1
|
Cunningham C, Sun B. Representation of high-dimensional cell morphology and morphodynamics in 2D latent space. Phys Biol 2025; 22:036001. [PMID: 40233771 DOI: 10.1088/1478-3975/adcd37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 04/15/2025] [Indexed: 04/17/2025]
Abstract
The morphology and morphodynamics of cells as important biomarkers of the cellular state are widely appreciated in both fundamental research and clinical applications. Quantification of cell morphology often requires a large number of geometric measures that form a high-dimensional feature vector. This mathematical representation creates barriers to communicating, interpreting, and visualizing data. Here, we develop a deep learning-based algorithm to project 13-dimensional (13D) morphological feature vectors into 2-dimensional (2D) morphological latent space (MLS). We show that the projection has less than 5% information loss and separates the different migration phenotypes of metastatic breast cancer cells. Using the projection, we demonstrate the phenotype-dependent motility of breast cancer cells in the 3D extracellular matrix, and the continuous cell state change upon drug treatment. We also find that dynamics in the 2D MLS quantitatively agrees with the morphodynamics of cells in the 13D feature space, preserving the diffusive power and the Lyapunov exponent of cell shape fluctuations even though the dimensional reduction projection is highly nonlinear. Our results suggest that MLS is a powerful tool to represent and understand the cell morphology and morphodynamics.
Collapse
Affiliation(s)
- Christian Cunningham
- Department of Physics, Oregon State University, Corvallis, OR 97331, United States of America
| | - Bo Sun
- Department of Physics, Oregon State University, Corvallis, OR 97331, United States of America
| |
Collapse
|
2
|
Gangwal A, Lavecchia A. Artificial intelligence in anti-obesity drug discovery: unlocking next-generation therapeutics. Drug Discov Today 2025; 30:104333. [PMID: 40107411 DOI: 10.1016/j.drudis.2025.104333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 02/25/2025] [Accepted: 03/12/2025] [Indexed: 03/22/2025]
Abstract
Obesity, a multifactorial disease linked to severe health risks, requires innovative treatments beyond lifestyle changes and current medications. Existing anti-obesity drugs face limitations regarding efficacy, side effects, weight regain and high costs. Artificial intelligence (AI) is emerging as a pivotal tool in drug discovery, expediting the identification of novel drug candidates and optimizing treatment strategies. This review examines AI's potential in developing next-generation anti-obesity therapeutics, with a focus on glucagon-like peptide-1 receptor agonists (GLP-1 RAs) and their role in discovering anti-obesity peptides. Additionally, it explores integration challenges and offers future perspectives on leveraging AI to reshape the landscape of anti-obesity drug discovery.
Collapse
Affiliation(s)
- Amit Gangwal
- Department of Natural Product Chemistry, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule 424001 Maharashtra, India
| | - Antonio Lavecchia
- Drug Discovery Laboratory, Department of Pharmacy, University of Naples Federico II, I-80131 Naples, Italy.
| |
Collapse
|
3
|
Rasul HO, Ghafour DD, Aziz BK, Hassan BA, Rashid TA, Kivrak A. Decoding Drug Discovery: Exploring A-to-Z In Silico Methods for Beginners. Appl Biochem Biotechnol 2025; 197:1453-1503. [PMID: 39630336 DOI: 10.1007/s12010-024-05110-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2024] [Indexed: 03/29/2025]
Abstract
The drug development process is a critical challenge in the pharmaceutical industry due to its time-consuming nature and the need to discover new drug potentials to address various ailments. The initial step in drug development, drug target identification, often consumes considerable time. While valid, traditional methods such as in vivo and in vitro approaches are limited in their ability to analyze vast amounts of data efficiently, leading to wasteful outcomes. To expedite and streamline drug development, an increasing reliance on computer-aided drug design (CADD) approaches has merged. These sophisticated in silico methods offer a promising avenue for efficiently identifying viable drug candidates, thus providing pharmaceutical firms with significant opportunities to uncover new prospective drug targets. The main goal of this work is to review in silico methods used in the drug development process with a focus on identifying therapeutic targets linked to specific diseases at the genetic or protein level. This article thoroughly discusses A-to-Z in silico techniques, which are essential for identifying the targets of bioactive compounds and their potential therapeutic effects. This review intends to improve drug discovery processes by illuminating the state of these cutting-edge approaches, thereby maximizing the effectiveness and duration of clinical trials for novel drug target investigation.
Collapse
Affiliation(s)
- Hezha O Rasul
- Department of Pharmaceutical Chemistry, College of Science, Charmo University, Peshawa Street, Chamchamal, 46023, Sulaimani, Iraq.
| | - Dlzar D Ghafour
- Department of Medical Laboratory Science, College of Science, Komar University of Science and Technology, 46001, Sulaimani, Iraq
- Department of Chemistry, College of Science, University of Sulaimani, 46001, Sulaimani, Iraq
| | - Bakhtyar K Aziz
- Department of Nanoscience and Applied Chemistry, College of Science, Charmo University, Peshawa Street, Chamchamal, 46023, Sulaimani, Iraq
| | - Bryar A Hassan
- Computer Science and Engineering Department, School of Science and Engineering, University of Kurdistan Hewler, KRI, Iraq
- Department of Computer Science, College of Science, Charmo University, Peshawa Street, Chamchamal, 46023, Sulaimani, Iraq
| | - Tarik A Rashid
- Computer Science and Engineering Department, School of Science and Engineering, University of Kurdistan Hewler, KRI, Iraq
| | - Arif Kivrak
- Department of Chemistry, Faculty of Sciences and Arts, Eskisehir Osmangazi University, Eskişehir, 26040, Turkey
| |
Collapse
|
4
|
Bhatia T, Sharma S. Drug Repurposing: Insights into Current Advances and Future Applications. Curr Med Chem 2025; 32:468-510. [PMID: 37946344 DOI: 10.2174/0109298673266470231023110841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/04/2023] [Accepted: 09/11/2023] [Indexed: 11/12/2023]
Abstract
Drug development is a complex and expensive process that involves extensive research and testing before a new drug can be approved for use. This has led to a limited availability of potential therapeutics for many diseases. Despite significant advances in biomedical science, the process of drug development remains a bottleneck, as all hypotheses must be tested through experiments and observations, which can be timeconsuming and costly. To address this challenge, drug repurposing has emerged as an innovative strategy for finding new uses for existing medications that go beyond their original intended use. This approach has the potential to speed up the drug development process and reduce costs, making it an attractive option for pharmaceutical companies and researchers alike. It involves the identification of existing drugs or compounds that have the potential to be used for the treatment of a different disease or condition. This can be done through a variety of approaches, including screening existing drugs against new disease targets, investigating the biological mechanisms of existing drugs, and analyzing data from clinical trials and electronic health records. Additionally, repurposing drugs can lead to the identification of new therapeutic targets and mechanisms of action, which can enhance our understanding of disease biology and lead to the development of more effective treatments. Overall, drug repurposing is an exciting and promising area of research that has the potential to revolutionize the drug development process and improve the lives of millions of people around the world. The present review provides insights on types of interaction, approaches, availability of databases, applications and limitations of drug repurposing.
Collapse
Affiliation(s)
- Trisha Bhatia
- School of Pharmacy, National Forensic Sciences University, Gandhinagar, Gujarat, 382007, India
| | - Shweta Sharma
- School of Pharmacy, National Forensic Sciences University, Gandhinagar, Gujarat, 382007, India
| |
Collapse
|
5
|
Gangwal A, Ansari A, Ahmad I, Azad AK, Wan Sulaiman WMA. Current strategies to address data scarcity in artificial intelligence-based drug discovery: A comprehensive review. Comput Biol Med 2024; 179:108734. [PMID: 38964243 DOI: 10.1016/j.compbiomed.2024.108734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/01/2024] [Accepted: 06/08/2024] [Indexed: 07/06/2024]
Abstract
Artificial intelligence (AI) has played a vital role in computer-aided drug design (CADD). This development has been further accelerated with the increasing use of machine learning (ML), mainly deep learning (DL), and computing hardware and software advancements. As a result, initial doubts about the application of AI in drug discovery have been dispelled, leading to significant benefits in medicinal chemistry. At the same time, it is crucial to recognize that AI is still in its infancy and faces a few limitations that need to be addressed to harness its full potential in drug discovery. Some notable limitations are insufficient, unlabeled, and non-uniform data, the resemblance of some AI-generated molecules with existing molecules, unavailability of inadequate benchmarks, intellectual property rights (IPRs) related hurdles in data sharing, poor understanding of biology, focus on proxy data and ligands, lack of holistic methods to represent input (molecular structures) to prevent pre-processing of input molecules (feature engineering), etc. The major component in AI infrastructure is input data, as most of the successes of AI-driven efforts to improve drug discovery depend on the quality and quantity of data, used to train and test AI algorithms, besides a few other factors. Additionally, data-gulping DL approaches, without sufficient data, may collapse to live up to their promise. Current literature suggests a few methods, to certain extent, effectively handle low data for better output from the AI models in the context of drug discovery. These are transferring learning (TL), active learning (AL), single or one-shot learning (OSL), multi-task learning (MTL), data augmentation (DA), data synthesis (DS), etc. One different method, which enables sharing of proprietary data on a common platform (without compromising data privacy) to train ML model, is federated learning (FL). In this review, we compare and discuss these methods, their recent applications, and limitations while modeling small molecule data to get the improved output of AI methods in drug discovery. Article also sums up some other novel methods to handle inadequate data.
