2021] [Indexed: 01/08/2023] Open
Abstract
Fertilization is a key process in biology to the extent that a new individual will be born from the fusion of two cells, one of which leaves the organism in which it was produced to exert its function within a different organism. The structure and function of gametes, and main aspects of fertilization are well known. However, we have limited knowledge about the specific molecules participating in each of the steps of the fertilization process due to the transient nature of gamete interaction. Moreover, if we specifically focus in the fusion of both gametes’ membrane, we might say our molecular knowledge is practically null, despite that molecular mechanisms of cell-to-cell adhesion are well studied in somatic cells. Moreover, between both gametes, the molecular knowledge in the egg is even scarcer than in the spermatozoon for different reasons addressed in this review. Sperm-specific protein IZUMO1 and its oocyte partner, JUNO, are the first cell surface receptor pair essential for sperm–egg plasma membrane binding. Recently, thanks to gene editing tools and the development and validation of in vitro models, new oocyte molecules are being suggested in gamete fusion such as phosphatidylserine recognition receptors. Undoubtedly, we are in a new era for widening our comprehension on molecular fertilization. In this work, we comprehensively address the proposed molecules involved in gamete binding and fusion, from the oocyte perspective, and the new methods that are providing a better understanding of these crucial molecules.
Collapse
Affiliation(s)
- María Jiménez-Movilla
- Department of Cell Biology and Histology, Faculty of Medicine, University of Murcia, Murcia, Spain.,Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain.,International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| | - Julieta G Hamze
- Department of Cell Biology and Histology, Faculty of Medicine, University of Murcia, Murcia, Spain.,Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain.,International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| | - Raquel Romar
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain.,International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, Murcia, Spain.,Department of Physiology, Faculty of Veterinary Medicine, University of Murcia, Murcia, Spain
| |
Collapse
|
24
|
Sáez-Espinosa P, López-Huedo A, Robles-Gómez L, Huerta-Retamal N, Aizpurua J, Gómez-Torres MJ. Characterization of Human Spermatic Subpopulations by ConA-Binding Sites and Tyrosine Phosphorylation during in vitro Capacitation and Acrosome Reaction. Cells Tissues Organs 2021; 210:1-9. [PMID: 33873194 DOI: 10.1159/000513275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/20/2020] [Indexed: 11/19/2022] Open
Abstract
Spermatozoa capacitation is a time-dependent physiological process essential for acquiring the fertilizing capacity. In this context, reorganization of spermatozoa surface sugars and tyrosine phosphorylation are some of the most important biochemical changes involved in capacitation. However, the relationship between these 2 biomarkers remains poorly defined. By cytofluorescence we simultaneously characterized the head concanavalin A (ConA)-binding sites and the flagellar tyrosine phosphorylation before capacitation, during different capacitation times (1 and 4 h), and after acrosome reaction induction in human spermatozoa. The results showed a strong connection between ConA-label patterns and tyrosine phosphorylation according to the spermatozoa capacitation time and acrosomal status. Specifically, the spermatozoa subpopulation with phosphotyrosine presented proper sugar location (label in acrosomal and postacrosomal region) just after 1 h of capacitation, while cells without phosphotyrosine needed 4 h to do it. Moreover, after induction of spermatozoa acrosome reaction, phosphorylation was significantly correlated (p < 0.05) with the relocation of ConA-binding residues to the equatorial region, regardless of capacitation time. Overall, these observations provide novel insights regarding spermatozoa subpopulations based on essential physiological events like capacitation and acrosome reaction, which could have potential implications in the improvement of spermatozoa selection techniques.
Collapse
Affiliation(s)
- Paula Sáez-Espinosa
- Department of Biotechnology, Faculty of Science, University of Alicante, Alicante, Spain
| | - Alba López-Huedo
- Department of Biotechnology, Faculty of Science, University of Alicante, Alicante, Spain
| | - Laura Robles-Gómez
- Department of Biotechnology, Faculty of Science, University of Alicante, Alicante, Spain
| | - Natalia Huerta-Retamal
- Department of Biotechnology, Faculty of Science, University of Alicante, Alicante, Spain
| | - Jon Aizpurua
- IVF Spain, Reproductive Medicine, Alicante, Spain.,Human Fertility Cathedra, University of Alicante, Alicante, Spain
| | - María José Gómez-Torres
- Department of Biotechnology, Faculty of Science, University of Alicante, Alicante, Spain.,Human Fertility Cathedra, University of Alicante, Alicante, Spain
| |
Collapse
|
25
|
New Insights into the Mammalian Egg Zona Pellucida. Int J Mol Sci 2021; 22:ijms22063276. [PMID: 33806989 PMCID: PMC8005149 DOI: 10.3390/ijms22063276] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 03/19/2021] [Indexed: 12/23/2022] Open
Abstract
Mammalian oocytes are surrounded by an extracellular coat called the zona pellucida (ZP), which, from an evolutionary point of view, is the most ancient of the coats that envelope vertebrate oocytes and conceptuses. This matrix separates the oocyte from cumulus cells and is responsible for species-specific recognition between gametes, preventing polyspermy and protecting the preimplantation embryo. The ZP is a dynamic structure that shows different properties before and after fertilization. Until very recently, mammalian ZP was believed to be composed of only three glycoproteins, ZP1, ZP2 and ZP3, as first described in mouse. However, studies have revealed that this composition is not necessarily applicable to other mammals. Such differences can be explained by an analysis of the molecular evolution of the ZP gene family, during which ZP genes have suffered pseudogenization and duplication events that have resulted in differing models of ZP protein composition. The many discoveries made in recent years related to ZP composition and evolution suggest that a compilation would be useful. Moreover, this review analyses ZP biosynthesis, the role of each ZP protein in different mammalian species and how these proteins may interact among themselves and with other proteins present in the oviductal lumen.
