1
|
Ester L, Wiesner E, Chen H, Ventzke M, Diefenhardt P, Mandel AM, Fabretti F, Brinkkoetter PT, Benzing T, Habbig S, Kann M, Cabrita I, Schermer B. Transcriptional Regulators YAP and TAZ Have Distinct Abilities to Compensate for One Another in Podocytes. J Am Soc Nephrol 2025:00001751-990000000-00598. [PMID: 40137583 DOI: 10.1681/asn.0000000689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 03/20/2025] [Indexed: 03/29/2025] Open
Abstract
Key Points
Podocyte-specific knockout of YAP but not TAZ led to proteinuria.Knockout of more than two alleles of YAP and TAZ resulted in neonatal death, revealing compensation between the two cotranscription factors.Although YAP fully compensated for the loss of TAZ, TAZ did not entirely compensate for YAP functions related to Rho-GTPase and ERBB4 signaling.
Background
Kidney function depends on the filtration of enormous volumes of plasma, exposing the filtration barrier to mechanical forces. Podocytes must adapt to these forces for the lifetime of an organism as they cannot self-renew. The molecular mechanisms of podocyte adaptation to mechanical stress remain unclear. YAP and TAZ are key mechanotransducers that relay mechanical stimuli to control transcription.
Methods
We made use of podocyte-specific knockout mouse models for Yap (YAPpKO), Taz (TAZpKO), or both (YAPpKO/TAZpKO) and analyzed single-nucleus RNA sequencing data of isolated glomeruli to delineate the distinct and shared roles of YAP and TAZ in podocyte homeostasis.
Results
Here, we found that YAP and TAZ have only partially overlapping functions and compensatory potential in podocytes in vivo. YAPpKO mice displayed podocyte damage and progressive kidney failure. By contrast, TAZpKO animals did not develop any overt disease, while the combined deletion of Yap and Taz caused a neonatal lethal phenotype. Single-nucleus RNA sequencing analysis revealed that in both YAPpKO and TAZpKO mice, a subpopulation of podocytes showed a similar stress response driven by activator protein 1, revealing a protective compensatory mechanism. However, TAZ failed to compensate sufficiently for the loss of YAP, resulting in dysregulation of Rho-GTPases and subsequently the actin cytoskeleton in diseased YAPpKO. Furthermore, we observed loss of ERBB4 expression exclusively in YAPpKO, underscoring the role of ERBB4 signaling as additional layer of YAP-specific regulation in maintaining podocyte survival.
Conclusions
In summary, we identified common and distinct roles for the two transcriptional regulators in podocyte homeostasis. YAP and TAZ can compensate for the loss of the other in podocytes to preserve viability. Still, although YAP can entirely compensate for the loss of TAZ securing podocyte health, TAZ fails to maintain all the YAP-specific functions leading to podocyte injury.
Collapse
Affiliation(s)
- Lioba Ester
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Research Center On Rare Kidney Diseases (RECORD), University Hospital Erlangen, Erlangen, Germany
| | - Eva Wiesner
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - He Chen
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Michel Ventzke
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Paul Diefenhardt
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Amrei M Mandel
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Research Center On Rare Kidney Diseases (RECORD), University Hospital Erlangen, Erlangen, Germany
| | - Francesca Fabretti
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Paul T Brinkkoetter
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Thomas Benzing
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Sandra Habbig
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Martin Kann
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Inês Cabrita
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Bernhard Schermer
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
2
|
Dawson LE, Sekar A, Fulford AD, Lambert RI, Burgess HS, Ribeiro PS. The deubiquitylating enzyme Fat facets promotes Fat signalling and restricts tissue growth. Nat Commun 2025; 16:1938. [PMID: 39994229 PMCID: PMC11850632 DOI: 10.1038/s41467-025-57164-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 02/13/2025] [Indexed: 02/26/2025] Open
Abstract
Tissue growth is regulated by many signals, including polarity cues. The Hippo signalling pathway restricts tissue growth and receives inputs from the planar cell polarity-controlling Fat signalling pathway. The atypical cadherin Fat restricts growth via several mechanisms that ultimately control the activity of the pro-growth transcriptional co-activator Yorkie. Fat signalling activates the Yorkie inhibitory kinase Warts, and modulates the function of the FERM protein Expanded, which promotes Hippo signalling and also directly inhibits Yorkie. Although several Fat pathway activity modulators are known to be involved in ubiquitylation, the role of this post-translational modification in the pathway remains unclear. Moreover, no deubiquitylating enzymes have been described in this pathway. Here, using in vivo RNAi screening, we identify the deubiquitylating enzyme Fat facets as a positive regulator of Fat signalling with roles in tissue growth control. Fat facets interacts genetically and physically with Fat signalling components and regulates Yorkie target gene expression. Thus, we uncover a role for reversible ubiquitylation in the control of Fat signalling and tissue growth regulation.