Collapse
Affiliation(s)
- Amit Gangwal
- Department of Natural Product Chemistry, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, 424001, Maharashtra, India.
| | - Azim Ansari
- Computer Aided Drug Design Center, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, 424001, Maharashtra, India
| | - Iqrar Ahmad
- Department of Pharmaceutical Chemistry, Prof. Ravindra Nikam College of Pharmacy, Gondur, Dhule, 424002, Maharashtra, India.
| | - Abul Kalam Azad
- Faculty of Pharmacy, University College of MAIWP International, Batu Caves, 68100, Kuala Lumpur, Malaysia.
| | | |
Collapse
|
6
|
Wang Z, Hulikova A, Swietach P. Innovating cancer drug discovery with refined phenotypic screens. Trends Pharmacol Sci 2024; 45:723-738. [PMID: 39013672 DOI: 10.1016/j.tips.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/10/2024] [Accepted: 06/17/2024] [Indexed: 07/18/2024]
Abstract
Before molecular pathways in cancer were known to a depth that could predict targets, drug development relied on phenotypic screening, where the effectiveness of candidate chemicals is judged from functional readouts without considering the mechanisms of action. The unraveling of tumor-specific pathways has brought targets for molecularly driven drug discovery, but precedents in the field have shown that awareness of pathways does not necessarily predict therapeutic efficacy, and many cancers still lack druggable targets. Phenotypic screening therefore retains a niche in drug development where a targeted approach is not informative. We analyze the unique advantages of phenotypic screens, and how technological advances have improved their discovery power. Notable advances include the use of larger biological panels and refined protocols that address the disease-relevance and increase data content with imaging and omic approaches.
Collapse
Affiliation(s)
- Zhenyi Wang
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| | - Alzbeta Hulikova
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| | - Pawel Swietach
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK.
| |
Collapse
|
7
|
Shpigler A, Kolet N, Golan S, Weisbart E, Zaritsky A. Anomaly detection for high-content image-based phenotypic cell profiling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.01.595856. [PMID: 38895267 PMCID: PMC11185510 DOI: 10.1101/2024.06.01.595856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
High-content image-based phenotypic profiling combines automated microscopy and analysis to identify phenotypic alterations in cell morphology and provide insight into the cell's physiological state. Classical representations of the phenotypic profile can not capture the full underlying complexity in cell organization, while recent weakly machine-learning based representation-learning methods are hard to biologically interpret. We used the abundance of control wells to learn the in-distribution of control experiments and use it to formulate a self-supervised reconstruction anomaly-based representation that encodes the intricate morphological inter-feature dependencies while preserving the representation interpretability. The performance of our anomaly-based representations was evaluated for downstream tasks with respect to two classical representations across four public Cell Painting datasets. Anomaly-based representations improved reproducibility, Mechanism of Action classification, and complemented classical representations. Unsupervised explainability of autoencoder-based anomalies identified specific inter-feature dependencies causing anomalies. The general concept of anomaly-based representations can be adapted to other applications in cell biology.
Collapse
Affiliation(s)
- Alon Shpigler
- Department of Software and Information Systems Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Naor Kolet
- Department of Software and Information Systems Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Shahar Golan
- Department of Computer Science, Jerusalem College of Technology, 91160 Jerusalem, Israel
| | - Erin Weisbart
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge (MA), USA
| | - Assaf Zaritsky
- Department of Software and Information Systems Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
8
|
Razdaibiedina A, Brechalov A, Friesen H, Mattiazzi Usaj M, Masinas MPD, Garadi Suresh H, Wang K, Boone C, Ba J, Andrews B. PIFiA: self-supervised approach for protein functional annotation from single-cell imaging data. Mol Syst Biol 2024; 20:521-548. [PMID: 38472305 PMCID: PMC11066028 DOI: 10.1038/s44320-024-00029-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Fluorescence microscopy data describe protein localization patterns at single-cell resolution and have the potential to reveal whole-proteome functional information with remarkable precision. Yet, extracting biologically meaningful representations from cell micrographs remains a major challenge. Existing approaches often fail to learn robust and noise-invariant features or rely on supervised labels for accurate annotations. We developed PIFiA (Protein Image-based Functional Annotation), a self-supervised approach for protein functional annotation from single-cell imaging data. We imaged the global yeast ORF-GFP collection and applied PIFiA to generate protein feature profiles from single-cell images of fluorescently tagged proteins. We show that PIFiA outperforms existing approaches for molecular representation learning and describe a range of downstream analysis tasks to explore the information content of the feature profiles. Specifically, we cluster extracted features into a hierarchy of functional organization, study cell population heterogeneity, and develop techniques to distinguish multi-localizing proteins and identify functional modules. Finally, we confirm new PIFiA predictions using a colocalization assay, suggesting previously unappreciated biological roles for several proteins. Paired with a fully interactive website ( https://thecellvision.org/pifia/ ), PIFiA is a resource for the quantitative analysis of protein organization within the cell.
Collapse
Affiliation(s)
- Anastasia Razdaibiedina
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
- Vector Institute for Artificial Intelligence, Toronto, ON, Canada
| | - Alexander Brechalov
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Helena Friesen
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Mojca Mattiazzi Usaj
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, ON, Canada
| | | | | | - Kyle Wang
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Charles Boone
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada.
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, Japan.
| | - Jimmy Ba
- Vector Institute for Artificial Intelligence, Toronto, ON, Canada.
- Department of Computer Science, University of Toronto, Toronto, ON, Canada.
| | - Brenda Andrews
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
9
|
Wang S, Oliveira-Silveira J, Fang G, Kang J. High-content analysis identified synergistic drug interactions between INK128, an mTOR inhibitor, and HDAC inhibitors in a non-small cell lung cancer cell line. BMC Cancer 2024; 24:335. [PMID: 38475728 PMCID: PMC11542337 DOI: 10.1186/s12885-024-12057-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND The development of drug resistance is a major cause of cancer therapy failures. To inhibit drug resistance, multiple drugs are often treated together as a combinatorial therapy. In particular, synergistic drug combinations, which kill cancer cells at a lower concentration, guarantee a better prognosis and fewer side effects in cancer patients. Many studies have sought out synergistic combinations by small-scale function-based targeted growth assays or large-scale nontargeted growth assays, but their discoveries are always challenging due to technical problems such as a large number of possible test combinations. METHODS To address this issue, we carried out a medium-scale optical drug synergy screening in a non-small cell lung cancer cell line and further investigated individual drug interactions in combination drug responses by high-content image analysis. Optical high-content analysis of cellular responses has recently attracted much interest in the field of drug discovery, functional genomics, and toxicology. Here, we adopted a similar approach to study combinatorial drug responses. RESULTS By examining all possible combinations of 12 drug compounds in 6 different drug classes, such as mTOR inhibitors, HDAC inhibitors, HSP90 inhibitors, MT inhibitors, DNA inhibitors, and proteasome inhibitors, we successfully identified synergism between INK128, an mTOR inhibitor, and HDAC inhibitors, which has also been reported elsewhere. Our high-content analysis further showed that HDAC inhibitors, HSP90 inhibitors, and proteasome inhibitors played a dominant role in combinatorial drug responses when they were mixed with MT inhibitors, DNA inhibitors, or mTOR inhibitors, suggesting that recessive drugs could be less prioritized as components of multidrug cocktails. CONCLUSIONS In conclusion, our optical drug screening platform efficiently identified synergistic drug combinations in a non-small cell lung cancer cell line, and our high-content analysis further revealed how individual drugs in the drug mix interact with each other to generate combinatorial drug response.
Collapse
Affiliation(s)
- Sijiao Wang
- School of Chemistry and Molecular Engineering at East China Normal University, Shanghai, 200062, China
| | - Juliano Oliveira-Silveira
- Center of Biotechnology, PPGBCM, Federal University of Rio Grande Do Sul (UFRGS), Porto Alegre, Rio Grande Do Sul, 91501970, Brazil
| | - Gang Fang
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai, 200062, China
- Arts and Science, New York University at Shanghai, Shanghai, 200122, China
| | - Jungseog Kang
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai, 200062, China.
- Arts and Science, New York University at Shanghai, Shanghai, 200122, China.
| |
Collapse
|
10
|
Maramraju S, Kowalczewski A, Kaza A, Liu X, Singaraju JP, Albert MV, Ma Z, Yang H. AI-organoid integrated systems for biomedical studies and applications. Bioeng Transl Med 2024; 9:e10641. [PMID: 38435826 PMCID: PMC10905559 DOI: 10.1002/btm2.10641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 12/07/2023] [Accepted: 12/13/2023] [Indexed: 03/05/2024] Open
Abstract
In this review, we explore the growing role of artificial intelligence (AI) in advancing the biomedical applications of human pluripotent stem cell (hPSC)-derived organoids. Stem cell-derived organoids, these miniature organ replicas, have become essential tools for disease modeling, drug discovery, and regenerative medicine. However, analyzing the vast and intricate datasets generated from these organoids can be inefficient and error-prone. AI techniques offer a promising solution to efficiently extract insights and make predictions from diverse data types generated from microscopy images, transcriptomics, metabolomics, and proteomics. This review offers a brief overview of organoid characterization and fundamental concepts in AI while focusing on a comprehensive exploration of AI applications in organoid-based disease modeling and drug evaluation. It provides insights into the future possibilities of AI in enhancing the quality control of organoid fabrication, label-free organoid recognition, and three-dimensional image reconstruction of complex organoid structures. This review presents the challenges and potential solutions in AI-organoid integration, focusing on the establishment of reliable AI model decision-making processes and the standardization of organoid research.
