1
|
García-Arcos JM, Ziegler J, Grigolon S, Reymond L, Shajepal G, Cattin CJ, Lomakin A, Müller DJ, Ruprecht V, Wieser S, Voituriez R, Piel M. Rigidity percolation and active advection synergize in the actomyosin cortex to drive amoeboid cell motility. Dev Cell 2024; 59:2990-3007.e7. [PMID: 39047738 DOI: 10.1016/j.devcel.2024.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/11/2023] [Accepted: 06/26/2024] [Indexed: 07/27/2024]
Abstract
Spontaneous locomotion is a common feature of most metazoan cells, generally attributed to the properties of actomyosin networks. This force-producing machinery has been studied down to the most minute molecular details, especially in lamellipodium-driven migration. Nevertheless, how actomyosin networks work inside contraction-driven amoeboid cells still lacks unifying principles. Here, using stable motile blebs from HeLa cells as a model amoeboid motile system, we imaged the dynamics of the actin cortex at the single filament level and revealed the co-existence of three distinct rheological phases. We introduce "advected percolation," a process where rigidity percolation and active advection synergize, spatially organizing the actin network's mechanical properties into a minimal and generic locomotion mechanism. Expanding from our observations on simplified systems, we speculate that this model could explain, down to the single actin filament level, how amoeboid cells, such as cancer or immune cells, can propel efficiently through complex 3D environments.
Collapse
Affiliation(s)
- Juan Manuel García-Arcos
- Institut Pierre Gilles de Gennes, PSL Research University, 6 rue Jean Calvin, 75005 Paris, France; Institut Curie, PSL Research University, CNRS UMR 144, Paris, France
| | - Johannes Ziegler
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Spain
| | - Silvia Grigolon
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), 75005 Paris, France
| | - Loïc Reymond
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Spain; Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Gaurav Shajepal
- Institut Pierre Gilles de Gennes, PSL Research University, 6 rue Jean Calvin, 75005 Paris, France
| | - Cédric J Cattin
- Department of Biosystems Science and Engineering, ETH Zurich, 4056 Basel, Switzerland
| | - Alexis Lomakin
- Center for Pathobiochemistry and Genetics, Institute of Medical Chemistry, Medical University of Vienna, Währingerstraße 10, 1090 Vienna, Austria; Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Währingerstraße 10, 1090 Vienna, Austria
| | - Daniel J Müller
- Department of Biosystems Science and Engineering, ETH Zurich, 4056 Basel, Switzerland
| | - Verena Ruprecht
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; ICREA, Pg. Lluis Companys 23, 08010 Barcelona, Spain
| | - Stefan Wieser
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Spain
| | - Raphael Voituriez
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), 75005 Paris, France; Laboratoire de Physique Théorique de la Matière Condensée, CNRS/Sorbonne Université, 4 Place Jussieu, 75005 Paris, France.
| | - Matthieu Piel
- Institut Pierre Gilles de Gennes, PSL Research University, 6 rue Jean Calvin, 75005 Paris, France; Institut Curie, PSL Research University, CNRS UMR 144, Paris, France.
| |
Collapse
|
2
|
Kruse K, Berthoz R, Barberi L, Reymann AC, Riveline D. Actomyosin clusters as active units shaping living matter. Curr Biol 2024; 34:R1045-R1058. [PMID: 39437723 DOI: 10.1016/j.cub.2024.08.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Stress generation by the actin cytoskeleton shapes cells and tissues. Despite impressive progress in live imaging and quantitative physical descriptions of cytoskeletal network dynamics, the connection between processes at molecular scales and spatiotemporal patterns at the cellular scale is still unclear. Here, we review studies reporting actomyosin clusters of micrometre size and with lifetimes of several minutes in a large number of organisms, ranging from fission yeast to humans. Such structures have also been found in reconstituted systems in vitro and in theoretical analyses of cytoskeletal dynamics. We propose that tracking these clusters could provide a simple readout for characterising living matter. Spatiotemporal patterns of clusters could serve as determinants of morphogenetic processes that have similar roles in diverse organisms.
Collapse
Affiliation(s)
- Karsten Kruse
- Departments of Theoretical Physics and Biochemistry, University of Geneva, 30 quai Ernest-Ansermet, 1204 Geneva, Switzerland.
| | - Rémi Berthoz
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1 Rue Laurent Fries, 67404 Illkirch CEDEX, France; Université de Strasbourg, IGBMC UMR 7104 - UMR-S 1258, F-67400 Illkirch, France; Centre National de la Recherche Scientifique, UMR 7104, F-67400 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, UMR-S 1258, F-67400 Illkirch, France
| | - Luca Barberi
- Departments of Theoretical Physics and Biochemistry, University of Geneva, 30 quai Ernest-Ansermet, 1204 Geneva, Switzerland
| | - Anne-Cécile Reymann
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1 Rue Laurent Fries, 67404 Illkirch CEDEX, France; Université de Strasbourg, IGBMC UMR 7104 - UMR-S 1258, F-67400 Illkirch, France; Centre National de la Recherche Scientifique, UMR 7104, F-67400 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, UMR-S 1258, F-67400 Illkirch, France
| | - Daniel Riveline
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1 Rue Laurent Fries, 67404 Illkirch CEDEX, France; Université de Strasbourg, IGBMC UMR 7104 - UMR-S 1258, F-67400 Illkirch, France; Centre National de la Recherche Scientifique, UMR 7104, F-67400 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, UMR-S 1258, F-67400 Illkirch, France.
| |
Collapse
|
3
|
Ghosh S, Joshi C, Baskaran A, Hagan MF. Spatiotemporal control of structure and dynamics in a polar active fluid. SOFT MATTER 2024; 20:7059-7071. [PMID: 39188251 DOI: 10.1039/d4sm00547c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
We apply optimal control theory to a model of a polar active fluid (the Toner-Tu model), with the objective of driving the system into particular emergent dynamical behaviors or programming switching between states on demand. We use the effective self-propulsion speed as the control parameter (i.e. the means of external actuation). We identify control protocols that achieve outcomes such as relocating asters to targeted positions, forcing propagating solitary waves to reorient to a particular direction, and switching between stationary asters and propagating fronts. We analyze the solutions to identify generic principles for controlling polar active fluids. Our findings have implications for achieving spatiotemporal control of active polar systems in experiments, particularly in vitro cytoskeletal systems. Additionally, this research paves the way for leveraging optimal control methods to engineer the structure and dynamics of active fluids more broadly.
Collapse
Affiliation(s)
- Saptorshi Ghosh
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, USA.
| | - Chaitanya Joshi
- Department of Physics and Astronomy, Tufts University, Medford, Massachusetts 02155, USA
| | - Aparna Baskaran
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, USA.
| | - Michael F Hagan
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, USA.
| |
Collapse
|
4
|
Sekine S, Tarama M, Wada H, Sami MM, Shibata T, Hayashi S. Emergence of periodic circumferential actin cables from the anisotropic fusion of actin nanoclusters during tubulogenesis. Nat Commun 2024; 15:464. [PMID: 38267421 PMCID: PMC10808230 DOI: 10.1038/s41467-023-44684-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 12/29/2023] [Indexed: 01/26/2024] Open
Abstract
The periodic circumferential cytoskeleton supports various tubular tissues. Radial expansion of the tube lumen causes anisotropic tensile stress, which can be exploited as a geometric cue. However, the molecular machinery linking anisotropy to robust circumferential patterning is poorly understood. Here, we aim to reveal the emergent process of circumferential actin cable formation in a Drosophila tracheal tube. During luminal expansion, sporadic actin nanoclusters emerge and exhibit circumferentially biased motion and fusion. RNAi screening reveals the formin family protein, DAAM, as an essential component responding to tissue anisotropy, and non-muscle myosin II as a component required for nanocluster fusion. An agent-based model simulation suggests that crosslinkers play a crucial role in nanocluster formation and cluster-to-cable transition occurs in response to mechanical anisotropy. Altogether, we propose that an actin nanocluster is an organizational unit that responds to stress in the cortical membrane and builds a higher-order cable structure.
Collapse
Affiliation(s)
- Sayaka Sekine
- Laboratory for Morphogenetic Signaling, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan.
- Laboratory for Histogenetic Dynamics, Graduate School of Life Sciences, Tohoku University, Sendai, Japan.
| | - Mitsusuke Tarama
- Laboratory for Physical Biology, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan.
- Department of Physics, Faculty of Science, Kyushu University, Fukuoka, Japan.
| | - Housei Wada
- Laboratory for Morphogenetic Signaling, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Mustafa M Sami
- Laboratory for Morphogenetic Signaling, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
- Physics and Biology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Tatsuo Shibata
- Laboratory for Physical Biology, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Shigeo Hayashi
- Laboratory for Morphogenetic Signaling, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
- Kobe University Graduate School of Science, Kobe, Japan
| |
Collapse
|
5
|
Dasgupta A, Ngo HT, Tschoerner D, Touret N, da Rocha-Azevedo B, Jaqaman K. Multiscale imaging and quantitative analysis of plasma membrane protein-cortical actin interplay. Biophys J 2023; 122:3798-3815. [PMID: 37571825 PMCID: PMC10541498 DOI: 10.1016/j.bpj.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/19/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023] Open
Abstract
The spatiotemporal organization of cell surface receptors is important for cell signaling. Cortical actin (CA), the subset of the actin cytoskeleton subjacent to the plasma membrane (PM), plays a large role in cell surface receptor organization. However, this has been shown largely through actin perturbation experiments, which raise concerns of nonspecific effects and preclude quantification of actin architecture and dynamics under unperturbed conditions. These limitations make it challenging to predict how changes in CA properties can affect receptor organization. To derive direct relationships between the architecture and dynamics of CA and the spatiotemporal organization of PM proteins, including cell surface receptors, we developed a multiscale imaging and computational analysis framework based on the integration of single-molecule imaging (SMI) of PM proteins and fluorescent speckle microscopy (FSM) of CA (combined: SMI-FSM) in the same live cell. SMI-FSM revealed differential relationships between PM proteins and CA based on the PM proteins' actin binding ability, diffusion type, and local CA density. Combining SMI-FSM with subcellular region analysis revealed differences in CA dynamics that were predictive of differences in PM protein mobility near ruffly cell edges versus closer to the cell center. SMI-FSM also highlighted the complexity of cell-wide actin perturbation, where we found that global changes in actin properties caused by perturbation were not necessarily reflected in the CA properties near PM proteins, and that the changes in PM protein properties upon perturbation varied based on the local CA environment. Given the widespread use of SMI as a method to study the spatiotemporal organization of PM proteins and the versatility of SMI-FSM, we expect it to be widely applicable to enable future investigation of the influence of CA architecture and dynamics on different PM proteins, especially in the context of actin-dependent cellular processes.
Collapse
Affiliation(s)
- Aparajita Dasgupta
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Huong-Tra Ngo
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Deryl Tschoerner
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Nicolas Touret
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Bruno da Rocha-Azevedo
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Khuloud Jaqaman
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas; Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
6
|
Zbiral B, Weber A, Vivanco MDM, Toca-Herrera JL. Characterization of Breast Cancer Aggressiveness by Cell Mechanics. Int J Mol Sci 2023; 24:12208. [PMID: 37569585 PMCID: PMC10418463 DOI: 10.3390/ijms241512208] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
In healthy tissues, cells are in mechanical homeostasis. During cancer progression, this equilibrium is disrupted. Cancer cells alter their mechanical phenotype to a softer and more fluid-like one than that of healthy cells. This is connected to cytoskeletal remodeling, changed adhesion properties, faster cell proliferation and increased cell motility. In this work, we investigated the mechanical properties of breast cancer cells representative of different breast cancer subtypes, using MCF-7, tamoxifen-resistant MCF-7, MCF10A and MDA-MB-231 cells. We derived viscoelastic properties from atomic force microscopy force spectroscopy measurements and showed that the mechanical properties of the cells are associated with cancer cell malignancy. MCF10A are the stiffest and least fluid-like cells, while tamoxifen-resistant MCF-7 cells are the softest ones. MCF-7 and MDA-MB-231 show an intermediate mechanical phenotype. Confocal fluorescence microscopy on cytoskeletal elements shows differences in actin network organization, as well as changes in focal adhesion localization. These findings provide further evidence of distinct changes in the mechanical properties of cancer cells compared to healthy cells and add to the present understanding of the complex alterations involved in tumorigenesis.
