1
|
Miao YH, Dou WH, Liu J, Huang DW, Xiao JH. Single-cell transcriptome sequencing reveals that Wolbachia induces gene expression changes in Drosophila ovary cells to favor its own maternal transmission. mBio 2024; 15:e0147324. [PMID: 39194189 PMCID: PMC11481584 DOI: 10.1128/mbio.01473-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024] Open
Abstract
Wolbachia is an obligate endosymbiont that is maternally inherited and widely distributed in arthropods and nematodes. It remains in the mature eggs of female hosts over generations through multiple strategies and manipulates the reproduction system of the host to enhance its spreading efficiency. However, the transmission of Wolbachia within the host's ovaries and its effects on ovarian cells during oogenesis, have not been extensively studied. We used single-cell RNA sequencing to comparatively analyze cell-typing and gene expression in Drosophila ovaries infected and uninfected with Wolbachia. Our findings indicate that Wolbachia significantly affects the transcription of host genes involved in the extracellular matrix, cytoskeleton organization, and cytomembrane mobility in multiple cell types, which may make host ovarian cells more conducive for the transmission of Wolbachia from extracellular to intracellular. Moreover, the genes nos and orb, which are related to the synthesis of ribonucleoprotein complexes, are specifically upregulated in early germline cells of ovaries infected with Wolbachia, revealing that Wolbachia can increase the possibility of its localization to the host oocytes by enhancing the binding with host ribonucleoprotein-complex processing bodies (P-bodies). All these findings provide novel insights into the maternal transmission of Wolbachia between host ovarian cells.IMPORTANCEWolbachia, an obligate endosymbiont in arthropods, can manipulate the reproduction system of the host to enhance its maternal transmission and reside in the host's eggs for generations. Herein, we performed single-cell RNA sequencing of ovaries from Drosophila melanogaster and observed the effects of Wolbachia (strain wMel) infection on different cell types to discuss the potential mechanism associated with the transmission and retention of Wolbachia within the ovaries of female hosts. It was found that the transcriptions of multiple genes in the ovary samples infected with Wolbachia are significantly altered, which possibly favors the maternal transmission of Wolbachia. Meanwhile, we also discovered that Wolbachia may flexibly regulate the expression level of specific host genes according to their needs rather than rigidly changing the expression level in one direction to achieve a more suitable living environment in the host's ovarian cells. Our findings contribute to a further understanding of the maternal transmission and possible universal effects of Wolbachia within the host.
Collapse
Affiliation(s)
- Yun-heng Miao
- College of Life Sciences, Nankai University, Tianjin, China
| | - Wei-hao Dou
- College of Life Sciences, Nankai University, Tianjin, China
| | - Jing Liu
- College of Life Sciences, Nankai University, Tianjin, China
| | - Da-wei Huang
- College of Life Sciences, Nankai University, Tianjin, China
| | - Jin-hua Xiao
- College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
2
|
Essletzbichler P, Sedlyarov V, Frommelt F, Soulat D, Heinz LX, Stefanovic A, Neumayer B, Superti-Furga G. A genome-wide CRISPR functional survey of the human phagocytosis molecular machinery. Life Sci Alliance 2023; 6:e202201715. [PMID: 36725334 PMCID: PMC9892931 DOI: 10.26508/lsa.202201715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 02/03/2023] Open
Abstract
Phagocytosis, the process by which cells engulf large particles, plays a vital role in driving tissue clearance and host defense. Its dysregulation is connected to autoimmunity, toxic accumulation of proteins, and increased risks for infections. Despite its importance, we lack full understanding of all molecular components involved in the process. To create a functional map in human cells, we performed a genome-wide CRISPRko FACS screen that identified 716 genes. Mapping those hits to a comprehensive protein-protein interaction network annotated for functional cellular processes allowed retrieval of protein complexes identified multiple times and detection of missing phagocytosis regulators. In addition to known components, such as the Arp2/3 complex, the vacuolar-ATPase-Rag machinery, and the Wave-2 complex, we identified and validated new phagocytosis-relevant functions, including the oligosaccharyltransferase complex (MAGT1/SLC58A1, DDOST, STT3B, and RPN2) and the hypusine pathway (eIF5A, DHPS, and DOHH). Overall, our phagocytosis network comprises elements of cargo uptake, shuffling, and biotransformation through the cell, providing a resource for the identification of potential novel drivers for diseases of the endo-lysosomal system. Our approach of integrating protein-protein interaction offers a broadly applicable way to functionally interpret genome-wide screens.
Collapse
Affiliation(s)
- Patrick Essletzbichler
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Vitaly Sedlyarov
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Fabian Frommelt
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Didier Soulat
- Institute of Clinical Microbiology, Immunology and Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Leonhard X Heinz
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Adrijana Stefanovic
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Benedikt Neumayer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
Ma X, Liu H, Zhu J, Zhang C, Peng Y, Mao Z, Jing Y, Chen F. miR-185-5p Regulates Inflammation and Phagocytosis through CDC42/JNK Pathway in Macrophages. Genes (Basel) 2022; 13:genes13030468. [PMID: 35328023 PMCID: PMC8955717 DOI: 10.3390/genes13030468] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 02/23/2022] [Accepted: 02/28/2022] [Indexed: 01/02/2023] Open
Abstract
Macrophage activation is an essential component of systemic chronic inflammation and chronic inflammatory diseases. Emerging evidence implicates miR-185-5p in chronic inflammation diseases. However, the regulatory role of miR-185-5p in macrophage pro-inflammatory activation has not been studied previously. Here, we identified that miR-185-5p was one of the top genes and effectively downregulated in two macrophage miRNA expression datasets from GEO. Under LPS stress, miR-185-5p overexpression reduced pro-inflammatory cytokine expression, suppressed phagocytosis in RAW264.7 macrophage. miR-185-5p inhibitors augmented pro-inflammatory effects of LPS in macrophage. Mechanically, miR-185-5p sponged and negatively regulated the protein expression of CDC42. Ablation of CDC42 with selective CDC42 inhibitor CASIN reversed the pro-inflammatory effect of miR-185-5p inhibitors through inhibiting MAPK/JNK pathways. Collectively, these data demonstrate that miR-185-5p exhibited anti-inflammatory functions in LPS-induced RAW264.7 macrophages at least partially through CDC42/JNK pathways. Our findings yield insights into the understanding of miR-185-5p-regulated network in macrophages inflammation, which is beneficial for exploring miRNA-protein interaction in atherosclerotic inflammation.
Collapse
|
4
|
Redpath G, Deo N. Serotonin: an overlooked regulator of endocytosis and endosomal sorting? Biol Open 2022; 11:bio059057. [PMID: 35076063 PMCID: PMC8801889 DOI: 10.1242/bio.059057] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/09/2021] [Indexed: 12/23/2022] Open
Abstract
Serotonin is a neurotransmitter and a hormone that is typically associated with regulating our mood. However, the serotonin transporter and receptors are expressed throughout the body, highlighting the much broader, systemic role of serotonin in regulating human physiology. A substantial body of data strongly implicates serotonin as a fundamental regulator of endocytosis and endocytic sorting. Serotonin has the potential to enhance endocytosis through three distinct mechanisms - serotonin signalling, serotonylation and insertion into the plasma membrane - although the interplay and relationship between these mechanisms has not yet been explored. Endocytosis is central to the cellular response to the extracellular environment, controlling receptor distribution on the plasma membrane to modulate signalling, neurotransmitter release and uptake, circulating protein and lipid cargo uptake, and amino acid internalisation for cell proliferation. Uncovering the range of cellular and physiological circumstances in which serotonin regulates endocytosis is of great interest for our understanding of how serotonin regulates mood, and also the fundamental understanding of endocytosis and its regulation throughout the body. This article has an associated Future Leader to Watch interview with the first author of the paper.
