1
|
Zhang J. Non-coding RNAs and angiogenesis in cardiovascular diseases: a comprehensive review. Mol Cell Biochem 2024; 479:2921-2953. [PMID: 38306012 DOI: 10.1007/s11010-023-04919-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/18/2023] [Indexed: 02/03/2024]
Abstract
Non-coding RNAs (ncRNAs) have key roles in the etiology of many illnesses, including heart failure, myocardial infarction, stroke, and in physiological processes like angiogenesis. In transcriptional regulatory circuits that control heart growth, signaling, and stress response, as well as remodeling in cardiac disease, ncRNAs have become important players. Studies on ncRNAs and cardiovascular disease have made great progress recently. Here, we go through the functions of non-coding RNAs (ncRNAs) like circular RNAs (circRNAs), and microRNAs (miRNAs) as well as long non-coding RNAs (lncRNAs) in modulating cardiovascular disorders.
Collapse
Affiliation(s)
- Jie Zhang
- Medical School, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
2
|
Long X, Qiu Z, Li C, Wang Y, Li J, Zhao R, Rong J, Gu N, Yuan J, Ge J, Shi B. CircERBB2IP promotes post-infarction revascularization via the miR-145a-5p/Smad5 axis. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 28:573-586. [PMID: 35592503 PMCID: PMC9096260 DOI: 10.1016/j.omtn.2022.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 04/15/2022] [Indexed: 10/27/2022]
|
3
|
Zhao X, Li X, Liu P, Li P, Xu X, Chen Y, Cheng Y, Zhu D, Fu X. 17β-estradiol promotes angiogenesis through non-genomic activation of Smad1 signaling in endometriosis. Vascul Pharmacol 2021; 142:106932. [PMID: 34763099 DOI: 10.1016/j.vph.2021.106932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 09/24/2021] [Accepted: 11/04/2021] [Indexed: 12/19/2022]
Abstract
17β-estradiol (E2) plays a key role in endometriosis through regulation of angiogenesis. Smad1 has been reported to be up-regulated in patients with endometriosis. However, the role of Smad1 in E2-mediated angiogenesis during the development of endometriosis remains to be determined. This study aimed to explore the role of Smad1 in E2-mediated angiogenesis during endometriosis and its underlying mechanisms. Immunofluorescence staining and Western blotting were performed to examine the expression of p-Smad1 in ectopic and control endometrium. Western blotting was used to examine activation of Smad1 signaling in NMECs, EMECs and HUVECs. Tube formation assay was performed to examine the effect of E2 on angiogenesis. Cell proliferation and migration was determined using in real-time by xCELLigence RTCA DP instrument. We found that the expression of p-Smad1 was significantly up-regulated in ectopic endometrium and ectopic intima microvascular endothelial cells. E2 non-genomically stimulated phosphorylation of Smad1 in HUVECs. c-Src and p44/42 MAPK(ERK1/2) signaling pathways are required for E2's induction on Smad1 phosphorylation. Moreover, caveolae is involved in E2-induced Smad1 phosphorylation in vascular endothelial cells. E2 promoted tube formation of vascular endothelial cells through c-Src/ERK1/2/Smad1 signaling pathway. Knockdown of Smad1 expression attenuated E2-induced proliferation and migration of HUVECs. In conclusion, E2 promotes proliferation, migration and tube formation of HUVECs through c-Src/ERK1/2/Smad1 signaling pathway. Our data shed new lights on the mechanisms through which E2 contributes to endometriosis, and may provide novel strategies to treat endometriosis.
Collapse
Affiliation(s)
- Xinran Zhao
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510260, PR China; Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou City, Guangdong Province, 510630, China
| | - Xiaosa Li
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510260, PR China; Department of Gynecology and Obstetrics, Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Key Laboratory of Cardiovascular Diseases, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511518, PR China
| | - Pei Liu
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510260, PR China; Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou City, Guangdong Province, 510630, China
| | - Ping Li
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510260, PR China
| | - Xingyan Xu
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510260, PR China
| | - Yiwen Chen
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510260, PR China
| | - Yang Cheng
- Department of Gynecology and Obstetrics, Municipal First People's Hospital of Guangzhou, Guangzhou 510180, PR China.
| | - Dongxing Zhu
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510260, PR China.
| | - Xiaodong Fu
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510260, PR China.
| |
Collapse
|
4
|
Fu Y, Wang H, Dai H, Zhu Q, Cui CP, Sun X, Li Y, Deng Z, Zhou X, Ge Y, Peng Z, Yuan C, Wu B, Yang X, Li R, Liu CH, He F, Wei W, Zhang L. OTULIN allies with LUBAC to govern angiogenesis by editing ALK1 linear polyubiquitin. Mol Cell 2021; 81:3187-3204.e7. [PMID: 34157307 DOI: 10.1016/j.molcel.2021.05.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 04/04/2021] [Accepted: 05/27/2021] [Indexed: 12/25/2022]
Abstract
OTULIN coordinates with LUBAC to edit linear polyubiquitin chains in embryonic development, autoimmunity, and inflammatory diseases. However, the mechanism by which angiogenesis, especially that of endothelial cells (ECs), is regulated by linear ubiquitination remains unclear. Here, we reveal that constitutive or EC-specific deletion of Otulin resulted in arteriovenous malformations and embryonic lethality. LUBAC conjugates linear ubiquitin chains onto Activin receptor-like kinase 1 (ALK1), which is responsible for angiogenesis defects, inhibiting ALK1 enzyme activity and Smad1/5 activation. Conversely, OTULIN deubiquitinates ALK1 to promote Smad1/5 activation. Consistently, embryonic survival of Otulin-deficient mice was prolonged by BMP9 pretreatment or EC-specific ALK1Q200D (constitutively active) knockin. Moreover, mutant ALK1 from type 2 hereditary hemorrhagic telangiectasia (HHT2) patients exhibited excessive linear ubiquitination and increased HOIP binding. As such, a HOIP inhibitor restricted the excessive angiogenesis of ECs derived from ALK1G309S-expressing HHT2 patients. These results show that OTULIN and LUBAC govern ALK1 activity to balance EC angiogenesis.