Collapse
Affiliation(s)
- Lauren E Dawson
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, UK
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London, UK
| | - Aashika Sekar
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, UK
- Apoptosis and Proliferation Control Laboratory, The Francis Crick Institute, 1 Midland Road, London, UK
| | - Alexander D Fulford
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, UK
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Rachel I Lambert
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, UK
| | - Hannah S Burgess
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, UK
| | - Paulo S Ribeiro
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, UK.
| |
Collapse
|
3
|
Wang J, Shen D, Jiang J, Hu L, Fang K, Xie C, Shen N, Zhou Y, Wang Y, Du S, Meng S. Dietary Palmitic Acid Drives a Palmitoyltransferase ZDHHC15-YAP Feedback Loop Promoting Tumor Metastasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409883. [PMID: 39686664 PMCID: PMC11809420 DOI: 10.1002/advs.202409883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Indexed: 12/18/2024]
Abstract
Elevated uptake of saturated fatty acid palmitic acid (PA) is associated with tumor metastasis; however, the precise mechanisms remain partially understood, hindering the development of therapy for PA-driven tumor metastasis. The Hippo-Yes-associated protein (Hippo/YAP) pathway is implicated in cancer progression. Here it is shown that a high-palm oil diet potentiates tumor metastasis in murine xenografts in part through YAP. It is found that the palmitoyltransferase ZDHHC15 is a YAP-regulated gene that forms a feedback loop with YAP. Notably, PA drives the ZDHHC15-YAP feedback loop, thus enforces YAP signaling, and hence promotes tumor metastasis in murine xenografts. In addition, it is shown that ZDHHC15 associates with Kidney and brain protein (KIBRA, also known as WW- and C2 domain-containing protein 1, WWC1), an upstream component of Hippo signaling, and mediates its palmitoylation. KIBRA palmitoylation leads to its degradation and regulates its subcellular localization and activity toward the Hippo/YAP pathway. Moreover, PA enhances KIBRA palmitoylation and degradation. It is further shown that combinatorial targeting of YAP and fatty acid synthesis exhibits augmented effects against metastasis formation in mice fed with a Palm diet. Collectively, these findings uncover a ZDHHC15-YAP feedback loop as a previously unrecognized mechanism underlying PA-promoted tumor metastasis and support targeting YAP and fatty acid synthesis as potential therapeutic targets in PA-driven tumor metastasis.
Collapse
Affiliation(s)
- Jianxin Wang
- Institute of Cancer Stem CellDalian Medical University Cancer CenterDalian116044China
| | - Dachuan Shen
- Department of OncologyAffiliated Zhongshan Hospital of Dalian UniversityDalian116001China
| | - Jian Jiang
- Central Hospital of Dalian University of TechnologyDepartment of Spine SurgeryDalian116033China
| | - Lulu Hu
- Department of Laboratory MedicineQingdao Central HospitalUniversity of Health and Rehabilitation Sciences NO.369Dengyun Road, Qingdao National High‐tech Industrial Development ZoneQingdaoChina
| | - Kun Fang
- Central LaboratoryCancer Hospital of China Medical UniversityCancer Hospital of Dalian University of TechnologyLiaoning Cancer Hospital & InstituteShenyang110042China
| | - Chunrui Xie
- Institute of Cancer Stem CellDalian Medical University Cancer CenterDalian116044China
| | - Ning Shen
- Institute of Cancer Stem CellDalian Medical University Cancer CenterDalian116044China
| | - Yuzhao Zhou
- Institute of Cancer Stem CellDalian Medical University Cancer CenterDalian116044China
| | - Yifei Wang
- Department of Obstetrics and GynecologyAffiliated Zhongshan Hospital of Dalian UniversityDalian116001China
| | - Sha Du
- Institute of Cancer Stem CellDalian Medical University Cancer CenterDalian116044China
| | - Songshu Meng
- Institute of Cancer Stem CellDalian Medical University Cancer CenterDalian116044China
| |
Collapse
|
4
|
Matakatsu H, Fehon RG. Dachsous and Fat coordinately repress the Dachs-Dlish-Approximated complex to control growth. J Cell Biol 2024; 223:e202406119. [PMID: 39373700 PMCID: PMC11461286 DOI: 10.1083/jcb.202406119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/28/2024] [Accepted: 09/11/2024] [Indexed: 10/08/2024] Open
Abstract
Two protocadherins, Dachsous and Fat, regulate organ growth in Drosophila via the Hippo pathway. Dachsous and Fat bind heterotypically to regulate the abundance and subcellular localization of a "core complex" consisting of Dachs, Dlish, and Approximated. This complex localizes to the junctional cortex where it represses Warts. Dachsous is believed to promote growth by recruiting and stabilizing this complex, while Fat represses growth by promoting its degradation. Here, we examine the functional relationships between the intracellular domains of Dachsous and Fat and the core complex. While Dachsous promotes the accumulation of core complex proteins in puncta, it is not required for their assembly. Indeed, the core complex accumulates maximally in the absence of both Dachsous and Fat. Furthermore, Dachsous represses growth in the absence of Fat by removing the core complex from the junctional cortex. Fat similarly recruits core complex components but promotes their degradation. Our findings reveal that Dachsous and Fat coordinately constrain tissue growth by repressing the core complex.
