1
|
Singh DND, Roberts ARE, Wang X, Li G, Quesada Moraga E, Alliband D, Ballou E, Tsai HJ, Hidalgo A. Toll-1-dependent immune evasion induced by fungal infection leads to cell loss in the Drosophila brain. PLoS Biol 2025; 23:e3003020. [PMID: 39946503 PMCID: PMC11825051 DOI: 10.1371/journal.pbio.3003020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 01/15/2025] [Indexed: 02/17/2025] Open
Abstract
Fungi can intervene in hosts' brain function. In humans, they can drive neuroinflammation, neurodegenerative diseases and psychiatric disorders. However, how fungi alter the host brain is unknown. The mechanism underlying innate immunity to fungi is well-known and universally conserved downstream of shared Toll/TLR receptors, which via the adaptor MyD88 and the transcription factor Dif/NFκB, induce the expression of antimicrobial peptides (AMPs). However, in the brain, Toll-1 could also drive an alternative pathway via Sarm, which causes cell death instead. Sarm is the universal inhibitor of MyD88 and could drive immune evasion. Here, we show that exposure to the fungus Beauveria bassiana reduced fly life span, impaired locomotion and caused neurodegeneration. Beauveria bassiana entered the Drosophila brain and induced the up-regulation of AMPs, and the Toll adaptors wek and sarm, within the brain. RNAi knockdown of Toll-1, wek or sarm concomitantly with infection prevented B. bassiana-induced cell loss. By contrast, over-expression of wek or sarm was sufficient to cause neuronal loss in the absence of infection. Thus, B. bassiana caused cell loss in the host brain via Toll-1/Wek/Sarm signalling driving immune evasion. A similar activation of Sarm downstream of TLRs upon fungal infections could underlie psychiatric and neurodegenerative diseases in humans.
Collapse
Affiliation(s)
- Deepanshu N. D. Singh
- Brain Plasticity & Regeneration Lab, Birmingham Centre for Neurogenetics, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
- Institute of Immunity and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Abigail R. E. Roberts
- Brain Plasticity & Regeneration Lab, Birmingham Centre for Neurogenetics, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Xiaocui Wang
- Brain Plasticity & Regeneration Lab, Birmingham Centre for Neurogenetics, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Guiyi Li
- Brain Plasticity & Regeneration Lab, Birmingham Centre for Neurogenetics, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | | | - David Alliband
- Brain Plasticity & Regeneration Lab, Birmingham Centre for Neurogenetics, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Elizabeth Ballou
- Institute of Immunity and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Hung-Ji Tsai
- Institute of Immunity and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Alicia Hidalgo
- Brain Plasticity & Regeneration Lab, Birmingham Centre for Neurogenetics, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
2
|
Dominicci-Cotto C, Vazquez M, Marie B. The Wingless planar cell polarity pathway is essential for optimal activity-dependent synaptic plasticity. Front Synaptic Neurosci 2024; 16:1322771. [PMID: 38633293 PMCID: PMC11021733 DOI: 10.3389/fnsyn.2024.1322771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/18/2024] [Indexed: 04/19/2024] Open
Abstract
From fly to man, the Wingless (Wg)/Wnt signaling molecule is essential for both the stability and plasticity of the nervous system. The Drosophila neuromuscular junction (NMJ) has proven to be a useful system for deciphering the role of Wg in directing activity-dependent synaptic plasticity (ADSP), which, in the motoneuron, has been shown to be dependent on both the canonical and the noncanonical calcium Wg pathways. Here we show that the noncanonical planar cell polarity (PCP) pathway is an essential component of the Wg signaling system controlling plasticity at the motoneuron synapse. We present evidence that disturbing the PCP pathway leads to a perturbation in ADSP. We first show that a PCP-specific allele of disheveled (dsh) affects the de novo synaptic structures produced during ADSP. We then show that the Rho GTPases downstream of Dsh in the PCP pathway are also involved in regulating the morphological changes that take place after repeated stimulation. Finally, we show that Jun kinase is essential for this phenomenon, whereas we found no indication of the involvement of the transcription factor complex AP1 (Jun/Fos). This work shows the involvement of the neuronal PCP signaling pathway in supporting ADSP. Because we find that AP1 mutants can perform ADSP adequately, we hypothesize that, upon Wg activation, the Rho GTPases and Jun kinase are involved locally at the synapse, in instructing cytoskeletal dynamics responsible for the appearance of the morphological changes occurring during ADSP.
Collapse
Affiliation(s)
- Carihann Dominicci-Cotto
- Department of Anatomy and Neurobiology, Medical Sciences Campus, University of Puerto Rico, San Juan, PR, United States
- Institute of Neurobiology, Medical Sciences Campus, University of Puerto Rico, San Juan, PR, United States
| | - Mariam Vazquez
- Institute of Neurobiology, Medical Sciences Campus, University of Puerto Rico, San Juan, PR, United States
- Molecular Sciences Research Center, University of Puerto Rico, San Juan, PR, United States
| | - Bruno Marie
- Department of Anatomy and Neurobiology, Medical Sciences Campus, University of Puerto Rico, San Juan, PR, United States
- Institute of Neurobiology, Medical Sciences Campus, University of Puerto Rico, San Juan, PR, United States
- Molecular Sciences Research Center, University of Puerto Rico, San Juan, PR, United States
| |
Collapse
|
3
|
Zhang J, Tang T, Zhang R, Wen L, Deng X, Xu X, Yang W, Jin F, Cao Y, Lu Y, Yu XQ. Maintaining Toll signaling in Drosophila brain is required to sustain autophagy for dopamine neuron survival. iScience 2024; 27:108795. [PMID: 38292423 PMCID: PMC10825691 DOI: 10.1016/j.isci.2024.108795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 10/19/2023] [Accepted: 01/02/2024] [Indexed: 02/01/2024] Open
Abstract
Macroautophagy/autophagy is a conserved process in eukaryotic cells to degrade and recycle damaged intracellular components. Higher level of autophagy in the brain has been observed, and autophagy dysfunction has an impact on neuronal health, but the molecular mechanism is unclear. In this study, we showed that overexpression of Toll-1 and Toll-7 receptors, as well as active Spätzle proteins in Drosophila S2 cells enhanced autophagy, and Toll-1/Toll-7 activated autophagy was dependent on Tube-Pelle-PP2A. Interestingly, Toll-1 but not Toll-7 mediated autophagy was dMyd88 dependent. Importantly, we observed that loss of functions in Toll-1 and Toll-7 receptors and PP2A activity in flies decreased autophagy level, resulting in the loss of dopamine (DA) neurons and reduced fly motion. Our results indicated that proper activation of Toll-1 and Toll-7 pathways and PP2A activity in the brain are necessary to sustain autophagy level for DA neuron survival.
Collapse
Affiliation(s)
- Jie Zhang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, College of Plant Protection, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Ting Tang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Ruonan Zhang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, College of Plant Protection, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Liang Wen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Xiaojuan Deng
- Guangdong Laboratory for Lingnan Modern Agriculture, Laboratory of Insect Molecular Biology and Biotechnology, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoxia Xu
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, College of Plant Protection, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Wanying Yang
- Guangdong Laboratory for Lingnan Modern Agriculture, Laboratory of Insect Molecular Biology and Biotechnology, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Fengliang Jin
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, College of Plant Protection, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Yang Cao
- Guangdong Laboratory for Lingnan Modern Agriculture, Laboratory of Insect Molecular Biology and Biotechnology, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yuzhen Lu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Xiao-Qiang Yu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
4
|
Kuebler CA, Paré AC. Striped Expression of Leucine-Rich Repeat Proteins Coordinates Cell Intercalation and Compartment Boundary Formation in the Early Drosophila Embryo. Symmetry (Basel) 2023; 15:1490. [PMID: 38650964 PMCID: PMC11034934 DOI: 10.3390/sym15081490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
Planar polarity is a commonly observed phenomenon in which proteins display a consistent asymmetry in their subcellular localization or activity across the plane of a tissue. During animal development, planar polarity is a fundamental mechanism for coordinating the behaviors of groups of cells to achieve anisotropic tissue remodeling, growth, and organization. Therefore, a primary focus of developmental biology research has been to understand the molecular mechanisms underlying planar polarity in a variety of systems to identify conserved principles of tissue organization. In the early Drosophila embryo, the germband neuroectoderm epithelium rapidly doubles in length along the anterior-posterior axis through a process known as convergent extension (CE); it also becomes subdivided into tandem tissue compartments through the formation of compartment boundaries (CBs). Both processes are dependent on the planar polarity of proteins involved in cellular tension and adhesion. The enrichment of actomyosin-based tension and adherens junction-based adhesion at specific cell-cell contacts is required for coordinated cell intercalation, which drives CE, and the creation of highly stable cell-cell contacts at CBs. Recent studies have revealed a system for rapid cellular polarization triggered by the expression of leucine-rich-repeat (LRR) cell-surface proteins in striped patterns. In particular, the non-uniform expression of Toll-2, Toll-6, Toll-8, and Tartan generates local cellular asymmetries that allow cells to distinguish between cell-cell contacts oriented parallel or perpendicular to the anterior-posterior axis. In this review, we discuss (1) the biomechanical underpinnings of CE and CB formation, (2) how the initial symmetry-breaking events of anterior-posterior patterning culminate in planar polarity, and (3) recent advances in understanding the molecular mechanisms downstream of LRR receptors that lead to planar polarized tension and junctional adhesion.