Collapse
Affiliation(s)
- Yesheng Fu
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China; School of Life Sciences, Peking University, Beijing 100871, China
| | - Hongtian Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing 100853, China
| | - Hongmiao Dai
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China
| | - Qiong Zhu
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China
| | - Chun-Ping Cui
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China
| | - Xiaoxuan Sun
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Yanchang Li
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China
| | - Zhikang Deng
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China
| | - Xuemei Zhou
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China
| | - Yingwei Ge
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China
| | - Zhiqiang Peng
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China
| | - Chao Yuan
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China
| | - Bo Wu
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China
| | - Xi Yang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China
| | - Rongyu Li
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China
| | - Cui Hua Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology (Chinese Academy of Sciences), Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100101, China.
| | - Fuchu He
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China; School of Life Sciences, Peking University, Beijing 100871, China.
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA.
| | - Lingqiang Zhang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China.
| |
Collapse
|
5
|
Al-Shabrawey M, Hussein K, Wang F, Wan M, Elmasry K, Elsherbiny N, Saleh H, Yu PB, Tawfik A, Ibrahim AS. Bone Morphogenetic Protein-2 Induces Non-Canonical Inflammatory and Oxidative Pathways in Human Retinal Endothelial Cells. Front Immunol 2021; 11:568795. [PMID: 33584642 PMCID: PMC7878387 DOI: 10.3389/fimmu.2020.568795] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 12/08/2020] [Indexed: 11/13/2022] Open
Abstract
The mechanisms of diabetic retinopathy (DR), are not yet fully understood. We previously demonstrated an upregulation of retinal bone morphogenetic protein-2 (BMP2) in experimental diabetes and in retinas of diabetic human subjects. The purpose of current study was to investigate the role of non-canonical inflammatory pathway in BMP2-induced retinal endothelial cell (REC) barrier dysfunction. For this purpose, we used RT-PCR and western blotting to evaluate the levels of BMP2 signaling components (BMP2, BMP4, BMP receptors), VEGF, phosphorylated p38 MAPK and NFκB, and oxidative stress markers in cultured human retinal endothelial cells (HRECs) subjected to BMP2 (50ng/ml) for up to 24 h. Also, effect of high glucose (HG, 30mM D-glucose) on the expression of BMP2 and its downstream genes was examined in HRECs. H2-DCF is a fluorogenic dye that measures the levels of cellular reactive oxygen species (ROS) was used to measure the pro-oxidative effect of BMP2. Moreover, we evaluated the effect of inhibiting p38 and VEGF signaling on BMP2-induced HRECs barrier dysfunction by measuring the trans-endothelial cell electrical resistance (TER) using electric cell-substrate impedance sensing (ECIS). We also tested the effect of HG on the integrity of HRECs barrier in the presence or absence of inhibitors of BMP2 signaling. Our data reveals that BMP2 and high glucose upregulates BMP components of the BMP signaling pathway (SMAD effectors, BMP receptors, and TGFβ ligand itself) and induces phosphorylation of p38 MAPK and NFκB with nuclear translocation of NFκB. Inhibition of p38 or NFκB attenuated BMP2-induced VEGF expression and barrier dysfunction in HRECs. Also, inhibition of VEGFR2 attenuated BMP2-induced barrier dysfunction. Moreover, BMP2 induces generation of ROS and endothelial nitric oxide synthase (eNOS) expression and activity in HRECs. Finally, HG upregulated BMP2 and its downstream genes (SMAD, BMP4, ALKs, and TGF-β) in HRECs and BMP2 inhibitors attenuated HG-induced HRECs barrier dysfunction. Our results suggest that in addition to the regular canonical SMAD signaling BMP2 induces non-canonical inflammatory pathway in HRECs via activation of p38/NFκB pathway that causes the upregulation of VEGF and the disruption of HRECs. Inhibition of BMP2 signaling is a potential therapeutic intervention to preserve endothelial cell barrier function in DR.