Collapse
Affiliation(s)
- Hitoshi Matakatsu
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA
| | - Richard G. Fehon
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA
| |
Collapse
|
5
|
Matakatsu H, Fehon RG. Dachsous and Fat coordinately repress the Dachs-Dlish-Approximated complex to control growth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.18.599638. [PMID: 38948705 PMCID: PMC11212998 DOI: 10.1101/2024.06.18.599638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Two protocadherins, Dachsous (Ds) and Fat (Ft), regulate organ growth in Drosophila via the Hippo pathway. Ds and Ft bind heterotypically to regulate the abundance and subcellular localization of a 'core complex' consisting of Dachs, Dlish and Approximated. This complex localizes to the junctional cortex where it promotes growth by repressing the pathway kinase Warts. Ds is believed to promote growth by recruiting and stabilizing the core complex at the junctional cortex, while Ft represses growth by promoting degradation of core complex components. Here, we examine the functions of intracellular domains of Ds and Ft and their relationship to the core complex. While Ds promotes accumulation of the core complex proteins in cortical puncta, it is not required for core complex assembly. Indeed, the core complex assembles maximally in the absence of both Ds and Ft. Furthermore, while Ds promotes growth in the presence of Ft, it represses growth in the absence of Ft by removing the core complex from the junctional cortex. Ft similarly recruits core complex components, however it normally promotes their degradation. Our findings reveal that Ds and Ft constrain tissue growth by repressing the default 'on' state of the core complex.
Collapse
|
6
|
Fulford AD, Enderle L, Rusch J, Hodzic D, Holder MV, Earl A, Oh RH, Tapon N, McNeill H. Expanded directly binds conserved regions of Fat to restrain growth via the Hippo pathway. J Cell Biol 2023; 222:e202204059. [PMID: 37071483 PMCID: PMC10120405 DOI: 10.1083/jcb.202204059] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 11/26/2022] [Accepted: 02/09/2023] [Indexed: 04/19/2023] Open
Abstract
The Hippo pathway is a conserved and critical regulator of tissue growth. The FERM protein Expanded is a key signaling hub that promotes activation of the Hippo pathway, thereby inhibiting the transcriptional co-activator Yorkie. Previous work identified the polarity determinant Crumbs as a primary regulator of Expanded. Here, we show that the giant cadherin Fat also regulates Expanded directly and independently of Crumbs. We show that direct binding between Expanded and a highly conserved region of the Fat cytoplasmic domain recruits Expanded to the apicolateral junctional zone and stabilizes Expanded. In vivo deletion of Expanded binding regions in Fat causes loss of apical Expanded and promotes tissue overgrowth. Unexpectedly, we find Fat can bind its ligand Dachsous via interactions of their cytoplasmic domains, in addition to the known extracellular interactions. Importantly, Expanded is stabilized by Fat independently of Dachsous binding. These data provide new mechanistic insights into how Fat regulates Expanded, and how Hippo signaling is regulated during organ growth.