Collapse
Affiliation(s)
- Chloe A. Kuebler
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| | - Adam C. Paré
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
5
|
Atkinson NS. The Role of Toll and Nonnuclear NF-κB Signaling in the Response to Alcohol. Cells 2023; 12:1508. [PMID: 37296629 PMCID: PMC10252657 DOI: 10.3390/cells12111508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
An understanding of neuroimmune signaling has become central to a description of how alcohol causes addiction and how it damages people with an AUD. It is well known that the neuroimmune system influences neural activity via changes in gene expression. This review discusses the roles played by CNS Toll-like receptor (TLR) signaling in the response to alcohol. Also discussed are observations in Drosophila that show how TLR signaling pathways can be co-opted by the nervous system and potentially shape behavior to a far greater extent and in ways different than generally recognized. For example, in Drosophila, TLRs substitute for neurotrophin receptors and an NF-κB at the end of a TLR pathway influences alcohol responsivity by acting non-genomically.
Collapse
Affiliation(s)
- Nigel S Atkinson
- Department of Neuroscience and The Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
6
|
Nie X, Dai X, Zhao Y, Xu H, Han Z, Jia R, Ren Q, Huang X. Identification of three novel Spätzle genes in Eriocheir sinensis and their roles during white spot syndrome virus infection. FISH & SHELLFISH IMMUNOLOGY 2022; 128:168-180. [PMID: 35921935 DOI: 10.1016/j.fsi.2022.07.065] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Proteins of Spätzle family play an essential role in innate immunity in invertebrates by activating the Toll pathway to induce the expression of antimicrobial peptides. However, little is known about the function of Spätzle in in the immune response of the Chinese mitten crab. In the present study, three novel Spätzle genes (named as EsSpz1, EsSpz2, and EsSpz3) were identified from Eriocheir sinensis. The genome structure of EsSpz1 contains two exons and an intron. Three Spätzle proteins all contain a Pfam Spaetzle domain. In the evolution, EsSpz1-3 cluster with other Spätzle proteins from crustaceans. EsSpz1-3 were widely distributed in multiple immune tissues. The expression levels of EsSpz1-3 in the intestine were remarkably upregulated after white spot syndrome virus (WSSV) challenge. The knockdown of EsSpz1-3 remarkably decreased the expressions of crustins and anti-lipopolysaccharide factors during WSSV infection. Moreover, EsSpz1-3 silencing remarkably increased the expression of WSSV envelope protein VP28. These findings suggest that new-found EsSpz1-3 in E. sinensis could promote the synthesis of antimicrobial peptides and inhibit the expression of VP28 during WSSV infection. Our study indicates that EsSpz1-3 in E. sinensis may participate in the innate immune defenses against WSSV by inducing the expression of antimicrobial peptides. This study provides new knowledge for the function of Spätzle in the antiviral immune defense in crustacean.
Collapse
Affiliation(s)
- Ximei Nie
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Xiaoling Dai
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Yuqi Zhao
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Hao Xu
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Zhengxiao Han
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Rui Jia
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Qian Ren
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China.
| | - Xin Huang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China.
| |
Collapse
|
7
|
Li G, Hidalgo A. The Toll Route to Structural Brain Plasticity. Front Physiol 2021; 12:679766. [PMID: 34290618 PMCID: PMC8287419 DOI: 10.3389/fphys.2021.679766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/02/2021] [Indexed: 11/13/2022] Open
Abstract
The human brain can change throughout life as we learn, adapt and age. A balance between structural brain plasticity and homeostasis characterizes the healthy brain, and the breakdown of this balance accompanies brain tumors, psychiatric disorders, and neurodegenerative diseases. However, the link between circuit modifications, brain function, and behavior remains unclear. Importantly, the underlying molecular mechanisms are starting to be uncovered. The fruit-fly Drosophila is a very powerful model organism to discover molecular mechanisms and test them in vivo. There is abundant evidence that the Drosophila brain is plastic, and here we travel from the pioneering discoveries to recent findings and progress on molecular mechanisms. We pause on the recent discovery that, in the Drosophila central nervous system, Toll receptors—which bind neurotrophin ligands—regulate structural plasticity during development and in the adult brain. Through their topographic distribution across distinct brain modules and their ability to switch between alternative signaling outcomes, Tolls can enable the brain to translate experience into structural change. Intriguing similarities between Toll and mammalian Toll-like receptor function could reveal a further involvement in structural plasticity, degeneration, and disease in the human brain.
Collapse
Affiliation(s)
- Guiyi Li
- Plasticity and Regeneration Lab, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Alicia Hidalgo
- Plasticity and Regeneration Lab, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
8
|
Gu X, Jin B, Qi Z, Yin X. Identification of potential microRNAs and KEGG pathways in denervation muscle atrophy based on meta-analysis. Sci Rep 2021; 11:13560. [PMID: 34193880 PMCID: PMC8245453 DOI: 10.1038/s41598-021-92489-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 05/24/2021] [Indexed: 12/28/2022] Open
Abstract
The molecular mechanism of muscle atrophy has been studied a lot, but there is no comprehensive analysis focusing on the denervated muscle atrophy. The gene network that controls the development of denervated muscle atrophy needs further elucidation. We examined differentially expressed genes (DEGs) from five denervated muscle atrophy microarray datasets and predicted microRNAs that target these DEGs. We also included the differentially expressed microRNAs datasets of denervated muscle atrophy in previous studies as background information to identify potential key microRNAs. Finally, we compared denervated muscle atrophy with disuse muscle atrophy caused by other reasons, and obtained the Den-genes which only differentially expressed in denervated muscle atrophy. In this meta-analysis, we obtained 429 up-regulated genes, 525 down-regulated genes and a batch of key microRNAs in denervated muscle atrophy. We found eight important microRNA-mRNA interactions (miR-1/Jun, miR-1/Vegfa, miR-497/Vegfa, miR-23a/Vegfa, miR-206/Vegfa, miR-497/Suclg1, miR-27a/Suclg1, miR-27a/Mapk14). The top five KEGG pathways enriched by Den-genes are Insulin signaling pathway, T cell receptor signaling pathway, MAPK signaling pathway, Toll-like receptor signaling pathway and B cell receptor signaling pathway. Our research has delineated the RNA regulatory network of denervated muscle atrophy, and uncovered the specific genes and terms in denervated muscle atrophy.
Collapse
Affiliation(s)
- Xinyi Gu
- Department of Orthopedics and Traumatology, Peking University People's Hospital, Beijing, 100044, China.,Key Laboratory of Trauma and Neural Regeneration (Peking University), Beijing, 100044, China
| | - Bo Jin
- Department of Orthopedics and Traumatology, Peking University People's Hospital, Beijing, 100044, China.,Key Laboratory of Trauma and Neural Regeneration (Peking University), Beijing, 100044, China
| | - Zhidan Qi
- Department of Orthopedics and Traumatology, Peking University People's Hospital, Beijing, 100044, China.,Key Laboratory of Trauma and Neural Regeneration (Peking University), Beijing, 100044, China
| | - Xiaofeng Yin
- Department of Orthopedics and Traumatology, Peking University People's Hospital, Beijing, 100044, China. .,Key Laboratory of Trauma and Neural Regeneration (Peking University), Beijing, 100044, China.
| |
Collapse
|
9
|
Tamada M, Shi J, Bourdot KS, Supriyatno S, Palmquist KH, Gutierrez-Ruiz OL, Zallen JA. Toll receptors remodel epithelia by directing planar-polarized Src and PI3K activity. Dev Cell 2021; 56:1589-1602.e9. [PMID: 33932332 DOI: 10.1016/j.devcel.2021.04.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 03/11/2021] [Accepted: 04/07/2021] [Indexed: 12/12/2022]
Abstract
Toll-like receptors are essential for animal development and survival, with conserved roles in innate immunity, tissue patterning, and cell behavior. The mechanisms by which Toll receptors signal to the nucleus are well characterized, but how Toll receptors generate rapid, localized signals at the cell membrane to produce acute changes in cell polarity and behavior is not known. We show that Drosophila Toll receptors direct epithelial convergent extension by inducing planar-polarized patterns of Src and PI3-kinase (PI3K) activity. Toll receptors target Src activity to specific sites at the membrane, and Src recruits PI3K to the Toll-2 complex through tyrosine phosphorylation of the Toll-2 cytoplasmic domain. Reducing Src or PI3K activity disrupts planar-polarized myosin assembly, cell intercalation, and convergent extension, whereas constitutive Src activity promotes ectopic PI3K and myosin cortical localization. These results demonstrate that Toll receptors direct cell polarity and behavior by locally mobilizing Src and PI3K activity.