Collapse
Affiliation(s)
- Gregory Redpath
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences and the ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney 2052, Australia
| | - Nikita Deo
- Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
5
|
Laquel P, Testet E, Tuphile K, Cullin C, Fouillen L, Bessoule JJ, Doignon F. Phosphoinositides containing stearic acid are required for interaction between Rho GTPases and the exocyst to control the late steps of polarised exocytosis. Traffic 2021; 23:120-136. [PMID: 34908215 DOI: 10.1111/tra.12829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 11/18/2021] [Accepted: 12/07/2021] [Indexed: 11/27/2022]
Abstract
Cell polarity is achieved by regulators such as small G proteins, exocyst members and phosphoinositides, with the latter playing a key role when bound to the exocyst proteins Sec3p and Exo70p, and Rho GTPases. This ensures asymmetric growth via the routing of proteins and lipids to the cell surface using actin cables. Previously, using a yeast mutant for a lysophosphatidylinositol acyl transferase encoded by the PSI1 gene, we demonstrated the role of stearic acid in the acyl chain of phosphoinositides in cytoskeletal organisation and secretion. Here, we use a genetic approach to characterise the effect on late steps of the secretory pathway. The constitutive overexpression of PSI1 in mutants affecting kinases involved in the phosphoinositide pathway demonstrated the role of molecular species containing stearic acid in bypassing a lack of phosphatidylinositol-4-phosphate PI(4)P at the plasma membrane, which is essential for the function of the Cdc42p module. Decreasing the levels of stearic acid-containing phosphoinositides modifies the environment of the actors involved in the control of late steps in the secretory pathway. This leads to decreased interactions between Exo70p and Sec3p, with Cdc42p, Rho1p and Rho3p, due to disruption of the GTP/GDP ratio of at least Rho1p and Rho3p GTPases, thereby preventing activation of the exocyst.
Collapse
Affiliation(s)
- P Laquel
- Univ. Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, F-33140 Villenave d'Ornon, France
| | - E Testet
- Univ. Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, F-33140 Villenave d'Ornon, France
| | - K Tuphile
- Univ. Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, F-33140 Villenave d'Ornon, France
| | - C Cullin
- Univ. Bordeaux, CNRS, Laboratoire de Chimie Biologie des Membranes & des Nano-objets, UMR 5248, Pessac, France
| | - L Fouillen
- Univ. Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, F-33140 Villenave d'Ornon, France.,Metabolome Facility of Bordeaux, Functional Genomics Centre, F-33883 Villenave d'Ornon, France
| | - J J Bessoule
- Univ. Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, F-33140 Villenave d'Ornon, France
| | - F Doignon
- Univ. Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, F-33140 Villenave d'Ornon, France
| |
Collapse
|
6
|
SdhA blocks disruption of the Legionella-containing vacuole by hijacking the OCRL phosphatase. Cell Rep 2021; 37:109894. [PMID: 34731604 PMCID: PMC8669613 DOI: 10.1016/j.celrep.2021.109894] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 07/27/2021] [Accepted: 10/06/2021] [Indexed: 11/21/2022] Open
Abstract
Legionella pneumophila grows intracellularly within a replication vacuole via action of Icm/Dot-secreted proteins. One such protein, SdhA, maintains the integrity of the vacuolar membrane, thereby preventing cytoplasmic degradation of bacteria. We show here that SdhA binds and blocks the action of OCRL (OculoCerebroRenal syndrome of Lowe), an inositol 5-phosphatase pivotal for controlling endosomal dynamics. OCRL depletion results in enhanced vacuole integrity and intracellular growth of a sdhA mutant, consistent with OCRL participating in vacuole disruption. Overexpressed SdhA alters OCRL function, enlarging endosomes, driving endosomal accumulation of phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2), and interfering with endosomal trafficking. SdhA interrupts Rab guanosine triphosphatase (GTPase)-OCRL interactions by binding to the OCRL ASPM-SPD2-Hydin (ASH) domain, without directly altering OCRL 5-phosphatase activity. The Legionella vacuole encompassing the sdhA mutant accumulates OCRL and endosomal antigen EEA1 (Early Endosome Antigen 1), consistent with SdhA blocking accumulation of OCRL-containing endosomal vesicles. Therefore, SdhA hijacking of OCRL is associated with blocking trafficking events that disrupt the pathogen vacuole.
Collapse
|
7
|
Desale SE, Chinnathambi S. Phosphoinositides signaling modulates microglial actin remodeling and phagocytosis in Alzheimer's disease. Cell Commun Signal 2021; 19:28. [PMID: 33627135 PMCID: PMC7905611 DOI: 10.1186/s12964-021-00715-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/26/2021] [Indexed: 12/18/2022] Open
Abstract
Alzheimer's disease is one of the neurodegenerative diseases, characterized by the accumulation of abnormal protein deposits, which disrupts signal transduction in neurons and other glia cells. The pathological protein in neurodegenerative diseases, Tau and amyloid-β contribute to the disrupted microglial signaling pathways, actin cytoskeleton, and cellular receptor expression. The important secondary messenger lipids i.e., phosphatidylinositols are largely affected by protein deposits of amyloid-β in Alzheimer's disease. Phosphatidylinositols are the product of different phosphatidylinositol kinases and the state of phosphorylation at D3, D4, and D5 positions of inositol ring. Phosphatidylinositol 3,4,5-triphosphate (PI 3, 4, 5-P3) involves in phagocytic cup formation, cell polarization, whereas Phosphatidylinositol 4,5-bisphosphate (PI 4, 5-P2)-mediates the process of phagosomes formation and further its fusion with early endosome.. The necessary activation of actin-binding proteins such as Rac, WAVE complex, and ARP2/3 complex for the actin polymerization in the process of phagocytosis, migration is regulated and maintained by PI 3, 4, 5-P3 and PI 4, 5-P2. The ratio and types of fatty acid intake can influence the intracellular secondary lipid messengers along with the cellular content of phaphatidylcholine and phosphatidylethanolamine. The Amyloid-β deposits and extracellular Tau seeds disrupt phosphatidylinositides level and actin cytoskeletal network that hamper microglial-signaling pathways in AD. We hypothesize that being a lipid species intracellular levels of phosphatidylinositol would be regulated by dietary fatty acids. Further we are interested to understand phosphoinositide-based signaling cascades in phagocytosis and actin remodeling. Video Abstract.
Collapse
Affiliation(s)
- Smita Eknath Desale
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411008 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Subashchandrabose Chinnathambi
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411008 India
| |
Collapse
|
8
|
Zhang S, Kazanietz MG, Cooke M. Rho GTPases and the emerging role of tunneling nanotubes in physiology and disease. Am J Physiol Cell Physiol 2020; 319:C877-C884. [PMID: 32845720 DOI: 10.1152/ajpcell.00351.2020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Tunneling nanotubes (TNTs) emerged as important specialized actin-rich membrane protrusions for cell-to-cell communication. These structures allow the intercellular exchange of material, such as ions, soluble proteins, receptors, vesicles and organelles, therefore exerting critical roles in normal cell function. Indeed, TNTs participate in a number of physiological processes, including embryogenesis, immune response, and osteoclastogenesis. TNTs have been also shown to contribute to the transmission of retroviruses (e.g., human immunodeficiency virus-1, HIV-1) and coronaviruses. As with other membrane protrusions, the involvement of Rho GTPases in the formation of these elongated structures is undisputable, although the mechanisms involved are not yet fully elucidated. The tight control of Rho GTPase function by guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs) strongly suggests that localized control of these Rho regulators may contribute to TNT assembly and disassembly. Deciphering the intricacies of the complex signaling mechanisms leading to actin reorganization and TNT development would reveal important information about their involvement in normal cellular physiology as well as unveil potential targets for disease management.
Collapse
Affiliation(s)
- Suli Zhang
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Marcelo G Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mariana Cooke
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Medicine, Einstein Medical Center Philadelphia, Philadelphia, Pennsylvania
| |
Collapse
|
9
|
Walpole GFW, Grinstein S. Endocytosis and the internalization of pathogenic organisms: focus on phosphoinositides. F1000Res 2020; 9. [PMID: 32494357 PMCID: PMC7233180 DOI: 10.12688/f1000research.22393.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/07/2020] [Indexed: 12/18/2022] Open
Abstract
Despite their comparatively low abundance in biological membranes, phosphoinositides are key to the regulation of a diverse array of signaling pathways and direct membrane traffic. The role of phosphoinositides in the initiation and progression of endocytic pathways has been studied in considerable depth. Recent advances have revealed that distinct phosphoinositide species feature prominently in clathrin-dependent and -independent endocytosis as well as in phagocytosis and macropinocytosis. Moreover, a variety of intracellular and cell-associated pathogens have developed strategies to commandeer host cell phosphoinositide metabolism to gain entry and/or metabolic advantage, thereby promoting their survival and proliferation. Here, we briefly survey the current knowledge on the involvement of phosphoinositides in endocytosis, phagocytosis, and macropinocytosis and highlight several examples of molecular mimicry employed by pathogens to either “hitch a ride” on endocytic pathways endogenous to the host or create an entry path of their own.