Collapse
Affiliation(s)
- Alexander D. Fulford
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, USA
| | - Leonie Enderle
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Jannette Rusch
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, USA
| | - Didier Hodzic
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, USA
| | - Maxine V. Holder
- Apoptosis and Proliferation Control Laboratory, The Francis Crick Institute, London, UK
| | - Alex Earl
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, USA
| | - Robin Hyunseo Oh
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Nicolas Tapon
- Apoptosis and Proliferation Control Laboratory, The Francis Crick Institute, London, UK
| | - Helen McNeill
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, USA
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| |
Collapse
|
7
|
Porcellato E, González-Sánchez JC, Ahlmann-Eltze C, Elsakka MA, Shapira I, Fritsch J, Navarro JA, Anders S, Russell RB, Wieland FT, Metzendorf C. The S-palmitoylome and DHHC-PAT interactome of Drosophila melanogaster S2R+ cells indicate a high degree of conservation to mammalian palmitoylomes. PLoS One 2022; 17:e0261543. [PMID: 35960718 PMCID: PMC9374236 DOI: 10.1371/journal.pone.0261543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 07/28/2022] [Indexed: 11/18/2022] Open
Abstract
Protein S-palmitoylation, the addition of a long-chain fatty acid to target proteins, is among the most frequent reversible protein modifications in Metazoa, affecting subcellular protein localization, trafficking and protein-protein interactions. S-palmitoylated proteins are abundant in the neuronal system and are associated with neuronal diseases and cancer. Despite the importance of this post-translational modification, it has not been thoroughly studied in the model organism Drosophila melanogaster. Here we present the palmitoylome of Drosophila S2R+ cells, comprising 198 proteins, an estimated 3.5% of expressed genes in these cells. Comparison of orthologs between mammals and Drosophila suggests that S-palmitoylated proteins are more conserved between these distant phyla than non-S-palmitoylated proteins. To identify putative client proteins and interaction partners of the DHHC family of protein acyl-transferases (PATs) we established DHHC-BioID, a proximity biotinylation-based method. In S2R+ cells, ectopic expression of the DHHC-PAT dHip14-BioID in combination with Snap24 or an interaction-deficient Snap24-mutant as a negative control, resulted in biotinylation of Snap24 but not the Snap24-mutant. DHHC-BioID in S2R+ cells using 10 different DHHC-PATs as bait identified 520 putative DHHC-PAT interaction partners of which 48 were S-palmitoylated and are therefore putative DHHC-PAT client proteins. Comparison of putative client protein/DHHC-PAT combinations indicates that CG8314, CG5196, CG5880 and Patsas have a preference for transmembrane proteins, while S-palmitoylated proteins with the Hip14-interaction motif are most enriched by DHHC-BioID variants of approximated and dHip14. Finally, we show that BioID is active in larval and adult Drosophila and that dHip14-BioID rescues dHip14 mutant flies, indicating that DHHC-BioID is non-toxic. In summary we provide the first systematic analysis of a Drosophila palmitoylome. We show that DHHC-BioID is sensitive and specific enough to identify DHHC-PAT client proteins and provide DHHC-PAT assignment for ca. 25% of the S2R+ cell palmitoylome, providing a valuable resource. In addition, we establish DHHC-BioID as a useful concept for the identification of tissue-specific DHHC-PAT interactomes in Drosophila.
Collapse
Affiliation(s)
- Elena Porcellato
- Heidelberg University Biochemistry Center (BZH), Heidelberg University, Heidelberg, Germany
| | - Juan Carlos González-Sánchez
- Heidelberg University Biochemistry Center (BZH), Heidelberg University, Heidelberg, Germany
- BioQuant, Heidelberg University, Heidelberg, Germany
| | | | - Mahmoud Ali Elsakka
- Heidelberg University Biochemistry Center (BZH), Heidelberg University, Heidelberg, Germany
| | - Itamar Shapira
- Heidelberg University Biochemistry Center (BZH), Heidelberg University, Heidelberg, Germany
| | - Jürgen Fritsch
- Institute of Immunology, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | | | - Simon Anders
- Centre for Molecular Biology of the University of Heidelberg (ZMBH), Heidelberg, Germany
| | - Robert B. Russell
- Heidelberg University Biochemistry Center (BZH), Heidelberg University, Heidelberg, Germany
- BioQuant, Heidelberg University, Heidelberg, Germany
| | - Felix T. Wieland
- Heidelberg University Biochemistry Center (BZH), Heidelberg University, Heidelberg, Germany
| | - Christoph Metzendorf
- Heidelberg University Biochemistry Center (BZH), Heidelberg University, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
8
|
Gridnev A, Misra JR. Emerging Mechanisms of Growth and Patterning Regulation by Dachsous and Fat Protocadherins. Front Cell Dev Biol 2022; 10:842593. [PMID: 35372364 PMCID: PMC8967653 DOI: 10.3389/fcell.2022.842593] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/08/2022] [Indexed: 01/14/2023] Open
Abstract
Dachsous (Ds) and Fat are evolutionarily conserved cell adhesion molecules that play a critical role in development of multiple organ systems, where they coordinate tissue growth and morphogenesis. Much of our understanding of Ds-Fat signaling pathway comes from studies in Drosophila, where they initiate a signaling pathway that regulate growth by influencing Hippo signaling and morphogenesis by regulating Planar Cell Polarity (PCP). In this review, we discuss recent advances in our understanding of the mechanisms by which Ds-Fat signaling pathway regulates these critical developmental processes. Further, we discuss the progress in our understanding about how they function in mammals.