Collapse
Affiliation(s)
- Mohamed Al-Shabrawey
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, United States
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, United States
- Department of Ophthalmology and Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA, United States
- Department of Anatomy, Mansoura Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Khaled Hussein
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, United States
- Department of Medicine and Surgery, Oral and Dental Research Division, National Research Centre, Cairo, Egypt
| | - Fang Wang
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, United States
- Department of Traditional Chinese Medicine, School of Medicine, Jianghan University, Wuhan, China
| | - Ming Wan
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, United States
- Department of Traditional Chinese Medicine, School of Medicine, Jianghan University, Wuhan, China
| | - Khaled Elmasry
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, United States
- Department of Anatomy, Mansoura Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Nehal Elsherbiny
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, United States
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Heba Saleh
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, United States
| | - Paul B. Yu
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Amany Tawfik
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, United States
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, United States
- Department of Ophthalmology and Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Ahmed S. Ibrahim
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
- Department of Ophthalmology, Visual, and Anatomical Sciences, Department of Pharmacology, Wayne State University, Detroit, MI, United States
| |
Collapse
|
6
|
Florian IA, Timiș TL, Ungureanu G, Florian IS, Bălașa A, Berindan-Neagoe I. Deciphering the vascular labyrinth: role of microRNAs and candidate gene SNPs in brain AVM development - literature review. Neurol Res 2020; 42:1043-1054. [PMID: 32723034 DOI: 10.1080/01616412.2020.1796380] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background: Brain arteriovenous malformations (AVMs) are a relatively infrequent vascular pathology of unknown etiology that, despite their rarity, cause the highest number of hemorrhagic strokes under the age of 30 years. They pose a challenge to all forms of treatment due to their variable morphology, location, size, and, last but not least, evolving nature. MicroRNAs (miRNAs) are non-coding RNA strands that may suppress the expression of target genes by binding completely or partially to their complementary sequences. Single nucleotide polymorphisms (SNPs), as the name implies, are variations in a single nucleotide in the DNA, usually found in the non-coding segments. Although the majority of SNPs are harmless, some located in the proximity of candidate genes may result in altered expression or function of these genes and cause diseases or affect how different pathologies react to treatment. The roles miRNAs and certain SNPs play in the development and growth of AVMs are currently uncertain, yet progress in deciphering the minutiae of this pathology is already visible. Methods and Results: We performed an electronic Medline (PubMed, PubMed Central) and Google Academic exploration using permutations of the terms: "arteriovenous malformations," "single nucleotide polymorphisms," "microRNA," "non-coding RNA," and "genetic mutations." The findings were then divided into two categories, namely the miRNAs and the candidate gene SNPs associated with AVMs respectively. 6 miRNAs and 12 candidate gene SNPs were identified and discussed. Conclusions: The following literature review focuses on the discoveries made in ascertaining the different implications of miRNAs and candidate gene SNPs in the formation and evolution of brain AVMs, as well as highlighting the possible directions of future research and biological treatment. Abbreviations: ACVRL1/ALK1: activin receptor-like kinase 1; Akt: protein kinase B; ANGPTL4: angiopoietin-like 4; ANRIL: antisense noncoding RNA in the INK4 locus; AVM: arteriovenous malformation; AVM-BEC: arteriovenous malformation brain endothelial cell; BRCA1: breast cancer type 1 susceptibility protein; CCS: case-control study; CDKN2A/B: cyclin-dependent kinase inhibitor 2A/B; CLTC: clathrin heavy chain; DNA: deoxyribonucleic acid; ERK: extracellular signal-regulated kinase; GPR124: probable G-protein coupled receptor 124; GWAS: genome-wide association study; HHT: hereditary hemorrhagic telangiectasia; HIF1A: hypoxia-inducible factor 1A; IA: intracranial aneurysm; ICH: intracranial hemorrhage; Id-1: inhibitor of DNA-binding protein A; IL-17: interleukin 17; MAP4K3: mitogen-activated protein kinase kinase kinase kinase 3; miRNA: microRNA; MMP: matrix metalloproteinase; NFkB: nuclear factor kappa-light-chain of activated B cells; NOTCH: neurogenic locus notch homolog; p38MAPK: p38 mitogen-activated protein kinase; PI3K: phosphoinositide 3-kinase; RBBP8: retinoblastoma-binding protein 8; RNA: ribonucleic acid; SNAI1: Snail Family Transcriptional Repressor 1; SNP: single nucleotide polymorphism; SOX-17: SRY-related HMG-box; TGF-β: transformation growth factor β; TGFR: transformation growth factor receptor; TIMP-4, tissue inhibitor of metalloproteinase 4; TSP-1: thrombospondin-1; UTR: untranslated region; VEGF: Vascular Endothelial Growth Factor; VSMC: vascular smooth muscle cell; Wnt1: Wnt family member 1.