Collapse
Affiliation(s)
- Sudhiksha Maramraju
- Department of Biomedical EngineeringUniversity of North TexasDentonTexasUSA
- Texas Academy of Mathematics and ScienceUniversity of North TexasDentonTexasUSA
| | - Andrew Kowalczewski
- Department of Biomedical & Chemical EngineeringSyracuse UniversitySyracuseNew YorkUSA
- BioInspired Institute for Material and Living SystemsSyracuse UniversitySyracuseNew YorkUSA
| | - Anirudh Kaza
- Department of Biomedical EngineeringUniversity of North TexasDentonTexasUSA
- Texas Academy of Mathematics and ScienceUniversity of North TexasDentonTexasUSA
| | - Xiyuan Liu
- Department of Mechanical & Aerospace EngineeringSyracuse UniversitySyracuseNew YorkUSA
| | - Jathin Pranav Singaraju
- Department of Biomedical EngineeringUniversity of North TexasDentonTexasUSA
- Texas Academy of Mathematics and ScienceUniversity of North TexasDentonTexasUSA
| | - Mark V. Albert
- Department of Biomedical EngineeringUniversity of North TexasDentonTexasUSA
- Department of Computer Science and EngineeringUniversity of North TexasDentonTexasUSA
| | - Zhen Ma
- Department of Biomedical & Chemical EngineeringSyracuse UniversitySyracuseNew YorkUSA
- BioInspired Institute for Material and Living SystemsSyracuse UniversitySyracuseNew YorkUSA
| | - Huaxiao Yang
- Department of Biomedical EngineeringUniversity of North TexasDentonTexasUSA
| |
Collapse
|
11
|
Jan M, Spangaro A, Lenartowicz M, Mattiazzi Usaj M. From pixels to insights: Machine learning and deep learning for bioimage analysis. Bioessays 2024; 46:e2300114. [PMID: 38058114 DOI: 10.1002/bies.202300114] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/25/2023] [Accepted: 11/13/2023] [Indexed: 12/08/2023]
Abstract
Bioimage analysis plays a critical role in extracting information from biological images, enabling deeper insights into cellular structures and processes. The integration of machine learning and deep learning techniques has revolutionized the field, enabling the automated, reproducible, and accurate analysis of biological images. Here, we provide an overview of the history and principles of machine learning and deep learning in the context of bioimage analysis. We discuss the essential steps of the bioimage analysis workflow, emphasizing how machine learning and deep learning have improved preprocessing, segmentation, feature extraction, object tracking, and classification. We provide examples that showcase the application of machine learning and deep learning in bioimage analysis. We examine user-friendly software and tools that enable biologists to leverage these techniques without extensive computational expertise. This review is a resource for researchers seeking to incorporate machine learning and deep learning in their bioimage analysis workflows and enhance their research in this rapidly evolving field.
Collapse
Affiliation(s)
- Mahta Jan
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Canada
| | - Allie Spangaro
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Canada
| | - Michelle Lenartowicz
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Canada
| | - Mojca Mattiazzi Usaj
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Canada
| |
Collapse
|
12
|
Arora P, Behera M, Saraf SA, Shukla R. Leveraging Artificial Intelligence for Synergies in Drug Discovery: From Computers to Clinics. Curr Pharm Des 2024; 30:2187-2205. [PMID: 38874046 DOI: 10.2174/0113816128308066240529121148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/27/2024] [Accepted: 04/03/2024] [Indexed: 06/15/2024]
Abstract
Over the period of the preceding decade, artificial intelligence (AI) has proved an outstanding performance in entire dimensions of science including pharmaceutical sciences. AI uses the concept of machine learning (ML), deep learning (DL), and neural networks (NNs) approaches for novel algorithm and hypothesis development by training the machines in multiple ways. AI-based drug development from molecule identification to clinical approval tremendously reduces the cost of development and the time over conventional methods. The COVID-19 vaccine development and approval by regulatory agencies within 1-2 years is the finest example of drug development. Hence, AI is fast becoming a boon for scientific researchers to streamline their advanced discoveries. AI-based FDA-approved nanomedicines perform well as target selective, synergistic therapies, recolonize the theragnostic pharmaceutical stream, and significantly improve drug research outcomes. This comprehensive review delves into the fundamental aspects of AI along with its applications in the realm of pharmaceutical life sciences. It explores AI's role in crucial areas such as drug designing, drug discovery and development, traditional Chinese medicine, integration of multi-omics data, as well as investigations into drug repurposing and polypharmacology studies.
Collapse
Affiliation(s)
- Priyanka Arora
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Near CRPF Base Camp, Bijnor-Sisendi Road, Sarojini Nagar, Lucknow (UP)-226002, India
| | - Manaswini Behera
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Near CRPF Base Camp, Bijnor-Sisendi Road, Sarojini Nagar, Lucknow (UP)-226002, India
| | - Shubhini A Saraf
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Near CRPF Base Camp, Bijnor-Sisendi Road, Sarojini Nagar, Lucknow (UP)-226002, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Near CRPF Base Camp, Bijnor-Sisendi Road, Sarojini Nagar, Lucknow (UP)-226002, India
| |
Collapse
|
13
|
Chen RQ, Joffe B, Casteleiro Costa P, Filan C, Wang B, Balakirsky S, Robles F, Roy K, Li J. Real-time semantic segmentation and anomaly detection of functional images for cell therapy manufacturing. Cytotherapy 2023; 25:1361-1369. [PMID: 37725031 PMCID: PMC10719834 DOI: 10.1016/j.jcyt.2023.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/21/2023]
Abstract
BACKGROUND AIMS Cell therapy is a promising treatment method that uses living cells to address a variety of diseases and conditions, including cardiovascular diseases, neurologic disorders and certain cancers. As interest in cell therapy grows, there is a need to shift to a more efficient, scalable and automated manufacturing process that can produce high-quality products at a lower cost. METHODS One way to achieve this is using non-invasive imaging and real-time image analysis techniques to monitor and control the manufacturing process. This work presents a machine learning-based image analysis pipeline that includes semantic segmentation and anomaly detection capabilities. RESULTS/CONCLUSIONS This method can be easily implemented even when given a limited dataset of annotated images, is able to segment cells and debris and can identify anomalies such as contamination or hardware failure.
Collapse
Affiliation(s)
- Rui Qi Chen
- H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Benjamin Joffe
- Georgia Tech Research Institute, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Paloma Casteleiro Costa
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, Atlanta, Georgia, USA
| | - Caroline Filan
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, Atlanta, Georgia, USA
| | - Bryan Wang
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, Atlanta, Georgia, USA
| | - Stephen Balakirsky
- Georgia Tech Research Institute, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Francisco Robles
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, Atlanta, Georgia, USA
| | - Krishnendu Roy
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, Atlanta, Georgia, USA
| | - Jing Li
- H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA.
| |
Collapse
|
14
|
Dandage R, Papkov M, Greco BM, Fishman D, Friesen H, Wang K, Styles E, Kraus O, Grys B, Boone C, Andrews B, Parts L, Kuzmin E. Single-cell imaging of protein dynamics of paralogs reveals mechanisms of gene retention. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.23.568466. [PMID: 38045359 PMCID: PMC10690282 DOI: 10.1101/2023.11.23.568466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Gene duplication is common across the tree of life, including yeast and humans, and contributes to genomic robustness. In this study, we examined changes in the subcellular localization and abundance of proteins in response to the deletion of their paralogs originating from the whole-genome duplication event, which is a largely unexplored mechanism of functional divergence. We performed a systematic single-cell imaging analysis of protein dynamics and screened subcellular redistribution of proteins, capturing their localization and abundance changes, providing insight into forces determining paralog retention. Paralogs showed dependency, whereby proteins required their paralog to maintain their native abundance or localization, more often than compensation. Network feature analysis suggested the importance of functional redundancy and rewiring of protein and genetic interactions underlying redistribution response of paralogs. Translation of non-canonical protein isoform emerged as a novel compensatory mechanism. This study provides new insights into paralog retention and evolutionary forces that shape genomes.