Collapse
|
9
|
Regulation of Cell Polarity by Posttranslational Protein Palmitoylation. Methods Mol Biol 2022; 2438:107-121. [PMID: 35147938 PMCID: PMC9732788 DOI: 10.1007/978-1-0716-2035-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Cell polarity is a common feature of many living cells, especially epithelial cells, and plays important roles in development, tissue homeostasis, and diseases. Therefore, the signaling pathways involved in establishing and maintaining cell polarity are tightly controlled. Protein S-palmitoylation has been recently recognized as an important posttranslational modification involved in cell polarity, via dynamic covalent attachment of fatty acyl groups to the cysteine residues of cell polarity proteins. Here, we describe the methods to study the function and regulation of S-palmitoylation of cell polarity proteins.
Collapse
|
10
|
Nagai H, Tatara H, Tanaka-Furuhashi K, Kurata S, Yano T. Homeostatic Regulation of ROS-Triggered Hippo-Yki Pathway via Autophagic Clearance of Ref(2)P/p62 in the Drosophila Intestine. Dev Cell 2021; 56:81-94.e10. [PMID: 33400912 DOI: 10.1016/j.devcel.2020.12.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/23/2020] [Accepted: 12/10/2020] [Indexed: 12/15/2022]
Abstract
Homeostasis of intestinal epithelia is maintained by coordination of the proper rate of regeneration by stem cell division with the rate of cell loss. Regeneration of host epithelia is normally quiescent upon colonization of commensal bacteria; however, the epithelia often develop dysplasia in a context-dependent manner, the cause and underlying mechanism of which remain unclear. Here, we show that in Drosophila intestine, autophagy lowers the sensitivity of differentiated enterocytes to reactive oxygen species (ROS) that are produced in response to commensal bacteria. We find that autophagy deficiency provokes ROS-dependent excessive regeneration and subsequent epithelial dysplasia and barrier dysfunction. Mechanistically, autophagic substrate Ref(2)P/p62, which co-localizes and physically interacts with Dachs, a Hippo signaling regulator, accumulates upon autophagy deficiency and thus inactivates Hippo signaling, resulting in stem cell over-proliferation non-cell autonomously. Our findings uncover a mechanism whereby suppression of undesirable regeneration by autophagy maintains long-term homeostasis of intestinal epithelia.
Collapse
Affiliation(s)
- Hiroki Nagai
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Hiroshi Tatara
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | | | - Shoichiro Kurata
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan.
| | - Tamaki Yano
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan.
| |
Collapse
|
11
|
Yu Y, Liu X, Ma X, Zhang Z, Wang T, Sun F, Hou C, Li M. A palmitoyltransferase Approximated gene Bm-app regulates wing development in Bombyx mori. INSECT SCIENCE 2020; 27:2-13. [PMID: 29943911 PMCID: PMC7379679 DOI: 10.1111/1744-7917.12629] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 05/21/2018] [Accepted: 05/27/2018] [Indexed: 05/08/2023]
Abstract
The silkworm Bombyx mori is an important lepidopteran model insect in which many kinds of natural mutants have been identified. However, molecular mechanisms of most of these mutants remain to be explored. Here we report the identification of a gene Bm-app is responsible for the silkworm minute wing (mw) mutation which exhibits exceedingly small wings during pupal and adult stages. Compared with the wild type silkworm, relative messenger RNA expression of Bm-app is significantly decreased in the u11 mutant strain which shows mw phenotype. A 10 bp insertion in the putative promoter region of the Bm-app gene in mw mutant strain was identified and the dual luciferase assay revealed that this insertion decreased Bm-app promoter activity. Furthermore, clustered regularly interspaced short palindromic repeats/RNA-guided Cas9 nucleases-mediated depletion of the Bm-app induced similar wing defects which appeared in the mw mutant, demonstrating that Bm-app controls wing development in B. mori. Bm-app encodes a palmitoyltransferase and is responsible for the palmitoylation of selected cytoplasmic proteins, indicating that it is required for cell mitosis and growth during wing development. We also discuss the possibility that Bm-app regulates wing development through the Hippo signaling pathway in B. mori.