Collapse
Affiliation(s)
- Masako Tamada
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Jay Shi
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA; Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA
| | - Kia S Bourdot
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Sara Supriyatno
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Karl H Palmquist
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Omar L Gutierrez-Ruiz
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Jennifer A Zallen
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA.
| |
Collapse
|
10
|
Bhat SA, Yousuf A, Mushtaq Z, Kumar V, Qurashi A. Fragile X Premutation rCGG Repeats Impair Synaptic Growth and Synaptic Transmission at Drosophila larval Neuromuscular Junction. Hum Mol Genet 2021; 30:1677-1692. [PMID: 33772546 DOI: 10.1093/hmg/ddab087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 11/14/2022] Open
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late-onset neurodegenerative disease that develops in some premutation (PM) carriers of the FMR1 gene with alleles bearing 55-200 CGG repeats. The discovery of a broad spectrum of clinical and cell developmental abnormalities among PM carriers with or without FXTAS and in model systems suggests that neurodegeneration seen in FXTAS could be the inevitable end-result of pathophysiological processes set during early development. Hence, it is imperative to trace early PM-induced pathological abnormalities. Previous studies have shown that transgenic Drosophila carrying PM-length CGG repeats are sufficient to cause neurodegeneration. Here, we used the same transgenic model to understand the effect of CGG repeats on the structure and function of the developing nervous system. We show that presynaptic expression of CGG repeats restricts synaptic growth, reduces the number of synaptic boutons, leads to aberrant presynaptic varicosities, and impairs synaptic transmission at the larval neuromuscular junctions. The postsynaptic analysis shows that both glutamate receptors and subsynaptic reticulum proteins were normal. However, a high percentage of boutons show a reduced density of Bruchpilot protein, a key component of presynaptic active zones required for vesicle release. The electrophysiological analysis shows a significant reduction in quantal content, a measure of total synaptic vesicles released per excitation potential. Together, these findings suggest that synapse perturbation caused by rCGG repeats mediates presynaptically during larval NMJ development. We also suggest that the stress-activated c-Jun N-terminal kinase protein Basket and CIDE-N protein Drep-2 positively mediate Bruchpilot active zone defects caused by rCGG repeats.
Collapse
Affiliation(s)
- Sajad A Bhat
- Department of Biotechnology, University of Kashmir, Srinagar, JK, 190006, India
| | - Aadil Yousuf
- Department of Biotechnology, University of Kashmir, Srinagar, JK, 190006, India
| | - Zeeshan Mushtaq
- Laboratory of Neurogenetics, IISER-Bhopal, Bhopal, MP, 462066, India
| | - Vimlesh Kumar
- Laboratory of Neurogenetics, IISER-Bhopal, Bhopal, MP, 462066, India
| | - Abrar Qurashi
- Department of Biotechnology, University of Kashmir, Srinagar, JK, 190006, India
| |
Collapse
|
11
|
Ho CH, Treisman JE. Specific Isoforms of the Guanine-Nucleotide Exchange Factor dPix Couple Neuromuscular Synapse Growth to Muscle Growth. Dev Cell 2020; 54:117-131.e5. [PMID: 32516570 DOI: 10.1016/j.devcel.2020.05.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 04/09/2020] [Accepted: 05/13/2020] [Indexed: 12/28/2022]
Abstract
Developmental growth requires coordination between the growth rates of individual tissues and organs. Here, we examine how Drosophila neuromuscular synapses grow to match the size of their target muscles. We show that changes in muscle growth driven by autonomous modulation of insulin receptor signaling produce corresponding changes in synapse size, with each muscle affecting only its presynaptic motor neuron branches. This scaling growth is mechanistically distinct from synaptic plasticity driven by neuronal activity and requires increased postsynaptic differentiation induced by insulin receptor signaling in muscle. We identify the guanine-nucleotide exchange factor dPix as an effector of insulin receptor signaling. Alternatively spliced dPix isoforms that contain a specific exon are necessary and sufficient for postsynaptic differentiation and scaling growth, and their mRNA levels are regulated by insulin receptor signaling. These findings define a mechanism by which the same signaling pathway promotes both autonomous muscle growth and non-autonomous synapse growth.
Collapse
Affiliation(s)
- Cheuk Hei Ho
- Kimmel Center for Biology and Medicine at the Skirball Institute and Department of Cell Biology, NYU School of Medicine, New York, NY 10016, USA
| | - Jessica E Treisman
- Kimmel Center for Biology and Medicine at the Skirball Institute and Department of Cell Biology, NYU School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
12
|
Abstract
Convergent extension is a conserved mechanism for elongating tissues. In the Drosophila embryo, convergent extension is driven by planar polarized cell intercalation and is a paradigm for understanding the cellular, molecular, and biophysical mechanisms that establish tissue structure. Studies of convergent extension in Drosophila have provided key insights into the force-generating molecules that promote convergent extension in epithelial tissues, as well as the global systems of spatial information that systematically organize these cell behaviors. A general framework has emerged in which asymmetrically localized proteins involved in cytoskeletal tension and cell adhesion direct oriented cell movements, and spatial signals provided by the Toll, Tartan, and Teneurin receptor families break planar symmetry to establish and coordinate planar cell polarity throughout the tissue. In this chapter, we describe the cellular, molecular, and biophysical mechanisms that regulate cell intercalation in the Drosophila embryo, and discuss how research in this system has revealed conserved biological principles that control the organization of multicellular tissues and animal body plans.
Collapse
Affiliation(s)
- Adam C Paré
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, United States.
| | - Jennifer A Zallen
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY, United States.
| |
Collapse
|
13
|
Bali N, Lee HK, Zinn K. Identification of four Drosophila Toll-related proteins as ligands for the PTP69D receptor tyrosine phosphatase. MICROPUBLICATION BIOLOGY 2019; 2019. [PMID: 32550457 PMCID: PMC7252352 DOI: 10.17912/micropub.biology.000159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Namrata Bali
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA, 91125, USA
| | - Hyung-Kook Lee
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA, 91125, USA
| | - Kai Zinn
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA, 91125, USA
| |
Collapse
|
14
|
Characterization of Spz5 as a novel ligand for Drosophila Toll-1 receptor. Biochem Biophys Res Commun 2018; 506:510-515. [PMID: 30361090 DOI: 10.1016/j.bbrc.2018.10.096] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 10/16/2018] [Indexed: 11/22/2022]
Abstract
The Drosophila Toll-1 receptor is involved in embryonic development, innate immunity, and tissue homeostasis. Currently, as a ligand for the Toll-1 receptor, only Spätzle (Spz) has been identified and characterized. We previously reported that Drosophila larva-derived tissue extract contains ligand activity for the Toll-1 receptor, which differs from Spz based on the observation that larval extract prepared from spz mutants possessed full ligand activity. Here, we demonstrate that Spz5, a member of the Spz family of proteins, functions as a ligand for the Toll-1 receptor. Processing of Spz5 by Furin protease, which is known to be important for ligand activity of Spz5 to Toll-6, is not required for its function to the Toll-1 receptor. By generating a spz5 null mutant, we further showed that the Toll-1 ligand activity of larva-derived extract is mainly derived from Spz5. Finally, we found a genetic interaction between spz and spz5 in terms of developmental processes. This study identified a novel ligand for the Drosophila Toll-1 receptor, providing evidence that Toll-1 is a multi-ligand receptor, similar to the mammalian Toll-like receptor.
Collapse
|
15
|
Shmueli A, Shalit T, Okun E, Shohat-Ophir G. The Toll Pathway in the Central Nervous System of Flies and Mammals. Neuromolecular Med 2018; 20:419-436. [PMID: 30276585 DOI: 10.1007/s12017-018-8515-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 09/26/2018] [Indexed: 12/20/2022]
Abstract
Toll receptors, first identified to regulate embryogenesis and immune responses in the adult fly and subsequently defined as the principal sensors of infection in mammals, are increasingly appreciated for their impact on the homeostasis of the central as well as the peripheral nervous systems. Whereas in the context of immunity, the fly Toll and the mammalian TLR pathways have been researched in parallel, the expression pattern and functionality have largely been researched disparately. Herein, we provide data on the expression pattern of the Toll homologues, signaling components, and downstream effectors in ten different cell populations of the adult fly central nervous system (CNS). We have compared the expression of the different Toll pathways in the fly to the expression of TLRs in the mouse brain and discussed the implications with respect to commonalities, differences, and future perspectives.
Collapse
Affiliation(s)
- Anat Shmueli
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Tali Shalit
- The Mantoux Bioinformatics institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Eitan Okun
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel.
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel.
- The Paul Feder Laboratory on Alzheimer's Disease Research, Ramat-Gan, Israel.
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Building 901, room 315, Ramat-Gan, 5290000, Israel.
| | - Galit Shohat-Ophir
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel.
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel.
| |
Collapse
|
16
|
Anthoney N, Foldi I, Hidalgo A. Toll and Toll-like receptor signalling in development. Development 2018; 145:145/9/dev156018. [DOI: 10.1242/dev.156018] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
ABSTRACT
The membrane receptor Toll and the related Toll-like receptors (TLRs) are best known for their universal function in innate immunity. However, Toll/TLRs were initially discovered in a developmental context, and recent studies have revealed that Toll/TLRs carry out previously unanticipated functions in development, regulating cell fate, cell number, neural circuit connectivity and synaptogenesis. Furthermore, knowledge of their molecular mechanisms of action is expanding and has highlighted that Toll/TLRs function beyond the canonical NF-κB pathway to regulate cell-to-cell communication and signalling at the synapse. Here, we provide an overview of Toll/TLR signalling and discuss how this signalling pathway regulates various aspects of development across species.