Collapse
|
15
|
Nishimura Y, Ryo E, Inoue S, Kawazu M, Ueno T, Namikawa K, Takahashi A, Ogata D, Yoshida A, Yamazaki N, Mano H, Yatabe Y, Mori T. Strategic Approach to Heterogeneity Analysis of Cutaneous Adnexal Carcinomas Using Computational Pathology and Genomics. JID INNOVATIONS 2023; 3:100229. [PMID: 37965425 PMCID: PMC10641284 DOI: 10.1016/j.xjidi.2023.100229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 07/30/2023] [Accepted: 08/07/2023] [Indexed: 11/16/2023] Open
Abstract
Cutaneous adnexal tumors are neoplasms that arise from skin appendages. Their morphologic diversity and phenotypic variability with rare progression to malignancy make them difficult to diagnose and classify, and there is currently no established treatment strategy. To overcome these difficulties, this study investigated the transcription factor SOX9 expression, morphology, and genetics of skin adnexal tumors for understanding their biology, especially their histogenesis. We showed that cutaneous adnexal tumors and their nontumor counterparts of skin and appendages exhibit expression patterns similar to that of SOX9. Its expression intensity and pattern, as well as histopathologic evaluation of tumors, were analyzed using digital images of 69 normal skin adnexal 9-type organs and 185 skin adnexal 29-type tumors as references. It was possible to distinguish basal cell carcinoma from squamous cell carcinoma, sebaceous carcinoma, and pilomatrixoma with significant differences, along with porocarcinoma from squamous cell carcinoma. Furthermore, unsupervised machine learning "computational pathology" was used to derive a multiregion whole-exome sequencing fusion method termed "genocomputed pathology." The genocomputed pathology of three representable adnexal carcinomas (porocarcinoma, hidradenocarcinoma, and spiradenocarcinoma) was evaluated for total nine cases. We showed that there was more heterogeneity than expected within the tumors as well as the coexistence of components lacking driver fusion genes. The presence or absence of potential driver genes, such as PIK3CA, YAP1, and PTEN, in each region was identified, highlighting a therapeutic strategy for cutaneous adnexal carcinoma encompassing heterogeneous tumors.
Collapse
Affiliation(s)
- Yuuki Nishimura
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
- Course of Advanced Clinical Research of Cancer, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Eijitsu Ryo
- Division of Molecular Pathology, National Cancer Center Reserch Institute, Tokyo, Japan
| | - Satoshi Inoue
- Division of Cellular Signaling, National Cancer Center Reserch Institute, Tokyo, Japan
| | - Masahito Kawazu
- Division of Cellular Signaling, National Cancer Center Reserch Institute, Tokyo, Japan
| | - Toshihide Ueno
- Division of Cellular Signaling, National Cancer Center Reserch Institute, Tokyo, Japan
| | - Kenjiro Namikawa
- Dermatologic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Akira Takahashi
- Dermatologic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Dai Ogata
- Dermatologic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Akihiko Yoshida
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
| | - Naoya Yamazaki
- Dermatologic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Hiroyuki Mano
- Division of Cellular Signaling, National Cancer Center Reserch Institute, Tokyo, Japan
| | - Yasushi Yatabe
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
- Course of Advanced Clinical Research of Cancer, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Division of Molecular Pathology, National Cancer Center Reserch Institute, Tokyo, Japan
| | - Taisuke Mori
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
- Division of Molecular Pathology, National Cancer Center Reserch Institute, Tokyo, Japan
| |
Collapse
|
16
|
Stossi F, Singh PK, Safari K, Marini M, Labate D, Mancini MA. High throughput microscopy and single cell phenotypic image-based analysis in toxicology and drug discovery. Biochem Pharmacol 2023; 216:115770. [PMID: 37660829 DOI: 10.1016/j.bcp.2023.115770] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/05/2023]
Abstract
Measuring single cell responses to the universe of chemicals (drugs, natural products, environmental toxicants etc.) is of paramount importance to human health as phenotypic variability in sensing stimuli is a hallmark of biology that is considered during high throughput screening. One of the ways to approach this problem is via high throughput, microscopy-based assays coupled with multi-dimensional single cell analysis methods. Here, we will summarize some of the efforts in this vast and growing field, focusing on phenotypic screens (e.g., Cell Painting), single cell analytics and quality control, with particular attention to environmental toxicology and drug screening. We will discuss advantages and limitations of high throughput assays with various end points and levels of complexity.
Collapse
Affiliation(s)
- Fabio Stossi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA; GCC Center for Advanced Microscopy and Image Informatics, Houston, TX, USA.
| | - Pankaj K Singh
- GCC Center for Advanced Microscopy and Image Informatics, Houston, TX, USA; Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Kazem Safari
- GCC Center for Advanced Microscopy and Image Informatics, Houston, TX, USA; Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Michela Marini
- GCC Center for Advanced Microscopy and Image Informatics, Houston, TX, USA; Department of Mathematics, University of Houston, Houston, TX, USA
| | - Demetrio Labate
- GCC Center for Advanced Microscopy and Image Informatics, Houston, TX, USA; Department of Mathematics, University of Houston, Houston, TX, USA
| | - Michael A Mancini
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA; GCC Center for Advanced Microscopy and Image Informatics, Houston, TX, USA; Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| |
Collapse
|
17
|
Way GP, Sailem H, Shave S, Kasprowicz R, Carragher NO. Evolution and impact of high content imaging. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2023; 28:292-305. [PMID: 37666456 DOI: 10.1016/j.slasd.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/09/2023] [Accepted: 08/29/2023] [Indexed: 09/06/2023]
Abstract
The field of high content imaging has steadily evolved and expanded substantially across many industry and academic research institutions since it was first described in the early 1990's. High content imaging refers to the automated acquisition and analysis of microscopic images from a variety of biological sample types. Integration of high content imaging microscopes with multiwell plate handling robotics enables high content imaging to be performed at scale and support medium- to high-throughput screening of pharmacological, genetic and diverse environmental perturbations upon complex biological systems ranging from 2D cell cultures to 3D tissue organoids to small model organisms. In this perspective article the authors provide a collective view on the following key discussion points relevant to the evolution of high content imaging: • Evolution and impact of high content imaging: An academic perspective • Evolution and impact of high content imaging: An industry perspective • Evolution of high content image analysis • Evolution of high content data analysis pipelines towards multiparametric and phenotypic profiling applications • The role of data integration and multiomics • The role and evolution of image data repositories and sharing standards • Future perspective of high content imaging hardware and software.
Collapse
Affiliation(s)
- Gregory P Way
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Heba Sailem
- School of Cancer and Pharmaceutical Sciences, King's College London, UK
| | - Steven Shave
- GlaxoSmithKline Medicines Research Centre, Gunnels Wood Rd, Stevenage SG1 2NY, UK; Edinburgh Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, UK
| | - Richard Kasprowicz
- GlaxoSmithKline Medicines Research Centre, Gunnels Wood Rd, Stevenage SG1 2NY, UK
| | - Neil O Carragher
- Edinburgh Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, UK.
| |
Collapse
|
18
|
Zhou S, Chen B, Fu ES, Yan H. Computer vision meets microfluidics: a label-free method for high-throughput cell analysis. MICROSYSTEMS & NANOENGINEERING 2023; 9:116. [PMID: 37744264 PMCID: PMC10511704 DOI: 10.1038/s41378-023-00562-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 03/21/2023] [Accepted: 04/10/2023] [Indexed: 09/26/2023]
Abstract
In this paper, we review the integration of microfluidic chips and computer vision, which has great potential to advance research in the life sciences and biology, particularly in the analysis of cell imaging data. Microfluidic chips enable the generation of large amounts of visual data at the single-cell level, while computer vision techniques can rapidly process and analyze these data to extract valuable information about cellular health and function. One of the key advantages of this integrative approach is that it allows for noninvasive and low-damage cellular characterization, which is important for studying delicate or fragile microbial cells. The use of microfluidic chips provides a highly controlled environment for cell growth and manipulation, minimizes experimental variability and improves the accuracy of data analysis. Computer vision can be used to recognize and analyze target species within heterogeneous microbial populations, which is important for understanding the physiological status of cells in complex biological systems. As hardware and artificial intelligence algorithms continue to improve, computer vision is expected to become an increasingly powerful tool for in situ cell analysis. The use of microelectromechanical devices in combination with microfluidic chips and computer vision could enable the development of label-free, automatic, low-cost, and fast cellular information recognition and the high-throughput analysis of cellular responses to different compounds, for broad applications in fields such as drug discovery, diagnostics, and personalized medicine.
Collapse
Affiliation(s)
- Shizheng Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228 China
| | - Bingbing Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228 China
| | - Edgar S. Fu
- Graduate School of Computing and Information Science, University of Pittsburgh, Pittsburgh, PA 15260 USA
| | - Hong Yan
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228 China
| |
Collapse
|
19
|
Kate A, Seth E, Singh A, Chakole CM, Chauhan MK, Singh RK, Maddalwar S, Mishra M. Artificial Intelligence for Computer-Aided Drug Discovery. Drug Res (Stuttg) 2023; 73:369-377. [PMID: 37276884 DOI: 10.1055/a-2076-3359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The continuous implementation of Artificial Intelligence (AI) in multiple scientific domains and the rapid advancement in computer software and hardware, along with other parameters, have rapidly fuelled this development. The technology can contribute effectively in solving many challenges and constraints in the traditional development of the drug. Traditionally, large-scale chemical libraries are screened to find one promising medicine. In recent years, more reasonable structure-based drug design approaches have avoided the first screening phases while still requiring chemists to design, synthesize, and test a wide range of compounds to produce possible novel medications. The process of turning a promising chemical into a medicinal candidate can be expensive and time-consuming. Additionally, a new medication candidate may still fail in clinical trials even after demonstrating promise in laboratory research. In fact, less than 10% of medication candidates that undergo Phase I trials really reach the market. As a consequence, the unmatched data processing power of AI systems may expedite and enhance the drug development process in four different ways: by opening up links to novel biological systems, superior or distinctive chemistry, greater success rates, and faster and less expensive innovation trials. Since these technologies may be used to address a variety of discovery scenarios and biological targets, it is essential to comprehend and distinguish between use cases. As a result, we have emphasized how AI may be used in a variety of areas of the pharmaceutical sciences, including in-depth opportunities for drug research and development.