Collapse
Affiliation(s)
- Glenn F W Walpole
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Sergio Grinstein
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada.,Keenan Research Centre of the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
| |
Collapse
|
10
|
Fray MA, Charpentier JC, Sylvain NR, Seminario MC, Bunnell SC. Vav2 lacks Ca 2+ entry-promoting scaffolding functions unique to Vav1 and inhibits T cell activation via Cdc42. J Cell Sci 2020; 133:jcs238337. [PMID: 31974114 PMCID: PMC7075049 DOI: 10.1242/jcs.238337] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 01/06/2020] [Indexed: 12/16/2022] Open
Abstract
Vav family guanine nucleotide exchange factors (GEFs) are essential regulators of immune function. Despite their structural similarity, Vav1 promotes and Vav2 opposes T cell receptor (TCR)-induced Ca2+ entry. By using a Vav1-deficient Jurkat T cell line, we find that Vav1 facilitates Ca2+ entry via non-catalytic scaffolding functions that are encoded by the catalytic core of Vav1 and flanking linker regions. We implicate, in this scaffolding function, a previously undescribed polybasic motif that is strictly conserved in Vav1 and absent from Vav2 in tetrapods. Conversely, the catalytic activity of Vav2 contributes to the suppression of TCR-mediated Ca2+ entry. By performing an in vivo 'GEF trapping' assay in intact cells, we demonstrate that Cdc42 interacts with the catalytic surface of Vav2 but not Vav1, and that Vav1 discriminates Cdc42 from Rac1 via F56 (W56 in Rac1). Finally, the Cdc42-specific inhibitor ZCL278 and the shRNA-mediated suppression of Cdc42 each prevent the inhibition of TCR-induced Ca2+ entry by Vav2. These findings define stark differences in the functions of Vav1 and Vav2, and provide an explanation for the differential usage of these Vav isoforms by immune subpopulations.
Collapse
Affiliation(s)
- Michael A Fray
- Program in Immunology, Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - John C Charpentier
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Nicholas R Sylvain
- Program in Immunology, Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Maria-Cristina Seminario
- Program in Immunology, Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Stephen C Bunnell
- Program in Immunology, Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| |
Collapse
|
11
|
Vaidžiulytė K, Coppey M, Schauer K. Intracellular organization in cell polarity - placing organelles into the polarity loop. J Cell Sci 2019; 132:132/24/jcs230995. [PMID: 31836687 DOI: 10.1242/jcs.230995] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Many studies have investigated the processes that support polarity establishment and maintenance in cells. On the one hand, polarity complexes at the cell cortex and their downstream signaling pathways have been assigned as major regulators of polarity. On the other hand, intracellular organelles and their polarized trafficking routes have emerged as important components of polarity. In this Review, we argue that rather than trying to identify the prime 'culprit', now it is time to consider all these players as a collective. We highlight that understanding the intimate coordination between the polarized cell cortex and the intracellular compass that is defined by organelle positioning is essential to capture the concept of polarity. After briefly reviewing how polarity emerges from a dynamic maintenance of cellular asymmetries, we highlight how intracellular organelles and their associated trafficking routes provide diverse feedback for dynamic cell polarity maintenance. We argue that the asymmetric organelle compass is an indispensable element of the polarity network.
Collapse
Affiliation(s)
- Kotryna Vaidžiulytė
- Cell Biology and Cancer Unit, Institut Curie, PSL Research University, Sorbonne Université, CNRS, Paris 75005, France.,Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, Sorbonne Université, CNRS, Paris 75005, France.,Faculty of Science and Engineering, Sorbonne Université, Paris 75005, France
| | - Mathieu Coppey
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, Sorbonne Université, CNRS, Paris 75005, France
| | - Kristine Schauer
- Cell Biology and Cancer Unit, Institut Curie, PSL Research University, Sorbonne Université, CNRS, Paris 75005, France
| |
Collapse
|
12
|
Dong LM, Chen XW, He XX, Jiang XP, Wu F. Cell division cycle protein 42 regulates the inflammatory response in mice bearing inflammatory bowel disease. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:1833-1838. [PMID: 31062617 DOI: 10.1080/21691401.2019.1596936] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
This study aimed to explore the effect of cell division cycle protein 42 (CDC42) on inflammatory response and immune response in mice bearing inflammatory bowel disease (IBD). Trinitrobenzene sulfonic acid was injected into the colon of mice to establish IBD model. The mice were divided into four groups (n = 4): control, model, Ad5, and Ad5-CDC42. After establishing IBD model, mice which were treated with AD5 empty vector and AD5-CDC42 expression vector served as the Ad5 group and Ad5-CDC42 group, respectively. The mRNA and protein levels of interleukin 10 (IL-10), interferon-γ (IFN-γ), IL-4, and tumor necrosis factor-α (TNF-α) in the colon tissues were evaluated by RT-PCR and western blot, respectively. Their levels in the serum and colon tissues were examined by ELISA assay and immunohistochemical analysis, respectively. Their changes in the mRNA and protein levels were consistent and similar changes in the colon tissues and the serum were found among various groups. The levels of IL-10, IFN-γ, IL-4, and TNF-α were lowest in the control group. Their levels in the model group and the Ad5 group were similar (p > .05) and significantly higher than those in the control group (p < .05). In comparison with the model group and the Ad5 group, their levels were significantly reduced in the Ad5-CDC42 group (p < .05). In conclusion, the levels of inflammatory cytokines were elevated in the colon tissues and serum of IBD mice, which could be reduced by the CDC42 treatment. CDC42 regulated the inflammatory response and the innate immune response in IBD mice.
Collapse
Affiliation(s)
- Le-Mei Dong
- a Department of Gastroenterology , The First Affiliated Hospital of Wenzhou Medical University , Wenzhou , China
| | - Xiao-Wei Chen
- a Department of Gastroenterology , The First Affiliated Hospital of Wenzhou Medical University , Wenzhou , China
| | - Xi-Xi He
- a Department of Gastroenterology , The First Affiliated Hospital of Wenzhou Medical University , Wenzhou , China
| | - Xue-Pei Jiang
- a Department of Gastroenterology , The First Affiliated Hospital of Wenzhou Medical University , Wenzhou , China
| | - Fang Wu
- a Department of Gastroenterology , The First Affiliated Hospital of Wenzhou Medical University , Wenzhou , China
| |
Collapse
|
13
|
Nishida‐Fukuda H. The Exocyst: Dynamic Machine or Static Tethering Complex? Bioessays 2019; 41:e1900056. [DOI: 10.1002/bies.201900056] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/14/2019] [Indexed: 01/15/2023]
Affiliation(s)
- Hisayo Nishida‐Fukuda
- Department of Genome Editing, Institute of Biomedical ScienceKansai Medical University2‐5‐1 Shin‐machi, Hirakata Osaka 5731010 Japan
| |
Collapse
|
14
|
Sáez JJ, Diaz J, Ibañez J, Bozo JP, Cabrera Reyes F, Alamo M, Gobert FX, Obino D, Bono MR, Lennon-Duménil AM, Yeaman C, Yuseff MI. The exocyst controls lysosome secretion and antigen extraction at the immune synapse of B cells. J Cell Biol 2019; 218:2247-2264. [PMID: 31197029 PMCID: PMC6605794 DOI: 10.1083/jcb.201811131] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 04/11/2019] [Accepted: 05/22/2019] [Indexed: 02/06/2023] Open
Abstract
BCR engagement enhances microtubule stability, which triggers the mobilization of Exo70 from the centrosome to the immune synapse. BCR engagement activates GEF-H1, which promotes exocyst assembly required for the docking and secretion of lysosomes, facilitating the extraction of surface-tethered antigens. B lymphocytes capture antigens from the surface of presenting cells by forming an immune synapse. Local secretion of lysosomes, which are guided to the synaptic membrane by centrosome repositioning, can facilitate the extraction of immobilized antigens. However, the molecular basis underlying their delivery to precise domains of the plasma membrane remains elusive. Here we show that microtubule stabilization, triggered by engagement of the B cell receptor, acts as a cue to release centrosome-associated Exo70, which is redistributed to the immune synapse. This process is coupled to the recruitment and activation of GEF-H1, which is required for assembly of the exocyst complex, used to promote tethering and fusion of lysosomes at the immune synapse. B cells silenced for GEF-H1 or Exo70 display defective lysosome secretion, which results in impaired antigen extraction and presentation. Thus, centrosome repositioning coupled to changes in microtubule stability orchestrates the spatial-temporal distribution of the exocyst complex to promote polarized lysosome secretion at the immune synapse.