Collapse
|
26
|
Gupta SK. Human Zona Pellucida Glycoproteins: Binding Characteristics With Human Spermatozoa and Induction of Acrosome Reaction. Front Cell Dev Biol 2021; 9:619868. [PMID: 33681199 PMCID: PMC7928326 DOI: 10.3389/fcell.2021.619868] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/21/2021] [Indexed: 01/11/2023] Open
Abstract
Human zona pellucida (ZP) matrix is composed of four glycoproteins designated as ZP glycoprotein -1 (ZP1), -2 (ZP2), -3 (ZP3), and -4 (ZP4). Mutations in the genes encoding human ZP glycoproteins are one of the causative factors leading to abnormal ZP matrix and infertility in women. Relevance of the human ZP glycoproteins in 'sperm-oocyte' binding has been delineated by using either transgenic animal models expressing human zona proteins or purified native/recombinant human zona proteins. Studies based on the purified native/recombinant human zona proteins revealed that ZP1, ZP3, and ZP4 primarily bind to the capacitated acrosome-intact human spermatozoa whereas ZP2 binds to acrosome-reacted spermatozoa. On the contrary, human spermatozoa binds to the eggs obtained from transgenic mouse lines expressing human ZP2 but not to those expressing human ZP1, ZP3, and ZP4 suggesting that ZP2 has an important role in human 'sperm-oocyte' binding. Further studies using transgenic mouse lines showed that the N-terminus of human ZP2 mediate the taxon-specific human sperm-oocyte binding. Both glycans and protein-protein interactions have a role in human gamete interaction. Further studies have revealed that the purified native/recombinant human ZP1, ZP3, and ZP4 are competent to induce acrosome reaction. Human sperm binds to the mouse transgenic eggs expressing human ZP1-4 instead of mouse ZP1-3 proteins, penetrated the ZP matrix and accumulated in the perivitelline space, which were acrosome-reacted suggesting that human ZP2 in transgenic mouse model also induce acrosome reaction. In humans N-linked glycosylation of zona proteins have been shown to play an important role in induction of the acrosome reaction. Hence in humans, based on studies using transgenic mouse model as well as purified native/recombinant zona proteins, it is likely that more than one zona protein is involved in the 'sperm-oocyte' binding and induction of the acrosome reaction.
Collapse
Affiliation(s)
- Satish Kumar Gupta
- Reproductive Cell Biology Lab, National Institute of Immunology, New Delhi, India
| |
Collapse
|
27
|
Izquierdo-Rico MJ, Moros-Nicolás C, Pérez-Crespo M, Laguna-Barraza R, Gutiérrez-Adán A, Veyrunes F, Ballesta J, Laudet V, Chevret P, Avilés M. ZP4 Is Present in Murine Zona Pellucida and Is Not Responsible for the Specific Gamete Interaction. Front Cell Dev Biol 2021; 8:626679. [PMID: 33537315 PMCID: PMC7848090 DOI: 10.3389/fcell.2020.626679] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/21/2020] [Indexed: 12/18/2022] Open
Abstract
Mammalian eggs are surrounded by an extracellular matrix called the zona pellucida (ZP). This envelope participates in processes such as acrosome reaction induction, sperm binding, protection of the oviductal embryo, and may be involved in speciation. In eutherian mammals, this coat is formed of three or four glycoproteins (ZP1-ZP4). While Mus musculus has been used as a model to study the ZP for more than 35 years, surprisingly, it is the only eutherian species in which the ZP is formed of three glycoproteins Zp1, Zp2, and Zp3, Zp4 being a pseudogene. Zp4 was lost in the Mus lineage after it diverged from Rattus, although it is not known when precisely this loss occurred. In this work, the status of Zp4 in several murine rodents was tested by phylogenetic, molecular, and proteomic analyses. Additionally, assays of cross in vitro fertilization between three and four ZP rodents were performed to test the effect of the presence of Zp4 in murine ZP and its possible involvement in reproductive isolation. Our results showed that Zp4 pseudogenization is restricted to the subgenus Mus, which diverged around 6 MYA. Heterologous in vitro fertilization assays demonstrate that a ZP formed of four glycoproteins is not a barrier for the spermatozoa of species with a ZP formed of three glycoproteins. This study identifies the existence of several mouse species with four ZPs that can be considered suitable for use as an experimental animal model to understand the structural and functional roles of the four ZP proteins in other species, including human.
Collapse
Affiliation(s)
- Mª José Izquierdo-Rico
- Department of Cell Biology and Histology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Murcia, Spain
- International Excellence Campus for Higher Education and Research “Campus Mare Nostrum”, Murcia, Spain
| | - Carla Moros-Nicolás
- Department of Cell Biology and Histology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Murcia, Spain
- International Excellence Campus for Higher Education and Research “Campus Mare Nostrum”, Murcia, Spain
| | - Míriam Pérez-Crespo
- Department of Animal Reproduction, Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Madrid, Spain
| | - Ricardo Laguna-Barraza
- Department of Animal Reproduction, Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Madrid, Spain
| | - Alfonso Gutiérrez-Adán
- Department of Animal Reproduction, Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Madrid, Spain
| | - Frédéric Veyrunes
- Institut des Sciences de l'Evolution, UMR5554 CNRS/Université Montpellier/IRD/EPHE, Montpellier, France
| | - José Ballesta
- Department of Cell Biology and Histology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Murcia, Spain
- International Excellence Campus for Higher Education and Research “Campus Mare Nostrum”, Murcia, Spain
| | - Vincent Laudet
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Pascale Chevret
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, CNRS, Université de Lyon, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Manuel Avilés
- Department of Cell Biology and Histology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Murcia, Spain
- International Excellence Campus for Higher Education and Research “Campus Mare Nostrum”, Murcia, Spain
| |
Collapse
|
28
|
Ligands and Receptors Involved in the Sperm-Zona Pellucida Interactions in Mammals. Cells 2021; 10:cells10010133. [PMID: 33445482 PMCID: PMC7827414 DOI: 10.3390/cells10010133] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/04/2021] [Accepted: 01/08/2021] [Indexed: 02/06/2023] Open
Abstract
Sperm-zona pellucida (ZP) interaction, involving the binding of sperm surface ligands to complementary carbohydrates of ZP, is the first direct gamete contact event crucial for subsequent gamete fusion and successful fertilization in mammals. It is a complex process mediated by the coordinated engagement of multiple ZP receptors forming high-molecular-weight (HMW) protein complexes at the acrosomal region of the sperm surface. The present article aims to review the current understanding of sperm-ZP binding in the four most studied mammalian models, i.e., murine, porcine, bovine, and human, and summarizes the candidate ZP receptors with established ZP affinity, including their origins and the mechanisms of ZP binding. Further, it compares and contrasts the ZP structure and carbohydrate composition in the aforementioned model organisms. The comprehensive understanding of sperm-ZP interaction mechanisms is critical for the diagnosis of infertility and thus becomes an integral part of assisted reproductive therapies/technologies.