Collapse
Affiliation(s)
- Barbara Zbiral
- Institute of Biophysics, Department of Bionanosciences, University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria; (B.Z.); (A.W.)
| | - Andreas Weber
- Institute of Biophysics, Department of Bionanosciences, University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria; (B.Z.); (A.W.)
| | - Maria dM. Vivanco
- Cancer Heterogeneity Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain;
| | - José L. Toca-Herrera
- Institute of Biophysics, Department of Bionanosciences, University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria; (B.Z.); (A.W.)
| |
Collapse
|
7
|
Campos Muñiz C, Fernández Perrino FJ. Evolution of the Concepts of Architecture and Supramolecular Dynamics of the Plasma Membrane. MEMBRANES 2023; 13:547. [PMID: 37367751 DOI: 10.3390/membranes13060547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/19/2023] [Accepted: 05/19/2023] [Indexed: 06/28/2023]
Abstract
The plasma membrane (PM) has undergone important conceptual changes during the history of scientific research, although it is undoubtedly a cellular organelle that constitutes the first defining characteristic of cellular life. Throughout history, the contributions of countless scientists have been published, each one of them with an enriching contribution to the knowledge of the structure-location and function of each structural component of this organelle, as well as the interaction between these and other structures. The first published contributions on the plasmatic membrane were the transport through it followed by the description of the structure: lipid bilayer, associated proteins, carbohydrates bound to both macromolecules, association with the cytoskeleton and dynamics of these components.. The data obtained experimentally from each researcher were represented in graphic configurations, as a language that facilitates the understanding of cellular structures and processes. This paper presents a review of some of the concepts and models proposed about the plasma membrane, emphasizing the components, the structure, the interaction between them and the dynamics. The work is illustrated with resignified 3D diagrams to visualize the changes that occurred during the history of the study of this organelle. Schemes were redrawn in 3D from the original articles...
Collapse
Affiliation(s)
- Carolina Campos Muñiz
- Department of Health Sciences, Universidad Autónoma Metropolitana Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, Mexico City 09340, Mexico
| | - Francisco José Fernández Perrino
- Department of Biotechnology, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, Mexico City 09340, Mexico
| |
Collapse
|
8
|
Kusumi A, Tsunoyama TA, Tang B, Hirosawa KM, Morone N, Fujiwara TK, Suzuki KGN. Cholesterol- and actin-centered view of the plasma membrane: updating the Singer-Nicolson fluid mosaic model to commemorate its 50th anniversary †. Mol Biol Cell 2023; 34:pl1. [PMID: 37039596 PMCID: PMC10162409 DOI: 10.1091/mbc.e20-12-0809] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/07/2022] [Accepted: 02/07/2023] [Indexed: 04/12/2023] Open
Abstract
Two very polarized views exist for understanding the cellular plasma membrane (PM). For some, it is the simple fluid described by the original Singer-Nicolson fluid mosaic model. For others, due to the presence of thousands of molecular species that extensively interact with each other, the PM forms various clusters and domains that are constantly changing and therefore, no simple rules exist that can explain the structure and molecular dynamics of the PM. In this article, we propose that viewing the PM from its two predominant components, cholesterol and actin filaments, provides an excellent and transparent perspective of PM organization, dynamics, and mechanisms for its functions. We focus on the actin-induced membrane compartmentalization and lipid raft domains coexisting in the PM and how they interact with each other to perform PM functions. This view provides an important update of the fluid mosaic model.
Collapse
Affiliation(s)
- Akihiro Kusumi
- Membrane Cooperativity Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa 904-0495, Japan
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan
| | - Taka A. Tsunoyama
- Membrane Cooperativity Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa 904-0495, Japan
| | - Bo Tang
- Membrane Cooperativity Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa 904-0495, Japan
| | - Koichiro M. Hirosawa
- Institute for Glyco-Core Research (iGCORE), Gifu University, Gifu 501-1193, Japan
| | - Nobuhiro Morone
- MRC Toxicology Unit, University of Cambridge, Cambridge CB2 1QR, UK
| | - Takahiro K. Fujiwara
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan
| | - Kenichi G. N. Suzuki
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan
- Institute for Glyco-Core Research (iGCORE), Gifu University, Gifu 501-1193, Japan
| |
Collapse
|
9
|
Sarkar S, Goswami D. Lifetime of actin-dependent protein nanoclusters. Biophys J 2023; 122:290-300. [PMID: 36518075 PMCID: PMC9892618 DOI: 10.1016/j.bpj.2022.12.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 09/23/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Protein nanoclusters (PNCs) are dynamic collections of a few proteins that spatially organize in nanometer-length clusters. PNCs are one of the principal forms of spatial organization of membrane proteins, and they have been shown or hypothesized to be important in various cellular processes, including cell signaling. PNCs show remarkable diversity in size, shape, and lifetime. In particular, the lifetime of PNCs can vary over a wide range of timescales. The diversity in size and shape can be explained by the interaction of the clustering proteins with the actin cytoskeleton or the lipid membrane, but very little is known about the processes that determine the lifetime of the nanoclusters. In this paper, using mathematical modeling of the cluster dynamics, we model the biophysical processes that determine the lifetime of actin-dependent PNCs. In particular, we investigated the role of actin aster fragmentation, which had been suggested to be a key determinant of the PNC lifetime, and we found that it is important only for a small class of PNCs. A simple extension of our model allowed us to investigate the kinetics of protein-ligand interaction near PNCs. We found an anomalous increase in the lifetime of ligands near PNCs, which agrees remarkably well with experimental data on RAS-RAF kinetics. In particular, analysis of the RAS-RAF data through our model provides falsifiable predictions and novel hypotheses that will not only shed light on the role of RAS-RAF kinetics in various cancers, but also will be useful in studying membrane protein clustering in general.
Collapse
Affiliation(s)
- Sumantra Sarkar
- The Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico; Theoretical Biophysics (T-6) Group, Los Alamos National Laboratory, Los Alamos, New Mexico; Department of Physics, Indian Institute of Science, Bengaluru, Karnataka 560012, India.
| | - Debanjan Goswami
- NCI RAS Initiative, The Cancer Research Technology Program, Frederick National Laboratory, Frederick, Maryland.
| |
Collapse
|
10
|
Tijore A, Yang B, Sheetz M. Cancer cells can be killed mechanically or with combinations of cytoskeletal inhibitors. Front Pharmacol 2022; 13:955595. [PMID: 36299893 PMCID: PMC9589226 DOI: 10.3389/fphar.2022.955595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/12/2022] [Indexed: 12/24/2022] Open
Abstract
For over two centuries, clinicians have hypothesized that cancer developed preferentially at the sites of repeated damage, indicating that cancer is basically “continued healing.” Tumor cells can develop over time into other more malignant types in different environments. Interestingly, indefinite growth correlates with the depletion of a modular, early rigidity sensor, whereas restoring these sensors in tumor cells blocks tumor growth on soft surfaces and metastases. Importantly, normal and tumor cells from many different tissues exhibit transformed growth without the early rigidity sensor. When sensors are restored in tumor cells by replenishing depleted mechanosensory proteins that are often cytoskeletal, cells revert to normal rigidity-dependent growth. Surprisingly, transformed growth cells are sensitive to mechanical stretching or ultrasound which will cause apoptosis of transformed growth cells (Mechanoptosis). Mechanoptosis is driven by calcium entry through mechanosensitive Piezo1 channels that activate a calcium-induced calpain response commonly found in tumor cells. Since tumor cells from many different tissues are in a transformed growth state that is, characterized by increased growth, an altered cytoskeleton and mechanoptosis, it is possible to inhibit growth of many different tumors by mechanical activity and potentially by cytoskeletal inhibitors.
Collapse
Affiliation(s)
- Ajay Tijore
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India
- *Correspondence: Ajay Tijore, ; Michael Sheetz,
| | - Bo Yang
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Michael Sheetz
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States
- *Correspondence: Ajay Tijore, ; Michael Sheetz,
| |
Collapse
|
11
|
Yochelis A, Flemming S, Beta C. Versatile Patterns in the Actin Cortex of Motile Cells: Self-Organized Pulses Can Coexist with Macropinocytic Ring-Shaped Waves. PHYSICAL REVIEW LETTERS 2022; 129:088101. [PMID: 36053696 DOI: 10.1103/physrevlett.129.088101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Self-organized patterns in the actin cytoskeleton are essential for eukaryotic cellular life. They are the building blocks of many functional structures that often operate simultaneously to facilitate, for example, nutrient uptake and movement of cells. However, identifying how qualitatively distinct actin patterns can coexist remains a challenge. Using bifurcation theory of a mass conserved activator-inhibitor system, we uncover a generic mechanism of how different actin waves-traveling waves and excitable pulses-organize and simultaneously emerge. Live-cell imaging experiments indeed reveal that narrow, planar, and fast-moving excitable pulses may coexist with ring-shaped macropinocytic actin waves in the cortex of motile amoeboid cells.
Collapse
Affiliation(s)
- Arik Yochelis
- Department of Solar Energy and Environmental Physics, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion 8499000, Israel
- Department of Physics, Ben-Gurion University of the Negev, Be'er Sheva 8410501, Israel
| | - Sven Flemming
- Institute of Physics and Astronomy, University of Potsdam, Potsdam 14476, Germany
| | - Carsten Beta
- Institute of Physics and Astronomy, University of Potsdam, Potsdam 14476, Germany
| |
Collapse
|
12
|
Costache V, Prigent Garcia S, Plancke CN, Li J, Begnaud S, Suman SK, Reymann AC, Kim T, Robin FB. Rapid assembly of a polar network architecture drives efficient actomyosin contractility. Cell Rep 2022; 39:110868. [PMID: 35649363 PMCID: PMC9210446 DOI: 10.1016/j.celrep.2022.110868] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/13/2022] [Accepted: 05/05/2022] [Indexed: 11/30/2022] Open
Abstract
Actin network architecture and dynamics play a central role in cell contractility and tissue morphogenesis. RhoA-driven pulsed contractions are a generic mode of actomyosin contractility, but the mechanisms underlying how their specific architecture emerges and how this architecture supports the contractile function of the network remain unclear. Here we show that, during pulsed contractions, the actin network is assembled by two subpopulations of formins: a functionally inactive population (recruited) and formins actively participating in actin filament elongation (elongating). We then show that elongating formins assemble a polar actin network, with barbed ends pointing out of the pulse. Numerical simulations demonstrate that this geometry favors rapid network contraction. Our results show that formins convert a local RhoA activity gradient into a polar network architecture, causing efficient network contractility, underlying the key function of kinetic controls in the assembly and mechanics of cortical network architectures. RhoA-driven actomyosin contractility plays a key role in driving cell and tissue contractility during morphogenesis. Tracking individual formins, Costache et al. show that the network assembled downstream of RhoA displays a polar architecture, barbed ends pointing outward, a feature that supports efficient contractility and force transmission during pulsed contractions.
Collapse
Affiliation(s)
- Vlad Costache
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris-Seine IBPS, Laboratoire de Biologie du Développement, Paris, France
| | - Serena Prigent Garcia
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris-Seine IBPS, Laboratoire de Biologie du Développement, Paris, France
| | - Camille N Plancke
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris-Seine IBPS, Laboratoire de Biologie du Développement, Paris, France
| | - Jing Li
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Simon Begnaud
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris-Seine IBPS, Laboratoire de Biologie du Développement, Paris, France
| | - Shashi Kumar Suman
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris-Seine IBPS, Laboratoire de Biologie du Développement, Paris, France
| | - Anne-Cécile Reymann
- IGBMC, CNRS UMR7104, INSERM U1258, and Université de Strasbourg, Illkirch, France
| | - Taeyoon Kim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.
| | - François B Robin
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris-Seine IBPS, Laboratoire de Biologie du Développement, Paris, France.
| |
Collapse
|
13
|
Nishimura Y, Shi S, Li Q, Bershadsky AD, Viasnoff V. Crosstalk between myosin II and formin functions in the regulation of force generation and actomyosin dynamics in stress fibers. Cells Dev 2021; 168:203736. [PMID: 34455135 DOI: 10.1016/j.cdev.2021.203736] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/23/2021] [Accepted: 08/16/2021] [Indexed: 10/20/2022]
Abstract
REF52 fibroblasts have a well-developed contractile machinery, the most prominent elements of which are actomyosin stress fibers with highly ordered organization of actin and myosin IIA filaments. The relationship between contractile activity and turnover dynamics of stress fibers is not sufficiently understood. Here, we simultaneously measured the forces exerted by stress fibers (using traction force microscopy or micropillar array sensors) and the dynamics of actin and myosin (using photoconversion-based monitoring of actin incorporation and high-resolution fluorescence microscopy of myosin II light chain). Our data revealed new features of the crosstalk between myosin II-driven contractility and stress fiber dynamics. During normal stress fiber turnover, actin incorporated all along the stress fibers and not only at focal adhesions. Incorporation of actin into stress fibers/focal adhesions, as well as actin and myosin II filaments flow along stress fibers, strongly depends on myosin II activity. Myosin II-dependent generation of traction forces does not depend on incorporation of actin into stress fibers per se, but still requires formin activity. This previously overlooked function of formins in maintenance of the actin cytoskeleton connectivity could be the main mechanism of formin involvement in traction force generation.