Collapse
Affiliation(s)
- Juan José Sáez
- Department of Cellular and Molecular Biology, Faculty of Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.,Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Jheimmy Diaz
- Department of Cellular and Molecular Biology, Faculty of Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jorge Ibañez
- Department of Cellular and Molecular Biology, Faculty of Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan Pablo Bozo
- Department of Cellular and Molecular Biology, Faculty of Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fernanda Cabrera Reyes
- Department of Cellular and Molecular Biology, Faculty of Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Martina Alamo
- Department of Cellular and Molecular Biology, Faculty of Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - François-Xavier Gobert
- INSERM U932, Institut Curie, Centre de Recherche, PSL Research University, Paris, Île-de-France, France
| | - Dorian Obino
- INSERM U932, Institut Curie, Centre de Recherche, PSL Research University, Paris, Île-de-France, France
| | - María Rosa Bono
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Ana-María Lennon-Duménil
- INSERM U932, Institut Curie, Centre de Recherche, PSL Research University, Paris, Île-de-France, France
| | - Charles Yeaman
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA
| | - María-Isabel Yuseff
- Department of Cellular and Molecular Biology, Faculty of Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
15
|
Barger SR, Reilly NS, Shutova MS, Li Q, Maiuri P, Heddleston JM, Mooseker MS, Flavell RA, Svitkina T, Oakes PW, Krendel M, Gauthier NC. Membrane-cytoskeletal crosstalk mediated by myosin-I regulates adhesion turnover during phagocytosis. Nat Commun 2019; 10:1249. [PMID: 30890704 PMCID: PMC6425032 DOI: 10.1038/s41467-019-09104-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 02/21/2019] [Indexed: 11/09/2022] Open
Abstract
Phagocytosis of invading pathogens or cellular debris requires a dramatic change in cell shape driven by actin polymerization. For antibody-covered targets, phagocytosis is thought to proceed through the sequential engagement of Fc-receptors on the phagocyte with antibodies on the target surface, leading to the extension and closure of the phagocytic cup around the target. We find that two actin-dependent molecular motors, class 1 myosins myosin 1e and myosin 1f, are specifically localized to Fc-receptor adhesions and required for efficient phagocytosis of antibody-opsonized targets. Using primary macrophages lacking both myosin 1e and myosin 1f, we find that without the actin-membrane linkage mediated by these myosins, the organization of individual adhesions is compromised, leading to excessive actin polymerization, slower adhesion turnover, and deficient phagocytic internalization. This work identifies a role for class 1 myosins in coordinated adhesion turnover during phagocytosis and supports a mechanism involving membrane-cytoskeletal crosstalk for phagocytic cup closure.
Collapse
Affiliation(s)
- Sarah R Barger
- Cell and Developmental Biology Department, State University of New York Upstate Medical University, Syracuse, 13210, NY, USA
| | - Nicholas S Reilly
- Department of Physics, University of Rochester, Rochester, 14627, NY, USA
| | - Maria S Shutova
- Department of Biology, University of Pennsylvania, Philadelphia, 19104, PA, USA
| | - Qingsen Li
- IFOM, FIRC Institute of Molecular Oncology, Milan, 20139, Italy
| | - Paolo Maiuri
- IFOM, FIRC Institute of Molecular Oncology, Milan, 20139, Italy
| | - John M Heddleston
- Advanced Imaging Center, Howard Hughes Medical Institute Janelia Research Campus, Ashburn, 20147, VA, USA
| | - Mark S Mooseker
- Molecular, Cellular and Developmental Biology, Yale University, New Haven, 06520, CT, USA
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, 06519, CT, USA
- Howard Hughes Medical Institute, Yale University, New Haven, 06519, CT, USA
| | - Tatyana Svitkina
- Department of Biology, University of Pennsylvania, Philadelphia, 19104, PA, USA
| | - Patrick W Oakes
- Department of Physics, University of Rochester, Rochester, 14627, NY, USA
- Department of Biology, University of Rochester, Rochester, 14627, NY, USA
| | - Mira Krendel
- Cell and Developmental Biology Department, State University of New York Upstate Medical University, Syracuse, 13210, NY, USA.
| | - Nils C Gauthier
- IFOM, FIRC Institute of Molecular Oncology, Milan, 20139, Italy.
| |
Collapse
|
16
|
Sepúlveda-Ramírez SP, Toledo-Jacobo L, Henson JH, Shuster CB. Cdc42 controls primary mesenchyme cell morphogenesis in the sea urchin embryo. Dev Biol 2018; 437:140-151. [PMID: 29555242 PMCID: PMC5973877 DOI: 10.1016/j.ydbio.2018.03.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 03/05/2018] [Accepted: 03/15/2018] [Indexed: 12/15/2022]
Abstract
In the sea urchin embryo, gastrulation is characterized by the ingression and directed cell migration of primary mesenchyme cells (PMCs), as well as the primary invagination and convergent extension of the endomesoderm. Like all cell shape changes, individual and collective cell motility is orchestrated by Rho family GTPases and their modulation of the actomyosin cytoskeleton. And while endomesoderm specification has been intensively studied in echinoids, much less is known about the proximate regulators driving cell motility. Toward these ends, we employed anti-sense morpholinos, mutant alleles and pharmacological inhibitors to assess the role of Cdc42 during sea urchin gastrulation. While inhibition of Cdc42 expression or activity had only mild effects on PMC ingression, PMC migration, alignment and skeletogenesis were disrupted in the absence of Cdc42, as well as elongation of the archenteron. PMC migration and patterning of the larval skeleton relies on the extension of filopodia, and Cdc42 was required for filopodia in vivo as well as in cultured PMCs. Lastly, filopodial extension required both Arp2/3 and formin actin-nucleating factors, supporting models of filopodial nucleation observed in other systems. Together, these results suggest that Cdc42 plays essential roles during PMC cell motility and organogenesis.
Collapse
Affiliation(s)
- Silvia P Sepúlveda-Ramírez
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, United States; University of Washington Friday Harbor Laboratories, Friday Harbor, WA 98250, United States
| | - Leslie Toledo-Jacobo
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, United States; University of Washington Friday Harbor Laboratories, Friday Harbor, WA 98250, United States
| | - John H Henson
- University of Washington Friday Harbor Laboratories, Friday Harbor, WA 98250, United States; Department of Biology, Dickinson College, Carlisle, PA 17013, United States
| | - Charles B Shuster
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, United States; University of Washington Friday Harbor Laboratories, Friday Harbor, WA 98250, United States.
| |
Collapse
|
17
|
Horsthemke M, Bachg AC, Groll K, Moyzio S, Müther B, Hemkemeyer SA, Wedlich-Söldner R, Sixt M, Tacke S, Bähler M, Hanley PJ. Multiple roles of filopodial dynamics in particle capture and phagocytosis and phenotypes of Cdc42 and Myo10 deletion. J Biol Chem 2017; 292:7258-7273. [PMID: 28289096 DOI: 10.1074/jbc.m116.766923] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 03/13/2017] [Indexed: 12/14/2022] Open
Abstract
Macrophage filopodia, finger-like membrane protrusions, were first implicated in phagocytosis more than 100 years ago, but little is still known about the involvement of these actin-dependent structures in particle clearance. Using spinning disk confocal microscopy to image filopodial dynamics in mouse resident Lifeact-EGFP macrophages, we show that filopodia, or filopodia-like structures, support pathogen clearance by multiple means. Filopodia supported the phagocytic uptake of bacterial (Escherichia coli) particles by (i) capturing along the filopodial shaft and surfing toward the cell body, the most common mode of capture; (ii) capturing via the tip followed by retraction; (iii) combinations of surfing and retraction; or (iv) sweeping actions. In addition, filopodia supported the uptake of zymosan (Saccharomyces cerevisiae) particles by (i) providing fixation, (ii) capturing at the tip and filopodia-guided actin anterograde flow with phagocytic cup formation, and (iii) the rapid growth of new protrusions. To explore the role of filopodia-inducing Cdc42, we generated myeloid-restricted Cdc42 knock-out mice. Cdc42-deficient macrophages exhibited rapid phagocytic cup kinetics, but reduced particle clearance, which could be explained by the marked rounded-up morphology of these cells. Macrophages lacking Myo10, thought to act downstream of Cdc42, had normal morphology, motility, and phagocytic cup formation, but displayed markedly reduced filopodia formation. In conclusion, live-cell imaging revealed multiple mechanisms involving macrophage filopodia in particle capture and engulfment. Cdc42 is not critical for filopodia or phagocytic cup formation, but plays a key role in driving macrophage lamellipodial spreading.