Collapse
Affiliation(s)
- Ioan Alexandru Florian
- Clinic of Neurosurgery, Cluj County Emergency Clinical Hospital , Cluj-Napoca, Romania.,Department of Neurosurgery, Iuliu Hatieganu University of Medicine and Pharmacy , Cluj-Napoca, Romania
| | - Teodora Larisa Timiș
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy , Cluj-Napoca, Romania
| | - Gheorghe Ungureanu
- Clinic of Neurosurgery, Cluj County Emergency Clinical Hospital , Cluj-Napoca, Romania.,Department of Neurosurgery, Iuliu Hatieganu University of Medicine and Pharmacy , Cluj-Napoca, Romania
| | - Ioan Stefan Florian
- Clinic of Neurosurgery, Cluj County Emergency Clinical Hospital , Cluj-Napoca, Romania.,Department of Neurosurgery, Iuliu Hatieganu University of Medicine and Pharmacy , Cluj-Napoca, Romania
| | - Adrian Bălașa
- Clinic of Neurosurgery, Tîrgu Mureș County Clinical Emergency Hospital , Tîrgu Mureș, Romania.,Department of Neurosurgery, Tîrgu Mureș University of Medicine, Pharmacy, Science and Technology , Tîrgu Mureș, Romania
| | - Ioana Berindan-Neagoe
- The Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy , Cluj-Napoca, Romania.,Functional Genomics and Experimental Pathology Department, The Oncology Institute "Prof. Dr. Ion Chiricuta" , Cluj-Napoca, Romania
| |
Collapse
|
7
|
Zhu Q, Chang A, Xu A, Luo K. The regulatory protein SnoN antagonizes activin/Smad2 protein signaling and thereby promotes adipocyte differentiation and obesity in mice. J Biol Chem 2018; 293:14100-14111. [PMID: 30030373 DOI: 10.1074/jbc.ra118.003678] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/17/2018] [Indexed: 12/25/2022] Open
Abstract
Ski-related oncogene SnoN (SnoN or SKIL) regulates multiple signaling pathways in a tissue- and developmental stage-dependent manner and has broad functions in embryonic angiogenesis, mammary gland alveologenesis, cancer, and aging. Here, we report that SnoN also plays a critical role in white adipose tissue (WAT) development by regulating mesenchymal stem cell (MSC) self-renewal and differentiation. We found that SnoN promotes MSC differentiation in the adipocyte lineage by antagonizing activin A/Smad2, but not TGFβ/Smad3 signaling. Mice lacking SnoN or expressing a mutant SnoN defective in binding to the Smads were protected from high-fat diet-induced obesity and insulin resistance, and MSCs lacking a functional SnoN exhibited defective differentiation. We further demonstrated that activin, via Smad2, appears to be the major regulator of WAT development in vivo We also noted that activin A is abundantly expressed in WAT and adipocytes through an autocrine mechanism and promotes MSC self-renewal and inhibits adipogenic differentiation by inducing expression of the gene encoding the homeobox transcription factor Nanog. Of note, SnoN repressed activin/Smad2 signaling and activin A expression, enabling expression of adipocyte-specific transcription factors and promoting adipogenic differentiation. In conclusion, our study has revealed that SnoN plays an important in vivo role in adipocyte differentiation and WAT development in vivo by decreasing activity in the activin/Smad2 signaling pathway.
Collapse
Affiliation(s)
- Qingwei Zhu
- From the Department of Molecular and Cell Biology, University of California, Berkeley, California 94720
| | - Amanda Chang
- From the Department of Molecular and Cell Biology, University of California, Berkeley, California 94720
| | - Albert Xu
- the Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco, California 94158-2140
| | - Kunxin Luo
- From the Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, .,the Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 and
| |
Collapse
|
8
|
Tecalco-Cruz AC, Ríos-López DG, Vázquez-Victorio G, Rosales-Alvarez RE, Macías-Silva M. Transcriptional cofactors Ski and SnoN are major regulators of the TGF-β/Smad signaling pathway in health and disease. Signal Transduct Target Ther 2018; 3:15. [PMID: 29892481 PMCID: PMC5992185 DOI: 10.1038/s41392-018-0015-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 02/16/2018] [Accepted: 03/15/2018] [Indexed: 12/19/2022] Open
Abstract
The transforming growth factor-β (TGF-β) family plays major pleiotropic roles by regulating many physiological processes in development and tissue homeostasis. The TGF-β signaling pathway outcome relies on the control of the spatial and temporal expression of >500 genes, which depend on the functions of the Smad protein along with those of diverse modulators of this signaling pathway, such as transcriptional factors and cofactors. Ski (Sloan-Kettering Institute) and SnoN (Ski novel) are Smad-interacting proteins that negatively regulate the TGF-β signaling pathway by disrupting the formation of R-Smad/Smad4 complexes, as well as by inhibiting Smad association with the p300/CBP coactivators. The Ski and SnoN transcriptional cofactors recruit diverse corepressors and histone deacetylases to repress gene transcription. The TGF-β/Smad pathway and coregulators Ski and SnoN clearly regulate each other through several positive and negative feedback mechanisms. Thus, these cross-regulatory processes finely modify the TGF-β signaling outcome as they control the magnitude and duration of the TGF-β signals. As a result, any alteration in these regulatory mechanisms may lead to disease development. Therefore, the design of targeted therapies to exert tight control of the levels of negative modulators of the TGF-β pathway, such as Ski and SnoN, is critical to restore cell homeostasis under the specific pathological conditions in which these cofactors are deregulated, such as fibrosis and cancer. Proteins that repress molecular signaling through the transforming growth factor-beta (TGF-β) pathway offer promising targets for treating cancer and fibrosis. Marina Macías-Silva and colleagues from the National Autonomous University of Mexico in Mexico City review the ways in which a pair of proteins, called Ski and SnoN, interact with downstream mediators of TGF-β to inhibit the effects of this master growth factor. Aberrant levels of Ski and SnoN have been linked to diverse range of diseases involving cell proliferation run amok, and therapies that regulate the expression of these proteins could help normalize TGF-β signaling to healthier physiological levels. For decades, drug companies have tried to target the TGF-β pathway, with limited success. Altering the activity of these repressors instead could provide a roundabout way of remedying pathogenic TGF-β activity in fibrosis and oncology.