Collapse
Affiliation(s)
- Yukako Nishimura
- Mechanobiology Institute, National University of Singapore, T-Lab, 5A Engineering Drive 1, 117411, Singapore; Division of Developmental Physiology, Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo 060-0815, Japan
| | - Shidong Shi
- Mechanobiology Institute, National University of Singapore, T-Lab, 5A Engineering Drive 1, 117411, Singapore
| | - Qingsen Li
- IFOM-FIRC Institute of Molecular Oncology, Via Adamello, 16, 20139 Milan, Italy
| | - Alexander D Bershadsky
- Mechanobiology Institute, National University of Singapore, T-Lab, 5A Engineering Drive 1, 117411, Singapore; Department of Molecular Cell Biology, Weizmann Institute of Science, 234 Herzl Street, POB 26, Rehovot 7610001, Israel.
| | - Virgile Viasnoff
- Mechanobiology Institute, National University of Singapore, T-Lab, 5A Engineering Drive 1, 117411, Singapore; CNRS UMI 3639, Singapore; Department of Biological Sciences, National university of Singapore, S3 #05-01, 16 Science Drive 4, 117558, Singapore.
| |
Collapse
|
14
|
Kollimada S, Senger F, Vignaud T, Théry M, Blanchoin L, Kurzawa L. The biochemical composition of the actomyosin network sets the magnitude of cellular traction forces. Mol Biol Cell 2021; 32:1737-1748. [PMID: 34410837 PMCID: PMC8684728 DOI: 10.1091/mbc.e21-03-0109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The regulation of cellular force production relies on the complex interplay between a well-conserved set of proteins of the cytoskeleton: actin, myosin, and α-actinin. Despite our deep knowledge of the role of these proteins in force production at the molecular scale, our understanding of the biochemical regulation of the magnitude of traction forces generated at the entire-cell level has been limited, notably by the technical challenge of measuring traction forces and the endogenous biochemical composition in the same cell. In this study, we developed an alternative Traction-Force Microscopy (TFM) assay, which used a combination of hydrogel micropatterning to define cell adhesion and shape and an intermediate fixation/immunolabeling step to characterize strain energies and the endogenous protein contents in single epithelial cells. Our results demonstrated that both the signal intensity and the area of the Focal Adhesion (FA)–associated protein vinculin showed a strong positive correlation with strain energy in mature FAs. Individual contents from actin filament and phospho-myosin displayed broader deviation in their linear relationship to strain energies. Instead, our quantitative analyzes demonstrated that their relative amount exhibited an optimum ratio of phospho-myosin to actin, allowing maximum force production by cells. By contrast, although no correlation was identified between individual α-actinin content and strain energy, the ratio of α-actinin to actin filaments was inversely related to strain energy. Hence, our results suggest that, in the cellular model studied, traction-force magnitude is dictated by the relative numbers of molecular motors and cross-linkers per actin filament, rather than the amounts of an individual component in the cytoskeletal network. This assay offers new perspectives to study in more detail the complex interplay between the endogenous biochemical composition of individual cells and the force they produce.
Collapse
Affiliation(s)
- Somanna Kollimada
- Interdisciplinary Research Institute of Grenoble, Laboratoire de Physiologie Cellulaire & Végétale, CytoMorpho Lab, University of Grenoble-Alpes, CEA, CNRS, INRA, Grenoble, France
| | - Fabrice Senger
- Interdisciplinary Research Institute of Grenoble, Laboratoire de Physiologie Cellulaire & Végétale, CytoMorpho Lab, University of Grenoble-Alpes, CEA, CNRS, INRA, Grenoble, France
| | - Timothée Vignaud
- Interdisciplinary Research Institute of Grenoble, Laboratoire de Physiologie Cellulaire & Végétale, CytoMorpho Lab, University of Grenoble-Alpes, CEA, CNRS, INRA, Grenoble, France.,Clinique de chirurgie digestive et endocrinienne, Hôtel Dieu, Nantes, 44093, France
| | - Manuel Théry
- Interdisciplinary Research Institute of Grenoble, Laboratoire de Physiologie Cellulaire & Végétale, CytoMorpho Lab, University of Grenoble-Alpes, CEA, CNRS, INRA, Grenoble, France.,Institut de Recherche Saint Louis, U976 Human Immunology Pathophysiology Immunotherapy (HIPI), CytoMorpho Lab, University of Paris, INSERM, CEA, Paris, France
| | - Laurent Blanchoin
- Interdisciplinary Research Institute of Grenoble, Laboratoire de Physiologie Cellulaire & Végétale, CytoMorpho Lab, University of Grenoble-Alpes, CEA, CNRS, INRA, Grenoble, France.,Institut de Recherche Saint Louis, U976 Human Immunology Pathophysiology Immunotherapy (HIPI), CytoMorpho Lab, University of Paris, INSERM, CEA, Paris, France
| | - Laëtitia Kurzawa
- Interdisciplinary Research Institute of Grenoble, Laboratoire de Physiologie Cellulaire & Végétale, CytoMorpho Lab, University of Grenoble-Alpes, CEA, CNRS, INRA, Grenoble, France
| |
Collapse
|
15
|
Vignaud T, Copos C, Leterrier C, Toro-Nahuelpan M, Tseng Q, Mahamid J, Blanchoin L, Mogilner A, Théry M, Kurzawa L. Stress fibres are embedded in a contractile cortical network. NATURE MATERIALS 2021; 20:410-420. [PMID: 33077951 PMCID: PMC7610471 DOI: 10.1038/s41563-020-00825-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 09/14/2020] [Indexed: 05/06/2023]
Abstract
Contractile actomyosin networks are responsible for the production of intracellular forces. There is increasing evidence that bundles of actin filaments form interconnected and interconvertible structures with the rest of the network. In this study, we explored the mechanical impact of these interconnections on the production and distribution of traction forces throughout the cell. By using a combination of hydrogel micropatterning, traction force microscopy and laser photoablation, we measured the relaxation of traction forces in response to local photoablations. Our experimental results and modelling of the mechanical response of the network revealed that bundles were fully embedded along their entire length in a continuous and contractile network of cortical filaments. Moreover, the propagation of the contraction of these bundles throughout the entire cell was dependent on this embedding. In addition, these bundles appeared to originate from the alignment and coalescence of thin and unattached cortical actin filaments from the surrounding mesh.
Collapse
Affiliation(s)
- Timothée Vignaud
- CytoMorpho Lab, Interdisciplinary Research Institute of Grenoble, Laboratoire de Physiologie Cellulaire et Végétale, Grenoble-Alpes University/CEA/CNRS/INRA, Grenoble, France
- CytoMorpho Lab, Hôpital Saint Louis, Institut Universitaire d'Hématologie, Université Paris Diderot/CEA/INSERM, Paris, France
- Clinique de Chirurgie Digestive et Endocrinienne, Hôtel Dieu, Nantes, France
| | - Calina Copos
- Courant Institute and Department of Biology, New York University, New York, NY, USA
| | - Christophe Leterrier
- NeuroCyto, Institute of NeuroPhysiopathology (INP), CNRS, Aix Marseille Université, Marseille, France
| | - Mauricio Toro-Nahuelpan
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Qingzong Tseng
- CytoMorpho Lab, Interdisciplinary Research Institute of Grenoble, Laboratoire de Physiologie Cellulaire et Végétale, Grenoble-Alpes University/CEA/CNRS/INRA, Grenoble, France
- CytoMorpho Lab, Hôpital Saint Louis, Institut Universitaire d'Hématologie, Université Paris Diderot/CEA/INSERM, Paris, France
| | - Julia Mahamid
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Laurent Blanchoin
- CytoMorpho Lab, Interdisciplinary Research Institute of Grenoble, Laboratoire de Physiologie Cellulaire et Végétale, Grenoble-Alpes University/CEA/CNRS/INRA, Grenoble, France
- CytoMorpho Lab, Hôpital Saint Louis, Institut Universitaire d'Hématologie, Université Paris Diderot/CEA/INSERM, Paris, France
| | - Alex Mogilner
- Courant Institute and Department of Biology, New York University, New York, NY, USA.
| | - Manuel Théry
- CytoMorpho Lab, Interdisciplinary Research Institute of Grenoble, Laboratoire de Physiologie Cellulaire et Végétale, Grenoble-Alpes University/CEA/CNRS/INRA, Grenoble, France.
- CytoMorpho Lab, Hôpital Saint Louis, Institut Universitaire d'Hématologie, Université Paris Diderot/CEA/INSERM, Paris, France.
| | - Laetitia Kurzawa
- CytoMorpho Lab, Interdisciplinary Research Institute of Grenoble, Laboratoire de Physiologie Cellulaire et Végétale, Grenoble-Alpes University/CEA/CNRS/INRA, Grenoble, France.
- CytoMorpho Lab, Hôpital Saint Louis, Institut Universitaire d'Hématologie, Université Paris Diderot/CEA/INSERM, Paris, France.
| |
Collapse
|
16
|
Lüchtefeld I, Bartolozzi A, Mejía Morales J, Dobre O, Basso M, Zambelli T, Vassalli M. Elasticity spectra as a tool to investigate actin cortex mechanics. J Nanobiotechnology 2020; 18:147. [PMID: 33081777 PMCID: PMC7576730 DOI: 10.1186/s12951-020-00706-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/09/2020] [Indexed: 12/24/2022] Open
Abstract
Background The mechanical properties of single living cells have proven to be a powerful marker of the cell physiological state. The use of nanoindentation-based single cell force spectroscopy provided a wealth of information on the elasticity of cells, which is still largely to be exploited. The simplest model to describe cell mechanics is to treat them as a homogeneous elastic material and describe it in terms of the Young’s modulus. Beside its simplicity, this approach proved to be extremely informative, allowing to assess the potential of this physical indicator towards high throughput phenotyping in diagnostic and prognostic applications. Results Here we propose an extension of this analysis to explicitly account for the properties of the actin cortex. We present a method, the Elasticity Spectra, to calculate the apparent stiffness of the cell as a function of the indentation depth and we suggest a simple phenomenological approach to measure the thickness and stiffness of the actin cortex, in addition to the standard Young’s modulus. Conclusions The Elasticity Spectra approach is tested and validated on a set of cells treated with cytoskeleton-affecting drugs, showing the potential to extend the current representation of cell mechanics, without introducing a detailed and complex description of the intracellular structure.![]()
Collapse
Affiliation(s)
- Ines Lüchtefeld
- Laboratory of Biosensors and Bioelectronics, ETH Zürich, Gloriastrasse 35, 8092, Zürich, Switzerland
| | - Alice Bartolozzi
- Dipartimento di Ingegneria dell'Informazione, Università degli studi di Firenze, Via di S. Marta 3, 50139, Firenze, Italy
| | - Julián Mejía Morales
- Institut de Physique de Nice, Université Côte d'Azur, 1361 Route des Lucioles, 06560, Valbonne, France.,Dipartimento di Medicina Sperimentale, Università degli studi di Genova, Via Leon Battista Alberti 2, 16132, Genova, Italy
| | - Oana Dobre
- James Watt School of Engineering, University of Glasgow, Oakfield avenue, Glasgow, G12 8LT, UK
| | - Michele Basso
- Dipartimento di Ingegneria dell'Informazione, Università degli studi di Firenze, Via di S. Marta 3, 50139, Firenze, Italy
| | - Tomaso Zambelli
- Laboratory of Biosensors and Bioelectronics, ETH Zürich, Gloriastrasse 35, 8092, Zürich, Switzerland
| | - Massimo Vassalli
- James Watt School of Engineering, University of Glasgow, Oakfield avenue, Glasgow, G12 8LT, UK.
| |
Collapse
|
17
|
Xia S, Lim YB, Zhang Z, Wang Y, Zhang S, Lim CT, Yim EKF, Kanchanawong P. Nanoscale Architecture of the Cortical Actin Cytoskeleton in Embryonic Stem Cells. Cell Rep 2020; 28:1251-1267.e7. [PMID: 31365868 DOI: 10.1016/j.celrep.2019.06.089] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/24/2019] [Accepted: 06/25/2019] [Indexed: 12/15/2022] Open
Abstract
Mechanical cues influence pluripotent stem cell differentiation, but the underlying mechanisms are not well understood. Mouse embryonic stem cells (mESCs) exhibit unusual cytomechanical properties, including low cell stiffness and attenuated responses to substrate rigidity, but the underlying structural basis remains obscure. Using super-resolution microscopy to investigate the actin cytoskeleton in mESCs, we observed that the actin cortex consists of a distinctively sparse and isotropic network. Surprisingly, the architecture and mechanics of the mESC actin cortex appear to be largely myosin II-independent. The network density can be modulated by perturbing Arp2/3 and formin, whereas capping protein (CP) negatively regulates cell stiffness. Transient Arp2/3-containing aster-like structures are implicated in the organization and mechanical homeostasis of the cortical network. By generating a low-density network that physically excludes myosin II, the interplay between Arp2/3, formin, and CP governs the nanoscale architecture of the actin cortex and prescribes the cytomechanical properties of mESCs.