Collapse
Affiliation(s)
- Markus Horsthemke
- From the Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Anne C Bachg
- From the Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Katharina Groll
- From the Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Sven Moyzio
- From the Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Barbara Müther
- From the Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Sandra A Hemkemeyer
- From the Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Roland Wedlich-Söldner
- the Institut für Zelldynamik und Bildgebung, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Michael Sixt
- the Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria, and
| | - Sebastian Tacke
- the Institut für Medizinische Physik und Biophysik, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Martin Bähler
- From the Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Peter J Hanley
- From the Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany,
| |
Collapse
|
18
|
Rauch L, Hennings K, Trasak C, Röder A, Schröder B, Koch-Nolte F, Rivera-Molina F, Toomre D, Aepfelbacher M. Staphylococcus aureus recruits Cdc42GAP through recycling endosomes and the exocyst to invade human endothelial cells. J Cell Sci 2016; 129:2937-49. [PMID: 27311480 DOI: 10.1242/jcs.186213] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 06/13/2016] [Indexed: 01/01/2023] Open
Abstract
Activation and invasion of the vascular endothelium by Staphylococcus aureus is a major cause of sepsis and endocarditis. For endothelial cell invasion, S. aureus triggers actin polymerization through Cdc42, N-WASp (also known as WASL) and the Arp2/3 complex to assemble a phagocytic cup-like structure. Here, we show that after stimulating actin polymerization staphylococci recruit Cdc42GAP (also known as ARHGAP1) which deactivates Cdc42 and terminates actin polymerization in the phagocytic cups. Cdc42GAP is delivered to the invading bacteria on recycling endocytic vesicles in concert with the exocyst complex. When Cdc42GAP recruitment by staphylococci was prevented by blocking recycling endocytic vesicles or the exocyst complex, or when Cdc42 was constitutively activated, phagocytic cup closure was impaired and endothelial cell invasion was inhibited. Thus, to complete invasion of the endothelium, staphylococci reorient recycling endocytic vesicles to recruit Cdc42GAP, which terminates Cdc42-induced actin polymerization in phagocytic cups. Analogous mechanisms might govern other Cdc42-dependent cell functions.
Collapse
Affiliation(s)
- Liane Rauch
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, Hamburg 20246, Germany
| | - Kirsten Hennings
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, Hamburg 20246, Germany
| | - Claudia Trasak
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, Hamburg 20246, Germany
| | - Anja Röder
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, Hamburg 20246, Germany
| | - Barbara Schröder
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Ingolstädter Landstraße 1, Neuherberg 85764, Germany Institute for Biological Imaging, Technical University of Munich, Arcisstrasse 21, Munich 80333, Germany
| | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, Hamburg 20246, Germany
| | - Felix Rivera-Molina
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
| | - Derek Toomre
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
| | - Martin Aepfelbacher
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, Hamburg 20246, Germany
| |
Collapse
|
19
|
Inamdar SM, Hsu SC, Yeaman C. Probing Functional Changes in Exocyst Configuration with Monoclonal Antibodies. Front Cell Dev Biol 2016; 4:51. [PMID: 27376061 PMCID: PMC4891948 DOI: 10.3389/fcell.2016.00051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 05/10/2016] [Indexed: 01/19/2023] Open
Abstract
Spatial regulation of exocytosis relies on the exocyst, a hetero-octameric protein complex that tethers vesicles to fusion sites at the plasma membrane. Nevertheless, our understanding of mechanisms regulating exocyst assembly/disassembly, localization, and function are incomplete. Here, we have exploited a panel of anti-Sec6 monoclonal antibodies (mAbs) to probe possible configurational changes accompanying transitions in exocyst function in epithelial MDCK cells. Sec6 is quantitatively associated with Sec8 in high molecular weight complexes, as shown by gel filtration and co-immunoprecipitation studies. We mapped epitopes recognized by more than 20 distinct mAbs to one of six Sec6 segments. Surprisingly, mAbs that bound epitopes in each segment labeled distinct subcellular structures. In general, antibodies to epitopes in N-terminal domains labeled Sec6 in either cytosolic or nuclear pools, whereas those that bound epitopes in C-terminal domains labeled membrane-associated Sec6. In this latter group, we identified antibodies that labeled distinct Sec6 populations at the apical junctional complex, desmosomes, endoplasmic reticulum and vimentin-type intermediate filaments. That each antibody was specific was verified by both Sec6 RNAi and competition with fusion proteins containing each domain. Comparison of non-polarized and polarized cells revealed that many Sec6 epitopes either redistribute or become concealed during epithelial polarization. Transitions in exocyst configurations may be regulated in part by the actions of Ral GTPases, because the exposure of Sec6 C-terminal domain epitopes at the plasma membrane is significantly reduced upon RalA RNAi. To determine whether spatio-temporal changes in epitope accessibility was correlated with differential stability of interactions between Sec6 and other exocyst subunits, we quantified relative amounts of each subunit that co-immunoprecipitated with Sec6 when antibodies to N-terminal or C-terminal epitopes were used. Antibodies to Sec6NT co-precipitated substantially more Sec5, -10, -15, Exo70 and -84 than did those to Sec6CT. In contrast, antibodies to Sec6CT co-precipitated more Sec3 and Sec8 than did those to Sec6NT. These results are consistent with a model in which exocyst activation during periods of rapid membrane expansion is accompanied by molecular rearrangements within the holocomplex or association with accessory proteins, which expose the Sec6 C-terminal domain when the complex is membrane-bound and conceal it when the complex is cytoplasmic.
Collapse
Affiliation(s)
- Shivangi M Inamdar
- Molecular and Cellular Biology Program, University of IowaIowa City, IA, USA; Department of Anatomy and Cell Biology, University of IowaIowa City, IA, USA
| | - Shu-Chan Hsu
- Department of Cell Biology and Neuroscience, Rutgers University Piscataway, NJ, USA
| | - Charles Yeaman
- Molecular and Cellular Biology Program, University of IowaIowa City, IA, USA; Department of Anatomy and Cell Biology, University of IowaIowa City, IA, USA
| |
Collapse
|
20
|
Role of Host Type IA Phosphoinositide 3-Kinase Pathway Components in Invasin-Mediated Internalization of Yersinia enterocolitica. Infect Immun 2016; 84:1826-1841. [PMID: 27068087 DOI: 10.1128/iai.00142-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 04/03/2016] [Indexed: 02/07/2023] Open
Abstract
Many bacterial pathogens subvert mammalian type IA phosphoinositide 3-kinase (PI3K) in order to induce their internalization into host cells. How PI3K promotes internalization is not well understood. Also unclear is whether type IA PI3K affects different pathogens through similar or distinct mechanisms. Here, we performed an RNA interference (RNAi)-based screen to identify components of the type IA PI3K pathway involved in invasin-mediated entry of Yersinia enterocolitica, an enteropathogen that causes enteritis and lymphadenitis. The 69 genes targeted encode known upstream regulators or downstream effectors of PI3K. A similar RNAi screen was previously performed with the food-borne bacterium Listeria monocytogenes The results of the screen with Y. enterocolitica indicate that at least nine members of the PI3K pathway are needed for invasin-mediated entry. Several of these proteins, including centaurin-α1, Dock180, focal adhesion kinase (FAK), Grp1, LL5α, LL5β, and PLD2 (phospholipase D2), were recruited to sites of entry. In addition, centaurin-α1, FAK, PLD2, and mTOR were required for remodeling of the actin cytoskeleton during entry. Six of the human proteins affecting invasin-dependent internalization also promote InlB-mediated entry of L. monocytogenes Our results identify several host proteins that mediate invasin-induced effects on the actin cytoskeleton and indicate that a subset of PI3K pathway components promote internalization of both Y. enterocolitica and L. monocytogenes.
Collapse
|
21
|
Zhang X, Gao N. RAB and RHO GTPases regulate intestinal crypt cell homeostasis and enterocyte function. Small GTPases 2016; 7:59-64. [PMID: 27142493 DOI: 10.1080/21541248.2016.1159274] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Recent human and mouse genetic studies have highlighted important contributions of several small GTPases, in particular Rab8a, (1) Cdc42, (2-4) and Rab11a, (5-8) to the proper morphogenesis and function of the mature intestinal epithelia. Additional insights about the involvement of these factors in maintaining intestinal stem cell homeostasis have also been obtained. (9,10) These studies suggest a conserved vesicular and membrane trafficking program utilized by the gastrointestinal tissue to support the rapid epithelial cell turnover and the highly sophisticated physiology of mature epithelial cells.