Collapse
Affiliation(s)
- Angeles C Tecalco-Cruz
- 1Instituto de Investigaciones Biomédicas at Universidad Nacional Autónoma de México, Mexico city, 04510 Mexico
| | - Diana G Ríos-López
- 2Instituto de Fisiología Celular at Universidad Nacional Autónoma de México, Mexico city, 04510 Mexico
| | | | - Reyna E Rosales-Alvarez
- 2Instituto de Fisiología Celular at Universidad Nacional Autónoma de México, Mexico city, 04510 Mexico
| | - Marina Macías-Silva
- 2Instituto de Fisiología Celular at Universidad Nacional Autónoma de México, Mexico city, 04510 Mexico
| |
Collapse
|
9
|
Goumans MJ, Ten Dijke P. TGF-β Signaling in Control of Cardiovascular Function. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a022210. [PMID: 28348036 DOI: 10.1101/cshperspect.a022210] [Citation(s) in RCA: 247] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Genetic studies in animals and humans indicate that gene mutations that functionally perturb transforming growth factor β (TGF-β) signaling are linked to specific hereditary vascular syndromes, including Osler-Rendu-Weber disease or hereditary hemorrhagic telangiectasia and Marfan syndrome. Disturbed TGF-β signaling can also cause nonhereditary disorders like atherosclerosis and cardiac fibrosis. Accordingly, cell culture studies using endothelial cells or smooth muscle cells (SMCs), cultured alone or together in two- or three-dimensional cell culture assays, on plastic or embedded in matrix, have shown that TGF-β has a pivotal effect on endothelial and SMC proliferation, differentiation, migration, tube formation, and sprouting. Moreover, TGF-β can stimulate endothelial-to-mesenchymal transition, a process shown to be of key importance in heart valve cushion formation and in various pathological vascular processes. Here, we discuss the roles of TGF-β in vasculogenesis, angiogenesis, and lymphangiogenesis and the deregulation of TGF-β signaling in cardiovascular diseases.
Collapse
Affiliation(s)
- Marie-José Goumans
- Department of Molecular Cell Biology and Cancer Genomics Centre Netherlands, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Peter Ten Dijke
- Department of Molecular Cell Biology and Cancer Genomics Centre Netherlands, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| |
Collapse
|
10
|
Liu P, Li X, Song F, Li P, Wei J, Yan Q, Xu X, Yang J, Li C, Fu X. Testosterone promotes tube formation of endothelial cells isolated from veins via activation of Smad1 protein. Mol Cell Endocrinol 2017; 446:21-31. [PMID: 28167128 DOI: 10.1016/j.mce.2017.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/11/2017] [Accepted: 02/02/2017] [Indexed: 01/03/2023]
Abstract
Testosterone (T) deficiency is positively correlated with the increased incidence of cardiovascular disease. However, the effects of T on vascular endothelial cells remain obscure. Tube formation capacity is critical for vascular regeneration/repair and Smad1 plays an important role in these events. In this study, we investigated the effects of T on Smad1 activation and tube formation of cultured human umbilical endothelial cells (HUVECs). Our results showed that T rapidly increased endothelial Smad1 phosphorylation. This effect was mimicked by cell-impermeable T-BSA conjugates and was not altered by transcriptional inhibitor actinomycin D or translational inhibitor cycloheximide. T-induced Smad1 phosphorylation was blocked by ERK1/2 and c-Src inhibitors or their specific siRNAs, while it was reinforced by ERK1/2 or c-Src overexpression. Indeed, T rapidly activated ERK1/2 and c-Src signalings and c-Src was confirmed as the upstream of ERK1/2. Moreover, caveolae disruptor methyl-β-cyclodextrin (β-MCD) blocked Smad1 activation induced by T. The association of caveolin-1 with androgen receptor (AR) or c-Src was detected by immunoprecipitation and it was significantly increased by rapid T stimulation. Furthermore, fractional analysis showed that AR and c-Src were expressed in caveolae-enriched membrane fractions. T promoted tube formation of HUVECs, which was blocked by c-Src and ERK1/2 inhibitors or by the knockdown of Smad1. In conclusion, T increased tube formation of endothelial cells isolated from veins by stimulating Smad1 phosphorylation in a nongenomic manner, which was mediated by signals from AR/c-Src located in caveolae to ERK1/2 cascade. These findings may shed new light on the relevance of T to its vascular functions.
Collapse
Affiliation(s)
- Pei Liu
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou City, Guangdong Province, 510630, China
| | - Xiaosa Li
- Key Laboratory of Cardiovascular Diseases, School of Basic Medical Sciences; Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Fuhu Song
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou City, Guangdong Province, 510630, China
| | - Ping Li
- Key Laboratory of Cardiovascular Diseases, School of Basic Medical Sciences; Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Jinzhi Wei
- Key Laboratory of Cardiovascular Diseases, School of Basic Medical Sciences; Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Qing Yan
- Key Laboratory of Cardiovascular Diseases, School of Basic Medical Sciences; Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Xingyan Xu
- Key Laboratory of Cardiovascular Diseases, School of Basic Medical Sciences; Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Jun Yang
- Key Laboratory of Cardiovascular Diseases, School of Basic Medical Sciences; Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Chuanxiang Li
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou City, Guangdong Province, 510630, China.