Collapse
Affiliation(s)
- Shumin Xia
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - Ying Bena Lim
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Zhen Zhang
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - Yilin Wang
- Department of Biology, South University of Science and Technology of China, Shenzhen 518055, China
| | - Shan Zhang
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Chwee Teck Lim
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore; Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore; Institute for Health Innovation & Technology (iHealthtech), National University of Singapore, Singapore 117599, Singapore
| | - Evelyn K F Yim
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Pakorn Kanchanawong
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore; Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore.
| |
Collapse
|
18
|
Lee S, Kumar S. Cofilin is required for polarization of tension in stress fiber networks during migration. J Cell Sci 2020; 133:jcs243873. [PMID: 32501289 PMCID: PMC7358140 DOI: 10.1242/jcs.243873] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/11/2020] [Indexed: 01/04/2023] Open
Abstract
Cell migration is associated with the establishment of defined leading and trailing edges, which in turn requires polarization of contractile forces. While the actomyosin stress fiber (SF) network plays a critical role in enforcing this polarity, precisely how this asymmetry is established remains unclear. Here, we provide evidence for a model in which the actin-severing protein cofilin (specifically cofilin-1) participates in symmetry breakage by removing low-tension actomyosin filaments during transverse arc assembly. Cofilin knockdown (KD) produces a non-polarized SF architecture that cannot be rescued with chemokines or asymmetric matrix patterns. Whereas cofilin KD increases whole-cell prestress, it decreases prestress within single SFs, implying an accumulation of low-tension SFs. This notion is supported by time-lapse imaging, which reveals weakly contractile and incompletely fused transverse arcs. Confocal and super-resolution imaging further associate this failed fusion with the presence of crosslinker-rich, tropomyosin-devoid nodes at the junctions of multiple transverse arc fragments and dorsal SFs. These results support a model in which cofilin facilitates the formation of high-tension transverse arcs, thereby promoting mechanical asymmetry.
Collapse
Affiliation(s)
- Stacey Lee
- UC Berkeley-UCSF Graduate Program in Bioengineering, USA
- UC Berkeley Department of Bioengineering, UC Berkeley, CA, USA
| | - Sanjay Kumar
- UC Berkeley-UCSF Graduate Program in Bioengineering, USA
- UC Berkeley Department of Bioengineering, UC Berkeley, CA, USA
- UC Berkeley Department of Chemical and Biomolecular Engineering, 274A Stanley Hall #1762, UC Berkeley, Berkeley, CA 94720-1762, UC Berkeley, CA, USA
| |
Collapse
|
19
|
The role of the Arp2/3 complex in shaping the dynamics and structures of branched actomyosin networks. Proc Natl Acad Sci U S A 2020; 117:10825-10831. [PMID: 32354995 DOI: 10.1073/pnas.1922494117] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Actomyosin networks give cells the ability to move and divide. These networks contract and expand while being driven by active energy-consuming processes such as motor protein walking and actin polymerization. Actin dynamics is also regulated by actin-binding proteins, such as the actin-related protein 2/3 (Arp2/3) complex. This complex generates branched filaments, thereby changing the overall organization of the network. In this work, the spatiotemporal patterns of dynamical actin assembly accompanying the branching-induced reorganization caused by Arp2/3 were studied using a computational model (mechanochemical dynamics of active networks [MEDYAN]); this model simulates actomyosin network dynamics as a result of chemical reactions whose rates are modulated by rapid mechanical equilibration. We show that branched actomyosin networks relax significantly more slowly than do unbranched networks. Also, branched networks undergo rare convulsive movements, "avalanches," that release strain in the network. These avalanches are associated with the more heterogeneous distribution of mechanically linked filaments displayed by branched networks. These far-from-equilibrium events arising from the marginal stability of growing actomyosin networks provide a possible mechanism of the "cytoquakes" recently seen in experiments.
Collapse
|
20
|
He W, Su Y, Peng HB, Tong P. Dynamic heterogeneity and non-Gaussian statistics for ganglioside GM1s and acetylcholine receptors on live cell membrane. Mol Biol Cell 2020; 31:1380-1391. [PMID: 32348189 PMCID: PMC7353135 DOI: 10.1091/mbc.e19-08-0473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We have carried out a comparative study of the lateral motion of ganglioside GM1, which is a glycosphingolipid residing on the outer leaflet of the plasma membrane, and acetylcholine receptor (AChR), which is a well-characterized ion channel. Both the lipid molecules and the transmembrane proteins reside on the plasma membranes of live Xenopus muscle cells. From a thorough analysis of a large volume of individual molecular trajectories obtained from more than 300 live cells over a wide range of sampling rates and long durations, we find that the GM1s and AChRs share the same dynamic heterogeneity and non-Gaussian statistics. Our measurements with the ATP-depleted cells reveal that the diffusion dynamics of the GM1s and AChRs is uniformly affected by the intracellular ATP level of the living muscle cells, further demonstrating that membrane diffusion is strongly coupled to the dynamics of the underlying cortical actin network, as predicted by the dynamic picket-fence model.
Collapse
Affiliation(s)
- Wei He
- Nano Science and Technology Program, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Yun Su
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - H Benjamin Peng
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Penger Tong
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
21
|
Das A, Bhat A, Sknepnek R, Köster D, Mayor S, Rao M. Stratification relieves constraints from steric hindrance in the generation of compact actomyosin asters at the membrane cortex. SCIENCE ADVANCES 2020; 6:eaay6093. [PMID: 32195346 PMCID: PMC7065884 DOI: 10.1126/sciadv.aay6093] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 12/16/2019] [Indexed: 06/10/2023]
Abstract
Recent in vivo studies reveal that several membrane proteins are driven to form nanoclusters by active contractile flows arising from localized dynamic patterning of F-actin and myosin at the cortex. Since myosin-II assemble as minifilaments with tens of myosin heads, one might worry that steric considerations would obstruct the emergence of nanoclustering. Using coarse-grained, agent-based simulations that account for steric constraints, we find that the patterns exhibited by actomyosin in two dimensions, do not resemble the steady-state patterns in our in vitro reconstitution of actomyosin on a supported bilayer. We perform simulations in a thin rectangular slab, separating the layer of actin filaments from myosin-II minifilaments. This recapitulates the observed features of in vitro patterning. Using super resolution microscopy, we find evidence for such stratification in our in vitro system. Our study suggests that molecular stratification may be an important organizing feature of the cortical cytoskeleton in vivo.
Collapse
Affiliation(s)
- Amit Das
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences (TIFR), Bangalore 560065, India
| | - Abrar Bhat
- National Centre for Biological Sciences (TIFR), Bangalore 560065, India
| | - Rastko Sknepnek
- School of Science and Engineering and School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Darius Köster
- National Centre for Biological Sciences (TIFR), Bangalore 560065, India
| | - Satyajit Mayor
- National Centre for Biological Sciences (TIFR), Bangalore 560065, India
| | - Madan Rao
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences (TIFR), Bangalore 560065, India
| |
Collapse
|
22
|
Abstract
For many years, major differences in morphology, motility, and mechanical characteristics have been observed between transformed cancer and normal cells. In this review, we consider these differences as linked to different states of normal and transformed cells that involve distinct mechanosensing and motility pathways. There is a strong correlation between repeated tissue healing and/or inflammation and the probability of cancer, both of which involve growth in adult tissues. Many factors are likely needed to enable growth, including the loss of rigidity sensing, but recent evidence indicates that microRNAs have important roles in causing the depletion of growth-suppressing proteins. One microRNA, miR-21, is overexpressed in many different tissues during both healing and cancer. Normal cells can become transformed by the depletion of cytoskeletal proteins that results in the loss of mechanosensing, particularly rigidity sensing. Conversely, the transformed state can be reversed by the expression of cytoskeletal proteins-without direct alteration of hormone receptor levels. In this review, we consider the different stereotypical forms of motility and mechanosensory systems. A major difference between normal and transformed cells involves a sensitivity of transformed cells to mechanical perturbations. Thus, understanding the different mechanical characteristics of transformed cells may enable new approaches to treating wound healing and cancer.
Collapse
Affiliation(s)
- Michael Sheetz
- Mechanobiology Institute and Department of Biological Sciences, National University of Singapore, Singapore 117411
- Molecular MechanoMedicine Program and Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77555, USA;
| |
Collapse
|
23
|
Lohner J, Rupprecht JF, Hu J, Mandriota N, Saxena M, de Araujo DP, Hone J, Sahin O, Prost J, Sheetz MP. Large and reversible myosin-dependent forces in rigidity sensing. NATURE PHYSICS 2019; 15:689-695. [PMID: 33790983 PMCID: PMC8008990 DOI: 10.1038/s41567-019-0477-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 02/19/2019] [Indexed: 05/26/2023]
Abstract
Cells sense the rigidity of their environment through localized pinching, which occurs when myosin molecular motors generate contractions within actin filaments anchoring the cell to its surroundings. We present high-resolution experiments performed on these elementary contractile units in cells. Our experimental results challenge the current understanding of molecular motor force generation. Surprisingly, bipolar myosin filaments generate much larger forces per motor than measured in single molecule experiments. Further, contraction to a fixed distance, followed by relaxation at the same rate, is observed over a wide range of matrix rigidities. Lastly, step-wise displacements of the matrix contacts are apparent during both contraction and relaxation. Building upon a generic two-state model of molecular motor collections, we interpret these unexpected observations as spontaneously emerging features of a collective motor behavior. Our approach explains why, in the cellular context, collections of resilient and slow motors contract in a stepwise fashion while collections of weak and fast motors do not. We thus rationalize the specificity of motor contractions implied in rigidity sensing compared to previous in vitro observations.
Collapse
Affiliation(s)
- James Lohner
- first authors
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Jean-Francois Rupprecht
- first authors
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, 117411 Singapore
| | - Junquiang Hu
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Nicola Mandriota
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Mayur Saxena
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, USA
| | - Diego Pitta de Araujo
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, 117411 Singapore
| | - James Hone
- Department of Mechanical Engineering, Columbia University, New York, New York 10027, USA
| | - Ozgur Sahin
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Jacques Prost
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, 117411 Singapore
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 75005 Paris, France
| | - Michael P Sheetz
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, 117411 Singapore
| |
Collapse
|
24
|
Liu K, Lowengrub J, Allard J. Efficient simulation of thermally fluctuating biopolymers immersed in fluids on 1-micron, 1-second scales. JOURNAL OF COMPUTATIONAL PHYSICS 2019; 386:248-263. [PMID: 31787778 PMCID: PMC6884323 DOI: 10.1016/j.jcp.2018.12.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The combination of fluid-structure interactions with stochasticity, due to thermal fluctuations, remains a challenging problem in computational fluid dynamics. We develop an efficient scheme based on the stochastic immersed boundary method, Stokeslets, and multiple timestepping. We test our method for spherical particles and filaments under purely thermal and deterministic forces and find good agreement with theoretical predictions for Brownian Motion of a particle and equilibrium thermal undulations of a semi-flexible filament. As an initial application, we simulate bio-filaments with the properties of F-actin. We specifically study the average time for two nearby parallel filaments to bundle together. Interestingly, we find a two-fold acceleration in this time between simulations that account for long-range hydrodynamics compared to those that do not, suggesting that our method will reveal significant hydrodynamic effects in biological phenomena.
Collapse
Affiliation(s)
- Kai Liu
- Department of Mathematics, University of California at Irvine
| | - John Lowengrub
- Department of Mathematics, University of California at Irvine
- Center for Complex Biological Systems, University of California at Irvine
- Department of Biomedical Engineering, University of California at Irvine
| | - Jun Allard
- Department of Mathematics, University of California at Irvine
- Center for Complex Biological Systems, University of California at Irvine
- Department of Physics, University of California at Irvine
| |
Collapse
|
25
|
Miller CJ, LaFosse PK, Asokan SB, Haugh JM, Bear JE, Elston TC. Emergent spatiotemporal dynamics of the actomyosin network in the presence of chemical gradients. Integr Biol (Camb) 2019; 11:280-292. [PMID: 31365063 PMCID: PMC6686739 DOI: 10.1093/intbio/zyz023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 06/05/2019] [Accepted: 06/21/2019] [Indexed: 01/11/2023]
Abstract
We used particle-based computer simulations to study the emergent properties of the actomyosin cytoskeleton. Our model accounted for biophysical interactions between filamentous actin and non-muscle myosin II and was motivated by recent experiments demonstrating that spatial regulation of myosin activity is required for fibroblasts responding to spatial gradients of platelet derived growth factor (PDGF) to undergo chemotaxis. Our simulations revealed the spontaneous formation of actin asters, consistent with the punctate actin structures observed in chemotacting fibroblasts. We performed a systematic analysis of model parameters to identify biochemical steps in myosin activity that significantly affect aster formation and performed simulations in which model parameter values vary spatially to investigate how the model responds to chemical gradients. Interestingly, spatial variations in motor stiffness generated time-dependent behavior of the actomyosin network, in which actin asters continued to spontaneously form and dissociate in different regions of the gradient. Our results should serve as a guide for future experimental investigations.