Collapse
Affiliation(s)
- Xiao Zhang
- a Department of Biological Sciences , Rutgers University , Newark , NJ , USA
| | - Nan Gao
- a Department of Biological Sciences , Rutgers University , Newark , NJ , USA
| |
Collapse
|
22
|
Martin-Urdiroz M, Deeks MJ, Horton CG, Dawe HR, Jourdain I. The Exocyst Complex in Health and Disease. Front Cell Dev Biol 2016; 4:24. [PMID: 27148529 PMCID: PMC4828438 DOI: 10.3389/fcell.2016.00024] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 03/11/2016] [Indexed: 01/23/2023] Open
Abstract
Exocytosis involves the fusion of intracellular secretory vesicles with the plasma membrane, thereby delivering integral membrane proteins to the cell surface and releasing material into the extracellular space. Importantly, exocytosis also provides a source of lipid moieties for membrane extension. The tethering of the secretory vesicle before docking and fusion with the plasma membrane is mediated by the exocyst complex, an evolutionary conserved octameric complex of proteins. Recent findings indicate that the exocyst complex also takes part in other intra-cellular processes besides secretion. These various functions seem to converge toward defining a direction of membrane growth in a range of systems from fungi to plants and from neurons to cilia. In this review we summarize the current knowledge of exocyst function in cell polarity, signaling and cell-cell communication and discuss implications for plant and animal health and disease.
Collapse
Affiliation(s)
| | - Michael J Deeks
- Biosciences, College of Life and Environmental Sciences, University of Exeter Exeter, UK
| | - Connor G Horton
- Biosciences, College of Life and Environmental Sciences, University of Exeter Exeter, UK
| | - Helen R Dawe
- Biosciences, College of Life and Environmental Sciences, University of Exeter Exeter, UK
| | - Isabelle Jourdain
- Biosciences, College of Life and Environmental Sciences, University of Exeter Exeter, UK
| |
Collapse
|
23
|
Takeuchi H, Takada A, Kuboniwa M, Amano A. Intracellular periodontal pathogen exploits recycling pathway to exit from infected cells. Cell Microbiol 2016; 18:928-48. [PMID: 26617273 DOI: 10.1111/cmi.12551] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 11/09/2015] [Accepted: 11/23/2015] [Indexed: 01/09/2023]
Abstract
Although human gingival epithelium prevents intrusions by periodontal bacteria, Porphyromonas gingivalis, the most well-known periodontal pathogen, is able to invade gingival epithelial cells and pass through the epithelial barrier into deeper tissues. We previously reported that intracellular P. gingivalis exits from gingival epithelial cells via a recycling pathway. However, the underlying molecular process remains unknown. In the present study, we found that the pathogen localized in early endosomes recruits VAMP2 and Rab4A. VAMP2 was found to be specifically localized in early endosomes, although its localization remained unclear in mammalian cells. A single transmembrane domain of VAMP2 was found to be necessary and sufficient for localizing in early endosomes containing P. gingivalis in gingival epithelial cells. VAMP2 forms a complex with EXOC2/Sec5 and EXOC3/Sec6, whereas Rab4A mediates dissociation of the EXOC complex followed by recruitment of RUFY1/Rabip4, Rab4A effector, and Rab14. Depletion of VAMP2 or Rab4A resulted in accumulation of bacteria in early endosomes and disturbed bacterial exit from infected cells. It is suggested that these novel dynamics allow P. gingivalis to exploit fast recycling pathways promoting further bacterial penetration of gingival tissues.
Collapse
Affiliation(s)
- Hiroki Takeuchi
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, Suita-Osaka, 565-0871, Japan
| | - Akihiko Takada
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, Suita-Osaka, 565-0871, Japan
| | - Masae Kuboniwa
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, Suita-Osaka, 565-0871, Japan
| | - Atsuo Amano
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, Suita-Osaka, 565-0871, Japan
| |
Collapse
|
24
|
Schlam D, Bagshaw RD, Freeman SA, Collins RF, Pawson T, Fairn GD, Grinstein S. Phosphoinositide 3-kinase enables phagocytosis of large particles by terminating actin assembly through Rac/Cdc42 GTPase-activating proteins. Nat Commun 2015; 6:8623. [PMID: 26465210 PMCID: PMC4634337 DOI: 10.1038/ncomms9623] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 09/11/2015] [Indexed: 02/06/2023] Open
Abstract
Phagocytosis is responsible for the elimination of particles of widely disparate sizes, from large fungi or effete cells to small bacteria. Though superficially similar, the molecular mechanisms involved differ: engulfment of large targets requires phosphoinositide 3-kinase (PI3K), while that of small ones does not. Here, we report that inactivation of Rac and Cdc42 at phagocytic cups is essential to complete internalization of large particles. Through a screen of 62 RhoGAP-family members, we demonstrate that ARHGAP12, ARHGAP25 and SH3BP1 are responsible for GTPase inactivation. Silencing these RhoGAPs impairs phagocytosis of large targets. The GAPs are recruited to large—but not small—phagocytic cups by products of PI3K, where they synergistically inactivate Rac and Cdc42. Remarkably, the prominent accumulation of phosphatidylinositol 3,4,5-trisphosphate characteristic of large-phagosome formation is less evident during phagocytosis of small targets, accounting for the contrasting RhoGAP distribution and the differential requirement for PI3K during phagocytosis of dissimilarly sized particles. Phagocytosis of large (but not small) particles requires PI 3-kinase activity. Here, Schlam et al. show that Rho GTPase-activating proteins are recruited to the phagocytic cup by products of PI 3-kinase, resulting in the local inactivation of Rac and Cdc42 and allowing for the completion of internalization of large particles.
Collapse
Affiliation(s)
- Daniel Schlam
- Division of Cell Biology, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, Canada M5G1X8.,Institute of Medical Science, University of Toronto, Faculty of Medicine, 1 King's College Circle, Toronto, Ontario, Canada M5S1A8
| | - Richard D Bagshaw
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario, Canada M5G1X5
| | - Spencer A Freeman
- Division of Cell Biology, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, Canada M5G1X8
| | - Richard F Collins
- Division of Cell Biology, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, Canada M5G1X8
| | - Tony Pawson
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario, Canada M5G1X5
| | - Gregory D Fairn
- Institute of Medical Science, University of Toronto, Faculty of Medicine, 1 King's College Circle, Toronto, Ontario, Canada M5S1A8.,Keenan Research Centre for Biomedical Science, St. Michael's Hospital, 209 Victoria Street, Toronto, Ontario, Canada M5B1T8
| | - Sergio Grinstein
- Division of Cell Biology, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, Canada M5G1X8.,Institute of Medical Science, University of Toronto, Faculty of Medicine, 1 King's College Circle, Toronto, Ontario, Canada M5S1A8.,Keenan Research Centre for Biomedical Science, St. Michael's Hospital, 209 Victoria Street, Toronto, Ontario, Canada M5B1T8
| |
Collapse
|
25
|
Association with PAK2 Enables Functional Interactions of Lentiviral Nef Proteins with the Exocyst Complex. mBio 2015; 6:e01309-15. [PMID: 26350970 PMCID: PMC4600113 DOI: 10.1128/mbio.01309-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
UNLABELLED Human immunodeficiency virus type 1 (HIV-1) Nef enhances virus replication and contributes to immune evasion in vivo, but the underlying molecular mechanisms remain incompletely defined. Nef interferes with host cell actin dynamics to restrict T lymphocyte responses to chemokine stimulation and T cell receptor engagement. This relies on the assembly of a labile multiprotein complex including the host kinase PAK2 that Nef usurps to phosphorylate and inactivate the actin-severing factor cofilin. Components of the exocyst complex (EXOC), an octameric protein complex involved in vesicular transport and actin remodeling, were recently reported to interact with Nef via the same molecular surface that mediates PAK2 association. Exploring the functional relevance of EXOC in Nef-PAK2 complex assembly/function, we found Nef-EXOC interactions to be specifically mediated by the PAK2 interface of Nef, to occur in infected human T lymphocytes, and to be conserved among lentiviral Nef proteins. In turn, EXOC was dispensable for direct downstream effector functions of Nef-associated PAK2. Surprisingly, PAK2 was essential for Nef-EXOC association, which required a functional Rac1/Cdc42 binding site but not the catalytic activity of PAK2. EXOC was dispensable for Nef functions in vesicular transport but critical for inhibition of actin remodeling and proximal signaling upon T cell receptor engagement. Thus, Nef exploits PAK2 in a stepwise mechanism in which its kinase activity cooperates with an adaptor function for EXOC to inhibit host cell actin dynamics. IMPORTANCE Human immunodeficiency virus type 1 (HIV-1) Nef contributes to AIDS pathogenesis, but the underlying molecular mechanisms remain incompletely understood. An important aspect of Nef function is to facilitate virus replication by disrupting T lymphocyte actin dynamics in response to stimulation via its association with the host cell kinase PAK2. We report here that the molecular surface of Nef for PAK2 association also mediates interaction of Nef with EXOC and establish that PAK2 provides an essential adaptor function for the subsequent formation of Nef-EXOC complexes. PAK2 and EXOC specifically cooperate in the inhibition of actin dynamics and proximal signaling induced by T cell receptor engagement by Nef. These results establish EXOC as a functionally relevant Nef interaction partner, emphasize the suitability of the PAK2 interaction surface for future therapeutic interference with Nef function, and show that such strategies need to target activity-independent PAK2 functions.