Collapse
Affiliation(s)
- Niki Anthoney
- NeuroDevelopment Group, School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Istvan Foldi
- NeuroDevelopment Group, School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Alicia Hidalgo
- NeuroDevelopment Group, School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
17
|
Hauswirth AG, Ford KJ, Wang T, Fetter RD, Tong A, Davis GW. A postsynaptic PI3K-cII dependent signaling controller for presynaptic homeostatic plasticity. eLife 2018; 7:31535. [PMID: 29303480 PMCID: PMC5773188 DOI: 10.7554/elife.31535] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 01/04/2018] [Indexed: 01/29/2023] Open
Abstract
Presynaptic homeostatic plasticity stabilizes information transfer at synaptic connections in organisms ranging from insect to human. By analogy with principles of engineering and control theory, the molecular implementation of PHP is thought to require postsynaptic signaling modules that encode homeostatic sensors, a set point, and a controller that regulates transsynaptic negative feedback. The molecular basis for these postsynaptic, homeostatic signaling elements remains unknown. Here, an electrophysiology-based screen of the Drosophila kinome and phosphatome defines a postsynaptic signaling platform that includes a required function for PI3K-cII, PI3K-cIII and the small GTPase Rab11 during the rapid and sustained expression of PHP. We present evidence that PI3K-cII localizes to Golgi-derived, clathrin-positive vesicles and is necessary to generate an endosomal pool of PI(3)P that recruits Rab11 to recycling endosomal membranes. A morphologically distinct subdivision of this platform concentrates postsynaptically where we propose it functions as a homeostatic controller for retrograde, trans-synaptic signaling.
Collapse
Affiliation(s)
- Anna G Hauswirth
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States.,Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, United States
| | - Kevin J Ford
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States.,Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, United States
| | - Tingting Wang
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States.,Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, United States
| | - Richard D Fetter
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States.,Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, United States
| | - Amy Tong
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States.,Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, United States
| | - Graeme W Davis
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States.,Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
18
|
Coutinho-Budd JC, Sheehan AE, Freeman MR. The secreted neurotrophin Spätzle 3 promotes glial morphogenesis and supports neuronal survival and function. Genes Dev 2017; 31:2023-2038. [PMID: 29138279 PMCID: PMC5733495 DOI: 10.1101/gad.305888.117] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/20/2017] [Indexed: 10/27/2022]
Abstract
Most glial functions depend on establishing intimate morphological relationships with neurons. Significant progress has been made in understanding neuron-glia signaling at synaptic and axonal contacts, but how glia support neuronal cell bodies is unclear. Here we explored the growth and functions of Drosophila cortex glia (which associate almost exclusively with neuronal cell bodies) to understand glia-soma interactions. We show that cortex glia tile with one another and with astrocytes to establish unique central nervous system (CNS) spatial domains that actively restrict glial growth, and selective ablation of cortex glia causes animal lethality. In an RNAi-based screen, we identified αSNAP (soluble NSF [N-ethylmalemeide-sensitive factor] attachment protein α) and several components of vesicle fusion and recycling machinery as essential for the maintenance of cortex glial morphology and continued contact with neurons. Interestingly, loss of the secreted neurotrophin Spätzle 3 (Spz3) phenocopied αSNAP phenotypes, which included loss of glial ensheathment of neuron cell bodies, increased neuronal cell death, and defects in animal behavior. Rescue experiments suggest that Spz3 can exert these effects only over very short distances. This work identifies essential roles for glial ensheathment of neuronal cell bodies in CNS homeostasis as well as Spz3 as a novel signaling factor required for maintenance of cortex glial morphology and neuron-glia contact.
Collapse
Affiliation(s)
- Jaeda C Coutinho-Budd
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Amy E Sheehan
- Vollum Institute, Oregon Health and Sciences University, Portland, Oregon 97239, USA
| | - Marc R Freeman
- Vollum Institute, Oregon Health and Sciences University, Portland, Oregon 97239, USA
| |
Collapse
|
19
|
Jordán-Álvarez S, Santana E, Casas-Tintó S, Acebes Á, Ferrús A. The equilibrium between antagonistic signaling pathways determines the number of synapses in Drosophila. PLoS One 2017; 12:e0184238. [PMID: 28892511 PMCID: PMC5593197 DOI: 10.1371/journal.pone.0184238] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 08/21/2017] [Indexed: 12/12/2022] Open
Abstract
The number of synapses is a major determinant of behavior and many neural diseases exhibit deviations in that number. However, how signaling pathways control this number is still poorly understood. Using the Drosophila larval neuromuscular junction, we show here a PI3K-dependent pathway for synaptogenesis which is functionally connected with other previously known elements including the Wit receptor, its ligand Gbb, and the MAPkinases cascade. Based on epistasis assays, we determined the functional hierarchy within the pathway. Wit seems to trigger signaling through PI3K, and Ras85D also contributes to the initiation of synaptogenesis. However, contrary to other signaling pathways, PI3K does not require Ras85D binding in the context of synaptogenesis. In addition to the MAPK cascade, Bsk/JNK undergoes regulation by Puc and Ras85D which results in a narrow range of activity of this kinase to determine normalcy of synapse number. The transcriptional readout of the synaptogenesis pathway involves the Fos/Jun complex and the repressor Cic. In addition, we identified an antagonistic pathway that uses the transcription factors Mad and Medea and the microRNA bantam to down-regulate key elements of the pro-synaptogenesis pathway. Like its counterpart, the anti-synaptogenesis signaling uses small GTPases and MAPKs including Ras64B, Ras-like-a, p38a and Licorne. Bantam downregulates the pro-synaptogenesis factors PI3K, Hiw, Ras85D and Bsk, but not AKT. AKT, however, can suppress Mad which, in conjunction with the reported suppression of Mad by Hiw, closes the mutual regulation between both pathways. Thus, the number of synapses seems to result from the balanced output from these two pathways.
Collapse
Affiliation(s)
| | | | | | - Ángel Acebes
- Institute Cajal C.S.I.C., Madrid, Spain
- * E-mail: (AF); (AA)
| | - Alberto Ferrús
- Institute Cajal C.S.I.C., Madrid, Spain
- * E-mail: (AF); (AA)
| |
Collapse
|
20
|
Ulian-Benitez S, Bishop S, Foldi I, Wentzell J, Okenwa C, Forero MG, Zhu B, Moreira M, Phizacklea M, McIlroy G, Li G, Gay NJ, Hidalgo A. Kek-6: A truncated-Trk-like receptor for Drosophila neurotrophin 2 regulates structural synaptic plasticity. PLoS Genet 2017; 13:e1006968. [PMID: 28846707 PMCID: PMC5591008 DOI: 10.1371/journal.pgen.1006968] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 09/08/2017] [Accepted: 08/08/2017] [Indexed: 01/19/2023] Open
Abstract
Neurotrophism, structural plasticity, learning and long-term memory in mammals critically depend on neurotrophins binding Trk receptors to activate tyrosine kinase (TyrK) signaling, but Drosophila lacks full-length Trks, raising the question of how these processes occur in the fly. Paradoxically, truncated Trk isoforms lacking the TyrK predominate in the adult human brain, but whether they have neuronal functions independently of full-length Trks is unknown. Drosophila has TyrK-less Trk-family receptors, encoded by the kekkon (kek) genes, suggesting that evolutionarily conserved functions for this receptor class may exist. Here, we asked whether Keks function together with Drosophila neurotrophins (DNTs) at the larval glutamatergic neuromuscular junction (NMJ). We tested the eleven LRR and Ig-containing (LIG) proteins encoded in the Drosophila genome for expression in the central nervous system (CNS) and potential interaction with DNTs. Kek-6 is expressed in the CNS, interacts genetically with DNTs and can bind DNT2 in signaling assays and co-immunoprecipitations. Ligand binding is promiscuous, as Kek-6 can also bind DNT1, and Kek-2 and Kek-5 can also bind DNT2. In vivo, Kek-6 is found presynaptically in motoneurons, and DNT2 is produced by the muscle to function as a retrograde factor at the NMJ. Kek-6 and DNT2 regulate NMJ growth and synaptic structure. Evidence indicates that Kek-6 does not antagonise the alternative DNT2 receptor Toll-6. Instead, Kek-6 and Toll-6 interact physically, and together regulate structural synaptic plasticity and homeostasis. Using pull-down assays, we identified and validated CaMKII and VAP33A as intracellular partners of Kek-6, and show that they regulate NMJ growth and active zone formation downstream of DNT2 and Kek-6. The synaptic functions of Kek-6 could be evolutionarily conserved. This raises the intriguing possibility that a novel mechanism of structural synaptic plasticity involving truncated Trk-family receptors independently of TyrK signaling may also operate in the human brain. A long-standing paradox had been to explain how brain structural plasticity, learning and long-term memory might occur in Drosophila in the absence of canonical Trk receptors for neurotrophin (NT) ligands. NTs link structure and function in the brain enabling adjustments in cell number, dendritic, axonal and synaptic patterns, in response to neuronal activity. These events are essential for brain development, learning and long-term memory, and are thought to depend on the tyrosine-kinase function of the NT Trk receptors. However, paradoxically, the most abundant Trk isoforms in the adult human brain lack the tyrosine kinase, and their neuronal function is unknown. Remarkably, Drosophila has kinase-less receptors of the Trk family encoded by the kekkon (kek) genes, suggesting that deep evolutionary functional conservation for this receptor class could be unveiled. Here, we show that Kek-6 is a receptor for Drosophila neurotrophin 2 (DNT2) that regulates structural synaptic plasticity via CaMKII and VAP33A. The latter are well-known factors regulating synaptic structure and plasticity and vesicle release. Furthemore, Kek-6 cooperates with the alternative DNT2 receptor Toll-6, and their concerted functions are required to regulate structural homeostasis at the NMJ. Our findings suggest that in mammals truncated Trk-family receptors could also have synaptic functions in neurons independently of Tyrosine kinase signaling. This might reveal a novel mechanism of brain plasticity, with important implications for understanding also the human brain, in health and disease.