Collapse
|
29
|
Choi MJ, Oh YD, Kim YR, Lim HK, Kim JM. Use of a gene encoding zona pellucida 4 as a female-specific marker for early stage sexual differentiation and size dimorphism in the pacific abalone Haliotis discus hannai. Anim Reprod Sci 2021; 225:106687. [PMID: 33454618 DOI: 10.1016/j.anireprosci.2021.106687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/28/2020] [Accepted: 12/28/2020] [Indexed: 11/18/2022]
Abstract
Growth rates of Pacific abalone Haliotis discus hannai are an important trait affecting the economic value in the abalone aquaculture industry. A reverse-transcription polymerase chain reaction (RT-PCR) analyses of tissues from H. discus hannai was conducted for sexually mature gonads to determine male- and female-specific target gene expression, including genes encoding zona pellucida domain 4 (zp4), sperm protein (sp) and lysin (lys), respectively. Sex-specific expression patterns of these gene expression, even in sexually immature abalone, indicate these genes can be used as sensitive and robust sex-specific molecular markers. The RT-PCR procedure was also performed to analyze tissues collected at various developmental stages (50-day intervals) beginning at fertilization to determine when sex differentiation and expression of sex-specific genes was initiated. Detection of zp4 transcript in tissues collected at 200 days post-fertilization (dpf) indicated egg-specific development starts at 150-200 dpf. To evaluate possible sex-specific differences in growth rate, there was conducting of a molecular marker-based sex identification of abalone from a population selected for rapid growth rate. In a group of large H. discus hannai, females were more prevalent than males. To assess the correlation between growth and sex, there was comparison of weights of 3-year-old Pacific abalone in specimens where there had been sex determinations by visual examination and molecular methods. The results indicated females weighed more (55.92 ± 9.38 g, n = 15) than males (43.64 ± 15.55 g, n = 6, P = 0.037), indicating females had a more rapid growth rate than males.
Collapse
Affiliation(s)
- Mi-Jin Choi
- Department of Fisheries Biology, PuKyong National University, Busan, 48513, Republic of Korea
| | - Young Dae Oh
- Department of Biomedicine, Health & Life Convergence Sciences, BK21, College of Pharmacy Mokpo National University, Muan-gun 58554, Republic of Korea
| | - Yeo Reum Kim
- Department of Fisheries Biology, PuKyong National University, Busan, 48513, Republic of Korea
| | - Han Kyu Lim
- Department of Biomedicine, Health & Life Convergence Sciences, BK21, College of Pharmacy Mokpo National University, Muan-gun 58554, Republic of Korea.
| | - Jong-Myoung Kim
- Department of Fisheries Biology, PuKyong National University, Busan, 48513, Republic of Korea.
| |
Collapse
|
30
|
Huerta-Retamal N, Sáez-Espinosa P, Robles-Gómez L, Romero A, Aizpurua J, Gómez-Torres MJ. [Localization of Arylsulfatase A during in vitro incubation of human spermatozoa in capacitation media]. Rev Int Androl 2020; 19:129-136. [PMID: 33342716 DOI: 10.1016/j.androl.2020.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/19/2020] [Accepted: 08/08/2020] [Indexed: 10/22/2022]
Abstract
OBJECTIVE To determine the localization and distribution of the ArylsulfataseA receptor (ARSA) in human spermatozoa before and after their incubation in capacitation medium for 1 and 4hours. MATERIAL AND METHODS Semen samples were obtained from five normozoospermic donors. Capacitation was by swim-up technique using capacitation medium for 1 and 4hours. Localization of the ARSA receptor was assessed by indirect immunofluorescence using confocal microscopy. A minimum of 200cells were observed in each physiological condition. RESULTS Before incubation, no representative pattern was observed among the cells positive for this biomarker (8.61%). This percentage increased significantly after incubation in the capacitation medium for 1 and 4hours (61.86% and 63.38% respectively). A majority pattern was observed among the capacitated cells, with intense labelling in the acrosomal region (27.11% and 28.20% after 1 and 4hours respectively). It should be noted that the pattern corresponding to fluorescence at the level of the periacrosomal region was not observed in the spermatozoa prior to incubation. Only after incubation in capacitation medium for 1 and 4hours, 9.13% and 12.78% of cells with such distribution were detected. CONCLUSIONS In vitro capacitation, regardless of time, favours the immunolocalization of ARSA in the cephalic region of the spermatozoa. The most representative subpopulation after this process was the one in which ARSA was intensely and homogeneously distributed in the acrosome region, involved in primary gamete recognition.
Collapse
Affiliation(s)
| | | | - Laura Robles-Gómez
- Departamento de Biotecnología, Universidad de Alicante, Alicante, España
| | - Alejandro Romero
- Departamento de Biotecnología, Universidad de Alicante, Alicante, España
| | - Jon Aizpurua
- IVF Spain, Medicina Reproductiva, Alicante, España; Cátedra Human Fertility, Universidad de Alicante, Alicante, España
| | - María José Gómez-Torres
- Departamento de Biotecnología, Universidad de Alicante, Alicante, España; Cátedra Human Fertility, Universidad de Alicante, Alicante, España.
| |
Collapse
|
31
|
Gómez-Torres MJ, Robles-Gómez L, Huerta-Retamal N, Sáez-Espinosa P, Avilés M, Aizpurua J, Romero A. FE-SEM Characterization of α-Mannose Density and Surface Mapping Changes in Human Sperm Head During In Vitro Capacitation. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2020; 26:1220-1225. [PMID: 33121558 DOI: 10.1017/s1431927620024630] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Sperm capacitation includes the reorganization of plasma membrane components and the outstanding modification of the glycocalyx. The α-mannose presence and location during in vitro capacitation have been commonly described in human spermatozoa using Concanavalin A (Con A) lectin. However, it is still unclear to date how in vitro capacitation time affects the α-mannose residues and their topographic spatial distribution on sperm membrane. Here, we characterized the α-mannose density and specific membrane domain locations before and after in vitro capacitation (1–4 h) using high-resolution field emission scanning electron microscopy (FE-SEM). Results showed that α-mannose residues were present preferably on the acrosome domains for all physiological conditions. Uncapacitated sperm comparatively exhibits significant highest labeling densities of α-mannose residues. In addition, as in vitro capacitation takes place, significant and progressive decreasing of sugar residues was combined with their relocation mostly affecting acrosomal domain apical areas. Our findings reveal that combined approach using FE-SEM and gold nanoparticle topographical mapping offers new human sperm biomolecular and structural details during capacitation events.
Collapse
Affiliation(s)
- María José Gómez-Torres
- Departamento de Biotecnología, Facultad de Ciencias, Universidad de Alicante, Ap. C. 99, Alicante03080, Spain
- Cátedra Human Fertility, Universidad de Alicante, Alicante, Spain
| | - Laura Robles-Gómez
- Departamento de Biotecnología, Facultad de Ciencias, Universidad de Alicante, Ap. C. 99, Alicante03080, Spain
| | - Natalia Huerta-Retamal
- Departamento de Biotecnología, Facultad de Ciencias, Universidad de Alicante, Ap. C. 99, Alicante03080, Spain
| | - Paula Sáez-Espinosa
- Departamento de Biotecnología, Facultad de Ciencias, Universidad de Alicante, Ap. C. 99, Alicante03080, Spain
| | - Manuel Avilés
- Departamento de Biología Celular e Histología, Facultad de Medicina, Universidad de Murcia e IMIB-Arrixaca, Murcia, Spain
| | - Jon Aizpurua
- IVF Spain, Reproductive Medicine, Alicante, Spain
| | - Alejandro Romero
- Departamento de Biotecnología, Facultad de Ciencias, Universidad de Alicante, Ap. C. 99, Alicante03080, Spain
| |
Collapse
|
32
|
Abstract
Sexual reproduction is such a successful way of creating progeny with subtle genetic variations that the vast majority of eukaryotic species use it. In mammals, it involves the formation of highly specialised cells: the sperm in males and the egg in females, each carrying the genetic inheritance of an individual. The interaction of sperm and egg culminates with the fusion of their cell membranes, triggering the molecular events that result in the formation of a new genetically distinct organism. Although we have a good cellular description of fertilisation in mammals, many of the molecules involved remain unknown, and especially the identity and role of cell surface proteins that are responsible for sperm–egg recognition, binding, and fusion. Here, we will highlight and discuss these gaps in our knowledge and how the role of some recently discovered sperm cell surface and secreted proteins contribute to our understanding of this fundamental process. Fertilisation is the challenging process whereby cells from two individuals fuse to generate a new, genetically distinct organism of the same species. This Unsolved Mystery article explores the molecular mechanisms underlying sperm–egg interaction and fusion, a fascinating topic that is under increasing investigation.