Collapse
|
26
|
Abstract
The exocyst is an octameric protein complex that is implicated in the tethering of secretory vesicles to the plasma membrane prior to SNARE-mediated fusion. Spatial and temporal control of exocytosis through the exocyst has a crucial role in a number of physiological processes, such as morphogenesis, cell cycle progression, primary ciliogenesis, cell migration and tumor invasion. In this Cell Science at a Glance poster article, we summarize recent works on the molecular organization, function and regulation of the exocyst complex, as they provide rationales to the involvement of this complex in such a diverse array of cellular processes.
Collapse
Affiliation(s)
- Bin Wu
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wei Guo
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
27
|
Abstract
Phagocytosis is defined as a cellular uptake pathway for particles of greater than 0.5 μm in diameter. Particle clearance by phagocytosis is of critical importance for tissue health and homeostasis. The ultimate goal of anti-pathogen phagocytosis is to destroy engulfed bacteria or fungi and to stimulate cell-cell signaling that mount an efficient immune defense. In contrast, clearance phagocytosis of apoptotic cells and cell debris is anti-inflammatory. High capacity clearance phagocytosis pathways are available to professional phagocytes of the immune system and the retina. Additionally, a low capacity, so-called bystander phagocytic pathway is available to most other cell types. Different phagocytic pathways are stimulated by particle ligation of distinct surface receptors but all forms of phagocytosis require F-actin recruitment beneath tethered particles and F-actin re-arrangement promoting engulfment, which are controlled by Rho family GTPases. The specificity of Rho GTPase activity during the different forms of phagocytosis by mammalian cells is the subject of this review.
Collapse
Affiliation(s)
- Yingyu Mao
- a Department of Biological Sciences; Center for Cancer, Genetic Diseases, and Gene Regulation; Fordham University ; Bronx , NY , USA
| | | |
Collapse
|
28
|
The amino-terminal region of the neuraminidase protein from avian H5N1 influenza virus is important for its biosynthetic transport to the host cell surface. Vet J 2014; 202:612-7. [PMID: 25458889 DOI: 10.1016/j.tvjl.2014.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 09/30/2014] [Accepted: 10/09/2014] [Indexed: 11/21/2022]
Abstract
Influenza virus neuraminidase (NA) is a major viral envelope glycoprotein, which plays a critical role in viral infection. Although NA functional domains have been determined previously, the precise role of the amino acids located at the N-terminus of avian H5N1 NA for protein expression and intracellular transport to the host plasma membrane is not fully understood. In the present study, a series of N-terminal truncation or deletion mutants of H5N1 NA were generated and their expression and intracellular trafficking were investigated. Protein expression from mutants NAΔ20, NAΔ35, NAΔ40, NAΔ7-20 and NAΔ7-35 was undetectable by immunoblotting and by performing NA activity assays. Mutants NAΔ6, NAΔ11 and NAΔ15-20 showed a marked decreased in protein expression, whereas mutants NAΔ7-15 and NAΔ15 displayed a slight increase in protein expression, compared with that of the native NA protein. These data suggest that amino acid residues 16-20 are vital for NA protein expression, while amino acids 7-15 might suppress NA protein expression. In deletion mutants NAΔ7-15 and NAΔ15 there was an accumulation of NA protein at the juxta-nuclear region, with reduced expression of NA at the cell surface. Although active Cdc42 could promote transport of wild-type NA to the host cell surface, this member of the Rho family of GTPases failed to regulate transport of mutants NAΔ7-15 and NAΔ15. The results of the study reveal that amino acid residues 7-15 of H5N1 NA are critical for its biosynthetic transport to the host cell surface.
Collapse
|
29
|
Moon HG, Yang J, Zheng Y, Jin Y. miR-15a/16 regulates macrophage phagocytosis after bacterial infection. THE JOURNAL OF IMMUNOLOGY 2014; 193:4558-67. [PMID: 25261473 DOI: 10.4049/jimmunol.1401372] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bacterial infection and its associated sepsis are devastating clinical entities that lead to high mortality and morbidity in critically ill patients. Phagocytosis, along with other innate immune responses, exerts crucial impacts on the outcomes of these patients. MicroRNAs (miRNAs) are a novel class of regulatory noncoding RNAs that target specific mRNAs for modulation of translation and expression of a targeted protein. The roles of miRNAs in host defense against bacterial sepsis remain unclear. We found that bacterial infections and/or bacterial-derived LPS enhanced the level of miR-15a/16 in bone marrow-derived macrophages (BMDMs). Deletion of miR-15a/16 (miR-15a/16(-/-)) in myeloid cells significantly decreased the bacterial infection-associated mortality in sepsis mouse models. Moreover, miR-15a/16 deficiency (miR-15a/16(-/-)) resulted in augmented phagocytosis and generation of mitochondrial reactive oxygen species in BMDMs. Supportively, overexpression of miR-15a/16 using miRNA mimics led to decreased phagocytosis and decreased generation of mitochondrial reactive oxygen species. Mechanistically, deletion of miR-15a/16 upregulated the expression of TLR4 via targeting the principle transcriptional regulator PU.1 locating on the promoter region of TLR4, and further modulated the downstream signaling molecules of TLR4, including Rho GTPase Cdc 42 and TRAF6. In addition, deficiency of miR-15a/16 also facilitated TLR4-mediated proinflammatory cytokine/chemokine release from BMDMs at the initial phase of infections. Taken together, miR-15a/16 altered phagocytosis and bacterial clearance by targeting, at least partially, on the TLR4-associated pathways, subsequently affecting the survival of septic mice.
Collapse
Affiliation(s)
- Hyung-Geun Moon
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115; and
| | - Jincheng Yang
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115; and
| | - Yijie Zheng
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115; and Department of Hematology, Columbia University, New York, NY 10032
| | - Yang Jin
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115; and
| |
Collapse
|
30
|
Rauch L, Hennings K, Aepfelbacher M. A role for exocyst in maturation and bactericidal function of staphylococci-containing endothelial cell phagosomes. Traffic 2014; 15:1083-98. [PMID: 25040264 DOI: 10.1111/tra.12189] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 06/23/2014] [Accepted: 06/25/2014] [Indexed: 01/14/2023]
Abstract
Bacteria that invade human endothelial cells can be efficiently eliminated in phagolysosomes. We investigated the role of vesicle tethering exocyst complex in maturation and function of endothelial cell phagosomes harbouring staphylococci or latex beads. Exocyst complex proteins (Sec5, -8, -10, Exo70) together with recycling endosome marker Rab11 were detected in vesicles that dynamically interacted and seemingly fused with endothelial cell phagosomes. Knockdown of exocyst proteins Sec8 and Exo70 inhibited the accumulation of Rab11-positive vesicles at the phagosomes. Furthermore, knockdown of exocyst proteins and Rab11 greatly reduced acidification of phagosomes and significantly diminished the elimination of invaded staphylococci in endothelial cells. The inhibitory effect of Exo70 knockdown on bacterial elimination could be rescued by constitutively active Rab11-Q70L. Our data suggest that exocyst complex controls the interaction of recycling endocytic vesicles with phagosomes and this process is involved in maturation and functioning of the phagosomes in endothelial cells.