Collapse
Affiliation(s)
- Aditya Kate
- Amity Institute of Biotechnology, Amity University, Chhattisgarh, India
| | - Ekkita Seth
- Amity Institute of Biotechnology, Amity University, Chhattisgarh, India
| | - Ananya Singh
- Amity Institute of Biotechnology, Amity University, Chhattisgarh, India
| | - Chandrashekhar Mahadeo Chakole
- Bajiraoji Karanjekar college of Pharmacy, Sakoli, Dist-Bhandara, India
- NDDS Research Lab, Delhi Institute of Pharmaceutical Sciences and Research, DPSR-University, New Delhi
| | - Meenakshi Kanwar Chauhan
- NDDS Research Lab, Delhi Institute of Pharmaceutical Sciences and Research, DPSR-University, New Delhi
| | - Ravi Kant Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | | | - Mohit Mishra
- Amity Institute of Biotechnology, Amity University, Chhattisgarh, India
| |
Collapse
|
20
|
Yoshida D, Akita K, Higaki T. Machine learning and feature analysis of the cortical microtubule organization of Arabidopsis cotyledon pavement cells. PROTOPLASMA 2023; 260:987-998. [PMID: 36219259 DOI: 10.1007/s00709-022-01813-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
The measurement of cytoskeletal features can provide valuable insights into cell biology. In recent years, digital image analysis of cytoskeletal features has become an important research tool for quantitative evaluation of cytoskeleton organization. In this study, we examined the utility of a supervised machine learning approach with digital image analysis to distinguish different cellular organizational patterns. We focused on the jigsaw puzzle-shaped pavement cells of Arabidopsis thaliana. Measurements of three features of cortical microtubules in these cells (parallelness, density, and the coefficient of variation of the intensity distribution of fluorescently labeled cytoskeletons [as an indicator of microtubule bundling]) were obtained from microscopic images. A random forest machine learning model was then used with these images to differentiate mutant and wild type, and Taxol-treated and control cells. Using these three metrics, we were able to distinguish wild type from bpp125 triple mutant cells, with approximately 80% accuracy; classification accuracy was 88% for control and Taxol-treated cells. Different features contributed most to the classification, namely, coefficient of variation for the wild-type/mutant cells and parallelness for the Taxol-treated/control cells. The random forest method used enabled quantitative evaluation of the contribution of features to the classification, and partial dependence plots showed the relationships between metric values and classification accuracy. While further improvements to the method are needed, our small-scale analysis shows the potential for this approach in large-scale screening analyses.
Collapse
Affiliation(s)
- Daichi Yoshida
- Graduate School of Science and Technology, Kumamoto University, Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Kae Akita
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, Meijirodai, Bunkyo-ku, Tokyo, 112-8681, Japan
| | - Takumi Higaki
- Graduate School of Science and Technology, Kumamoto University, Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan.
- International Research Organization in Advanced Science and Technology, Kumamoto University, Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan.
- International Research Center for Agricultural and Environmental Biology, Kumamoto University, Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan.
| |
Collapse
|
21
|
Štajduhar A, Lipić T, Lončarić S, Judaš M, Sedmak G. Interpretable machine learning approach for neuron-centric analysis of human cortical cytoarchitecture. Sci Rep 2023; 13:5567. [PMID: 37019971 PMCID: PMC10076420 DOI: 10.1038/s41598-023-32154-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 03/23/2023] [Indexed: 04/07/2023] Open
Abstract
The complexity of the cerebral cortex underlies its function and distinguishes us as humans. Here, we present a principled veridical data science methodology for quantitative histology that shifts focus from image-level investigations towards neuron-level representations of cortical regions, with the neurons in the image as a subject of study, rather than pixel-wise image content. Our methodology relies on the automatic segmentation of neurons across whole histological sections and an extensive set of engineered features, which reflect the neuronal phenotype of individual neurons and the properties of neurons' neighborhoods. The neuron-level representations are used in an interpretable machine learning pipeline for mapping the phenotype to cortical layers. To validate our approach, we created a unique dataset of cortical layers manually annotated by three experts in neuroanatomy and histology. The presented methodology offers high interpretability of the results, providing a deeper understanding of human cortex organization, which may help formulate new scientific hypotheses, as well as to cope with systematic uncertainty in data and model predictions.
Collapse
Affiliation(s)
- Andrija Štajduhar
- School of Public Health "Andrija Štampar", School of Medicine, University of Zagreb, 10000, Zagreb, Croatia.
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000, Zagreb, Croatia.
| | - Tomislav Lipić
- Laboratory for Machine Learning and Knowledge Representation, Ruder Bošković Institute, 10000, Zagreb, Croatia
| | - Sven Lončarić
- Faculty of Electrical Engineering and Computing, University of Zagreb, 10000, Zagreb, Croatia
| | - Miloš Judaš
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000, Zagreb, Croatia
| | - Goran Sedmak
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000, Zagreb, Croatia
| |
Collapse
|
22
|
Razdaibiedina A, Brechalov A, Friesen H, Usaj MM, Masinas MPD, Suresh HG, Wang K, Boone C, Ba J, Andrews B. PIFiA: Self-supervised Approach for Protein Functional Annotation from Single-Cell Imaging Data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.24.529975. [PMID: 36909656 PMCID: PMC10002629 DOI: 10.1101/2023.02.24.529975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Fluorescence microscopy data describe protein localization patterns at single-cell resolution and have the potential to reveal whole-proteome functional information with remarkable precision. Yet, extracting biologically meaningful representations from cell micrographs remains a major challenge. Existing approaches often fail to learn robust and noise-invariant features or rely on supervised labels for accurate annotations. We developed PIFiA, (Protein Image-based Functional Annotation), a self-supervised approach for protein functional annotation from single-cell imaging data. We imaged the global yeast ORF-GFP collection and applied PIFiA to generate protein feature profiles from single-cell images of fluorescently tagged proteins. We show that PIFiA outperforms existing approaches for molecular representation learning and describe a range of downstream analysis tasks to explore the information content of the feature profiles. Specifically, we cluster extracted features into a hierarchy of functional organization, study cell population heterogeneity, and develop techniques to distinguish multi-localizing proteins and identify functional modules. Finally, we confirm new PIFiA predictions using a colocalization assay, suggesting previously unappreciated biological roles for several proteins. Paired with a fully interactive website (https://thecellvision.org/pifia/), PIFiA is a resource for the quantitative analysis of protein organization within the cell.
Collapse
Affiliation(s)
- Anastasia Razdaibiedina
- Department of Molecular Genetics, University of Toronto, Toronto ON, Canada
- The Donnelly Centre, University of Toronto, Toronto ON, Canada
- Vector Institute for Artificial Intelligence, Toronto ON, Canada
| | - Alexander Brechalov
- Department of Molecular Genetics, University of Toronto, Toronto ON, Canada
- The Donnelly Centre, University of Toronto, Toronto ON, Canada
| | - Helena Friesen
- The Donnelly Centre, University of Toronto, Toronto ON, Canada
| | | | | | | | - Kyle Wang
- Department of Molecular Genetics, University of Toronto, Toronto ON, Canada
- The Donnelly Centre, University of Toronto, Toronto ON, Canada
| | - Charles Boone
- Department of Molecular Genetics, University of Toronto, Toronto ON, Canada
- The Donnelly Centre, University of Toronto, Toronto ON, Canada
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, Japan
| | - Jimmy Ba
- Department of Computer Science, University of Toronto, Toronto ON, Canada
- Vector Institute for Artificial Intelligence, Toronto ON, Canada
| | - Brenda Andrews
- Department of Molecular Genetics, University of Toronto, Toronto ON, Canada
- The Donnelly Centre, University of Toronto, Toronto ON, Canada
| |
Collapse
|
23
|
Toth T, Bauer D, Sukosd F, Horvath P. Fisheye transformation enhances deep-learning-based single-cell phenotyping by including cellular microenvironment. CELL REPORTS METHODS 2022; 2:100339. [PMID: 36590690 PMCID: PMC9795324 DOI: 10.1016/j.crmeth.2022.100339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/22/2022] [Accepted: 10/21/2022] [Indexed: 11/23/2022]
Abstract
Incorporating information about the surroundings can have a significant impact on successfully determining the class of an object. This is of particular interest when determining the phenotypes of cells, for example, in the context of high-throughput screens. We hypothesized that an ideal approach would consider the fully featured view of the cell of interest, include its neighboring microenvironment, and give lesser weight to cells that are far from the cell of interest. To satisfy these criteria, we present an approach with a transformation similar to those characteristic of fisheye cameras. Using this transformation with proper settings, we could significantly increase the accuracy of single-cell phenotyping, both in the case of cell culture and tissue-based microscopy images, and we present improved results on a dataset containing images of wild animals.