Collapse
Affiliation(s)
- Enrica Bianchi
- Cell Surface Signalling Laboratory, Wellcome Sanger Institute, Cambridge, United Kingdom
- * E-mail:
| | - Gavin J. Wright
- Cell Surface Signalling Laboratory, Wellcome Sanger Institute, Cambridge, United Kingdom
- Department of Biology, Hull York Medical School, York Biomedical Research Institute, University of York, Wentworth Way, York, United Kingdom
| |
Collapse
|
33
|
Huerta-Retamal N, Sáez-Espinosa P, Robles-Gómez L, Avilés M, Romero A, Aizpurua J, Gómez-Torres MJ. Human sperm chaperone HSPA2 distribution during in vitro capacitation. J Reprod Immunol 2020; 143:103246. [PMID: 33246276 DOI: 10.1016/j.jri.2020.103246] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/28/2020] [Accepted: 11/05/2020] [Indexed: 11/30/2022]
Abstract
Human fertilization success depends on the ability of the spermatozoa to undergo capacitation. Even though this process can be conducted in vitro, the optimal time for a sperm cell to complete capacitation in vitro is still under discussion due to the lack of proper capacitation biomarkers. Here, we evaluated the influence of in vitro capacitation time on HSPA2 distribution over human sperm head testing this chaperone as a potential capacitation biomarker. The chaperone was assessed in human spermatozoa from 16 normozoospermic donors using indirect immunofluorescence in uncapacitated, one and four-hour capacitated spermatozoa. The percentage of HSPA2 immunofluorescent cells before and after one hour of capacitation did not differ significantly. However, after four hours of capacitation, we observed a significantly higher percentage of HSPA2 labelled cells. In fluorescent cells analysed before capacitation, we could not identify a predominant distribution pattern. Meanwhile, after capacitation, most sperm showed a highly labelled equatorial band accompanied by a homogeneous fluorescence throughout the acrosomal region. Our findings suggest that HSPA2 needs more than one hour of in vitro capacitation for being correctly distributed in the anterior region of the sperm head. In conclusion, the present study provides solid evidences for the utility of HSPA2 as a biomarker of human sperm in vitro capacitation. Due to its importance during egg-sperm recognition, the use of HSPA2 as a biomarker before an artificial reproduction technique may be suggested, in addition to a longer capacitation time during sperm preparation.
Collapse
Affiliation(s)
| | - Paula Sáez-Espinosa
- Departamento de Biotecnología, Universidad de Alicante, Alicante, 03690, Spain
| | - Laura Robles-Gómez
- Departamento de Biotecnología, Universidad de Alicante, Alicante, 03690, Spain
| | - Manuel Avilés
- Departamento de Biología celular e Histología, Universidad de Murcia, Instituto Murciano de Investigación Sociosanitaria (IMIB-Arrixaca), Murcia, 30003, Spain
| | - Alejandro Romero
- Departamento de Biotecnología, Universidad de Alicante, Alicante, 03690, Spain
| | - Jon Aizpurua
- IVF Spain, Medicina Reproductiva, Alicante, 03540, Spain; Cátedra Human Fertility, Universidad de Alicante, Alicante, Spain
| | - María José Gómez-Torres
- Departamento de Biotecnología, Universidad de Alicante, Alicante, 03690, Spain; Cátedra Human Fertility, Universidad de Alicante, Alicante, Spain.
| |
Collapse
|
34
|
Sáez-Espinosa P, Ferrández-Rives M, Huerta-Retamal N, Robles-Gómez L, Aizpurua J, Romero A, Gómez-Torres MJ. Proper cytoskeleton α-tubulin distribution is concomitant to tyrosine phosphorylation during in vitro capacitation and acrosomal reaction in human spermatozoa. Cytoskeleton (Hoboken) 2020; 77:333-341. [PMID: 32875747 DOI: 10.1002/cm.21631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/20/2020] [Accepted: 08/28/2020] [Indexed: 11/06/2022]
Abstract
Spermatozoa motility is a key parameter during the fertilization process. In this context, spermatozoa tyrosine protein phosphorylation and an appropriate cytoskeleton α-tubulin distribution are some of the most important physiological events involved in motility. However, the relationship between these two biomarkers remains poorly defined. Here, we characterized simultaneously by immunocytochemistry the α-tubulin (TUBA4A) distribution and the tyrosine phosphorylation at flagellum before capacitation, during different capacitation times (1 and 4 hr), and after acrosome reaction induction in human spermatozoa. We found that the absence of spermatozoa phosphorylation in tyrosine residues positively and significantly correlated (p < 0.05) with the terminal piece α-tubulin flagellar distribution in all physiological conditions. Conversely, we observed a positive significant correlation (p < 0.01) between phosphorylated spermatozoa and continuous α-tubulin distribution in spermatozoa flagellum, independently of the physiological condition. Similarly, the subpopulation of spermatozoa with tyrosine phosphorylated and continuous α-tubulin increases with longer capacitation times and after the acrosome reaction induction. Overall, these findings provide novel insights into the post-transcriptional physiological events associated to α-tubulin and the tyrosine phosphorylation during fertilization, which present potential implications for the improvement of spermatozoa selection methods.