Collapse
Affiliation(s)
- Liane Rauch
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany
| | | | | |
Collapse
|
31
|
Croisé P, Estay-Ahumada C, Gasman S, Ory S. Rho GTPases, phosphoinositides, and actin: a tripartite framework for efficient vesicular trafficking. Small GTPases 2014; 5:e29469. [PMID: 24914539 DOI: 10.4161/sgtp.29469] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Rho GTPases are well known regulators of the actin cytoskeleton that act by binding and activating actin nucleators. They are therefore involved in many actin-based processes, including cell migration, cell polarity, and membrane trafficking. With the identification of phosphoinositide kinases and phosphatases as potential binding partners or effectors, Rho GTPases also appear to participate in the regulation of phosphoinositide metabolism. Since both actin dynamics and phosphoinositide turnover affect the efficiency and the fidelity of vesicle transport between cell compartments, Rho GTPases have emerged as critical players in membrane trafficking. Rho GTPase activity, actin remodeling, and phosphoinositide metabolism need to be coordinated in both space and time to ensure the progression of vesicles along membrane trafficking pathways. Although most molecular pathways are still unclear, in this review, we will highlight recent advances made in our understanding of how Rho-dependent signaling pathways organize actin dynamics and phosphoinositides and how phosphoinositides potentially provide negative feedback to Rho GTPases during endocytosis, exocytosis and membrane exchange between intracellular compartments.
Collapse
Affiliation(s)
- Pauline Croisé
- CNRS UPR 3212; Institut des Neurosciences Cellulaires et Intégratives; Université de Strasbourg; Strasbourg, France
| | - Catherine Estay-Ahumada
- CNRS UPR 3212; Institut des Neurosciences Cellulaires et Intégratives; Université de Strasbourg; Strasbourg, France
| | - Stéphane Gasman
- CNRS UPR 3212; Institut des Neurosciences Cellulaires et Intégratives; Université de Strasbourg; Strasbourg, France
| | - Stéphane Ory
- CNRS UPR 3212; Institut des Neurosciences Cellulaires et Intégratives; Université de Strasbourg; Strasbourg, France
| |
Collapse
|
32
|
Small GTPase CDC-42 promotes apoptotic cell corpse clearance in response to PAT-2 and CED-1 in C. elegans. Cell Death Differ 2014; 21:845-53. [PMID: 24632947 PMCID: PMC4013519 DOI: 10.1038/cdd.2014.23] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 11/27/2013] [Accepted: 12/17/2013] [Indexed: 12/26/2022] Open
Abstract
The rapid clearance of dying cells is important for the well-being of multicellular organisms. In C. elegans, cell corpse removal is mainly mediated by three parallel engulfment signaling cascades. These pathways include two small GTPases, MIG-2/RhoG and CED-10/Rac1. Here we present the identification and characterization of CDC-42 as a third GTPase involved in the regulation of cell corpse clearance. Genetic analyses performed by both loss of cdc-42 function and cdc-42 overexpression place cdc-42 in parallel to the ced-2/5/12 signaling module, in parallel to or upstream of the ced-10 module, and downstream of the ced-1/6/7 module. CDC-42 accumulates in engulfing cells at membranes surrounding apoptotic corpses. The formation of such halos depends on the integrins PAT-2/PAT-3, UNC-112 and the GEF protein UIG-1, but not on the canonical ced-1/6/7 or ced-2/5/12 signaling modules. Together, our results suggest that the small GTPase CDC-42 regulates apoptotic cell engulfment possibly upstream of the canonical Rac GTPase CED-10, by polarizing the engulfing cell toward the apoptotic corpse in response to integrin signaling and ced-1/6/7 signaling in C. elegans.
Collapse
|
33
|
Synek L, Sekereš J, Žárský V. The exocyst at the interface between cytoskeleton and membranes in eukaryotic cells. FRONTIERS IN PLANT SCIENCE 2014; 4:543. [PMID: 24427163 PMCID: PMC3877765 DOI: 10.3389/fpls.2013.00543] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 12/12/2013] [Indexed: 05/07/2023]
Abstract
Delivery and final fusion of the secretory vesicles with the relevant target membrane are hierarchically organized and reciprocally interconnected multi-step processes involving not only specific protein-protein interactions, but also specific protein-phospholipid interactions. The exocyst was discovered as a tethering complex mediating initial encounter of arriving exocytic vesicles with the plasma membrane. The exocyst complex is regulated by Rab and Rho small GTPases, resulting in docking of exocytic vesicles to the plasma membrane (PM) and finally their fusion mediated by specific SNARE complexes. In model Opisthokont cells, the exocyst was shown to directly interact with both microtubule and microfilament cytoskeleton and related motor proteins as well as with the PM via phosphatidylinositol 4, 5-bisphosphate specific binding, which directly affects cortical cytoskeleton and PM dynamics. Here we summarize the current knowledge on exocyst-cytoskeleton-PM interactions in order to open a perspective for future research in this area in plant cells.
Collapse
Affiliation(s)
- Lukáš Synek
- Laboratory of Cell Biology, Institute of Experimental Botany, Academy of Sciences of the Czech RepublicPrague, Czech Republic
| | - Juraj Sekereš
- Laboratory of Cell Biology, Institute of Experimental Botany, Academy of Sciences of the Czech RepublicPrague, Czech Republic
- Laboratory of Plant Cell Biology, Department of Experimental Plant Biology, Faculty of Science, Charles University in PraguePrague, Czech Republic
| | - Viktor Žárský
- Laboratory of Cell Biology, Institute of Experimental Botany, Academy of Sciences of the Czech RepublicPrague, Czech Republic
- Laboratory of Plant Cell Biology, Department of Experimental Plant Biology, Faculty of Science, Charles University in PraguePrague, Czech Republic
- *Correspondence: Viktor Žárský, Laboratory of Plant Cell Biology, Department of Experimental Plant Biology, Faculty of Science, Charles University in Prague, Vinicna 5, 12844 Prague, Czech Republic e-mail:
| |
Collapse
|
34
|
Fujita A, Koinuma S, Yasuda S, Nagai H, Kamiguchi H, Wada N, Nakamura T. GTP hydrolysis of TC10 promotes neurite outgrowth through exocytic fusion of Rab11- and L1-containing vesicles by releasing exocyst component Exo70. PLoS One 2013; 8:e79689. [PMID: 24223996 PMCID: PMC3817099 DOI: 10.1371/journal.pone.0079689] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Accepted: 09/23/2013] [Indexed: 11/24/2022] Open
Abstract
The use of exocytosis for membrane expansion at nerve growth cones is critical for neurite outgrowth. TC10 is a Rho family GTPase that is essential for specific types of vesicular trafficking to the plasma membrane. Recent studies have shown that TC10 and its effector Exo70, a component of the exocyst tethering complex, contribute to neurite outgrowth. However, the molecular mechanisms of the neuritogenesis-promoting functions of TC10 remain to be established. Here, we propose that GTP hydrolysis of vesicular TC10 near the plasma membrane promotes neurite outgrowth by accelerating vesicle fusion by releasing Exo70. Using Förster resonance energy transfer (FRET)-based biosensors, we show that TC10 activity at the plasma membrane decreased at extending growth cones in hippocampal neurons and nerve growth factor (NGF)-treated PC12 cells. In neuronal cells, TC10 activity at vesicles was higher than its activity at the plasma membrane, and TC10-positive vesicles were found to fuse to the plasma membrane in NGF-treated PC12 cells. Therefore, activity of TC10 at vesicles is presumed to be inactivated near the plasma membrane during neuronal exocytosis. Our model is supported by functional evidence that constitutively active TC10 could not rescue decrease in NGF-induced neurite outgrowth induced by TC10 depletion. Furthermore, TC10 knockdown experiments and colocalization analyses confirmed the involvement of Exo70 in TC10-mediated trafficking in neuronal cells. TC10 frequently resided on vesicles containing Rab11, which is a key regulator of recycling pathways and implicated in neurite outgrowth. In growth cones, most of the vesicles containing the cell adhesion molecule L1 had TC10. Exocytosis of Rab11- and L1-positive vesicles may play a central role in TC10-mediated neurite outgrowth. The combination of this study and our previous work on the role of TC10 in EGF-induced exocytosis in HeLa cells suggests that the signaling machinery containing TC10 proposed here may be broadly used for exocytosis.
Collapse
Affiliation(s)
- Akane Fujita
- Division of Biosignaling, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Shingo Koinuma
- Division of Biosignaling, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Sayaka Yasuda
- Division of Biosignaling, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Hiroyuki Nagai
- Division of Biosignaling, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Hiroyuki Kamiguchi
- Laboratory for Neuronal Growth Mechanism, RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - Naoyuki Wada
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba, Japan
| | - Takeshi Nakamura
- Division of Biosignaling, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
- * E-mail:
| |
Collapse
|
35
|
Leslie M. Cdc42 helps cells take bigger bites. J Cell Biol 2013. [PMCID: PMC3542793 DOI: 10.1083/jcb.2001iti3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|