Collapse
Affiliation(s)
- Ye Yu
- School of BiotechnologyJiangsu University of Science and TechnologyZhenjiangJiangsuChina
| | - Xiao‐Jing Liu
- School of BiotechnologyJiangsu University of Science and TechnologyZhenjiangJiangsuChina
| | - Xiao Ma
- School of BiotechnologyJiangsu University of Science and TechnologyZhenjiangJiangsuChina
| | - Zhong‐Jie Zhang
- School of BiotechnologyJiangsu University of Science and TechnologyZhenjiangJiangsuChina
| | - Tai‐Chu Wang
- Sericultural Research InstituteAnhui Academy of Agricultural SciencesHefeiChina
| | - Fan Sun
- Sericultural Research InstituteAnhui Academy of Agricultural SciencesHefeiChina
| | - Cheng‐Xiang Hou
- School of BiotechnologyJiangsu University of Science and TechnologyZhenjiangJiangsuChina
- Sericultural Research InstituteChinese Academy of Agricultural SciencesZhenjiangJiangsuChina
| | - Mu‐Wang Li
- School of BiotechnologyJiangsu University of Science and TechnologyZhenjiangJiangsuChina
- Sericultural Research InstituteChinese Academy of Agricultural SciencesZhenjiangJiangsuChina
| |
Collapse
|
12
|
Fat/Dachsous family cadherins in cell and tissue organisation. Curr Opin Cell Biol 2020; 62:96-103. [DOI: 10.1016/j.ceb.2019.10.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/24/2019] [Accepted: 10/16/2019] [Indexed: 02/06/2023]
|
13
|
Khadilkar RJ, Tanentzapf G. Septate junction components control Drosophila hematopoiesis through the Hippo pathway. Development 2019; 146:dev.166819. [PMID: 30890573 DOI: 10.1242/dev.166819] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 03/08/2019] [Indexed: 12/12/2022]
Abstract
Hematopoiesis requires coordinated cell signals to control the proliferation and differentiation of progenitor cells. In Drosophila, blood progenitors, called prohemocytes, which are located in a hematopoietic organ called the lymph gland, are regulated by the Salvador-Warts-Hippo pathway. In epithelial cells, the Hippo pathway integrates diverse biological inputs, such as cell polarity and cell-cell contacts, but Drosophila blood cells lack the conspicuous polarity of epithelial cells. Here, we show that the septate-junction components Cora and NrxIV promote Hippo signaling in the lymph gland. Depletion of septate-junction components in hemocytes produces similar phenotypes to those observed in Hippo pathway mutants, including increased differentiation of immune cells. Our analysis places septate-junction components as upstream regulators of the Hippo pathway where they recruit Merlin to the membrane. Finally, we show that interactions of septate-junction components with the Hippo pathway are a key functional component of the cellular immune response following infection.
Collapse
Affiliation(s)
- Rohan J Khadilkar
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Guy Tanentzapf
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver V6T 1Z3, Canada
| |
Collapse
|
14
|
Early girl is a novel component of the Fat signaling pathway. PLoS Genet 2019; 15:e1007955. [PMID: 30699121 PMCID: PMC6370246 DOI: 10.1371/journal.pgen.1007955] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 02/11/2019] [Accepted: 01/11/2019] [Indexed: 01/05/2023] Open
Abstract
The Drosophila protocadherins Dachsous and Fat regulate growth and tissue polarity by modulating the levels, membrane localization and polarity of the atypical myosin Dachs. Localization to the apical junctional membrane is critical for Dachs function, and the adapter protein Vamana/Dlish and palmitoyl transferase Approximated are required for Dachs membrane localization. However, how Dachs levels are regulated is poorly understood. Here we identify the early girl gene as playing an essential role in Fat signaling by limiting the levels of Dachs protein. early girl mutants display overgrowth of the wings and reduced cross vein spacing, hallmark features of mutations affecting Fat signaling. Genetic experiments reveal that it functions in parallel with Fat to regulate Dachs. early girl encodes an E3 ubiquitin ligase, physically interacts with Dachs, and regulates its protein stability. Concomitant loss of early girl and approximated results in accumulation of Dachs and Vamana in cytoplasmic punctae, suggesting that it also regulates their trafficking to the apical membrane. Our findings establish a crucial role for early girl in Fat signaling, involving regulation of Dachs and Vamana, two key downstream effectors of this pathway. During development, organs grow to achieve a consistent final size. The evolutionarily conserved Hippo signaling network plays a central role in organ size control, and when dysregulated can be associated with cancer and other diseases. Fat signaling is one of several upstream pathways that impinge on Hippo signaling to regulate organ growth. We describe here identification of the Drosophila early girl gene as a new component of the Fat signaling pathway. We show that Early girl controls Fat signaling by regulating the levels of the Dachs protein. However Early girl differs from other Fat signaling regulators in that it doesn’t influence planar cell polarity or control the polarity of Dachs localization. early girl encodes a conserved protein that is predicted to influence protein stability, and it can physically associate with Dachs. We also discovered that Early girl acts together with another protein, called Approximated, to regulate the sub-cellular localization of Dachs and a Dachs-interacting protein called Vamana. Altogether, our observations establish Early girl as an essential component of Fat signaling that acts to regulate the levels and localization of Dachs and Vamana.