Collapse
Affiliation(s)
- Suzana Ulian-Benitez
- NeuroDevelopment Group, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Simon Bishop
- NeuroDevelopment Group, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Istvan Foldi
- NeuroDevelopment Group, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Jill Wentzell
- NeuroDevelopment Group, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Chinenye Okenwa
- NeuroDevelopment Group, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | | | - Bangfu Zhu
- NeuroDevelopment Group, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Marta Moreira
- NeuroDevelopment Group, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Mark Phizacklea
- NeuroDevelopment Group, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Graham McIlroy
- NeuroDevelopment Group, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Guiyi Li
- NeuroDevelopment Group, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Nicholas J. Gay
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Alicia Hidalgo
- NeuroDevelopment Group, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- * E-mail:
| |
Collapse
|
21
|
Toll ligand Spätzle3 controls melanization in the stripe pattern formation in caterpillars. Proc Natl Acad Sci U S A 2017; 114:8336-8341. [PMID: 28716921 DOI: 10.1073/pnas.1707896114] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A stripe pattern is an aposematic or camouflage coloration often observed among various caterpillars. However, how this ecologically important pattern is formed is largely unknown. The silkworm dominant mutant Zebra (Ze) has a black stripe in the anterior margin of each dorsal segment. Here, fine linkage mapping of 3,135 larvae revealed a 63-kbp region responsible for the Ze locus, which contained three candidate genes, including the Toll ligand gene spätzle3 (spz-3). Both electroporation-mediated ectopic expression and RNAi analyses showed that, among candidate genes, only processed spz-3 induced melanin pigmentation and that Toll-8 was the candidate receptor gene of spz-3 This Toll ligand/receptor set is also involved in melanization of other mutant Striped (pS ), which has broader stripes. Additional knockdown of 5 other spz family and 10 Toll-related genes caused no drastic change in the pigmentation of either mutant, suggesting that only spz-3/Toll-8 is mainly involved in the melanization process rather than pattern formation. The downstream pigmentation gene yellow was specifically up-regulated in the striped region of the Ze mutant, but spz-3 showed no such region-specific expression. Toll signaling pathways are known to be involved in innate immunity, dorsoventral axis formation, and neurotrophic functions. This study provides direct evidence that a Toll signaling pathway is co-opted to control the melanization process and adaptive striped pattern formation in caterpillars.
Collapse
|
22
|
Foldi I, Anthoney N, Harrison N, Gangloff M, Verstak B, Nallasivan MP, AlAhmed S, Zhu B, Phizacklea M, Losada-Perez M, Moreira M, Gay NJ, Hidalgo A. Three-tier regulation of cell number plasticity by neurotrophins and Tolls in Drosophila. J Cell Biol 2017; 216:1421-1438. [PMID: 28373203 PMCID: PMC5412559 DOI: 10.1083/jcb.201607098] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 12/20/2016] [Accepted: 02/16/2017] [Indexed: 02/06/2023] Open
Abstract
A three-tier mechanism involving distinct neurotrophin family ligand forms, different Toll receptors, and different adaptors regulates both cell survival and death. This rich mechanism confers cell number plasticity and could underlie structural plasticity in the nervous system and structural integrity, homeostasis, and regeneration in wider contexts. Cell number plasticity is coupled to circuitry in the nervous system, adjusting cell mass to functional requirements. In mammals, this is achieved by neurotrophin (NT) ligands, which promote cell survival via their Trk and p75NTR receptors and cell death via p75NTR and Sortilin. Drosophila NTs (DNTs) bind Toll receptors instead to promote neuronal survival, but whether they can also regulate cell death is unknown. In this study, we show that DNTs and Tolls can switch from promoting cell survival to death in the central nervous system (CNS) via a three-tier mechanism. First, DNT cleavage patterns result in alternative signaling outcomes. Second, different Tolls can preferentially promote cell survival or death. Third, distinct adaptors downstream of Tolls can drive either apoptosis or cell survival. Toll-6 promotes cell survival via MyD88–NF-κB and cell death via Wek-Sarm-JNK. The distribution of adaptors changes in space and time and may segregate to distinct neural circuits. This novel mechanism for CNS cell plasticity may operate in wider contexts.
Collapse
Affiliation(s)
- Istvan Foldi
- NeuroDevelopment Group, School of Biosciences, University of Birmingham, Birmingham B15 2TT, England, UK
| | - Niki Anthoney
- NeuroDevelopment Group, School of Biosciences, University of Birmingham, Birmingham B15 2TT, England, UK
| | - Neale Harrison
- NeuroDevelopment Group, School of Biosciences, University of Birmingham, Birmingham B15 2TT, England, UK
| | - Monique Gangloff
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, England, UK
| | - Brett Verstak
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, England, UK
| | | | - Samaher AlAhmed
- NeuroDevelopment Group, School of Biosciences, University of Birmingham, Birmingham B15 2TT, England, UK
| | - Bangfu Zhu
- NeuroDevelopment Group, School of Biosciences, University of Birmingham, Birmingham B15 2TT, England, UK
| | - Mark Phizacklea
- NeuroDevelopment Group, School of Biosciences, University of Birmingham, Birmingham B15 2TT, England, UK
| | - Maria Losada-Perez
- NeuroDevelopment Group, School of Biosciences, University of Birmingham, Birmingham B15 2TT, England, UK
| | - Marta Moreira
- NeuroDevelopment Group, School of Biosciences, University of Birmingham, Birmingham B15 2TT, England, UK
| | - Nicholas J Gay
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, England, UK
| | - Alicia Hidalgo
- NeuroDevelopment Group, School of Biosciences, University of Birmingham, Birmingham B15 2TT, England, UK
| |
Collapse
|
23
|
Flux of signalling endosomes undergoing axonal retrograde transport is encoded by presynaptic activity and TrkB. Nat Commun 2016; 7:12976. [PMID: 27687129 PMCID: PMC5427517 DOI: 10.1038/ncomms12976] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 08/23/2016] [Indexed: 01/01/2023] Open
Abstract
Axonal retrograde transport of signalling endosomes from the nerve terminal to the soma underpins survival. As each signalling endosome carries a quantal amount of activated receptors, we hypothesized that it is the frequency of endosomes reaching the soma that determines the scale of the trophic signal. Here we show that upregulating synaptic activity markedly increased the flux of plasma membrane-derived retrograde endosomes (labelled using cholera toxin subunit-B: CTB) in hippocampal neurons cultured in microfluidic devices, and live Drosophila larval motor neurons. Electron and super-resolution microscopy analyses revealed that the fast-moving sub-diffraction-limited CTB carriers contained the TrkB neurotrophin receptor, transiently activated by synaptic activity in a BDNF-independent manner. Pharmacological and genetic inhibition of TrkB activation selectively prevented the coupling between synaptic activity and the retrograde flux of signalling endosomes. TrkB activity therefore controls the encoding of synaptic activity experienced by nerve terminals, digitalized as the flux of retrogradely transported signalling endosomes. Signalling endosomes are known to be essential for neuronal survival. Here the authors show that, in cultured hippocampal neurons and live Drosophila larval motor neurons, neuronal activity increases the retrograde flux of signalling endosomes, and this coupling depends on TrkB activation.
Collapse
|
24
|
O'Connor-Giles K. Toll-tally tubular: A newly identified Toll-like receptor-FoxO pathway regulates dynamics of the neuronal microtubule network. J Cell Biol 2016; 214:371-3. [PMID: 27528655 PMCID: PMC4987299 DOI: 10.1083/jcb.201607118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 07/29/2016] [Indexed: 11/22/2022] Open
Abstract
Recent studies reveal a conserved role for FoxO transcription factors in establishing neuronal structure and circuit function. In this issue, McLaughlin et al. (2016. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201601014) identify a novel Toll-like receptor-FoxO pathway that represses the mitotic kinesin Pavarotti/MKLP1 to promote dynamic microtubules required for axonal transport and activity-dependent remodeling of presynaptic terminals.