Collapse
Affiliation(s)
- Callie J Miller
- Department of Engineering, James Madison University, Harrisonburg, VA, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Paul K LaFosse
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Sreeja B Asokan
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA
| | - Jason M Haugh
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - James E Bear
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA
| | - Timothy C Elston
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
26
|
Wu SK, Priya R. Spatio-Temporal Regulation of RhoGTPases Signaling by Myosin II. Front Cell Dev Biol 2019; 7:90. [PMID: 31192208 PMCID: PMC6546806 DOI: 10.3389/fcell.2019.00090] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 05/13/2019] [Indexed: 01/06/2023] Open
Abstract
RhoGTPase activation of non-muscle myosin II regulates cell division, extrusion, adhesion, migration, and tissue morphogenesis. However, the regulation of myosin II and mechanotransduction is not straightforward. Increasingly, the role of myosin II on the feedback regulation of RhoGTPase signaling is emerging. Indeed, myosin II controls RhoGTPase signaling through multiple mechanisms, namely contractility driven advection, scaffolding, and sequestration of signaling molecules. Here we discuss these mechanisms by which myosin II regulates RhoGTPase signaling in cell adhesion, migration, and tissue morphogenesis.
Collapse
Affiliation(s)
- Selwin K Wu
- Department of Cell Biology, Harvard Medical School, Boston, MA, United States.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Rashmi Priya
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| |
Collapse
|
27
|
Staehlke S, Lehnfeld J, Schneider A, Nebe JB, Müller R. Terminal chemical functions of polyamidoamine dendrimer surfaces and its impact on bone cell growth. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 101:190-203. [PMID: 31029312 DOI: 10.1016/j.msec.2019.03.073] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 03/12/2019] [Accepted: 03/22/2019] [Indexed: 12/17/2022]
Abstract
Besides their use for drug and gene delivery, dendrimer molecules are also favorable for the design of new surface coatings for orthopedic and dental implants due to the wide variety of functional terminal groups and their multivalent character. The purpose of this work was to observe how covalently immobilized polyamidoamine (PAMAM) dendrimer molecules with different terminal chemical groups influenced serum protein adsorption and osteoblast behavior. To this end, fifth-generation PAMAM dendrimers were immobilized on silicon surfaces with an anhydride-containing silane coupling agent which results in positively charged terminal NH2-groups. Coatings with a net negative charge were generated by introduction of terminal CO2H- or CH3-groups. Surface characterization was performed by static and dynamic contact angle and zeta potential. The in vitro studies with human MG-63 osteoblastic cells focused on cell adhesion, morphology, cell cycle, apoptosis and actin formation within 24 h. This work demonstrated that cell growth was dependent on surface chemistry and correlated strongly with the surface free energy and charge of the material. The positively charged NH2 surface induced tight cell attachment with well-organized actin stress fibers and a well spread morphology. In contrast, CO2H- and CH3-functional groups provoked a decrease in cell adhesion and spreading and indicated higher apoptotic potential, although both were hydrophilic. The knowledge about the cell-material dialogue is of relevance for the development of bioactive implants in regenerative medicine.
Collapse
Affiliation(s)
- Susanne Staehlke
- Department of Cell Biology, University Medical Center Rostock, Schillingallee 69, 18057 Rostock, Germany.
| | - Jutta Lehnfeld
- Institute of Physical and Theoretical Chemistry, University of Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany.
| | - Andreas Schneider
- Institute of Physical and Theoretical Chemistry, University of Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany.
| | - J Barbara Nebe
- Department of Cell Biology, University Medical Center Rostock, Schillingallee 69, 18057 Rostock, Germany; Dept. Life, Light & Matter, University of Rostock, Albert-Einstein-Str. 25, 18059 Rostock, Germany.
| | - Rainer Müller
- Institute of Physical and Theoretical Chemistry, University of Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany.
| |
Collapse
|
28
|
Colin-York H, Li D, Korobchevskaya K, Chang VT, Betzig E, Eggeling C, Fritzsche M. Cytoskeletal actin patterns shape mast cell activation. Commun Biol 2019; 2:93. [PMID: 30854485 PMCID: PMC6405992 DOI: 10.1038/s42003-019-0322-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/22/2019] [Indexed: 01/05/2023] Open
Abstract
Activation of immune cells relies on a dynamic actin cytoskeleton. Despite detailed knowledge of molecular actin assembly, the exact processes governing actin organization during activation remain elusive. Using advanced microscopy, we here show that Rat Basophilic Leukemia (RBL) cells, a model mast cell line, employ an orchestrated series of reorganization events within the cortical actin network during activation. In response to IgE antigen-stimulation of FCε receptors (FCεR) at the RBL cell surface, we observed symmetry breaking of the F-actin network and subsequent rapid disassembly of the actin cortex. This was followed by a reassembly process that may be driven by the coordinated transformation of distinct nanoscale F-actin architectures, reminiscent of self-organizing actin patterns. Actin patterns co-localized with zones of Arp2/3 nucleation, while network reassembly was accompanied by myosin-II activity. Strikingly, cortical actin disassembly coincided with zones of granule secretion, suggesting that cytoskeletal actin patterns contribute to orchestrate RBL cell activation. Huw Colin-York et al. use advanced microscopy techniques to show that the cortical actin network within a model mast cell line undergoes a series of reorganizational events at the basal interface during activation. They find that actin patterns co-localize with zones of Arp2/3 nucleation and myosin-II activity accompanies network reassembly.
Collapse
Affiliation(s)
- Huw Colin-York
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford, OX3 9DS, UK
| | - Dong Li
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA, 20147, USA.,National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Kseniya Korobchevskaya
- Kennedy Institute for Rheumatology, University of Oxford, Roosevelt Drive, Oxford, OX3 7LF, UK
| | - Veronica T Chang
- MRC Laboratory of Molecular Biology, University of Cambridge, Cambridge, CB2 0QH, UK
| | - Eric Betzig
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA, 20147, USA
| | - Christian Eggeling
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford, OX3 9DS, UK
| | - Marco Fritzsche
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford, OX3 9DS, UK. .,Kennedy Institute for Rheumatology, University of Oxford, Roosevelt Drive, Oxford, OX3 7LF, UK.
| |
Collapse
|
29
|
Kreten FH, Hoffmann C, Riveline D, Kruse K. Active bundles of polar and bipolar filaments. Phys Rev E 2018; 98:012413. [PMID: 30110807 DOI: 10.1103/physreve.98.012413] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Indexed: 11/07/2022]
Abstract
Bundles of actin filaments and molecular motors of the myosin family are a common subcellular organizational motif. Typically, such bundles are under contractile stress resulting from interactions between the filaments and the motors. This holds in particular for contractile rings that appear in the late stages of cell division in animal cells and that cleave the mother into two daughter cells. It was recently shown that myosin organizes into regularly spaced clusters along rings in mammalian cells, whereas myosin clusters in fission yeast travel along the perimeter of actomyosin rings [Wollrab et al., Nat. Commun. 7, 11860 (2016)2041-172310.1038/ncomms11860]. A mechanism based on the association of the structurally polar actin filaments into bipolar structures was shown to provide a common explanation for both observations. Here, we analyze the dynamics of this mechanism in detail. We find a rich phase diagram depending on the actomyosin interaction strength and the stability of the bipolar structures. The system can notably organize into traveling waves. Furthermore, we identify the nature of the bifurcations connecting the various patterns as parameters are changed. Finally, we report experimental patterns observed in cytokinetic rings in fission yeast and link them to solutions of our dynamic equations. Our analysis highlights the possible role played by local polarity sorting of actin filaments for the dynamics and functionality of actomyosin networks.
Collapse
Affiliation(s)
- F H Kreten
- Theoretische Physik, Universität des Saarlandes, 66123 Saarbrücken, Germany
| | - Ch Hoffmann
- Theoretische Physik, Universität des Saarlandes, 66123 Saarbrücken, Germany
| | - D Riveline
- Laboratory of Cell Physics ISIS/IGBMC, CNRS and University of Strasbourg, Strasbourg, France; Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France; and Université de Strasbourg, Illkirch, France
| | - K Kruse
- NCCR Chemical Biology, Departments of Biochemistry and Theoretical Physics, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
30
|
Naganathan SR, Fürthauer S, Rodriguez J, Fievet BT, Jülicher F, Ahringer J, Cannistraci CV, Grill SW. Morphogenetic degeneracies in the actomyosin cortex. eLife 2018; 7:37677. [PMID: 30346273 PMCID: PMC6226289 DOI: 10.7554/elife.37677] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 10/16/2018] [Indexed: 01/07/2023] Open
Abstract
One of the great challenges in biology is to understand the mechanisms by which morphogenetic processes arise from molecular activities. We investigated this problem in the context of actomyosin-based cortical flow in C. elegans zygotes, where large-scale flows emerge from the collective action of actomyosin filaments and actin binding proteins (ABPs). Large-scale flow dynamics can be captured by active gel theory by considering force balances and conservation laws in the actomyosin cortex. However, which molecular activities contribute to flow dynamics and large-scale physical properties such as viscosity and active torque is largely unknown. By performing a candidate RNAi screen of ABPs and actomyosin regulators we demonstrate that perturbing distinct molecular processes can lead to similar flow phenotypes. This is indicative for a ‘morphogenetic degeneracy’ where multiple molecular processes contribute to the same large-scale physical property. We speculate that morphogenetic degeneracies contribute to the robustness of bulk biological matter in development.
Collapse
Affiliation(s)
| | - Sebastian Fürthauer
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany.,Center for Computational Biology, Flatiron Institute, New York, United States
| | - Josana Rodriguez
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle, United Kingdom.,Wellcome Trust/Cancer Research UK Gurdon Institute, Cambridge, United Kingdom
| | - Bruno Thomas Fievet
- Wellcome Trust/Cancer Research UK Gurdon Institute, Cambridge, United Kingdom
| | - Frank Jülicher
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | - Julie Ahringer
- Wellcome Trust/Cancer Research UK Gurdon Institute, Cambridge, United Kingdom
| | - Carlo Vittorio Cannistraci
- BIOTEC, Technische Universität Dresden, Dresden, Germany.,Brain Bio-Inspired Computing (BBC) Lab, IRCCS Centro Neurolesi "Bonino Pulejo", Messina, Italy
| | - Stephan W Grill
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,BIOTEC, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
31
|
Emergent mechanics of actomyosin drive punctuated contractions and shape network morphology in the cell cortex. PLoS Comput Biol 2018; 14:e1006344. [PMID: 30222728 PMCID: PMC6171965 DOI: 10.1371/journal.pcbi.1006344] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 10/04/2018] [Accepted: 07/05/2018] [Indexed: 11/24/2022] Open
Abstract
Filamentous actin (F-actin) and non-muscle myosin II motors drive cell motility and cell shape changes that guide large scale tissue movements during embryonic morphogenesis. To gain a better understanding of the role of actomyosin in vivo, we have developed a two-dimensional (2D) computational model to study emergent phenomena of dynamic unbranched actomyosin arrays in the cell cortex. These phenomena include actomyosin punctuated contractions, or "actin asters" that form within quiescent F-actin networks. Punctuated contractions involve both formation of high intensity aster-like structures and disassembly of those same structures. Our 2D model allows us to explore the kinematics of filament polarity sorting, segregation of motors, and morphology of F-actin arrays that emerge as the model structure and biophysical properties are varied. Our model demonstrates the complex, emergent feedback between filament reorganization and motor transport that generate as well as disassemble actin asters. Since intracellular actomyosin dynamics are thought to be controlled by localization of scaffold proteins that bind F-actin or their myosin motors we also apply our 2D model to recapitulate in vitro studies that have revealed complex patterns of actomyosin that assemble from patterning filaments and motor complexes with microcontact printing. Although we use a minimal representation of filament, motor, and cross-linker biophysics, our model establishes a framework for investigating the role of other actin binding proteins, how they might alter actomyosin dynamics, and makes predictions that can be tested experimentally within live cells as well as within in vitro models. Recent genetic and mechanical studies of embryonic development reveal a critical role for intracellular scaffolds in generating the shape of the embryo and constructing internal organs. In this paper we developed computer simulations of these scaffolds, composed of filamentous actin (F-actin), a rod-like protein polymer, and mini-thick filaments, composed of non-muscle myosin II, forming a two headed spring-like complex of motor proteins that can walk on, and remodel F-actin networks. Using simulations of these dynamic interactions, we can carry out virtual experiments where we change the physics and chemistry of F-actin polymers, their associated myosin motors, and cross-linkers and observe the changes in scaffolds that emerge. For example, by modulating the motor stiffness of the myosin motors in our model we can observe the formation or loss of large aster-like structures. Such fine-grained control over the physical properties of motors or filaments within simulations are not currently possible with biological experiments, even where mutant proteins or small molecule inhibitors can be targeted to specific sites on filaments or motors. Our approach reflects a growing adoption of simulation methods to investigate microscopic features that shape actomyosin arrays and the mesoscale effects of molecular scale processes. We expect predictions from these models will drive more refined experimental approaches to expose the many roles of actomyosin in development.