Collapse
|
15
|
Fat-regulated adaptor protein Dlish binds the growth suppressor Expanded and controls its stability and ubiquitination. Proc Natl Acad Sci U S A 2019; 116:1319-1324. [PMID: 30606799 PMCID: PMC6347691 DOI: 10.1073/pnas.1811891116] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
To regulate the growth and size of organs, cells can use information from their neighbors to modify intracellular mediators of cell proliferation. The intracellular Hippo pathway is a widely utilized nexus for growth control in animals, but its regulation by extracellular signals is not fully understood. We here identify a pathway that regulates organ size in Drosophila, triggered by the transmembrane receptor, the giant protocadherin Fat. We show that the Fat-regulated SH3 domain adaptor protein Dlish binds to and reduces the stability of the growth suppressor Expanded, a known regulator of the Hippo pathway. The destabilization of Expanded by Dlish works in parallel to a previously established pathway in which Dlish increases levels of the growth-stimulating protein Dachs. The Drosophila protocadherin Fat controls organ size through the Hippo pathway, but the biochemical links to the Hippo pathway components are still poorly defined. We previously identified Dlish, an SH3 domain protein that physically interacts with Fat and the type XX myosin Dachs, and showed that Fat’s regulation of Dlish levels and activity helps limit Dachs-mediated inhibition of Hippo pathway activity. We here characterize a parallel growth control pathway downstream of Fat and Dlish. Using immunoprecipitation and mass spectrometry to search for Dlish partners, we find that Dlish binds the FERM domain growth repressor Expanded (Ex); Dlish SH3 domains directly bind sites in the Ex C terminus. We further show that, in vivo, Dlish reduces the subapical accumulation of Ex, and that loss of Dlish blocks the destabilization of Ex caused by loss of Fat. Moreover, Dlish can bind the F-box E3 ubiquitin ligase Slimb and promote Slimb-mediated ubiquitination of Expanded in vitro. Both the in vitro and in vivo effects of Dlish on Ex require Slimb, strongly suggesting that Dlish destabilizes Ex by helping recruit Slimb-containing E3 ubiquitin ligase complexes to Ex.
Collapse
|
16
|
Abstract
Organ growth is fundamental to animal development. One of major mechanisms for growth control is mediated by the conserved Hippo signaling pathway initially identified in Drosophila. The core of this pathway in Drosophila consists of a cascade of protein kinases Hippo and Warts that negatively regulate transcriptional coactivator Yorkie (Yki). Activation of Yki promotes cell survival and proliferation to induce organ growth. A key issue in Hippo signaling is to understand how core kinase cascade is activated. Activation of Hippo kinase cascade is regulated in the upstream by at least two transmembrane proteins Crumbs and Fat that act in parallel. These membrane proteins interact with additional factors such as FERM-domain proteins Expanded and Merlin to modulate subcellular localization and function of the Hippo kinase cascade. Hippo signaling is also influenced by cytoskeletal networks and cell tension in epithelia of developing organs. These upstream events in the regulation of Hippo signaling are only partially understood. This review focuses on our current understanding of some upstream processes involved in Hippo signaling in developing Drosophila organs.
Collapse
Affiliation(s)
- Kwang-Wook Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| |
Collapse
|
17
|
Abstract
The Hippo signal transduction pathway is an important regulator of organ growth and cell differentiation, and its deregulation contributes to the development of cancer. The activity of the Hippo pathway is strongly dependent on cell junctions, cellular architecture, and the mechanical properties of the microenvironment. In this review, we discuss recent advances in our understanding of how cell junctions transduce signals from the microenvironment and control the activity of the Hippo pathway. We also discuss how these mechanisms may control organ growth during development and regeneration, and how defects in them deregulate Hippo signaling in cancer cells.
Collapse
Affiliation(s)
- Ruchan Karaman
- VIB Center for Cancer Biology, University of Leuven, 3000 Leuven, Belgium.,Department of Oncology, University of Leuven, 3000 Leuven, Belgium
| | - Georg Halder
- VIB Center for Cancer Biology, University of Leuven, 3000 Leuven, Belgium.,Department of Oncology, University of Leuven, 3000 Leuven, Belgium
| |
Collapse
|
18
|
Abstract
To create an intricately patterned and reproducibly sized and shaped organ, many cellular processes must be tightly regulated. Cell elongation, migration, metabolism, proliferation rates, cell-cell adhesion, planar polarization and junctional contractions all must be coordinated in time and space. Remarkably, a pair of extremely large cell adhesion molecules called Fat (Ft) and Dachsous (Ds), acting largely as a ligand-receptor system, regulate, and likely coordinate, these many diverse processes. Here we describe recent exciting progress on how the Ds-Ft pathway controls these diverse processes, and highlight a few of the many questions remaining as to how these enormous cell adhesion molecules regulate development.