Collapse
Affiliation(s)
- Timea Toth
- Synthetic and Systems Biology Unit, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
- Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - David Bauer
- Synthetic and Systems Biology Unit, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Farkas Sukosd
- Department of Pathology, University of Szeged, Szeged, Hungary
| | - Peter Horvath
- Synthetic and Systems Biology Unit, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Single-Cell Technologies, Inc., Szeged, Hungary
| |
Collapse
|
24
|
Hasanzadeh A, Hamblin MR, Kiani J, Noori H, Hardie JM, Karimi M, Shafiee H. Could artificial intelligence revolutionize the development of nanovectors for gene therapy and mRNA vaccines? NANO TODAY 2022; 47:101665. [PMID: 37034382 PMCID: PMC10081506 DOI: 10.1016/j.nantod.2022.101665] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Gene therapy enables the introduction of nucleic acids like DNA and RNA into host cells, and is expected to revolutionize the treatment of a wide range of diseases. This growth has been further accelerated by the discovery of CRISPR/Cas technology, which allows accurate genomic editing in a broad range of cells and organisms in vitro and in vivo. Despite many advances in gene delivery and the development of various viral and non-viral gene delivery vectors, the lack of highly efficient non-viral systems with low cellular toxicity remains a challenge. The application of cutting-edge technologies such as artificial intelligence (AI) has great potential to find new paradigms to solve this issue. Herein, we review AI and its major subfields including machine learning (ML), neural networks (NNs), expert systems, deep learning (DL), computer vision and robotics. We discuss the potential of AI-based models and algorithms in the design of targeted gene delivery vehicles capable of crossing extracellular and intracellular barriers by viral mimicry strategies. We finally discuss the role of AI in improving the function of CRISPR/Cas systems, developing novel nanobots, and mRNA vaccine carriers.
Collapse
Affiliation(s)
- Akbar Hasanzadeh
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Jafar Kiani
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamid Noori
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Joseph M. Hardie
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02139 USA
| | - Mahdi Karimi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran 141556559, Iran
- Applied Biotechnology Research Centre, Tehran Medical Science, Islamic Azad University, Tehran 1584743311, Iran
| | - Hadi Shafiee
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02139 USA
| |
Collapse
|
25
|
Morris TA, Eldeen S, Tran RDH, Grosberg A. A comprehensive review of computational and image analysis techniques for quantitative evaluation of striated muscle tissue architecture. BIOPHYSICS REVIEWS 2022; 3:041302. [PMID: 36407035 PMCID: PMC9667907 DOI: 10.1063/5.0057434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Unbiased evaluation of morphology is crucial to understanding development, mechanics, and pathology of striated muscle tissues. Indeed, the ability of striated muscles to contract and the strength of their contraction is dependent on their tissue-, cellular-, and cytoskeletal-level organization. Accordingly, the study of striated muscles often requires imaging and assessing aspects of their architecture at multiple different spatial scales. While an expert may be able to qualitatively appraise tissues, it is imperative to have robust, repeatable tools to quantify striated myocyte morphology and behavior that can be used to compare across different labs and experiments. There has been a recent effort to define the criteria used by experts to evaluate striated myocyte architecture. In this review, we will describe metrics that have been developed to summarize distinct aspects of striated muscle architecture in multiple different tissues, imaged with various modalities. Additionally, we will provide an overview of metrics and image processing software that needs to be developed. Importantly to any lab working on striated muscle platforms, characterization of striated myocyte morphology using the image processing pipelines discussed in this review can be used to quantitatively evaluate striated muscle tissues and contribute to a robust understanding of the development and mechanics of striated muscles.
Collapse
Affiliation(s)
| | - Sarah Eldeen
- Center for Complex Biological Systems, University of California, Irvine, California 92697-2700, USA
| | | | | |
Collapse
|
26
|
Machine Learning Models to Predict Protein-Protein Interaction Inhibitors. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227986. [PMID: 36432086 PMCID: PMC9694076 DOI: 10.3390/molecules27227986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/09/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022]
Abstract
Protein-protein interaction (PPI) inhibitors have an increasing role in drug discovery. It is hypothesized that machine learning (ML) algorithms can classify or identify PPI inhibitors. This work describes the performance of different algorithms and molecular fingerprints used in chemoinformatics to develop a classification model to identify PPI inhibitors making the codes freely available to the community, particularly the medicinal chemistry research groups working with PPI inhibitors. We found that classification algorithms have different performances according to various features employed in the training process. Random forest (RF) models with the extended connectivity fingerprint radius 2 (ECFP4) had the best classification abilities compared to those models trained with ECFP6 o MACCS keys (166-bits). In general, logistic regression (LR) models had lower performance metrics than RF models, but ECFP4 was the representation most appropriate for LR. ECFP4 also generated models with high-performance metrics with support vector machines (SVM). We also constructed ensemble models based on the top-performing models. As part of this work and to help non-computational experts, we developed a pipeline code freely available.
Collapse
|
27
|
Wang C, Li X. The Application of Pattern Recognition System in Design Field Based on Aesthetic Principles. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:8581900. [PMID: 35655523 PMCID: PMC9155962 DOI: 10.1155/2022/8581900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/11/2022] [Accepted: 04/19/2022] [Indexed: 11/24/2022]
Abstract
The design system based on aesthetic principles is the most representative in the field of design and has a certain significance for the research and construction of design aesthetics and the development of design education. Therefore, this paper studies the application of pattern recognition system in the field of design based on aesthetic principles and designs a new type of aesthetic principle design system based on pattern recognition in computer vision. This paper proposes pattern similarity measurement and image preprocessing technology to improve the traditional aesthetic principle design system through pattern recognition and then further refine the research of the whole system through histogram equalization and gamma correction. Finally, the MNIST dataset experiment is used to verify the effect of multicolumn convolutional neural network pattern recognition on the aesthetic principle design system. The questionnaire survey experiment in this article and the traditional comparative experiment show that 76% of the public are very satisfied with this design system based on the aesthetic principles of pattern recognition in computer vision. Also, the improved aesthetic principle system scores as high as 90-95 points.
Collapse
Affiliation(s)
- Chenzhen Wang
- School of Philosophy and Social Development, Guizhou University, Guiyang 550025, Guizhou, China
| | - Xinglin Li
- Media College, Xinyang Normal University, Xinyang 464000, Henan, China
| |
Collapse
|
28
|
Rabbani N, Kim GYE, Suarez CJ, Chen JH. Applications of machine learning in routine laboratory medicine: Current state and future directions. Clin Biochem 2022; 103:1-7. [PMID: 35227670 PMCID: PMC9007900 DOI: 10.1016/j.clinbiochem.2022.02.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/04/2022] [Accepted: 02/23/2022] [Indexed: 01/27/2023]
Abstract
Machine learning is able to leverage large amounts of data to infer complex patterns that are otherwise beyond the capabilities of rule-based systems and human experts. Its application to laboratory medicine is particularly exciting, as laboratory testing provides much of the foundation for clinical decision making. In this article, we provide a brief introduction to machine learning for the medical professional in addition to a comprehensive literature review outlining the current state of machine learning as it has been applied to routine laboratory medicine. Although still in its early stages, machine learning has been used to automate laboratory tasks, optimize utilization, and provide personalized reference ranges and test interpretation. The published literature leads us to believe that machine learning will be an area of increasing importance for the laboratory practitioner. We envision the laboratory of the future will utilize these methods to make significant improvements in efficiency and diagnostic precision.
Collapse
Affiliation(s)
- Naveed Rabbani
- Department of Clinical Informatics, Lucile Packard Children's Hospital, Palo Alto, CA, USA; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.
| | - Grace Y E Kim
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Carlos J Suarez
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jonathan H Chen
- Stanford Center for Biomedical Informatics Research, Stanford University School of Medicine, Stanford, CA, USA; Division of Hospital Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
29
|
Phenomics approaches to understand genetic networks and gene function in yeast. Biochem Soc Trans 2022; 50:713-721. [PMID: 35285506 PMCID: PMC9162466 DOI: 10.1042/bst20210285] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 01/03/2023]
Abstract
Over the past decade, major efforts have been made to systematically survey the characteristics or phenotypes associated with genetic variation in a variety of model systems. These so-called phenomics projects involve the measurement of 'phenomes', or the set of phenotypic information that describes an organism or cell, in various genetic contexts or states, and in response to external factors, such as environmental signals. Our understanding of the phenome of an organism depends on the availability of reagents that enable systematic evaluation of the spectrum of possible phenotypic variation and the types of measurements that can be taken. Here, we highlight phenomics studies that use the budding yeast, a pioneer model organism for functional genomics research. We focus on genetic perturbation screens designed to explore genetic interactions, using a variety of phenotypic read-outs, from cell growth to subcellular morphology.
Collapse
|
30
|
Dissecting Tumor-Immune Microenvironment in Breast Cancer at a Spatial and Multiplex Resolution. Cancers (Basel) 2022; 14:cancers14081999. [PMID: 35454904 PMCID: PMC9026731 DOI: 10.3390/cancers14081999] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 02/01/2023] Open
Abstract
The tumor immune microenvironment (TIME) is an important player in breast cancer pathophysiology. Surrogates for antitumor immune response have been explored as predictive biomarkers to immunotherapy, though with several limitations. Immunohistochemistry for programmed death ligand 1 suffers from analytical problems, immune signatures are devoid of spatial information and histopathological evaluation of tumor infiltrating lymphocytes exhibits interobserver variability. Towards improved understanding of the complex interactions in TIME, several emerging multiplex in situ methods are being developed and gaining much attention for protein detection. They enable the simultaneous evaluation of multiple targets in situ, detection of cell densities/subpopulations as well as estimations of functional states of immune infiltrate. Furthermore, they can characterize spatial organization of TIME—by cell-to-cell interaction analyses and the evaluation of distribution within different regions of interest and tissue compartments—while digital imaging and image analysis software allow for reproducibility of the various assays. In this review, we aim to provide an overview of the different multiplex in situ methods used in cancer research with special focus on breast cancer TIME at the neoadjuvant, adjuvant and metastatic setting. Spatial heterogeneity of TIME and importance of longitudinal evaluation of TIME changes under the pressure of therapy and metastatic progression are also addressed.