Collapse
Affiliation(s)
| | | | | | | | - Jon Aizpurua
- Reproductive Medicine, IVF Spain, Alicante, Spain
| | - Alejandro Romero
- Department of Biotechnology, University of Alicante, Alicante, Spain
| | - María José Gómez-Torres
- Department of Biotechnology, University of Alicante, Alicante, Spain.,Reproductive Medicine, IVF Spain, Alicante, Spain.,Cathedra of Human Fertility, University de Alicante, Alicante, Spain
| |
Collapse
|
35
|
Fahrenkamp E, Algarra B, Jovine L. Mammalian egg coat modifications and the block to polyspermy. Mol Reprod Dev 2020; 87:326-340. [PMID: 32003503 PMCID: PMC7155028 DOI: 10.1002/mrd.23320] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 12/16/2019] [Indexed: 01/15/2023]
Abstract
Fertilization by more than one sperm causes polyploidy, a condition that is generally lethal to the embryo in the majority of animal species. To prevent this occurrence, eggs have developed a series of mechanisms that block polyspermy at the level of the plasma membrane or their extracellular coat. In this review, we first introduce the mammalian egg coat, the zona pellucida (ZP), and summarize what is currently known about its composition, structure, and biological functions. We then describe how this specialized extracellular matrix is modified by the contents of cortical granules (CG), secretory organelles that are exocytosed by the egg after gamete fusion. This process releases proteases, glycosidases, lectins and zinc onto the ZP, resulting in a series of changes in the properties of the egg coat that are collectively referred to as hardening. By drawing parallels with comparable modifications of the vitelline envelope of nonmammalian eggs, we discuss how CG‐dependent modifications of the ZP are thought to contribute to the block to polyspermy. Moreover, we argue for the importance of obtaining more information on the architecture of the ZP, as well as systematically investigating the many facets of ZP hardening.
Collapse
Affiliation(s)
- Eileen Fahrenkamp
- Department of Biosciences and Nutrition & Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Blanca Algarra
- Department of Biosciences and Nutrition & Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Luca Jovine
- Department of Biosciences and Nutrition & Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
36
|
Litscher ES, Wassarman PM. Zona pellucida genes and proteins and human fertility. TRENDS IN DEVELOPMENTAL BIOLOGY 2020; 13:21-33. [PMID: 33335361 PMCID: PMC7743998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The zona pellucida (ZP) is an extracellular matrix (ECM) that surrounds all mammalian oocytes, eggs, and embryos and plays vital roles during oogenesis, fertilization, and preimplantation development. The mouse and human ZP is composed of three or four unique proteins, respectively, called ZP1-4, that are synthesized, processed, and secreted by oocytes during their growth phase. All ZP proteins have a zona pellucida domain (ZPD) that consists of ≈270 amino acids and has 8 conserved Cys residues present as four intramolecular disulfides. Secreted ZP proteins assemble into long fibrils around growing oocytes with ZP2-ZP3 dimers located periodically along the fibrils. The fibrils are cross-linked by ZP1 to form a thick, transparent ECM to which sperm must first bind and then penetrate during fertilization of eggs. Inactivation of mouse ZP1, ZP2, or ZP3 by gene targeting affects both ZP formation around oocytes and fertility. Female mice with eggs that lack a ZP due to inactivation of either ZP2 or ZP3 are completely infertile, whereas inactivation of ZP1 results in construction of an abnormal ZP and reduced fertility. Results of a large number of studies of infertile female patients strongly suggest that gene sequence variations (GSV) in human ZP1, ZP2, or ZP3 due to point, missense, or frameshift mutations have similar deleterious effects on ZP formation and female fertility. These findings are discussed in light of our current knowledge of ZP protein synthesis, processing, secretion, and assembly.
Collapse
|
37
|
Mammalian spermatozoa and cumulus cells bind to a 3D model generated by recombinant zona pellucida protein-coated beads. Sci Rep 2019; 9:17989. [PMID: 31784633 PMCID: PMC6884566 DOI: 10.1038/s41598-019-54501-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022] Open
Abstract
The egg is a spherical cell encapsulated by the zona pellucida (ZP) which forms a filamentous matrix composed of several glycoproteins that mediate gamete recognition at fertilization. Studies on molecular mechanisms of sperm-egg binding are limited in many mammalian species by the scarcity of eggs, by ethical concerns in harvesting eggs, and by the high cost of producing genetically modified animals. To address these limitations, we have reproduced a three-dimensional (3D) model mimicking the oocyte's shape, by means of magnetic sepharose beads coated with recombinant ZP glycoproteins (BZP) and cumulus cells. Three preparations composed of either ZP2 (C and N-termini; BZP2), ZP3 (BZP3) or ZP4 (BZP4) were obtained and characterized by protein SDS-PAGE, immunoblot and imaging with confocal and electron microscopy. The functionality of the model was validated by adhesion of cumulus cells, the ability of the glycoprotein-beads to support spermatozoa binding and induce acrosome exocytosis. Thus, our findings document that ZP-beads provide a novel 3D tool to investigate the role of specific proteins on egg-sperm interactions becoming a relevant tool as a diagnostic predictor of mammalian sperm function once transferred to the industry.
Collapse
|
38
|
Abstract
The perpetuation and preservation of distinct species rely on mechanisms that ensure that only interactions between gametes of the same species can give rise to viable and fertile offspring. Species-specificity can act at various stages, ranging from physical/behavioral pre-copulatory mechanisms, to pre-zygotic incompatibility during fertilization, to post-zygotic hybrid incompatibility. Herein, we focus on our current knowledge of the molecular mechanisms responsible for species-specificity during fertilization. While still poorly understood, decades of research have led to the discovery of molecules implicated in species-specific gamete interactions, starting from initial sperm-egg attraction to the binding of sperm and egg. While many of these molecules have been described as species-specific in their mode of action, relatively few have been demonstrated as such with definitive evidence. Thus, we also raise remaining questions that need to be addressed in order to characterize gamete interaction molecules as species-specific.
Collapse
|
39
|
Lamas-Toranzo I, Fonseca Balvís N, Querejeta-Fernández A, Izquierdo-Rico MJ, González-Brusi L, Lorenzo PL, García-Rebollar P, Avilés M, Bermejo-Álvarez P. ZP4 confers structural properties to the zona pellucida essential for embryo development. eLife 2019; 8:48904. [PMID: 31635692 PMCID: PMC6805156 DOI: 10.7554/elife.48904] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 09/26/2019] [Indexed: 12/17/2022] Open
Abstract
Zona pellucida (ZP), the extracellular matrix sheltering mammalian oocytes and embryos, is composed by 3 to 4 proteins. The roles of the three proteins present in mice have been elucidated by KO models, but the function of the fourth component (ZP4), present in all other eutherian mammals studied so far, has remained elusive. Herein, we report that ZP4 ablation impairs fertility in female rabbits. Ovulation, fertilization and in vitro development to blastocyst were not affected by ZP4 ablation. However, in vivo development is severely impaired in embryos covered by a ZP4-devoided zona, suggesting a defective ZP protective capacity in the absence of ZP4. ZP4-null ZP was significantly thinner, more permeable, and exhibited a more disorganized and fenestrated structure. The evolutionary conservation of ZP4 in other mammals, including humans, suggests that the structural properties conferred by this protein are required to ensure proper embryo sheltering during in vivo preimplantation development. The egg cells of mammals, called oocytes, are encased in a protective layer called the zona pellucida. This layer is made from proteins called ZP1 to 4. Most studies of the zona pellucida use mice, which do not have ZP4. This means that the research community have limited knowledge of what ZP4 does in humans and other mammals. Scientists can now use a technique called CRISPR to selectively modify the genetics of living things to help us to understand what specific genes and proteins do. The ZP4 protein can be eliminated from rabbit oocytes using CRISPR to help understand its role in egg cell fertilization and development. Lamas-Toranzo et al. examined the effect of losing ZP4 from rabbit oocytes. Without ZP4 the zona pellucida becomes thinner, irregular and more flexible. However, the loss of ZP4 did not affect ovulation (i.e. the release of egg cells from an ovary), fertilization, or the early stages of development of embryos when studied in the laboratory. However, rabbits without ZP4 were much less fertile. Indeed, only one out of 10 female rabbits without ZP4 was able to deliver pups because in most cases the development of embryos in the womb failed. These findings show that ZP4 has a structural role in the zona pellucida. Without ZP4 fertility is reduced. This work lays the ground for further investigation of the role of ZP4. It could also offer new insights into the causes of infertility.