Collapse
|
25
|
McLaughlin CN, Nechipurenko IV, Liu N, Broihier HT. A Toll receptor-FoxO pathway represses Pavarotti/MKLP1 to promote microtubule dynamics in motoneurons. J Cell Biol 2016; 214:459-74. [PMID: 27502486 PMCID: PMC4987293 DOI: 10.1083/jcb.201601014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 07/07/2016] [Indexed: 02/06/2023] Open
Abstract
McLaughlin et al. uncover a motoneuronal Toll-6–directed pathway that functions via dSARM and FoxO to attenuate microtubule stability through repression of Pavarotti/MKLP1 transcription. Genetic and pharmacological strategies reveal a novel requirement for dynamic synaptic microtubules in structural plasticity, which are established by Toll-6–FoxO signaling. FoxO proteins are evolutionarily conserved regulators of neuronal structure and function, yet the neuron-specific pathways within which they act are poorly understood. To elucidate neuronal FoxO function in Drosophila melanogaster, we first screened for FoxO’s upstream regulators and downstream effectors. On the upstream side, we present genetic and molecular pathway analyses indicating that the Toll-6 receptor, the Toll/interleukin-1 receptor domain adaptor dSARM, and FoxO function in a linear pathway. On the downstream side, we find that Toll-6–FoxO signaling represses the mitotic kinesin Pavarotti/MKLP1 (Pav-KLP), which itself attenuates microtubule (MT) dynamics. We next probed in vivo functions for this novel pathway and found that it is essential for axon transport and structural plasticity in motoneurons. We demonstrate that elevated expression of Pav-KLP underlies transport and plasticity phenotypes in pathway mutants, indicating that Toll-6–FoxO signaling promotes MT dynamics by limiting Pav-KLP expression. In addition to uncovering a novel molecular pathway, our work reveals an unexpected function for dynamic MTs in enabling rapid activity-dependent structural plasticity.
Collapse
Affiliation(s)
- Colleen N McLaughlin
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH 44106
| | - Inna V Nechipurenko
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH 44106
| | - Nan Liu
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH 44106
| | - Heather T Broihier
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH 44106
| |
Collapse
|
26
|
Abstract
The nerve growth factor family of growth factors, collectively known as neurotrophins, are evolutionarily ancient regulators with an enormous range of biological functions. Reflecting this long history and functional diversity, mechanisms for cellular responses to neurotrophins are exceptionally complex. Neurotrophins signal through p75
NTR, a member of the TNF receptor superfamily member, and through receptor tyrosine kinases (TrkA, TrkB, TrkC), often with opposite functional outcomes. The two classes of receptors are activated preferentially by proneurotrophins and mature processed neurotrophins, respectively. However, both receptor classes also possess neurotrophin-independent signaling functions. Signaling functions of p75
NTR and Trk receptors are each influenced by the other class of receptors. This review focuses on the mechanisms responsible for the functional interplay between the two neurotrophin receptor signaling systems.
Collapse
Affiliation(s)
- Mark Bothwell
- Department of Physiology & Biophysics, University of Washington, Seattle, WA, USA
| |
Collapse
|
27
|
Analysis of the Contribution of Hemocytes and Autophagy to Drosophila Antiviral Immunity. J Virol 2016; 90:5415-5426. [PMID: 27009948 DOI: 10.1128/jvi.00238-16] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 03/16/2016] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED Antiviral immunity in the model organism Drosophila melanogaster involves the broadly active intrinsic mechanism of RNA interference (RNAi) and virus-specific inducible responses. Here, using a panel of six viruses, we investigated the role of hemocytes and autophagy in the control of viral infections. Injection of latex beads to saturate phagocytosis, or genetic depletion of hemocytes, resulted in decreased survival and increased viral titers following infection with Cricket paralysis virus (CrPV), Flock House virus (FHV), and vesicular stomatitis virus (VSV) but had no impact on Drosophila C virus (DCV), Sindbis virus (SINV), and Invertebrate iridescent virus 6 (IIV6) infection. In the cases of CrPV and FHV, apoptosis was induced in infected cells, which were phagocytosed by hemocytes. In contrast, VSV did not trigger any significant apoptosis but we confirmed that the autophagy gene Atg7 was required for full virus resistance, suggesting that hemocytes use autophagy to recognize the virus. However, this recognition does not depend on the Toll-7 receptor. Autophagy had no impact on DCV, CrPV, SINV, or IIV6 infection and was required for replication of the sixth virus, FHV. Even in the case of VSV, the increases in titers were modest in Atg7 mutant flies, suggesting that autophagy does not play a major role in antiviral immunity in Drosophila Altogether, our results indicate that, while autophagy plays a minor role, phagocytosis contributes to virus-specific immune responses in insects. IMPORTANCE Phagocytosis and autophagy are two cellular processes that involve lysosomal degradation and participate in Drosophila immunity. Using a panel of RNA and DNA viruses, we have addressed the contribution of phagocytosis and autophagy in the control of viral infections in this model organism. We show that, while autophagy plays a minor role, phagocytosis contributes to virus-specific immune responses in Drosophila This work brings to the front a novel facet of antiviral host defense in insects, which may have relevance in the control of virus transmission by vector insects or in the resistance of beneficial insects to viral pathogens.
Collapse
|
28
|
Cho RW, Buhl LK, Volfson D, Tran A, Li F, Akbergenova Y, Littleton JT. Phosphorylation of Complexin by PKA Regulates Activity-Dependent Spontaneous Neurotransmitter Release and Structural Synaptic Plasticity. Neuron 2016; 88:749-61. [PMID: 26590346 DOI: 10.1016/j.neuron.2015.10.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 08/20/2015] [Accepted: 09/29/2015] [Indexed: 10/22/2022]
Abstract
Synaptic plasticity is a fundamental feature of the nervous system that allows adaptation to changing behavioral environments. Most studies of synaptic plasticity have examined the regulated trafficking of postsynaptic glutamate receptors that generates alterations in synaptic transmission. Whether and how changes in the presynaptic release machinery contribute to neuronal plasticity is less clear. The SNARE complex mediates neurotransmitter release in response to presynaptic Ca(2+) entry. Here we show that the SNARE fusion clamp Complexin undergoes activity-dependent phosphorylation that alters the basic properties of neurotransmission in Drosophila. Retrograde signaling following stimulation activates PKA-dependent phosphorylation of the Complexin C terminus that selectively and transiently enhances spontaneous release. Enhanced spontaneous release is required for activity-dependent synaptic growth. These data indicate that SNARE-dependent fusion mechanisms can be regulated in an activity-dependent manner and highlight the key role of spontaneous neurotransmitter release as a mediator of functional and structural plasticity.
Collapse
Affiliation(s)
- Richard W Cho
- Department of Biology and Department of Brain and Cognitive Sciences, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Lauren K Buhl
- Department of Biology and Department of Brain and Cognitive Sciences, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Dina Volfson
- Department of Biology and Department of Brain and Cognitive Sciences, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Adrienne Tran
- Department of Biology and Department of Brain and Cognitive Sciences, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Feng Li
- Department of Cell Biology, Nanobiology Institute, School of Medicine, Yale University, New Haven, CT 06520, USA
| | - Yulia Akbergenova
- Department of Biology and Department of Brain and Cognitive Sciences, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - J Troy Littleton
- Department of Biology and Department of Brain and Cognitive Sciences, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
29
|
Summerville JB, Faust JF, Fan E, Pendin D, Daga A, Formella J, Stern M, McNew JA. The effects of ER morphology on synaptic structure and function in Drosophila melanogaster. J Cell Sci 2016; 129:1635-48. [PMID: 26906425 DOI: 10.1242/jcs.184929] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/17/2016] [Indexed: 01/21/2023] Open
Abstract
Hereditary spastic paraplegia (HSP) is a set of genetic diseases caused by mutations in one of 72 genes that results in age-dependent corticospinal axon degeneration accompanied by spasticity and paralysis. Two genes implicated in HSPs encode proteins that regulate endoplasmic reticulum (ER) morphology. Atlastin 1 (ATL1, also known as SPG3A) encodes an ER membrane fusion GTPase and reticulon 2 (RTN2, also known as SPG12) helps shape ER tube formation. Here, we use a new fluorescent ER marker to show that the ER within wild-type Drosophila motor nerve terminals forms a network of tubules that is fragmented and made diffuse upon loss of the atlastin 1 ortholog atl. atl or Rtnl1 loss decreases evoked transmitter release and increases arborization. Similar to other HSP proteins, Atl inhibits bone morphogenetic protein (BMP) signaling, and loss of atl causes age-dependent locomotor deficits in adults. These results demonstrate a crucial role for ER in neuronal function, and identify mechanistic links between ER morphology, neuronal function, BMP signaling and adult behavior.