Collapse
|
31
|
Sun Y, Ren Z, Zheng W. Research on Face Recognition Algorithm Based on Image Processing. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:9224203. [PMID: 35341202 PMCID: PMC8956407 DOI: 10.1155/2022/9224203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/16/2022] [Accepted: 02/23/2022] [Indexed: 12/04/2022]
Abstract
While network technology is convenient for our daily life, the problems that are exposed are also endless. The most important thing for everyone is information security. In order to improve the security level of network information and identify and detect faces, the method used in this paper has improved compared with the traditional AdaBoost method and skin color method. AdaBoost detection is performed on the image, which reduces the probability of false detection. The experiment compares the experimental results of the AdaBoost method, the skin color method and the skin color + AdaBoost method. All operations in the KPCA and KFDA algorithms are performed by the inner product kernel function defined in the original space, and no specific non-linear mapping function is involved.The full name of KPCA is kernel principal component analysis. The full name of KFDA is kernel Fisher discriminant analysis. Combining the zero-space method kernel discriminant analysis method improves the ability of discriminant analysis to extract non-linear features. Through the secondary extraction of PCA features, a better recognition result than the PCA method is obtained. This paper also proposes a zero-space based Fisher discriminant analysis method. Experiments show that the zero-space-based method makes full use of the useful discriminant information in the zero space of the intraclass dispersion matrix, which improves the accuracy of face recognition to some extent.If you choose the polynomial kernel function, when d = 0.8, KPCA has a higher recognition ability. When d = 2, the recognition rate of KFDA and zero space-based KFDA is the largest. For polynomial functions, in general, d = 2.
Collapse
Affiliation(s)
- Yan Sun
- College of Information and Communication Engineering University, Harbin 150001, Heilongjiang, China
| | - Zhenyun Ren
- College of Information and Communication Engineering University, Harbin 150001, Heilongjiang, China
| | - Wenxi Zheng
- College of Information and Communication Engineering University, Harbin 150001, Heilongjiang, China
| |
Collapse
|
32
|
Kempster C, Butler G, Kuznecova E, Taylor KA, Kriek N, Little G, Sowa MA, Sage T, Johnson LJ, Gibbins JM, Pollitt AY. Fully automated platelet differential interference contrast image analysis via deep learning. Sci Rep 2022; 12:4614. [PMID: 35301400 PMCID: PMC8931011 DOI: 10.1038/s41598-022-08613-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/08/2022] [Indexed: 11/12/2022] Open
Abstract
Platelets mediate arterial thrombosis, a leading cause of myocardial infarction and stroke. During injury, platelets adhere and spread over exposed subendothelial matrix substrates of the damaged blood vessel wall. The mechanisms which govern platelet activation and their interaction with a range of substrates are therefore regularly investigated using platelet spreading assays. These assays often use differential interference contrast (DIC) microscopy to assess platelet morphology and analysis performed using manual annotation. Here, a convolutional neural network (CNN) allowed fully automated analysis of platelet spreading assays captured by DIC microscopy. The CNN was trained using 120 generalised training images. Increasing the number of training images increases the mean average precision of the CNN. The CNN performance was compared to six manual annotators. Significant variation was observed between annotators, highlighting bias when manual analysis is performed. The CNN effectively analysed platelet morphology when platelets spread over a range of substrates (CRP-XL, vWF and fibrinogen), in the presence and absence of inhibitors (dasatinib, ibrutinib and PRT-060318) and agonist (thrombin), with results consistent in quantifying spread platelet area which is comparable to published literature. The application of a CNN enables, for the first time, automated analysis of platelet spreading assays captured by DIC microscopy.
Collapse
Affiliation(s)
- Carly Kempster
- School of Biological Sciences, University of Reading, Reading, UK
| | - George Butler
- School of Biological Sciences, University of Reading, Reading, UK.,The Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, USA
| | - Elina Kuznecova
- School of Biological Sciences, University of Reading, Reading, UK
| | - Kirk A Taylor
- School of Biological Sciences, University of Reading, Reading, UK
| | - Neline Kriek
- School of Biological Sciences, University of Reading, Reading, UK
| | - Gemma Little
- School of Biological Sciences, University of Reading, Reading, UK
| | - Marcin A Sowa
- School of Biological Sciences, University of Reading, Reading, UK
| | - Tanya Sage
- School of Biological Sciences, University of Reading, Reading, UK
| | - Louise J Johnson
- School of Biological Sciences, University of Reading, Reading, UK
| | | | - Alice Y Pollitt
- School of Biological Sciences, University of Reading, Reading, UK.
| |
Collapse
|
33
|
Bioimaging approaches for quantification of individual cell behavior during cell fate decisions. Biochem Soc Trans 2022; 50:513-527. [PMID: 35166330 DOI: 10.1042/bst20210534] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/10/2022] [Accepted: 01/24/2022] [Indexed: 11/17/2022]
Abstract
Tracking individual cells has allowed a new understanding of cellular behavior in human health and disease by adding a dynamic component to the already complex heterogeneity of single cells. Technically, despite countless advances, numerous experimental variables can affect data collection and interpretation and need to be considered. In this review, we discuss the main technical aspects and biological findings in the analysis of the behavior of individual cells. We discuss the most relevant contributions provided by these approaches in clinically relevant human conditions like embryo development, stem cells biology, inflammation, cancer and microbiology, along with the cellular mechanisms and molecular pathways underlying these conditions. We also discuss the key technical aspects to be considered when planning and performing experiments involving the analysis of individual cells over long periods. Despite the challenges in automatic detection, features extraction and long-term tracking that need to be tackled, the potential impact of single-cell bioimaging is enormous in understanding the pathogenesis and development of new therapies in human pathophysiology.
Collapse
|
34
|
Feldman D, Funk L, Le A, Carlson RJ, Leiken MD, Tsai F, Soong B, Singh A, Blainey PC. Pooled genetic perturbation screens with image-based phenotypes. Nat Protoc 2022; 17:476-512. [PMID: 35022620 PMCID: PMC9654597 DOI: 10.1038/s41596-021-00653-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 10/28/2021] [Indexed: 11/09/2022]
Abstract
Discovery of the genetic components underpinning fundamental and disease-related processes is being rapidly accelerated by combining efficient, programmable genetic engineering with phenotypic readouts of high spatial, temporal and/or molecular resolution. Microscopy is a fundamental tool for studying cell biology, but its lack of high-throughput sequence readouts hinders integration in large-scale genetic screens. Optical pooled screens using in situ sequencing provide massively scalable integration of barcoded lentiviral libraries (e.g., CRISPR perturbation libraries) with high-content imaging assays, including dynamic processes in live cells. The protocol uses standard lentiviral vectors and molecular biology, providing single-cell resolution of phenotype and engineered genotype, scalability to millions of cells and accurate sequence reads sufficient to distinguish >106 perturbations. In situ amplification takes ~2 d, while sequencing can be performed in ~1.5 h per cycle. The image analysis pipeline provided enables fully parallel automated sequencing analysis using a cloud or cluster computing environment.
Collapse
Affiliation(s)
- David Feldman
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Luke Funk
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Anna Le
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Rebecca J Carlson
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - FuNien Tsai
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- 10x Genomics, Pleasanton, CA, USA
| | - Brian Soong
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Avtar Singh
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Cellular and Tissue Genomics, Genentech Inc., South San Francisco, CA, USA
| | - Paul C Blainey
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
- Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, USA.
| |
Collapse
|
35
|
Watson ER, Taherian Fard A, Mar JC. Computational Methods for Single-Cell Imaging and Omics Data Integration. Front Mol Biosci 2022; 8:768106. [PMID: 35111809 PMCID: PMC8801747 DOI: 10.3389/fmolb.2021.768106] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Integrating single cell omics and single cell imaging allows for a more effective characterisation of the underlying mechanisms that drive a phenotype at the tissue level, creating a comprehensive profile at the cellular level. Although the use of imaging data is well established in biomedical research, its primary application has been to observe phenotypes at the tissue or organ level, often using medical imaging techniques such as MRI, CT, and PET. These imaging technologies complement omics-based data in biomedical research because they are helpful for identifying associations between genotype and phenotype, along with functional changes occurring at the tissue level. Single cell imaging can act as an intermediary between these levels. Meanwhile new technologies continue to arrive that can be used to interrogate the genome of single cells and its related omics datasets. As these two areas, single cell imaging and single cell omics, each advance independently with the development of novel techniques, the opportunity to integrate these data types becomes more and more attractive. This review outlines some of the technologies and methods currently available for generating, processing, and analysing single-cell omics- and imaging data, and how they could be integrated to further our understanding of complex biological phenomena like ageing. We include an emphasis on machine learning algorithms because of their ability to identify complex patterns in large multidimensional data.