Collapse
|
32
|
Compartmentalization of the plasma membrane. Curr Opin Cell Biol 2018; 53:15-21. [PMID: 29656224 DOI: 10.1016/j.ceb.2018.04.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 11/23/2022]
Abstract
The compartmentalization of the plasma membrane is essential for cells to perform specialized biochemical functions, in particular those responsible for intracellular and intercellular signaling pathways. Study of membrane compartmentalization requires state-of-the-art imaging tools that can reveal dynamics of individual molecules with high spatial and temporal resolution. In addition, quantitative analyses are employed to identify transient changes in molecule dynamics. In this review, membrane compartments are classified as stable domains, transient compartments, or nanodomains where proteins aggregate. Interestingly, in most cases, the cortical cytoskeleton plays important roles. Recent studies of the membrane-cytoskeleton interface are providing new insights about membrane organization involving a scale-free self-similar fractal structure and cytoskeleton active processes coupled to membrane dynamics.
Collapse
|
33
|
Wollrab V, Belmonte JM, Baldauf L, Leptin M, Nédeléc F, Koenderink GH. Polarity sorting drives remodeling of actin-myosin networks. J Cell Sci 2018; 132:jcs.219717. [DOI: 10.1242/jcs.219717] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 11/01/2018] [Indexed: 12/18/2022] Open
Abstract
Cytoskeletal networks of actin filaments and myosin motors drive many dynamic cell processes. A key characteristic of these networks is their contractility. Despite intense experimental and theoretical efforts, it is not clear what mechanism favors network contraction over expansion. Recent work points to a dominant role for the nonlinear mechanical response of actin filaments, which can withstand stretching but buckle upon compression. Here we present an alternative mechanism. We study how interactions between actin and myosin-2 at the single filament level translate into contraction at the network scale by performing time-lapse imaging on reconstituted quasi-2D-networks mimicking the cell cortex. We observe myosin end-dwelling after it runs processively along actin filaments. This leads to transport and clustering of actin filament ends and the formation of transiently stable bipolar structures. Further we show that myosin-driven polarity sorting produces polar actin asters, which act as contractile nodes that drive contraction in crosslinked networks. Computer simulations comparing the roles of the end-dwelling mechanism and a buckling-dependent mechanism show that the relative contribution of end-dwelling contraction increases as the network mesh-size decreases.
Collapse
Affiliation(s)
| | - Julio M. Belmonte
- EMBL, Cell Biology and Developmental Biology Unit and Director's Research Unit, Meyerhofstraße 1, Heidelberg, Germany
| | - Lucia Baldauf
- AMOLF, Science Park 104, 1098 XG Amsterdam, the Netherlands
| | - Maria Leptin
- EMBL, Cell Biology and Developmental Biology Unit and Director's Research Unit, Meyerhofstraße 1, Heidelberg, Germany
| | - François Nédeléc
- EMBL, Cell Biology and Developmental Biology Unit and Director's Research Unit, Meyerhofstraße 1, Heidelberg, Germany
| | | |
Collapse
|
34
|
Cortical actin nodes: Their dynamics and recruitment of podosomal proteins as revealed by super-resolution and single-molecule microscopy. PLoS One 2017; 12:e0188778. [PMID: 29190677 PMCID: PMC5708734 DOI: 10.1371/journal.pone.0188778] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 11/13/2017] [Indexed: 12/15/2022] Open
Abstract
Electron tomography of the plasma membrane (PM) identified several layers of cortical actin meshwork running parallel to the PM cytoplasmic surface throughout the PM. Here, cortical actin structures and dynamics were examined in living cells, using super-resolution microscopy, with (x,y)- and z-resolutions of ~140 and ~400 nm, respectively, and single-molecule imaging. The super-resolution microscopy identified sub-micron-sized actin clusters that appeared identical by both phalloidin post-fixation staining and Lifeact-mGFP expression followed by fixation, and therefore, these actin clusters were named "actin-pl-clusters". In live cells, the actin-pl-clusters visualized by Lifeact-mGFP linked two or more actin filaments in the fine actin meshwork, acting as a node of the meshwork, and dynamically moved on/along the meshwork in a myosin II-dependent manner. Their formation depended on the Arp2/3 activities, suggesting that the movements could involve both the myosin motor activity and actin polymerization-depolymerization. The actin-pl-clusters differ from the actin nodes/asters found previously after latrunculin treatments, since myosin II and filamin A were not colocalized with the actin-pl-clusters, and the actin-pl-clusters were much smaller than the previously reported nodes/asters. The Lifeact linked to a fluorescently-labeled transmembrane peptide from syntaxin4 (Lifeact-TM) expressed in the PM exhibited temporary immobilization in the PM regions on which actin-pl-clusters and stress fibers were projected, showing that ≥66% of actin-pl-clusters and 89% of stress fibers were located in close proximity (within 3.5 nm) to the PM cytoplasmic surface. Podosome-associated cytoplasmic proteins, Tks4, Tks5, cortactin, and N-WASP, were transiently recruited to actin-pl-clusters, and thus, we propose that actin-pl-clusters also represent "actin podosome-like clusters".
Collapse
|
35
|
Fu W, Wang L, Kim S, Li J, Dynlacht BD. Role for the IFT-A Complex in Selective Transport to the Primary Cilium. Cell Rep 2017; 17:1505-1517. [PMID: 27806291 DOI: 10.1016/j.celrep.2016.10.018] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 09/05/2016] [Accepted: 10/05/2016] [Indexed: 11/27/2022] Open
Abstract
Intraflagellar transport sub-complex A (IFT-A) is known to regulate retrograde IFT in the cilium. To rigorously assess its other possible roles, we knocked out an IFT-A subunit, IFT121/WDR35, in mammalian cells and screened the localization of more than 50 proteins. We found that Wdr35 regulates cilium assembly by selectively regulating transport of distinct cargoes. Beyond its role in retrograde transport, we show that Wdr35 functions in fusion of Rab8 vesicles at the nascent cilium, protein exit from the cilium, and centriolar satellite organization. Furthermore, we show that Wdr35 is essential for entry of many membrane proteins into the cilium through robust interactions with cargoes and other IFT-A subunits, but the actin network functions to dampen this transport. Wdr35 is mutated in several ciliopathies, and we find that certain disease mutations impair interactions with cargo and other IFT-A subunits. Together, our data link defects in IFT-A mediated cargo transport with disease.
Collapse
Affiliation(s)
- Wenxiang Fu
- Department of Pathology and Perlmutter Cancer Center, NYU School of Medicine, Smilow Research Building, 522 First Avenue, New York, NY 10016, USA
| | - Lei Wang
- Department of Pathology and Perlmutter Cancer Center, NYU School of Medicine, Smilow Research Building, 522 First Avenue, New York, NY 10016, USA
| | - Sehyun Kim
- Department of Pathology and Perlmutter Cancer Center, NYU School of Medicine, Smilow Research Building, 522 First Avenue, New York, NY 10016, USA
| | - Ji Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute, Cambridge, MA 02142, USA
| | - Brian David Dynlacht
- Department of Pathology and Perlmutter Cancer Center, NYU School of Medicine, Smilow Research Building, 522 First Avenue, New York, NY 10016, USA.
| |
Collapse
|
36
|
Hillen T, White D, de Vries G, Dawes A. Existence and uniqueness for a coupled PDE model for motor-induced microtubule organization. JOURNAL OF BIOLOGICAL DYNAMICS 2017; 11:294-315. [PMID: 28426333 DOI: 10.1080/17513758.2017.1310939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Microtubules (MTs) are protein filaments that provide structure to the cytoskeleton of cells and a platform for the movement of intracellular substances. The spatial organization of MTs is crucial for a cell's form and function. MTs interact with a class of proteins called motor proteins that can transport and position individual filaments, thus contributing to overall organization. In this paper, we study the mathematical properties of a coupled partial differential equation (PDE) model, introduced by White et al. in 2015, that describes the motor-induced organization of MTs. The model consists of a nonlinear coupling of a hyperbolic PDE for bound motor proteins, a parabolic PDE for unbound motor proteins, and a transport equation for MT dynamics. We locally smooth the motor drift velocity in the equation for bound motor proteins. The mollification is not only critical for the analysis of the model, but also adds biological realism. We then use a Banach Fixed Point argument to show local existence and uniqueness of mild solutions. We highlight the applicability of the model by showing numerical simulations that are consistent with in vitro experiments.
Collapse
Affiliation(s)
- Thomas Hillen
- a Department of Mathematical and Statistical Sciences , Centre for Mathematical Biology, University of Alberta , Edmonton , AB , Canada
| | - Diana White
- b Aix-Marseille University, Institute of Mathematics , Marseille , France
| | - Gerda de Vries
- a Department of Mathematical and Statistical Sciences , Centre for Mathematical Biology, University of Alberta , Edmonton , AB , Canada
| | - Adriana Dawes
- c Department of Mathematics , Ohio State University , Columbus , OH , USA
- d Department of Molecular Genetics , Ohio State University , Columbus , OH , USA
| |
Collapse
|
37
|
Bachir AI, Horwitz AR, Nelson WJ, Bianchini JM. Actin-Based Adhesion Modules Mediate Cell Interactions with the Extracellular Matrix and Neighboring Cells. Cold Spring Harb Perspect Biol 2017; 9:9/7/a023234. [PMID: 28679638 DOI: 10.1101/cshperspect.a023234] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cell adhesions link cells to the extracellular matrix (ECM) and to each other and depend on interactions with the actin cytoskeleton. Both cell-ECM and cell-cell adhesion sites contain discrete, yet overlapping, functional modules. These modules establish physical associations with the actin cytoskeleton, locally modulate actin organization and dynamics, and trigger intracellular signaling pathways. Interplay between these modules generates distinct actin architectures that underlie different stages, types, and functions of cell-ECM and cell-cell adhesions. Actomyosin contractility is required to generate mature, stable adhesions, as well as to sense and translate the mechanical properties of the cellular environment into changes in cell organization and behavior. Here, we review the organization and function of different adhesion modules and how they interact with the actin cytoskeleton. We highlight the molecular mechanisms of mechanotransduction in adhesions and how adhesion molecules mediate cross talk between cell-ECM and cell-cell adhesion sites.
Collapse
Affiliation(s)
- Alexia I Bachir
- Protein and Cell Analysis, Biosciences Division, Thermo Fisher Scientific, Eugene, Oregon 97402
| | - Alan Rick Horwitz
- Protein and Cell Analysis, Biosciences Division, Thermo Fisher Scientific, Eugene, Oregon 97402
| | - W James Nelson
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22903
| | - Julie M Bianchini
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22903
| |
Collapse
|
38
|
Vogel SK, Greiss F, Khmelinskaia A, Schwille P. Control of lipid domain organization by a biomimetic contractile actomyosin cortex. eLife 2017; 6. [PMID: 28463108 PMCID: PMC5429089 DOI: 10.7554/elife.24350] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 04/29/2017] [Indexed: 12/28/2022] Open
Abstract
The cell membrane is a heterogeneously organized composite with lipid-protein micro-domains. The contractile actin cortex may govern the lateral organization of these domains in the cell membrane, yet the underlying mechanisms are not known. We recently reconstituted minimal actin cortices (MACs) (Vogel et al., 2013b) and here advanced our assay to investigate effects of rearranging actin filaments on the lateral membrane organization by introducing various phase-separated lipid mono- and bilayers to the MACs. The addition of actin filaments reorganized membrane domains. We found that the process reached a steady state where line tension and lateral crowding balanced. Moreover, the phase boundary allowed myosin driven actin filament rearrangements to actively move individual lipid domains, often accompanied by their shape change, fusion or splitting. Our findings illustrate how actin cortex remodeling in cells may control dynamic rearrangements of lipids and other molecules inside domains without directly binding to actin filaments. DOI:http://dx.doi.org/10.7554/eLife.24350.001
Collapse
Affiliation(s)
| | - Ferdinand Greiss
- Max-Planck Institute of Biochemistry, Martinsried, Germany.,Systems Biophysics, Physics Department, Ludwig-Maximilans-University, Munich, Germany.,Graduate School of Quantitative Biosciences, Ludwig-Maximilans-University, Munich, Germany
| | - Alena Khmelinskaia
- Max-Planck Institute of Biochemistry, Martinsried, Germany.,Graduate School of Quantitative Biosciences, Ludwig-Maximilans-University, Munich, Germany
| | - Petra Schwille
- Max-Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
39
|
Abstract
Cells in physiology integrate local soluble and mechanical signals to regulate genomic programs. Whereas the individual roles of these signals are well studied, the cellular responses to the combined chemical and physical signals are less explored. Here, we investigated the cross-talk between cellular geometry and TNFα signaling. We stabilized NIH 3T3 fibroblasts into rectangular anisotropic or circular isotropic geometries and stimulated them with TNFα and analyzed nuclear translocation of transcription regulators -NFκB (p65) and MKL and downstream gene-expression patterns. We found that TNFα induces geometry-dependent actin depolymerization, which enhances IκB degradation, p65 nuclear translocation, nuclear exit of MKL, and sequestration of p65 at the RNA-polymerase-II foci. Further, global transcription profile of cells under matrix-TNFα interplay reveals a geometry-dependent gene-expression pattern. At a functional level, we find cell geometry affects TNFα-induced cell proliferation. Our results provide compelling evidence that fibroblasts, depending on their geometries, elicit distinct cellular responses for the same cytokine.