Collapse
Affiliation(s)
- James B Summerville
- Department of BioSciences, Program in Biochemistry and Cell Biology, Rice University, Houston, TX 77005, USA
| | - Joseph F Faust
- Department of BioSciences, Program in Biochemistry and Cell Biology, Rice University, Houston, TX 77005, USA
| | - Ethan Fan
- Department of BioSciences, Program in Biochemistry and Cell Biology, Rice University, Houston, TX 77005, USA
| | - Diana Pendin
- CNR, Neuroscience Institute, 35121 Padova, Italy
| | - Andrea Daga
- E. Medea Scientific Institute, 31015 Conegliano, Italy
| | - Joseph Formella
- Department of BioSciences, Program in Biochemistry and Cell Biology, Rice University, Houston, TX 77005, USA
| | - Michael Stern
- Department of BioSciences, Program in Biochemistry and Cell Biology, Rice University, Houston, TX 77005, USA
| | - James A McNew
- Department of BioSciences, Program in Biochemistry and Cell Biology, Rice University, Houston, TX 77005, USA
| |
Collapse
|
30
|
Sulkowski MJ, Han TH, Ott C, Wang Q, Verheyen EM, Lippincott-Schwartz J, Serpe M. A Novel, Noncanonical BMP Pathway Modulates Synapse Maturation at the Drosophila Neuromuscular Junction. PLoS Genet 2016; 12:e1005810. [PMID: 26815659 PMCID: PMC4729469 DOI: 10.1371/journal.pgen.1005810] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 12/22/2015] [Indexed: 12/21/2022] Open
Abstract
At the Drosophila NMJ, BMP signaling is critical for synapse growth and homeostasis. Signaling by the BMP7 homolog, Gbb, in motor neurons triggers a canonical pathway—which modulates transcription of BMP target genes, and a noncanonical pathway—which connects local BMP/BMP receptor complexes with the cytoskeleton. Here we describe a novel noncanonical BMP pathway characterized by the accumulation of the pathway effector, the phosphorylated Smad (pMad), at synaptic sites. Using genetic epistasis, histology, super resolution microscopy, and electrophysiology approaches we demonstrate that this novel pathway is genetically distinguishable from all other known BMP signaling cascades. This novel pathway does not require Gbb, but depends on presynaptic BMP receptors and specific postsynaptic glutamate receptor subtypes, the type-A receptors. Synaptic pMad is coordinated to BMP’s role in the transcriptional control of target genes by shared pathway components, but it has no role in the regulation of NMJ growth. Instead, selective disruption of presynaptic pMad accumulation reduces the postsynaptic levels of type-A receptors, revealing a positive feedback loop which appears to function to stabilize active type-A receptors at synaptic sites. Thus, BMP pathway may monitor synapse activity then function to adjust synapse growth and maturation during development. Synaptic activity and synapse development are intimately linked, but our understanding of the coupling mechanisms remains limited. Anterograde and retrograde signals together with trans-synaptic complexes enable intercellular communications. How synapse activity status is monitored and relayed across the synaptic cleft remains poorly understood. The Drosophila NMJ is a very powerful genetic system to study synapse development. BMP signaling modulates NMJ growth via a canonical, Smad-dependent pathway, but also synapse stability, via a noncanonical, Smad-independent pathway. Here we describe a novel, noncanonical BMP pathway, which is genetically distinguishable from all other known BMP pathways. This pathway does not contribute to NMJ growth and instead influences synapse formation and maturation in an activity-dependent manner. Specifically, phosphorylated Smad (pMad in flies) accumulates at active zone in response to active postsynaptic type-A glutamate receptors, a specific receptor subtype. In turn, synaptic pMad functions to promote the recruitment of type-A receptors at synaptic sites. This positive feedback loop provides a molecular switch controlling which flavor of glutamate receptors will be stabilized at synaptic locations as a function of synapse status. Since BMP signaling also controls NMJ growth and stability, BMP pathway offers an exquisite means to monitor the status of synapse activity and coordinate NMJ growth with synapse maturation and stabilization.
Collapse
Affiliation(s)
- Mikolaj J. Sulkowski
- Program in Cellular Regulation and Metabolism, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Tae Hee Han
- Program in Cellular Regulation and Metabolism, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Carolyn Ott
- Cellular Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Qi Wang
- Program in Cellular Regulation and Metabolism, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Esther M. Verheyen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Jennifer Lippincott-Schwartz
- Cellular Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Mihaela Serpe
- Program in Cellular Regulation and Metabolism, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
31
|
Deshpande M, Rodal AA. The Crossroads of Synaptic Growth Signaling, Membrane Traffic and Neurological Disease: Insights from Drosophila. Traffic 2015; 17:87-101. [PMID: 26538429 DOI: 10.1111/tra.12345] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 10/29/2015] [Accepted: 10/29/2015] [Indexed: 12/13/2022]
Abstract
Neurons require target-derived autocrine and paracrine growth factors to maintain proper identity, innervation, homeostasis and survival. Neuronal growth factor signaling is highly dependent on membrane traffic, both for the packaging and release of the growth factors themselves, and for regulation of intracellular signaling by their transmembrane receptors. Here, we review recent findings from the Drosophila larval neuromuscular junction (NMJ) that illustrate how specific steps of intracellular traffic and inter-organelle interactions impinge on signaling, particularly in the bone morphogenic protein, Wingless and c-Jun-activated kinase pathways, regulating elaboration and stability of NMJ arbors, construction of synapses and synaptic transmission and homeostasis. These membrane trafficking and signaling pathways have been implicated in human motor neuron diseases including amyotrophic lateral sclerosis and hereditary spastic paraplegia, highlighting their importance for neuronal health and survival.
Collapse
Affiliation(s)
| | - Avital A Rodal
- Department of Biology, Brandeis University, Waltham, MA, USA
| |
Collapse
|
32
|
Harris KP, Littleton JT. Transmission, Development, and Plasticity of Synapses. Genetics 2015; 201:345-75. [PMID: 26447126 PMCID: PMC4596655 DOI: 10.1534/genetics.115.176529] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 05/28/2015] [Indexed: 01/03/2023] Open
Abstract
Chemical synapses are sites of contact and information transfer between a neuron and its partner cell. Each synapse is a specialized junction, where the presynaptic cell assembles machinery for the release of neurotransmitter, and the postsynaptic cell assembles components to receive and integrate this signal. Synapses also exhibit plasticity, during which synaptic function and/or structure are modified in response to activity. With a robust panel of genetic, imaging, and electrophysiology approaches, and strong evolutionary conservation of molecular components, Drosophila has emerged as an essential model system for investigating the mechanisms underlying synaptic assembly, function, and plasticity. We will discuss techniques for studying synapses in Drosophila, with a focus on the larval neuromuscular junction (NMJ), a well-established model glutamatergic synapse. Vesicle fusion, which underlies synaptic release of neurotransmitters, has been well characterized at this synapse. In addition, studies of synaptic assembly and organization of active zones and postsynaptic densities have revealed pathways that coordinate those events across the synaptic cleft. We will also review modes of synaptic growth and plasticity at the fly NMJ, and discuss how pre- and postsynaptic cells communicate to regulate plasticity in response to activity.
Collapse
Affiliation(s)
- Kathryn P Harris
- Department of Biology and Department of Brain and Cognitive Sciences, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - J Troy Littleton
- Department of Biology and Department of Brain and Cognitive Sciences, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
33
|
Wong CO, Palmieri M, Li J, Akhmedov D, Chao Y, Broadhead GT, Zhu MX, Berdeaux R, Collins CA, Sardiello M, Venkatachalam K. Diminished MTORC1-Dependent JNK Activation Underlies the Neurodevelopmental Defects Associated with Lysosomal Dysfunction. Cell Rep 2015; 12:2009-20. [PMID: 26387958 DOI: 10.1016/j.celrep.2015.08.047] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 07/20/2015] [Accepted: 08/14/2015] [Indexed: 12/12/2022] Open
Abstract
Here, we evaluate the mechanisms underlying the neurodevelopmental deficits in Drosophila and mouse models of lysosomal storage diseases (LSDs). We find that lysosomes promote the growth of neuromuscular junctions (NMJs) via Rag GTPases and mechanistic target of rapamycin complex 1 (MTORC1). However, rather than employing S6K/4E-BP1, MTORC1 stimulates NMJ growth via JNK, a determinant of axonal growth in Drosophila and mammals. This role of lysosomal function in regulating JNK phosphorylation is conserved in mammals. Despite requiring the amino-acid-responsive kinase MTORC1, NMJ development is insensitive to dietary protein. We attribute this paradox to anaplastic lymphoma kinase (ALK), which restricts neuronal amino acid uptake, and the administration of an ALK inhibitor couples NMJ development to dietary protein. Our findings provide an explanation for the neurodevelopmental deficits in LSDs and suggest an actionable target for treatment.
Collapse
Affiliation(s)
- Ching-On Wong
- Department of Integrative Biology and Pharmacology, University of Texas School of Medicine, Houston, TX 77030, USA
| | - Michela Palmieri
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, TX 77030, USA
| | - Jiaxing Li
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dmitry Akhmedov
- Department of Integrative Biology and Pharmacology, University of Texas School of Medicine, Houston, TX 77030, USA
| | - Yufang Chao
- Department of Integrative Biology and Pharmacology, University of Texas School of Medicine, Houston, TX 77030, USA
| | - Geoffrey T Broadhead
- Department of Integrative Biology and Pharmacology, University of Texas School of Medicine, Houston, TX 77030, USA
| | - Michael X Zhu
- Department of Integrative Biology and Pharmacology, University of Texas School of Medicine, Houston, TX 77030, USA; Program in Cell and Regulatory Biology (CRB), Graduate School of Biomedical Sciences, University of Texas School of Medicine, Houston, TX 77030, USA
| | - Rebecca Berdeaux
- Department of Integrative Biology and Pharmacology, University of Texas School of Medicine, Houston, TX 77030, USA; Program in Cell and Regulatory Biology (CRB), Graduate School of Biomedical Sciences, University of Texas School of Medicine, Houston, TX 77030, USA
| | - Catherine A Collins
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Marco Sardiello
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, TX 77030, USA
| | - Kartik Venkatachalam
- Department of Integrative Biology and Pharmacology, University of Texas School of Medicine, Houston, TX 77030, USA; Program in Cell and Regulatory Biology (CRB), Graduate School of Biomedical Sciences, University of Texas School of Medicine, Houston, TX 77030, USA; Program in Neuroscience, Graduate School of Biomedical Sciences, University of Texas School of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
34
|
Neyen C, Lemaitre B. Different flavors of Toll guide olfaction. Trends Immunol 2015; 36:439-41. [PMID: 26150191 DOI: 10.1016/j.it.2015.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 06/24/2015] [Indexed: 11/19/2022]
Abstract
Toll-like receptors are historically linked to immunity across animal phyla, but accumulating evidence suggests they play additional roles in neuronal networks and in cell-cell interactions. Ward and colleagues now identify Toll-6 and Toll-7 as instructive guidance cues during Drosophila olfactory development.