| | - Xiaodong Fu
- Key Laboratory of Cardiovascular Diseases, School of Basic Medical Sciences; Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
11
|
Lee HW, Chong DC, Ola R, Dunworth WP, Meadows S, Ka J, Kaartinen VM, Qyang Y, Cleaver O, Bautch VL, Eichmann A, Jin SW. Alk2/ACVR1 and Alk3/BMPR1A Provide Essential Function for Bone Morphogenetic Protein-Induced Retinal Angiogenesis. Arterioscler Thromb Vasc Biol 2017; 37:657-663. [PMID: 28232325 DOI: 10.1161/atvbaha.116.308422] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 02/09/2017] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Increasing evidence suggests that bone morphogenetic protein (BMP) signaling regulates angiogenesis. Here, we aimed to define the function of BMP receptors in regulating early postnatal angiogenesis by analysis of inducible, endothelial-specific deletion of the BMP receptor components Bmpr2 (BMP type 2 receptor), Alk1 (activin receptor-like kinase 1), Alk2, and Alk3 in mouse retinal vessels. APPROACH AND RESULTS Expression analysis of several BMP ligands showed that proangiogenic BMP ligands are highly expressed in postnatal retinas. Consistently, BMP receptors are also strongly expressed in retina with a distinct pattern. To assess the function of BMP signaling in retinal angiogenesis, we first generated mice carrying an endothelial-specific inducible deletion of Bmpr2. Postnatal deletion of Bmpr2 in endothelial cells substantially decreased the number of angiogenic sprouts at the vascular front and branch points behind the front, leading to attenuated radial expansion. To identify critical BMPR1s (BMP type 1 receptors) associated with BMPR2 in retinal angiogenesis, we generated endothelial-specific inducible deletion of 3 BMPR1s abundantly expressed in endothelial cells and analyzed the respective phenotypes. Among these, endothelial-specific deletion of either Alk2/acvr1 or Alk3/Bmpr1a caused a delay in radial expansion, reminiscent of vascular defects associated with postnatal endothelial-specific deletion of BMPR2, suggesting that ALK2/ACVR1 and ALK3/BMPR1A are likely to be the critical BMPR1s necessary for proangiogenic BMP signaling in retinal vessels. CONCLUSIONS Our data identify BMP signaling mediated by coordination of ALK2/ACVR1, ALK3/BMPR1A, and BMPR2 as an essential proangiogenic cue for retinal vessels.
Collapse
Affiliation(s)
- Heon-Woo Lee
- From the Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (H.-W.L., R.O., W.P.D., Y.Q., A.E., S.-W.J.); Department of Biology and McAllister Heart Institute, University of North Carolina, Chapel Hill (D.C.C., V.L.B.); Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX (S.M., O.C.); School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Korea (J.K., S.-W.J.); and Department of Biologic & Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor (V.M.K.)
| | - Diana C Chong
- From the Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (H.-W.L., R.O., W.P.D., Y.Q., A.E., S.-W.J.); Department of Biology and McAllister Heart Institute, University of North Carolina, Chapel Hill (D.C.C., V.L.B.); Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX (S.M., O.C.); School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Korea (J.K., S.-W.J.); and Department of Biologic & Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor (V.M.K.)
| | - Roxana Ola
- From the Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (H.-W.L., R.O., W.P.D., Y.Q., A.E., S.-W.J.); Department of Biology and McAllister Heart Institute, University of North Carolina, Chapel Hill (D.C.C., V.L.B.); Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX (S.M., O.C.); School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Korea (J.K., S.-W.J.); and Department of Biologic & Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor (V.M.K.)
| | - William P Dunworth
- From the Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (H.-W.L., R.O., W.P.D., Y.Q., A.E., S.-W.J.); Department of Biology and McAllister Heart Institute, University of North Carolina, Chapel Hill (D.C.C., V.L.B.); Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX (S.M., O.C.); School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Korea (J.K., S.-W.J.); and Department of Biologic & Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor (V.M.K.)
| | - Stryder Meadows
- From the Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (H.-W.L., R.O., W.P.D., Y.Q., A.E., S.-W.J.); Department of Biology and McAllister Heart Institute, University of North Carolina, Chapel Hill (D.C.C., V.L.B.); Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX (S.M., O.C.); School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Korea (J.K., S.-W.J.); and Department of Biologic & Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor (V.M.K.)
| | - Jun Ka
- From the Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (H.-W.L., R.O., W.P.D., Y.Q., A.E., S.-W.J.); Department of Biology and McAllister Heart Institute, University of North Carolina, Chapel Hill (D.C.C., V.L.B.); Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX (S.M., O.C.); School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Korea (J.K., S.-W.J.); and Department of Biologic & Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor (V.M.K.)
| | - Vesa M Kaartinen
- From the Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (H.-W.L., R.O., W.P.D., Y.Q., A.E., S.-W.J.); Department of Biology and McAllister Heart Institute, University of North Carolina, Chapel Hill (D.C.C., V.L.B.); Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX (S.M., O.C.); School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Korea (J.K., S.-W.J.); and Department of Biologic & Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor (V.M.K.)
| | - Yibing Qyang
- From the Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (H.-W.L., R.O., W.P.D., Y.Q., A.E., S.-W.J.); Department of Biology and McAllister Heart Institute, University of North Carolina, Chapel Hill (D.C.C., V.L.B.); Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX (S.M., O.C.); School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Korea (J.K., S.-W.J.); and Department of Biologic & Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor (V.M.K.)
| | - Ondine Cleaver
- From the Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (H.-W.L., R.O., W.P.D., Y.Q., A.E., S.-W.J.); Department of Biology and McAllister Heart Institute, University of North Carolina, Chapel Hill (D.C.C., V.L.B.); Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX (S.M., O.C.); School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Korea (J.K., S.-W.J.); and Department of Biologic & Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor (V.M.K.)