Collapse
|
40
|
Igamberdiev AU, Shklovskiy-Kordi NE. The quantum basis of spatiotemporality in perception and consciousness. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 130:15-25. [PMID: 28232245 DOI: 10.1016/j.pbiomolbio.2017.02.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/16/2017] [Indexed: 12/21/2022]
Abstract
Living systems inhabit the area of the world which is shaped by the predictable space-time of physical objects and forces that can be incorporated into their perception pattern. The process of selecting a "habitable" space-time is the internal quantum measurement in which living systems become embedded into the environment that supports their living state. This means that living organisms choose a coordinate system in which the influence of measurement is minimal. We discuss specific roles of biological macromolecules, in particular of the cytoskeleton, in shaping perception patterns formed in the internal measurement process. Operation of neuron is based on the transmission of signals via cytoskeleton where the digital output is generated that can be decoded through a reflective action of the perceiving agent. It is concluded that the principle of optimality in biology as formulated by Liberman et al. (BioSystems 22, 135-154, 1989) is related to the establishment of spatiotemporal patterns that are maximally predictable and can hold the living state for a prolonged time. This is achieved by the selection of a habitable space approximated to the conditions described by classical physics.
Collapse
Affiliation(s)
- Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| | | |
Collapse
|
41
|
Fritzsche M, Li D, Colin-York H, Chang VT, Moeendarbary E, Felce JH, Sezgin E, Charras G, Betzig E, Eggeling C. Self-organizing actin patterns shape membrane architecture but not cell mechanics. Nat Commun 2017; 8:14347. [PMID: 28194011 PMCID: PMC5316839 DOI: 10.1038/ncomms14347] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 12/15/2016] [Indexed: 01/24/2023] Open
Abstract
Cell-free studies have demonstrated how collective action of actin-associated proteins can organize actin filaments into dynamic patterns, such as vortices, asters and stars. Using complementary microscopic techniques, we here show evidence of such self-organization of the actin cortex in living HeLa cells. During cell adhesion, an active multistage process naturally leads to pattern transitions from actin vortices over stars into asters. This process is primarily driven by Arp2/3 complex nucleation, but not by myosin motors, which is in contrast to what has been theoretically predicted and observed in vitro. Concomitant measurements of mechanics and plasma membrane fluidity demonstrate that changes in actin patterning alter membrane architecture but occur functionally independent of macroscopic cortex elasticity. Consequently, tuning the activity of the Arp2/3 complex to alter filament assembly may thus be a mechanism allowing cells to adjust their membrane architecture without affecting their macroscopic mechanical properties.
Collapse
Affiliation(s)
- M. Fritzsche
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, UK
| | - D. Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - H. Colin-York
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, UK
| | - V. T. Chang
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, UK
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - E. Moeendarbary
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
- Department of Mechanical Engineering, University College London, London WC1E 7JE, UK
| | - J. H. Felce
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, UK
| | - E. Sezgin
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, UK
| | - G. Charras
- London Centre for Nanotechnology and Department of Cell & Developmental Biology, University College London, 17-19 Gordon Street, London WC1H 0AH, UK
| | - E. Betzig
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, Virginia 20147, USA
| | - C. Eggeling
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, UK
| |
Collapse
|
42
|
Ayala YA, Pontes B, Hissa B, Monteiro ACM, Farina M, Moura-Neto V, Viana NB, Nussenzveig HM. Effects of cytoskeletal drugs on actin cortex elasticity. Exp Cell Res 2017; 351:173-181. [DOI: 10.1016/j.yexcr.2016.12.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 11/30/2016] [Accepted: 12/22/2016] [Indexed: 12/27/2022]
|
43
|
Cell Surface Mechanochemistry and the Determinants of Bleb Formation, Healing, and Travel Velocity. Biophys J 2016; 110:1636-1647. [PMID: 27074688 DOI: 10.1016/j.bpj.2016.03.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/07/2016] [Accepted: 03/07/2016] [Indexed: 11/21/2022] Open
Abstract
Blebs are pressure-driven cell protrusions implicated in cellular functions such as cell division, apoptosis, and cell motility, including motility of protease-inhibited cancer cells. Because of their mechanical nature, blebs inform us about general cell-surface mechanics, including membrane dynamics, pressure propagation throughout the cytoplasm, and the architecture and dynamics of the actin cortex. Mathematical models including detailed fluid dynamics have previously been used to understand bleb expansion. Here, we develop mathematical models in two and three dimensions on longer timescales that recapitulate the full bleb life cycle, including both expansion and healing by cortex reformation, in terms of experimentally accessible biophysical parameters such as myosin contractility, osmotic pressure, and turnover of actin and ezrin. The model provides conditions under which blebbing occurs, and naturally gives rise to traveling blebs. The model predicts conditions under which blebs travel or remain stationary, as well as the bleb traveling velocity, a quantity that has remained elusive in previous models. As previous studies have used blebs as reporters of membrane tension and pressure dynamics within the cell, we have used our system to investigate various pressure equilibration models and dynamic, nonuniform membrane tension to account for the shape of a traveling bleb. We also find that traveling blebs tend to expand in all directions unless otherwise constrained. One possible constraint could be provided by spatial heterogeneity in, for example, adhesion density.
Collapse
|
44
|
Wales P, Schuberth CE, Aufschnaiter R, Fels J, García-Aguilar I, Janning A, Dlugos CP, Schäfer-Herte M, Klingner C, Wälte M, Kuhlmann J, Menis E, Hockaday Kang L, Maier KC, Hou W, Russo A, Higgs HN, Pavenstädt H, Vogl T, Roth J, Qualmann B, Kessels MM, Martin DE, Mulder B, Wedlich-Söldner R. Calcium-mediated actin reset (CaAR) mediates acute cell adaptations. eLife 2016; 5. [PMID: 27919320 PMCID: PMC5140269 DOI: 10.7554/elife.19850] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 11/14/2016] [Indexed: 12/24/2022] Open
Abstract
Actin has well established functions in cellular morphogenesis. However, it is not well understood how the various actin assemblies in a cell are kept in a dynamic equilibrium, in particular when cells have to respond to acute signals. Here, we characterize a rapid and transient actin reset in response to increased intracellular calcium levels. Within seconds of calcium influx, the formin INF2 stimulates filament polymerization at the endoplasmic reticulum (ER), while cortical actin is disassembled. The reaction is then reversed within a few minutes. This Calcium-mediated actin reset (CaAR) occurs in a wide range of mammalian cell types and in response to many physiological cues. CaAR leads to transient immobilization of organelles, drives reorganization of actin during cell cortex repair, cell spreading and wound healing, and induces long-lasting changes in gene expression. Our findings suggest that CaAR acts as fundamental facilitator of cellular adaptations in response to acute signals and stress. DOI:http://dx.doi.org/10.7554/eLife.19850.001 Our skeleton plays a vital role in giving shape and structure to our body, it also allows us to make coordinated movements. Similarly, each cell contains a microscopic network of structures and supports called the cytoskeleton that helps cells to adopt specific shapes and is crucial for them to move around. Unlike our skeleton, which is relatively unchanging, the cytoskeleton of each cell constantly changes and adapts to the specific needs of the cell. One part of the cytoskeleton is a dense, flexible meshwork of fibers called the cortex that lies just beneath the surface of the cell. The cortex is constructed using a protein called actin, and many of these proteins join together to form each fiber. When cells need to adapt rapidly to an injury or other sudden changes in their environment they activate a so-called stress response. This response often begins with a rapid increase in the amount of calcium ions inside a cell, which can then trigger changes in actin organization. However, it is not clear how cells under stress are able to globally remodel their actin cytoskeleton without compromising stability and integrity of the cortex. Wales, Schuberth, Aufschnaiter et al. used a range of mammalian cells to investigate how actin responds to stress signals. All cells responded to the resulting influx of calcium ions by deconstructing large parts of the actin cortex and simultaneously forming actin filaments near the center of the cell. Wales, Schuberth, Aufschnaiter et al. termed this response calcium-mediated actin reset (CaAR), as it lasted for only a few minutes before the actin cortex reformed. The experiments show that a protein called INF2 controls CaAR by rapidly removing actin from the cortex and forming new filaments near a cell compartment called the endoplasmic reticulum. CaAR allows cells to rapidly and drastically alter the cortex in response to stress. The experiments also show that this sudden shift in actin can change the activity of certain genes, leading to longer-term effects on the cell. The findings of Wales, Schuberth, Aufschnaiter et al. suggest that calcium ions globally regulate the actin cytoskeleton and hence cell shape and movement under stress. This could be relevant for many important processes and conditions such as wound healing, inflammation and cancer. A future challenge will be to understand the role of CaAR in these processes. DOI:http://dx.doi.org/10.7554/eLife.19850.002
Collapse
Affiliation(s)
- Pauline Wales
- Institute of Cell Dynamics and Imaging, University of Muenster, Muenster, Germany.,Cells-In-Motion Cluster of Excellence (EXC1003 - CiM), University of Münster, Muenster, Germany
| | - Christian E Schuberth
- Institute of Cell Dynamics and Imaging, University of Muenster, Muenster, Germany.,Cells-In-Motion Cluster of Excellence (EXC1003 - CiM), University of Münster, Muenster, Germany
| | - Roland Aufschnaiter
- Institute of Cell Dynamics and Imaging, University of Muenster, Muenster, Germany.,Cells-In-Motion Cluster of Excellence (EXC1003 - CiM), University of Münster, Muenster, Germany
| | - Johannes Fels
- Institute of Cell Dynamics and Imaging, University of Muenster, Muenster, Germany.,Cells-In-Motion Cluster of Excellence (EXC1003 - CiM), University of Münster, Muenster, Germany
| | | | - Annette Janning
- Institute of Cell Dynamics and Imaging, University of Muenster, Muenster, Germany.,Cells-In-Motion Cluster of Excellence (EXC1003 - CiM), University of Münster, Muenster, Germany
| | - Christopher P Dlugos
- Institute of Cell Dynamics and Imaging, University of Muenster, Muenster, Germany.,Cells-In-Motion Cluster of Excellence (EXC1003 - CiM), University of Münster, Muenster, Germany.,Medical Clinic D, University Clinic of Muenster, Muenster, Germany
| | - Marco Schäfer-Herte
- Institute of Cell Dynamics and Imaging, University of Muenster, Muenster, Germany.,Cells-In-Motion Cluster of Excellence (EXC1003 - CiM), University of Münster, Muenster, Germany
| | - Christoph Klingner
- Institute of Cell Dynamics and Imaging, University of Muenster, Muenster, Germany.,Cells-In-Motion Cluster of Excellence (EXC1003 - CiM), University of Münster, Muenster, Germany.,AG Molecular Mechanotransduction, Max Planck Institute of Biochemistry, Munich, Germany
| | - Mike Wälte
- Institute of Cell Dynamics and Imaging, University of Muenster, Muenster, Germany.,Cells-In-Motion Cluster of Excellence (EXC1003 - CiM), University of Münster, Muenster, Germany
| | - Julian Kuhlmann
- Institute of Cell Dynamics and Imaging, University of Muenster, Muenster, Germany.,Cells-In-Motion Cluster of Excellence (EXC1003 - CiM), University of Münster, Muenster, Germany
| | - Ekaterina Menis
- Institute of Cell Dynamics and Imaging, University of Muenster, Muenster, Germany.,Cells-In-Motion Cluster of Excellence (EXC1003 - CiM), University of Münster, Muenster, Germany
| | - Laura Hockaday Kang
- Institute of Cell Dynamics and Imaging, University of Muenster, Muenster, Germany.,Cells-In-Motion Cluster of Excellence (EXC1003 - CiM), University of Münster, Muenster, Germany
| | - Kerstin C Maier
- Department of Biochemistry, University of Munich, Munich, Germany
| | - Wenya Hou
- Institute of Biochemistry I, Friedrich Schiller University Jena, Jena, Germany
| | - Antonella Russo
- Institute of Immunology, University of Münster, Münster, Germany
| | - Henry N Higgs
- Department of Biochemistry, Dartmouth Medical School, Hanover, United States
| | | | - Thomas Vogl
- Institute of Immunology, University of Münster, Münster, Germany
| | - Johannes Roth
- Institute of Immunology, University of Münster, Münster, Germany
| | - Britta Qualmann
- Institute of Biochemistry I, Friedrich Schiller University Jena, Jena, Germany
| | - Michael M Kessels
- Institute of Biochemistry I, Friedrich Schiller University Jena, Jena, Germany
| | - Dietmar E Martin
- Department of Biochemistry, University of Munich, Munich, Germany
| | - Bela Mulder