Collapse
Affiliation(s)
| | | | - Ana Querejeta-Fernández
- Department of Physical Chemistry and Biomedical Research Center (CINBIO), Universidad de Vigo, Vigo, Spain
| | - María José Izquierdo-Rico
- Cell Biology and Histology Department, Faculty of Medicine, Universidad de Murcia and IMIB-Arrixaca, Murcia, Spain
| | - Leopoldo González-Brusi
- Cell Biology and Histology Department, Faculty of Medicine, Universidad de Murcia and IMIB-Arrixaca, Murcia, Spain
| | - Pedro L Lorenzo
- Animal Physiology Department, Veterinary Faculty, Universidad Complutense de Madrid, Madrid, Spain
| | - Pilar García-Rebollar
- Animal Production Department, ETSI Agrónomos, Universidad Politécnica de Madrid, Madrid, Spain
| | - Manuel Avilés
- Cell Biology and Histology Department, Faculty of Medicine, Universidad de Murcia and IMIB-Arrixaca, Murcia, Spain
| | | |
Collapse
|
40
|
Wood L, Wright GJ. High-Content Imaging for Large-Scale Detection of Low-Affinity Extracellular Protein Interactions. SLAS DISCOVERY 2019; 24:987-999. [PMID: 31578119 PMCID: PMC6873222 DOI: 10.1177/2472555219879053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Extracellular protein interactions coordinate cellular responses with their local
environment and have important roles in pathogen invasion and disease. Due to
technical challenges associated with studying binding events at the cell
surface, the systematic and reliable identification of novel ligand–receptor
pairs remains difficult. Here, we describe the development of a cell-based assay
using large-scale transient transfections and high-content imaging (HCI) to
detect extracellular binding events. We optimized the parameters for efficient
transfection of human cells with cDNA plasmids encoding full-length cell surface
receptors in 384-well plates. Using a range of well-characterized structurally
diverse low-affinity cell surface interactions, we show that transfected cells
probed with highly avid ligands can be used to successfully identify
ligand–receptor pairs using an HCI platform and automated image analysis
software. To establish the high-throughput potential of this approach, we also
screened a pool of ligands against a collection of 2455 cell surface expression
clones and found that known ligand–receptor interactions could be robustly and
consistently detected across the library using this technology.
Collapse
Affiliation(s)
- Laura Wood
- Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Cambridge, UK
| | - Gavin J Wright
- Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Cambridge, UK
| |
Collapse
|
41
|
Bhakta HH, Refai FH, Avella MA. The molecular mechanisms mediating mammalian fertilization. Development 2019; 146:146/15/dev176966. [PMID: 31375552 DOI: 10.1242/dev.176966] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Fertilization is a key biological process in which the egg and sperm must recognize one another and fuse to form a zygote. Although the process is a continuum, mammalian fertilization has been studied as a sequence of steps: sperm bind and penetrate through the zona pellucida of the egg, adhere to the egg plasma membrane and finally fuse with the egg. Following fusion, effective blocks to polyspermy ensure monospermic fertilization. Here, we review how recent advances obtained using genetically modified mouse lines bring new insights into the molecular mechanisms regulating mammalian fertilization. We discuss models for these processes and we include studies showing that these mechanisms may be conserved across different mammalian species.
Collapse
Affiliation(s)
- Hanisha H Bhakta
- Department of Biological Science, College of Engineering and Natural Sciences, The University of Tulsa, Tulsa, OK 74104, USA
| | - Fares H Refai
- Department of Biological Science, College of Engineering and Natural Sciences, The University of Tulsa, Tulsa, OK 74104, USA
| | - Matteo A Avella
- Department of Biological Science, College of Engineering and Natural Sciences, The University of Tulsa, Tulsa, OK 74104, USA
| |
Collapse
|
42
|
Morgan CC, Hart MW. Molecular evolution of mammalian genes with epistatic interactions in fertilization. BMC Evol Biol 2019; 19:154. [PMID: 31345177 PMCID: PMC6659299 DOI: 10.1186/s12862-019-1480-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/16/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Genes that encode proteins associated with sperm competition, fertilization, and sexual conflicts of interest are often among the most rapidly evolving parts of animal genomes. One family of sperm-expressed genes (Zp3r, C4bpa) in the mammalian gene cluster called the regulator of complement activation (RCA) encodes proteins that bind eggs and mediate reproductive success, and are therefore expected to show high relative rates of nonsynonymous nucleotide substitution in response to sexual selection in comparison to other genes not involved in gamete binding at fertilization. We tested that working hypothesis by using phylogenetic models of codon evolution to identify episodes of diversifying positive selection. We used a comparative approach to quantify the evidence for episodic diversifying selection acting on RCA genes with known functions in fertilization (and sensitivity to sexual selection), and contrast them with other RCA genes in the same gene family that function in innate immunity (and are not sensitive to sexual selection). RESULTS We expected but did not find evidence for more episodes of positive selection on Zp3r in Glires (the rodents and lagomorphs) or on C4BPA in Primates, in comparison to other paralogous RCA genes in the same taxon, or in comparison to the same orthologous RCA gene in the other taxon. That result was not unique to RCA genes: we also found little evidence for more episodes of diversifying selection on genes that encode selective sperm-binding molecules in the egg coat or zona pellucida (Zp2, Zp3) in comparison to members of the same gene family that encode structural elements of the egg coat (Zp1, Zp4). Similarly, we found little evidence for episodic diversifying selection acting on two other recently discovered genes (Juno, Izumo1) that encode essential molecules for sperm-egg fusion. CONCLUSIONS These negative results help to illustrate the importance of a comparative context for this type of codon model analysis. The results may also point to other phylogenetic contexts in which the effects of selection acting on these fertilization proteins might be more readily discovered and documented in mammals and other taxa.