| | - Victoria L Bautch
- From the Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (H.-W.L., R.O., W.P.D., Y.Q., A.E., S.-W.J.); Department of Biology and McAllister Heart Institute, University of North Carolina, Chapel Hill (D.C.C., V.L.B.); Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX (S.M., O.C.); School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Korea (J.K., S.-W.J.); and Department of Biologic & Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor (V.M.K.).
| | - Anne Eichmann
- From the Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (H.-W.L., R.O., W.P.D., Y.Q., A.E., S.-W.J.); Department of Biology and McAllister Heart Institute, University of North Carolina, Chapel Hill (D.C.C., V.L.B.); Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX (S.M., O.C.); School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Korea (J.K., S.-W.J.); and Department of Biologic & Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor (V.M.K.)
| | - Suk-Won Jin
- From the Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (H.-W.L., R.O., W.P.D., Y.Q., A.E., S.-W.J.); Department of Biology and McAllister Heart Institute, University of North Carolina, Chapel Hill (D.C.C., V.L.B.); Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX (S.M., O.C.); School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Korea (J.K., S.-W.J.); and Department of Biologic & Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor (V.M.K.)
| |
Collapse
|
12
|
Şenbabaoğlu Y, Gejman RS, Winer AG, Liu M, Van Allen EM, de Velasco G, Miao D, Ostrovnaya I, Drill E, Luna A, Weinhold N, Lee W, Manley BJ, Khalil DN, Kaffenberger SD, Chen Y, Danilova L, Voss MH, Coleman JA, Russo P, Reuter VE, Chan TA, Cheng EH, Scheinberg DA, Li MO, Choueiri TK, Hsieh JJ, Sander C, Hakimi AA. Tumor immune microenvironment characterization in clear cell renal cell carcinoma identifies prognostic and immunotherapeutically relevant messenger RNA signatures. Genome Biol 2016; 17:231. [PMID: 27855702 PMCID: PMC5114739 DOI: 10.1186/s13059-016-1092-z] [Citation(s) in RCA: 683] [Impact Index Per Article: 75.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/26/2016] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Tumor-infiltrating immune cells have been linked to prognosis and response to immunotherapy; however, the levels of distinct immune cell subsets and the signals that draw them into a tumor, such as the expression of antigen presenting machinery genes, remain poorly characterized. Here, we employ a gene expression-based computational method to profile the infiltration levels of 24 immune cell populations in 19 cancer types. RESULTS We compare cancer types using an immune infiltration score and a T cell infiltration score and find that clear cell renal cell carcinoma (ccRCC) is among the highest for both scores. Using immune infiltration profiles as well as transcriptomic and proteomic datasets, we characterize three groups of ccRCC tumors: T cell enriched, heterogeneously infiltrated, and non-infiltrated. We observe that the immunogenicity of ccRCC tumors cannot be explained by mutation load or neo-antigen load, but is highly correlated with MHC class I antigen presenting machinery expression (APM). We explore the prognostic value of distinct T cell subsets and show in two cohorts that Th17 cells and CD8+ T/Treg ratio are associated with improved survival, whereas Th2 cells and Tregs are associated with negative outcomes. Investigation of the association of immune infiltration patterns with the subclonal architecture of tumors shows that both APM and T cell levels are negatively associated with subclone number. CONCLUSIONS Our analysis sheds light on the immune infiltration patterns of 19 human cancers and unravels mRNA signatures with prognostic utility and immunotherapeutic biomarker potential in ccRCC.
Collapse
Affiliation(s)
- Yasin Şenbabaoğlu
- Computational Biology Center, Memorial Sloan Kettering Cancer Center, New York, NY USA
- Present address: Swim Across America/Ludwig Collaborative Laboratory, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Ron S. Gejman
- Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY USA
- Weill Cornell Medical College, New York, NY USA
| | - Andrew G. Winer
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Ming Liu
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | | | | | - Diana Miao
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA USA
| | - Irina Ostrovnaya
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Esther Drill
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Augustin Luna
- Computational Biology Center, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Nils Weinhold
- Computational Biology Center, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - William Lee
- Computational Biology Center, Memorial Sloan Kettering Cancer Center, New York, NY USA
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Brandon J. Manley
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Danny N. Khalil
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Samuel D. Kaffenberger
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Yingbei Chen
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Ludmila Danilova
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD USA
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Martin H. Voss
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Jonathan A. Coleman
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Paul Russo
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Victor E. Reuter
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Timothy A. Chan
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY USA
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY USA
- Weill Cornell Medical College, New York, NY USA
| | - Emily H. Cheng
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY USA
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - David A. Scheinberg
- Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY USA
- Weill Cornell Medical College, New York, NY USA
| | - Ming O. Li
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Toni K. Choueiri
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA USA
| | - James J. Hsieh
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY USA
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Chris Sander
- Computational Biology Center, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - A. Ari Hakimi
- Computational Biology Center, Memorial Sloan Kettering Cancer Center, New York, NY USA
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY USA
| |
Collapse
|
13
|
Zhu Q, Le Scolan E, Jahchan N, Ji X, Xu A, Luo K. SnoN Antagonizes the Hippo Kinase Complex to Promote TAZ Signaling during Breast Carcinogenesis. Dev Cell 2016; 37:399-412. [PMID: 27237790 DOI: 10.1016/j.devcel.2016.05.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 04/01/2016] [Accepted: 05/01/2016] [Indexed: 12/12/2022]
Abstract
SnoN regulates multiple signaling pathways, including TGF-β/Smad and p53, and displays both pro-oncogenic and anti-oncogenic activities in human cancer. We have observed previously that both its intracellular localization and expression levels are sensitive to cell density, suggesting that it may crosstalk with Hippo signaling. Here we report that, indeed, SnoN interacts with multiple components of the Hippo pathway to inhibit the binding of Lats2 to TAZ and the subsequent phosphorylation of TAZ, leading to TAZ stabilization. Consistently, SnoN enhances the transcriptional and oncogenic activities of TAZ, and reducing SnoN decreases TAZ expression as well as malignant progression of breast cancer cells. Interestingly, SnoN itself is downregulated by Lats2 that is activated by the Scribble basolateral polarity protein. Thus, SnoN is a critical component of the Hippo regulatory network that receives signals from the tissue architecture and polarity to coordinate the activity of intracellular signaling pathways.