- Theory of Biological Matter, FOM Institute AMOLF, Amsterdam, Netherlands
| | - Roland Wedlich-Söldner
- Institute of Cell Dynamics and Imaging, University of Muenster, Muenster, Germany.,Cells-In-Motion Cluster of Excellence (EXC1003 - CiM), University of Münster, Muenster, Germany
| |
Collapse
|
45
|
Bryant D, Clemens L, Allard J. Computational simulation of formin-mediated actin polymerization predicts homologue-dependent mechanosensitivity. Cytoskeleton (Hoboken) 2016; 74:29-39. [PMID: 27792274 DOI: 10.1002/cm.21344] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 10/27/2016] [Accepted: 10/27/2016] [Indexed: 01/10/2023]
Abstract
Many actin structures are nucleated and assembled by the barbed-end tracking polymerase formin family, including filopodia, focal adhesions, the cytokinetic ring and cell cortex. These structures respond to forces in distinct ways. Formins typically have profilin-actin binding sites embedded in highly flexible disordered FH1 domains, hypothesized to diffusively explore space to rapidly capture actin monomers for delivery to the barbed end. Recent experiments demonstrate that formin-mediated polymerization accelerates when under tension. The acceleration has been attributed to modifying the state of the FH2 domain of formin. Intriguingly, the same acceleration is reported when tension is applied to the FH1 domains, ostensibly pulling monomers away from the barbed end. Here we develop a mesoscale coarse-grain model of formin-mediated actin polymerization, including monomer capture and delivery by FH1, which sterically interacts with actin along its entire length. The binding of actin monomers to their specific sites on FH1 is entropically disfavored by the high disorder. We find that this penalty is attenuated when force is applied to the FH1 domain by revealing the binding site, increasing monomer capture efficiency. Overall polymerization rates can decrease or increase with increasing force, depending on the length of FH1 domain and location of binding site. Our results suggest that the widely varying FH1 lengths and binding site locations found in known formins could be used to differentially respond to force, depending on the actin structure being assembled. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Derek Bryant
- Department of Physics and Astronomy, University of California, Irvine, California
| | - Lara Clemens
- Center for Complex Biological Systems, University of California, Irvine, California
| | - Jun Allard
- Department of Physics and Astronomy, University of California, Irvine, California.,Center for Complex Biological Systems, University of California, Irvine, California.,Department of Mathematics, University of California, Irvine, California
| |
Collapse
|
46
|
Luo W, Lieu ZZ, Manser E, Bershadsky AD, Sheetz MP. Formin DAAM1 Organizes Actin Filaments in the Cytoplasmic Nodal Actin Network. PLoS One 2016; 11:e0163915. [PMID: 27760153 PMCID: PMC5070803 DOI: 10.1371/journal.pone.0163915] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 09/17/2016] [Indexed: 01/13/2023] Open
Abstract
A nodal cytoplasmic actin network underlies actin cytoplasm cohesion in the absence of stress fibers. We previously described such a network that forms upon Latrunculin A (LatA) treatment, in which formin DAAM1 was localized at these nodes. Knock down of DAAM1 reduced the mobility of actin nodes but the nodes remained. Here we have investigated DAAM1 containing nodes after LatA washout. DAAM1 was found to be distributed between the cytoplasm and the plasma membrane. The membrane binding likely occurs through an interaction with lipid rafts, but is not required for F-actin assembly. Interesting the forced interaction of DAAM1 with plasma membrane through a rapamycin-dependent linkage, enhanced F-actin assembly at the cell membrane (compared to the cytoplasm) after the LatA washout. However, immediately after addition of both rapamycin and LatA, the cytoplasmic actin nodes formed transiently, before DAAM1 moved to the membrane. This was consistent with the idea that DAAM1 was initially anchored to cytoplasmic actin nodes. Further, photoactivatable tracking of DAAM1 showed DAAM1 was immobilized at these actin nodes. Thus, we suggest that DAAM1 organizes actin filaments into a nodal complex, and such nodal complexes seed actin network recovery after actin depolymerization.
Collapse
Affiliation(s)
- Weiwei Luo
- Mechanobiology Institute, National University of Singapore, Singapore, 117411, Singapore
| | - Zi Zhao Lieu
- Mechanobiology Institute, National University of Singapore, Singapore, 117411, Singapore
| | - Ed Manser
- sGSK Group, Institute of Molecular and Cell Biology, Agency for Science Technology and Research, Proteos Building, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Alexander D. Bershadsky
- Mechanobiology Institute, National University of Singapore, Singapore, 117411, Singapore
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Michael P. Sheetz
- Mechanobiology Institute, National University of Singapore, Singapore, 117411, Singapore
- Department of Biological Sciences, Columbia University, New York, New York, 10027, United States of America
- * E-mail:
| |
Collapse
|
47
|
Michael M, Meiring JCM, Acharya BR, Matthews DR, Verma S, Han SP, Hill MM, Parton RG, Gomez GA, Yap AS. Coronin 1B Reorganizes the Architecture of F-Actin Networks for Contractility at Steady-State and Apoptotic Adherens Junctions. Dev Cell 2016; 37:58-71. [PMID: 27046832 DOI: 10.1016/j.devcel.2016.03.008] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/19/2016] [Accepted: 03/08/2016] [Indexed: 01/21/2023]
Abstract
In this study we sought to identify how contractility at adherens junctions influences apoptotic cell extrusion. We first found that the generation of effective contractility at steady-state junctions entails a process of architectural reorganization whereby filaments that are initially generated as poorly organized networks of short bundles are then converted into co-aligned perijunctional bundles. Reorganization requires coronin 1B, which is recruited to junctions by E-cadherin adhesion and is necessary to establish contractile tension at the zonula adherens. When cells undergo apoptosis within an epithelial monolayer, coronin 1B is also recruited to the junctional cortex at the apoptotic/neighbor cell interface in an E-cadherin-dependent fashion to support actin architectural reorganization, contractility, and extrusion. We propose that contractile stress transmitted from the apoptotic cell through E-cadherin adhesions elicits a mechanosensitive response in neighbor cells that is necessary for the morphogenetic event of apoptotic extrusion to occur.
Collapse
Affiliation(s)
- Magdalene Michael
- Division of Cell Biology and Molecular Medicine, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; Randall Division of Cell and Molecular Biophysics, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Joyce C M Meiring
- Division of Cell Biology and Molecular Medicine, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Bipul R Acharya
- Division of Cell Biology and Molecular Medicine, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Daniel R Matthews
- Queensland Brain Institute, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Suzie Verma
- Division of Cell Biology and Molecular Medicine, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Siew Ping Han
- Division of Cell Biology and Molecular Medicine, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Michelle M Hill
- University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Woolloongabba, Brisbane, QLD 4102, Australia
| | - Robert G Parton
- Division of Cell Biology and Molecular Medicine, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; NHMRC Program in Membrane Interface Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; Centre for Microscopy and Microanalysis, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Guillermo A Gomez
- Division of Cell Biology and Molecular Medicine, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Alpha S Yap
- Division of Cell Biology and Molecular Medicine, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; NHMRC Program in Membrane Interface Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia.
| |
Collapse
|
48
|
Wollrab V, Thiagarajan R, Wald A, Kruse K, Riveline D. Still and rotating myosin clusters determine cytokinetic ring constriction. Nat Commun 2016; 7:11860. [PMID: 27363521 PMCID: PMC4932180 DOI: 10.1038/ncomms11860] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 05/06/2016] [Indexed: 12/27/2022] Open
Abstract
The cytokinetic ring is essential for separating daughter cells during division. It consists of actin filaments and myosin motors that are generally assumed to organize as sarcomeres similar to skeletal muscles. However, direct evidence is lacking. Here we show that the internal organization and dynamics of rings are different from sarcomeres and distinct in different cell types. Using micro-cavities to orient rings in single focal planes, we find in mammalian cells a transition from a homogeneous distribution to a periodic pattern of myosin clusters at the onset of constriction. In contrast, in fission yeast, myosin clusters rotate prior to and during constriction. Theoretical analysis indicates that both patterns result from acto-myosin self-organization and reveals differences in the respective stresses. These findings suggest distinct functional roles for rings: contraction in mammalian cells and transport in fission yeast. Thus self-organization under different conditions may be a generic feature for regulating morphogenesis in vivo.
Collapse
Affiliation(s)
- Viktoria Wollrab
- Laboratory of Cell Physics ISIS/IGBMC, ISIS &icFRC, Université de Strasbourg &CNRS, 8 allée Gaspard Monge, Strasbourg 67000, France.,Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France.,Theoretical Physics, Saarland University 66123, Saarbrücken, Germany
| | - Raghavan Thiagarajan
- Laboratory of Cell Physics ISIS/IGBMC, ISIS &icFRC, Université de Strasbourg &CNRS, 8 allée Gaspard Monge, Strasbourg 67000, France.,Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Anne Wald
- Theoretical Physics, Saarland University 66123, Saarbrücken, Germany
| | - Karsten Kruse
- Theoretical Physics, Saarland University 66123, Saarbrücken, Germany
| | - Daniel Riveline
- Laboratory of Cell Physics ISIS/IGBMC, ISIS &icFRC, Université de Strasbourg &CNRS, 8 allée Gaspard Monge, Strasbourg 67000, France.,Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| |
Collapse
|
49
|
He W, Song H, Su Y, Geng L, Ackerson BJ, Peng HB, Tong P. Dynamic heterogeneity and non-Gaussian statistics for acetylcholine receptors on live cell membrane. Nat Commun 2016; 7:11701. [PMID: 27226072 PMCID: PMC4894960 DOI: 10.1038/ncomms11701] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 04/20/2016] [Indexed: 12/14/2022] Open
Abstract
The Brownian motion of molecules at thermal equilibrium usually has a finite correlation time and will eventually be randomized after a long delay time, so that their displacement follows the Gaussian statistics. This is true even when the molecules have experienced a complex environment with a finite correlation time. Here, we report that the lateral motion of the acetylcholine receptors on live muscle cell membranes does not follow the Gaussian statistics for normal Brownian diffusion. From a careful analysis of a large volume of the protein trajectories obtained over a wide range of sampling rates and long durations, we find that the normalized histogram of the protein displacements shows an exponential tail, which is robust and universal for cells under different conditions. The experiment indicates that the observed non-Gaussian statistics and dynamic heterogeneity are inherently linked to the slow-active remodelling of the underlying cortical actin network.
Collapse
Affiliation(s)
- W He
- Nano Science and Technology Program, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - H Song
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Y Su
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - L Geng
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - B J Ackerson
- Department of Physics, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| | - H B Peng
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - P Tong
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
50
|
Abstract
Super resolution imaging is becoming an increasingly important tool in the arsenal of methods available to cell biologists. In recognition of its potential, the Nobel Prize for chemistry was awarded to three investigators involved in the development of super resolution imaging methods in 2014. The availability of commercial instruments for super resolution imaging has further spurred the development of new methods and reagents designed to take advantage of super resolution techniques. Super resolution offers the advantages traditionally associated with light microscopy, including the use of gentle fixation and specimen preparation methods, the ability to visualize multiple elements within a single specimen, and the potential to visualize dynamic changes in living specimens over time. However, imaging of living cells over time is difficult and super resolution imaging is computationally demanding. In this review, we discuss the advantages/disadvantages of different super resolution systems for imaging fixed live specimens, with particular regard to cytoskeleton structures.
Collapse
Affiliation(s)
- Eric A Shelden
- School of Molecular Biosciences, Washington State University, Pullman, WA, USA
| | - Zachary T Colburn
- School of Molecular Biosciences, Washington State University, Pullman, WA, USA
| | - Jonathan C R Jones
- School of Molecular Biosciences, Washington State University, Pullman, WA, USA
| |
Collapse
|