Collapse
Affiliation(s)
- Claudine Neyen
- Centre for Integrative Genomics, University of Lausanne, Unil-Sorge, Lausanne, CH-1015 Switzerland.
| | - Bruno Lemaitre
- Global Health Institute, School of Life Sciences, EPFL, Station 19, Lausanne, CH-1015 Switzerland.
| |
Collapse
|
35
|
Cao X, He Y, Hu Y, Wang Y, Chen YR, Bryant B, Clem RJ, Schwartz LM, Blissard G, Jiang H. The immune signaling pathways of Manduca sexta. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 62:64-74. [PMID: 25858029 PMCID: PMC4476939 DOI: 10.1016/j.ibmb.2015.03.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 03/16/2015] [Accepted: 03/17/2015] [Indexed: 05/10/2023]
Abstract
Signal transduction pathways and their coordination are critically important for proper functioning of animal immune systems. Our knowledge of the constituents of the intracellular signaling network in insects mainly comes from genetic analyses in Drosophila melanogaster. To facilitate future studies of similar systems in the tobacco hornworm and other lepidopteran insects, we have identified and examined the homologous genes in the genome of Manduca sexta. Based on 1:1 orthologous relationships in most cases, we hypothesize that the Toll, Imd, MAPK-JNK-p38 and JAK-STAT pathways are intact and operative in this species, as are most of the regulatory mechanisms. Similarly, cellular processes such as autophagy, apoptosis and RNA interference probably function in similar ways, because their mediators and modulators are mostly conserved in this lepidopteran species. We have annotated a total of 186 genes encoding 199 proteins, studied their domain structures and evolution, and examined their mRNA levels in tissues at different life stages. Such information provides a genomic perspective of the intricate signaling system in a non-drosophiline insect.
Collapse
Affiliation(s)
- Xiaolong Cao
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Yan He
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Yingxia Hu
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Yang Wang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Yun-Ru Chen
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
| | - Bart Bryant
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Rollie J Clem
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | | | - Gary Blissard
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
36
|
Ward A, Hong W, Favaloro V, Luo L. Toll receptors instruct axon and dendrite targeting and participate in synaptic partner matching in a Drosophila olfactory circuit. Neuron 2015; 85:1013-28. [PMID: 25741726 DOI: 10.1016/j.neuron.2015.02.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 12/26/2014] [Accepted: 01/23/2015] [Indexed: 01/12/2023]
Abstract
Our understanding of the mechanisms that establish wiring specificity of complex neural circuits is far from complete. During Drosophila olfactory circuit assembly, axons of 50 olfactory receptor neuron (ORN) classes and dendrites of 50 projection neuron (PN) classes precisely target to 50 discrete glomeruli, forming parallel information-processing pathways. Here we show that Toll-6 and Toll-7, members of the Toll receptor family best known for functions in innate immunity and embryonic patterning, cell autonomously instruct the targeting of specific classes of PN dendrites and ORN axons, respectively. The canonical ligands and downstream partners of Toll receptors in embryonic patterning and innate immunity are not required for the function of Toll-6/Toll-7 in wiring specificity, nor are their cytoplasmic domains. Interestingly, both Toll-6 and Toll-7 participate in synaptic partner matching between ORN axons and PN dendrites. Our investigations reveal that olfactory circuit assembly involves dynamic and long-range interactions between PN dendrites and ORN axons.
Collapse
Affiliation(s)
- Alex Ward
- Howard Hughes Medical Institute and Department of Biology, Stanford University, Stanford, CA 94305, USA.
| | - Weizhe Hong
- Howard Hughes Medical Institute and Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Vincenzo Favaloro
- Howard Hughes Medical Institute and Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Liqun Luo
- Howard Hughes Medical Institute and Department of Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
37
|
Lim JY, Reighard CP, Crowther DC. The pro-domains of neurotrophins, including BDNF, are linked to Alzheimer's disease through a toxic synergy with Aβ. Hum Mol Genet 2015; 24:3929-38. [PMID: 25954034 PMCID: PMC4476443 DOI: 10.1093/hmg/ddv130] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 04/08/2015] [Indexed: 12/27/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) has a crucial role in learning and memory by promoting neuronal survival and modulating synaptic connectivity. BDNF levels are lower in the brains of individuals with Alzheimer's disease (AD), suggesting a pathogenic involvement. The Drosophila orthologue of BDNF is the highly conserved Neurotrophin 1 (DNT1). BDNF and DNT1 have the same overall protein structure and can be cleaved, resulting in the conversion of a full-length polypeptide into separate pro- and mature-domains. While the BDNF mature-domain is neuroprotective, the role of the pro-domain is less clear. In flies and mammalian cells, we have identified a synergistic toxic interaction between the amyloid-β peptide (Aβ1–42) and the pro-domains of both DNT1 and BDNF. Specifically, we show that DNT1 pro-domain acquires a neurotoxic activity in the presence of Aβ1–42. In contrast, DNT1 mature-domain is protective against Aβ1–42 toxicity. Likewise, in SH-SY5Y cell culture, BDNF pro-domain is toxic only in the presence of Aβ1–42. Western blots indicate that this synergistic interaction likely results from the Aβ1–42-induced upregulation of the BDNF pro-domain receptor p75NTR. The clinical relevance of these findings is underlined by a greater than thirty fold increase in the ratio of BDNF pro- to mature-domains in the brains of individuals with AD. This unbalanced BDNF pro:mature-domain ratio in patients represents a possible biomarker of AD and may offer a target for therapeutic intervention.
Collapse
Affiliation(s)
- Jung Yeon Lim
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Charles P Reighard
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK and
| | - Damian C Crowther
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK, MedImmune Limited, Aaron Klug Building, Granta Park, Cambridge CB21 6GH, UK
| |
Collapse
|
38
|
A positional Toll receptor code directs convergent extension in Drosophila. Nature 2014; 515:523-7. [PMID: 25363762 DOI: 10.1038/nature13953] [Citation(s) in RCA: 184] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 10/09/2014] [Indexed: 12/21/2022]
Abstract
Elongation of the head-to-tail body axis by convergent extension is a conserved developmental process throughout metazoans. In Drosophila, patterns of transcription factor expression provide spatial cues that induce systematically oriented cell movements and promote tissue elongation. However, the mechanisms by which patterned transcriptional inputs control cell polarity and behaviour have long been elusive. We demonstrate that three Toll family receptors, Toll-2, Toll-6 and Toll-8, are expressed in overlapping transverse stripes along the anterior-posterior axis and act in combination to direct planar polarity and polarized cell rearrangements during convergent extension. Simultaneous disruption of all three receptors strongly reduces actomyosin-driven junctional remodelling and axis elongation, and an ectopic stripe of Toll receptor expression is sufficient to induce planar polarized actomyosin contractility. These results demonstrate that tissue-level patterns of Toll receptor expression provide spatial signals that link positional information from the anterior-posterior patterning system to the essential cell behaviours that drive convergent extension.
Collapse
|
39
|
Lamiable O, Imler JL. Induced antiviral innate immunity in Drosophila. Curr Opin Microbiol 2014; 20:62-8. [PMID: 24907422 DOI: 10.1016/j.mib.2014.05.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 05/03/2014] [Accepted: 05/11/2014] [Indexed: 10/25/2022]
Abstract
Immunity to viral infections in the model organism Drosophila melanogaster involves both RNA interference and additional induced responses. The latter include not only cellular mechanisms such as programmed cell death and autophagy, but also the induction of a large set of genes, some of which contribute to the control of viral replication and resistance to infection. This induced response to infection is complex and involves both virus-specific and cell-type specific mechanisms. We review here recent developments, from the sensing of viral infection to the induction of signaling pathways and production of antiviral effector molecules. Our current understanding, although still partial, validates the Drosophila model of antiviral induced immunity for insect pests and disease vectors, as well as for mammals.
Collapse
Affiliation(s)
- Olivier Lamiable
- CNRS-UPR9022, Institut de Biologie Moléculaire et Cellulaire, 15 rue Descartes, F-67084 Strasbourg, France
| | - Jean-Luc Imler
- CNRS-UPR9022, Institut de Biologie Moléculaire et Cellulaire, 15 rue Descartes, F-67084 Strasbourg, France; Faculté des Sciences de la Vie, Université de Strasbourg, 28 rue Goethe, F-67083 Strasbourg, France.
| |
Collapse
|