Collapse
Affiliation(s)
- Claire C. Morgan
- Department of Medicine, Imperial College London, London, W12 0NN UK
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Michael W. Hart
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia V5A 1S6 Canada
| |
Collapse
|
43
|
Hirohashi N, Yanagimachi R. Sperm acrosome reaction: its site and role in fertilization. Biol Reprod 2019; 99:127-133. [PMID: 29462288 DOI: 10.1093/biolre/ioy045] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 02/15/2018] [Indexed: 01/14/2023] Open
Abstract
Manner and roles of sperm acrosome reaction in a variety of animals were compared.
Collapse
Affiliation(s)
- Noritaka Hirohashi
- Oki Marine Biological Station, Education and Research Center for Biological Resources, Shimane University, Oki, Japan
| | - Ryuzo Yanagimachi
- Department of Anatomy, Biochemistry and Physiology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| |
Collapse
|
44
|
Okabe M. Sperm-egg interaction and fertilization: past, present, and future. Biol Reprod 2019; 99:134-146. [PMID: 29462236 DOI: 10.1093/biolre/ioy028] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 02/03/2018] [Indexed: 01/21/2023] Open
Abstract
Fifty years have passed since the findings of capacitation and acrosome reaction. These discoveries and the extensive effort of researchers led to the success of in vitro fertilization, which has become a top choice for patients at infertility clinics today. The effort to understand the mechanism of fertilization is ongoing, but the small number of eggs and similarly small quantity of spermatozoa continue to hinder biochemical experiments. The emergence of transgenic animals and gene disruption techniques has had a significant effect on fertilization research. Factors considered important in the early years were shown not to be essential and were replaced by newly found proteins. However, there is much about sperm-egg interaction which remains to be learned before we can outline the mechanism of fertilization. In fact, our understanding of sperm-egg interaction is entering a new stage. Progress in transgenic spermatozoa helped us to observe the behavior of spermatozoa in vivo and/or at the moment of sperm-egg fusion. These advancements are discussed together with the paradigm-shifting research in related fields to help us picture the direction which fertilization research may take in the future.
Collapse
Affiliation(s)
- Masaru Okabe
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
45
|
Nishimura K, Dioguardi E, Nishio S, Villa A, Han L, Matsuda T, Jovine L. Molecular basis of egg coat cross-linking sheds light on ZP1-associated female infertility. Nat Commun 2019; 10:3086. [PMID: 31300655 PMCID: PMC6626044 DOI: 10.1038/s41467-019-10931-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 06/11/2019] [Indexed: 12/19/2022] Open
Abstract
Mammalian fertilisation begins when sperm interacts with the egg zona pellucida (ZP), whose ZP1 subunit is important for fertility by covalently cross-linking ZP filaments into a three-dimensional matrix. Like ZP4, a structurally-related component absent in the mouse, ZP1 is predicted to contain an N-terminal ZP-N domain of unknown function. Here we report a characterisation of ZP1 proteins carrying mutations from infertile patients, which suggests that, in human, filament cross-linking by ZP1 is crucial to form a stable ZP. We map the function of ZP1 to its ZP-N1 domain and determine crystal structures of ZP-N1 homodimers from a chicken homolog of ZP1. These reveal that ZP filament cross-linking is highly plastic and can be modulated by ZP1 fucosylation and, potentially, zinc sparks. Moreover, we show that ZP4 ZP-N1 forms non-covalent homodimers in chicken but not in human. Together, these data identify human ZP1 cross-links as a promising target for non-hormonal contraception.
Collapse
Affiliation(s)
- Kaoru Nishimura
- Department of Biosciences and Nutrition and Center for Innovative Medicine, Karolinska Institutet, Huddinge, SE-141 83, Sweden
| | - Elisa Dioguardi
- Department of Biosciences and Nutrition and Center for Innovative Medicine, Karolinska Institutet, Huddinge, SE-141 83, Sweden
| | - Shunsuke Nishio
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
- Department of Biosciences and Nutrition and Center for Innovative Medicine, Karolinska Institutet, Huddinge, SE-141 83, Sweden
| | - Alessandra Villa
- Department of Biosciences and Nutrition and Center for Innovative Medicine, Karolinska Institutet, Huddinge, SE-141 83, Sweden
| | - Ling Han
- Department of Biosciences and Nutrition and Center for Innovative Medicine, Karolinska Institutet, Huddinge, SE-141 83, Sweden
| | - Tsukasa Matsuda
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Luca Jovine
- Department of Biosciences and Nutrition and Center for Innovative Medicine, Karolinska Institutet, Huddinge, SE-141 83, Sweden.
| |
Collapse
|
46
|
Moros-Nicolás C, Leza A, Chevret P, Guillén-Martínez A, González-Brusi L, Boué F, Lopez-Bejar M, Ballesta J, Avilés M, Izquierdo-Rico MJ. Analysis of ZP1 gene reveals differences in zona pellucida composition in carnivores. Reprod Fertil Dev 2018; 30:272-285. [PMID: 28679462 DOI: 10.1071/rd17022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 06/03/2017] [Indexed: 12/30/2022] Open
Abstract
The zona pellucida (ZP) is an extracellular envelope that surrounds mammalian oocytes. This coat participates in the interaction between gametes, induction of the acrosome reaction, block of polyspermy and protection of the oviductal embryo. Previous studies suggested that carnivore ZP was formed by three glycoproteins (ZP2, ZP3 and ZP4), with ZP1 being a pseudogene. However, a recent study in the cat found that all four proteins were expressed. In the present study, in silico and molecular analyses were performed in several carnivores to clarify the ZP composition in this order of mammals. The in silico analysis demonstrated the presence of the ZP1 gene in five carnivores: cheetah, panda, polar bear, tiger and walrus, whereas in the Antarctic fur seal and the Weddell seal there was evidence of pseudogenisation. Molecular analysis showed the presence of four ZP transcripts in ferret ovaries (ZP1, ZP2, ZP3 and ZP4) and three in fox ovaries (ZP2, ZP3 and ZP4). Analysis of the fox ZP1 gene showed the presence of a stop codon. The results strongly suggest that all four ZP genes are expressed in most carnivores, whereas ZP1 pseudogenisation seems to have independently affected three families (Canidae, Otariidae and Phocidae) of the carnivore tree.