Collapse
Affiliation(s)
- Qingwei Zhu
- Department of Molecular and Cell Biology, University of California, 16 Barker Hall, MC3204, Berkeley, CA 94720, USA
| | | | - Nadine Jahchan
- ORIC Pharmaceuticals, South San Francisco, CA 94080, USA
| | - Xiaodan Ji
- Departments of Cancer Biology, Cell & Developmental Biology, and Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 190104-6160, USA
| | - Albert Xu
- Department of Molecular and Cell Biology, University of California, 16 Barker Hall, MC3204, Berkeley, CA 94720, USA
| | - Kunxin Luo
- Department of Molecular and Cell Biology, University of California, 16 Barker Hall, MC3204, Berkeley, CA 94720, USA; Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| |
Collapse
|
14
|
Kawahara T, Yamashita M, Ikegami K, Nakamura T, Yanagita M, Yamada S, Kitamura M, Murakami S. TGF-Beta Negatively Regulates the BMP2-Dependent Early Commitment of Periodontal Ligament Cells into Hard Tissue Forming Cells. PLoS One 2015; 10:e0125590. [PMID: 25970290 PMCID: PMC4430433 DOI: 10.1371/journal.pone.0125590] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 03/24/2015] [Indexed: 12/27/2022] Open
Abstract
Transforming growth factor beta (TGF-β) is a multi-functional growth factor expressed in many tissues and organs. Genetic animal models have revealed the critical functions of TGF-β in craniofacial development, including the teeth and periodontal tissue. However, the physiological function of TGF-β in the periodontal ligament (PDL) has not been fully elucidated. In this study, we examined the roles of TGF-β in the cytodifferentiation of PDL cells using a TGF-β receptor kinase inhibitor, SB431542. Mouse PDL cell clones (MPDL22) were cultured in calcification-inducing medium with or without SB431542 in the presence or absence of various growth factors, such as bone morphogenetic protein (BMP)-2, TGF-β and fibroblast growth factor (FGF)-2. SB431542 dramatically enhanced the BMP-2-dependent calcification of MPDL22 cells and accelerated the expression of ossification genes alkaline phosphatase (ALPase) and Runt-related transcription factor (Runx) 2 during early osteoblastic differentiation. SB431542 did not promote MPDL22 calcification without BMP-2 stimulation. The cell growth rate and collagen synthesis during the late stage of MPDL22 culture were retarded by SB431542. Quantitative reverse transcription polymerase chain reaction analysis revealed that the expressions of Smurf1 and Smad6, which are negative feedback components in the TGF-β/BMP signaling pathway, were downregulated in MPDL22 cells with SB431542 treatment. These results suggest that an endogenous signal from TGF-β negatively regulates the early commitment and cytodifferentiation of PDL cells into hard tissue-forming cells. A synthetic drug that regulates endogenous TGF-β signals may be efficacious for developing periodontal regenerative therapies.
Collapse
Affiliation(s)
- Takanobu Kawahara
- Department of Periodontology, Graduate School of Dentistry, Osaka University, 1–8 Yamadaoka, Suita-Osaka 565–0871, Japan
| | - Motozo Yamashita
- Department of Periodontology, Graduate School of Dentistry, Osaka University, 1–8 Yamadaoka, Suita-Osaka 565–0871, Japan
- * E-mail:
| | - Kuniko Ikegami
- Department of Periodontology, Graduate School of Dentistry, Osaka University, 1–8 Yamadaoka, Suita-Osaka 565–0871, Japan
| | - Tomomi Nakamura
- Department of Periodontology, Graduate School of Dentistry, Osaka University, 1–8 Yamadaoka, Suita-Osaka 565–0871, Japan
| | - Manabu Yanagita
- Department of Periodontology, Graduate School of Dentistry, Osaka University, 1–8 Yamadaoka, Suita-Osaka 565–0871, Japan
| | - Satoru Yamada
- Department of Periodontology, Graduate School of Dentistry, Osaka University, 1–8 Yamadaoka, Suita-Osaka 565–0871, Japan
| | - Masahiro Kitamura
- Department of Periodontology, Graduate School of Dentistry, Osaka University, 1–8 Yamadaoka, Suita-Osaka 565–0871, Japan
| | - Shinya Murakami
- Department of Periodontology, Graduate School of Dentistry, Osaka University, 1–8 Yamadaoka, Suita-Osaka 565–0871, Japan
| |
Collapse
|
15
|
Sanz AL, Míguez DG. Dual R-Smads interplay in the regulation of vertebrate neurogenesis. NEUROGENESIS 2014. [DOI: 10.4161/neur.29529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|