Collapse
Affiliation(s)
- Seth Blair
- Department of Integrative Biology, University of Wisconsin, Madison, USA
| | - Helen McNeill
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA; Department of Molecular Genetics, University of Toronto, Toronto, Canada; Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada.
| |
Collapse
|
19
|
Lanyon-Hogg T, Faronato M, Serwa RA, Tate EW. Dynamic Protein Acylation: New Substrates, Mechanisms, and Drug Targets. Trends Biochem Sci 2017; 42:566-581. [PMID: 28602500 DOI: 10.1016/j.tibs.2017.04.004] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 04/06/2017] [Accepted: 04/13/2017] [Indexed: 01/04/2023]
Abstract
Post-translational attachment of lipids to proteins is found in all organisms, and is important for many biological processes. Acylation with myristic and palmitic acids are among the most common lipid modifications, and understanding reversible protein palmitoylation dynamics has become a particularly important goal. Linking acyltransferase enzymes to disease states can be challenging due to a paucity of robust models, compounded by functional redundancy between many palmitoyl transferases; however, in cases such as Wnt or Hedgehog signalling, small molecule inhibitors have been identified, with some progressing to clinical trials. In this review, we present recent developments in our understanding of protein acylation in human health and disease through use of chemical tools, global profiling of acylated proteomes, and functional studies of specific protein targets.
Collapse
Affiliation(s)
- Thomas Lanyon-Hogg
- Institute of Chemical Biology, Department of Chemistry, Imperial College London, London SW7 2AZ, UK
| | - Monica Faronato
- Institute of Chemical Biology, Department of Chemistry, Imperial College London, London SW7 2AZ, UK
| | - Remigiusz A Serwa
- Institute of Chemical Biology, Department of Chemistry, Imperial College London, London SW7 2AZ, UK
| | - Edward W Tate
- Institute of Chemical Biology, Department of Chemistry, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
20
|
Configuring a robust nervous system with Fat cadherins. Semin Cell Dev Biol 2017; 69:91-101. [PMID: 28603077 DOI: 10.1016/j.semcdb.2017.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/26/2017] [Accepted: 06/07/2017] [Indexed: 01/14/2023]
Abstract
Atypical Fat cadherins represent a small but versatile group of signaling molecules that influence proliferation and tissue polarity. With huge extracellular domains and intracellular domains harboring many independent protein interaction sites, Fat cadherins are poised to translate local cell adhesion events into a variety of cell behaviors. The need for such global coordination is particularly prominent in the nervous system, where millions of morphologically diverse neurons are organized into functional networks. As we learn more about their biological functions and molecular properties, increasing evidence suggests that Fat cadherins mediate contact-induced changes that ultimately impose a structure to developing neuronal circuits.
Collapse
|
21
|
Matakatsu H, Blair SS, Fehon RG. Size does matter! Cell Cycle 2017; 16:907-908. [PMID: 28426275 DOI: 10.1080/15384101.2017.1316569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Hitoshi Matakatsu
- a Department of Molecular Genetics and Cell Biology , University of Chicago , Chicago , IL , USA
| | - Seth S Blair
- b Department of Zoology , University of Wisconsin , Madison WI , USA
| | - Richard G Fehon
- a Department of Molecular Genetics and Cell Biology , University of Chicago , Chicago , IL , USA
| |
Collapse
|
22
|
Tissue growth and tumorigenesis in Drosophila: cell polarity and the Hippo pathway. Curr Opin Cell Biol 2017; 48:1-9. [PMID: 28364663 DOI: 10.1016/j.ceb.2017.03.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 03/07/2017] [Accepted: 03/10/2017] [Indexed: 12/17/2022]
Abstract
Cell polarity regulation is critical for defining membrane domains required for the establishment and maintenance of the apical-basal axis in epithelial cells (apico-basal polarity), asymmetric cell divisions, planar organization of tissues (planar cell polarity), and the formation of the front-rear axis in cell migration (front-rear polarity). In the vinegar fly, Drosophila melanogaster, cell polarity regulators also interact with the Hippo tissue growth control signaling pathway. In this review we survey the recent Drosophila literature linking cell polarity regulators with the Hippo pathway in epithelial tissue growth, neural stem cell asymmetric divisions and in cell migration in physiological and tumorigenic settings.
Collapse
|
23
|
Abstract
Study describes how a palmitoyltransferase regulates the Hippo pathway in flies.
Collapse
|