Collapse
Affiliation(s)
- C Moros-Nicolás
- Department of Cell Biology and Histology, Faculty of Medicine, Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), University of Murcia, 30100, Murcia, Spain
| | - A Leza
- Department of Cell Biology and Histology, Faculty of Medicine, Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), University of Murcia, 30100, Murcia, Spain
| | - P Chevret
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, CNRS, Université de Lyon, Université Claude Bernard Lyon 1, 69622, Villeurbanne, France
| | - A Guillén-Martínez
- Department of Cell Biology and Histology, Faculty of Medicine, Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), University of Murcia, 30100, Murcia, Spain
| | - L González-Brusi
- Department of Cell Biology and Histology, Faculty of Medicine, Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), University of Murcia, 30100, Murcia, Spain
| | - F Boué
- ANSES, Nancy Laboratory for Rabies and Wildlife, CS 40009, 54220 Malzéville, France
| | - M Lopez-Bejar
- Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, 08193, Barcelona, Spain
| | - J Ballesta
- Department of Cell Biology and Histology, Faculty of Medicine, Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), University of Murcia, 30100, Murcia, Spain
| | - M Avilés
- Department of Cell Biology and Histology, Faculty of Medicine, Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), University of Murcia, 30100, Murcia, Spain
| | - M J Izquierdo-Rico
- Department of Cell Biology and Histology, Faculty of Medicine, Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), University of Murcia, 30100, Murcia, Spain
| |
Collapse
|
47
|
Tokuhiro K, Dean J. Glycan-Independent Gamete Recognition Triggers Egg Zinc Sparks and ZP2 Cleavage to Prevent Polyspermy. Dev Cell 2018; 46:627-640.e5. [PMID: 30122633 DOI: 10.1016/j.devcel.2018.07.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 05/31/2018] [Accepted: 07/20/2018] [Indexed: 10/28/2022]
Abstract
The zona pellucida surrounding ovulated eggs regulates monospermic fertilization necessary for successful development. Using mouse transgenesis, we document that the N terminus of ZP2 is sufficient for sperm binding to the zona matrix and for in vivo fertility. Sperm binding is independent of ZP2 glycans and does not occur after complete cleavage of ZP2 by ovastacin, a zinc metalloendopeptidase stored in egg cortical granules. Immediately following fertilization, a rapid block to sperm penetration of the zona pellucida is established that precedes ZP2 cleavage but requires ovastacin enzymatic activity. This block to penetration is associated with release of zinc from cortical granules coincident with exocytosis. High levels of zinc affect forward motility of sperm to prevent their passage through the zona matrix. This transient, post-fertilization block to sperm penetration provides a temporal window to complete the cleavage of ZP2, which prevents sperm binding to ensure monospermy.
Collapse
Affiliation(s)
- Keizo Tokuhiro
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jurrien Dean
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
48
|
Abstract
All animal oocytes are surrounded by a glycoproteinaceous egg coat, a specialized extracellular matrix that serves both structural and species-specific roles during fertilization. Egg coat glycoproteins polymerize into the extracellular matrix of the egg coat using a conserved protein-protein interaction module-the zona pellucida (ZP) domain-common to both vertebrates and invertebrates, suggesting that the basic structural features of egg coats have been conserved across hundreds of millions of years of evolution. Egg coat proteins, as with other proteins involved in reproduction, are frequently found to be rapidly evolving. Given that gamete compatibility must be maintained for the fitness of sexually reproducing organisms, this finding is somewhat paradoxical and suggests a role for adaptive diversification in reproductive protein evolution. Here we review the structure and function of metazoan egg coat proteins, with an emphasis on the potential role their evolution has played in the creation and maintenance of species boundaries.
Collapse
Affiliation(s)
- Emily E Killingbeck
- Department of Genome Sciences, University of Washington, Seattle, WA, United States.
| | - Willie J Swanson
- Department of Genome Sciences, University of Washington, Seattle, WA, United States.
| |
Collapse
|
49
|
Abstract
All mammalian eggs are surrounded by a highly specialized extracellular matrix (ECM), called the zona pellucida (ZP), that functions before, during, and after fertilization. Unlike somatic cell ECM the mouse ZP is composed of three different proteins, ZP1-3, that are synthesized and secreted by growing oocytes and assembled into long interconnected fibrils. ECM or vitelline envelope (VE) that surrounds fish, reptilian, amphibian, and avian eggs also consists of a limited number of proteins all closely related to ZP1-3. Messenger RNAs encoding ZP1-3 are expressed only by growing oocytes at very high levels from single-copy genes present on different chromosomes. Processing at the amino- and carboxy-termini of nascent ZP1-3 permits secretion of mature proteins into the extracellular space and assembly into fibrils and matrix. Structural features of nascent ZP proteins prevent assembly within secretory vesicles of growing oocytes. Homozygous knockout female mice that fail to synthesize either ZP2 or ZP3 are unable to construct a ZP, ovulate few if any eggs, and are infertile. ZP1-3 have a common structural feature, the ZP domain (ZPD), that has been conserved through 600 million years of evolution and is essential for ZP protein assembly into fibrils. The ZPD consists of two subdomains, each with four conserved cysteine residues present as two intramolecular disulfides, and resembles an immunoglobulin (Ig) domain found in a wide variety of proteins that have diverse functions, from receptors to mechanical transducers. ZP2 and ZP3 function as receptors for acrosome-reacted and acrosome-intact sperm, respectively, during fertilization of ovulated eggs, but are inactivated as sperm receptors as a result of fertilization.
Collapse
Affiliation(s)
- Paul M Wassarman
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| | - Eveline S Litscher
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
50
|
Abstract
Human zona pellucida (ZP) matrix, a delicate network of thin interconnected filaments, is primarily composed of four glycoproteins, namely, ZP1, ZP2, ZP3, and ZP4. All four zona proteins share common structural elements such as signal peptide, "ZP domain," consensus furin cleavage site, transmembrane-like domain, and short cytoplasmic tail. In addition, ZP1 and ZP4 also have "Trefoil domain." Recombinant/native human zona proteins have been used to investigate their binding characteristics to the capacitated and/or acrosome-reacted spermatozoa. These investigations revealed that ZP1, ZP3, and ZP4 primarily bind to the head region of the capacitated human spermatozoa, whereas ZP2 binds to the acrosome-reacted sperm. However, using transgenic mice, N-terminal region of human ZP2 has also been shown to play an important role in binding of sperm to the egg. ZP1, ZP3, and ZP4 lead to dose-dependent increase in acrosome reaction, suggesting that in humans more than one ZP glycoprotein is responsible for induction of acrosome reaction. Glycosylation of these proteins, in particular, N-linked glycosylation as well as sialyl-Lewisx, is essential for inducing acrosome reaction. Studies delineating downstream signaling events associated with induction of acrosome reaction reveal subtle differences between ZP3 and ZP1/ZP4 with respect to activation of Gi protein-coupled receptor and protein kinase A. The role of mutations in the zona proteins and ZP autoantibodies leading to infertility in women is suggestive and needs more rigorous experimentations for confirming their role in female infertility. The above-mentioned aspects of the human ZP glycoproteins have been discussed in this review.
Collapse
Affiliation(s)
- Satish K Gupta
- Reproductive Cell Biology Laboratory, National Institute of Immunology, New Delhi, India.
| |
Collapse
|