Collapse
Affiliation(s)
| | - Atefeh Taherian Fard
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Jessica Cara Mar
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
36
|
Yuan J, Ran X, Liu K, Yao C, Yao Y, Wu H, Liu Q. Machine learning applications on neuroimaging for diagnosis and prognosis of epilepsy: A review. J Neurosci Methods 2021; 368:109441. [PMID: 34942271 DOI: 10.1016/j.jneumeth.2021.109441] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 10/23/2021] [Accepted: 12/11/2021] [Indexed: 02/07/2023]
Abstract
Machine learning is playing an increasingly important role in medical image analysis, spawning new advances in the clinical application of neuroimaging. There have been some reviews on machine learning and epilepsy before, and they mainly focused on electrophysiological signals such as electroencephalography (EEG) and stereo electroencephalography (SEEG), while neglecting the potential of neuroimaging in epilepsy research. Neuroimaging has its important advantages in confirming the range of the epileptic region, which is essential in presurgical evaluation and assessment after surgery. However, it is difficult for EEG to locate the accurate epilepsy lesion region in the brain. In this review, we emphasize the interaction between neuroimaging and machine learning in the context of epilepsy diagnosis and prognosis. We start with an overview of epilepsy and typical neuroimaging modalities used in epilepsy clinics, MRI, DWI, fMRI, and PET. Then, we elaborate two approaches in applying machine learning methods to neuroimaging data: (i) the conventional machine learning approach combining manual feature engineering and classifiers, (ii) the deep learning approach, such as the convolutional neural networks and autoencoders. Subsequently, the application of machine learning on epilepsy neuroimaging, such as segmentation, localization, and lateralization tasks, as well as tasks directly related to diagnosis and prognosis are looked into in detail. Finally, we discuss the current achievements, challenges, and potential future directions in this field, hoping to pave the way for computer-aided diagnosis and prognosis of epilepsy.
Collapse
Affiliation(s)
- Jie Yuan
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Xuming Ran
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Keyin Liu
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Chen Yao
- Shenzhen Second People's Hospital, Shenzhen 518035, PR China
| | - Yi Yao
- Shenzhen Children's Hospital, Shenzhen 518017, PR China
| | - Haiyan Wu
- Centre for Cognitive and Brain Sciences and Department of Psychology, University of Macau, Taipa, Macau
| | - Quanying Liu
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China.
| |
Collapse
|
37
|
Pournara E, Kormaksson M, Nash P, Ritchlin CT, Kirkham BW, Ligozio G, Pricop L, Ogdie A, Coates LC, Schett G, McInnes IB. Clinically relevant patient clusters identified by machine learning from the clinical development programme of secukinumab in psoriatic arthritis. RMD Open 2021; 7:rmdopen-2021-001845. [PMID: 34795065 PMCID: PMC8603280 DOI: 10.1136/rmdopen-2021-001845] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/29/2021] [Indexed: 12/03/2022] Open
Abstract
Objectives Identify distinct clusters of psoriatic arthritis (PsA) patients based on their baseline articular, entheseal and cutaneous disease manifestations and explore their clinical and therapeutic value. Methods Pooled baseline data in PsA patients (n=1894) treated with secukinumab across four phase 3 studies (FUTURE 2–5) were analysed to determine phenotypes based on clusters of clinical indicators. Finite mixture models methodology was applied to generate clinical clusters and mean longitudinal responses were compared between secukinumab doses (300 vs 150 mg) across identified clusters and clinical indicators through week 52 using machine learning (ML) techniques. Results Seven distinct patient clusters were identified. Cluster 1 (very-high (VH) – SWO/TEN (swollen/tender); n=187) was characterised by VH polyarticular burden for both tenderness and swelling of joints, while cluster 2 (H (high) – TEN; n=251) was marked by high polyarticular burden in tender joints and cluster 3 (H – Feet – Dactylitis; n=175) by high burden in joints of feet and dactylitis. For cluster 4 (L (Low) – Nails – Skin; n=209), cluster 5 (L – skin; n=283), cluster 6 (L – Nails; n=294) and cluster 7 (L; n=495) articular burden was low but nail and skin involvement was variable, with cluster 7 marked by mild disease activity across all domains. Greater improvements in the longitudinal responses for enthesitis in cluster 2, enthesitis and Psoriasis Area and Severity Index (PASI) in cluster 4 and PASI in cluster 6 were shown for secukinumab 300 mg compared with 150 mg. Conclusions PsA clusters identified by ML follow variable response trajectories indicating their potential to predict precise impact on patients’ outcomes. Trial registration numbers NCT01752634, NCT01989468, NCT02294227, NCT02404350
Collapse
Affiliation(s)
- Effie Pournara
- Immunology, Heptatology and Dermatology, Novartis AG, Basel, Switzerland
| | - Matthias Kormaksson
- Advanced Exploratory Analytics, Novartis Pharmaceuticals Corporation, East Hanover, New Jersey, USA
| | - Peter Nash
- School of Medicine, Griffith University School of Medicine, Gold Coast, Queensland, Australia
| | - Christopher T Ritchlin
- Department of Medicine, Allergy/Immunology and Rheumatology (SMD), University of Rochester, Rochester, New York, USA
| | - Bruce W Kirkham
- Rheumatology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Gregory Ligozio
- Immunology, Heptatology and Dermatology, Novartis Pharmaceuticals Corporation, East Hanover, New Jersey, USA
| | - Luminita Pricop
- Immunology, Heptatology and Dermatology, Novartis Pharmaceuticals Corporation, East Hanover, New Jersey, USA
| | - Alexis Ogdie
- Rheumatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Laura C Coates
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Georg Schett
- Rheumatology, Friedrich-Alexander-Universitat Erlangen-Nurnberg, Erlangen, Germany
| | - Iain B McInnes
- College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
38
|
Tran RDH, Morris TA, Gonzalez D, Hetta AHSHA, Grosberg A. Quantitative Evaluation of Cardiac Cell Interactions and Responses to Cyclic Strain. Cells 2021; 10:3199. [PMID: 34831422 PMCID: PMC8625419 DOI: 10.3390/cells10113199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/14/2021] [Accepted: 10/27/2021] [Indexed: 11/17/2022] Open
Abstract
The heart has a dynamic mechanical environment contributed by its unique cellular composition and the resultant complex tissue structure. In pathological heart tissue, both the mechanics and cell composition can change and influence each other. As a result, the interplay between the cell phenotype and mechanical stimulation needs to be considered to understand the biophysical cell interactions and organization in healthy and diseased myocardium. In this work, we hypothesized that the overall tissue organization is controlled by varying densities of cardiomyocytes and fibroblasts in the heart. In order to test this hypothesis, we utilized a combination of mechanical strain, co-cultures of different cell types, and inhibitory drugs that block intercellular junction formation. To accomplish this, an image analysis pipeline was developed to automatically measure cell type-specific organization relative to the stretch direction. The results indicated that cardiac cell type-specific densities influence the overall organization of heart tissue such that it is possible to model healthy and fibrotic heart tissue in vitro. This study provides insight into how to mimic the dynamic mechanical environment of the heart in engineered tissue as well as providing valuable information about the process of cardiac remodeling and repair in diseased hearts.
Collapse
Affiliation(s)
- Richard Duc Hien Tran
- Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, CA 92617-2700, USA; (R.D.H.T.); (T.A.M.); (D.G.); (A.H.S.H.A.H.)
- Department of Biomedical Engineering, University of California, Irvine, CA 92617, USA
| | - Tessa Altair Morris
- Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, CA 92617-2700, USA; (R.D.H.T.); (T.A.M.); (D.G.); (A.H.S.H.A.H.)
- Center for Complex Biological Systems, University of California, Irvine, CA 92697, USA
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA 92697, USA
| | - Daniela Gonzalez
- Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, CA 92617-2700, USA; (R.D.H.T.); (T.A.M.); (D.G.); (A.H.S.H.A.H.)
- Department of Biomedical Engineering, University of California, Irvine, CA 92617, USA
| | - Ali Hatem Salaheldin Hassan Ahmed Hetta
- Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, CA 92617-2700, USA; (R.D.H.T.); (T.A.M.); (D.G.); (A.H.S.H.A.H.)
- Department of Biomedical Engineering, University of California, Irvine, CA 92617, USA
| | - Anna Grosberg
- Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, CA 92617-2700, USA; (R.D.H.T.); (T.A.M.); (D.G.); (A.H.S.H.A.H.)
- Department of Biomedical Engineering, University of California, Irvine, CA 92617, USA
- Center for Complex Biological Systems, University of California, Irvine, CA 92697, USA
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA 92697, USA
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA 92617, USA
| |
Collapse
|
39
|
Renner H, Schöler HR, Bruder JM. Combining Automated Organoid Workflows With Artificial Intelligence-Based Analyses: Opportunities to Build a New Generation of Interdisciplinary High-Throughput Screens for Parkinson's Disease and Beyond. Mov Disord 2021; 36:2745-2762. [PMID: 34498298 DOI: 10.1002/mds.28775] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease and primarily characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta of the midbrain. Despite decades of research and the development of various disease model systems, there is no curative treatment. This could be due to current model systems, including cell culture and animal models, not adequately recapitulating human PD etiology. More complex human disease models, including human midbrain organoids, are maturing technologies that increasingly enable the strategic incorporation of the missing components needed to model PD in vitro. The resulting organoid-based biological complexity provides new opportunities and challenges in data analysis of rich multimodal data sets. Emerging artificial intelligence (AI) capabilities can take advantage of large, broad data sets and even correlate results across disciplines. Current organoid technologies no longer lack the prerequisites for large-scale high-throughput screening (HTS) and can generate complex yet reproducible data suitable for AI-based data mining. We have recently developed a fully scalable and HTS-compatible workflow for the generation, maintenance, and analysis of three-dimensional (3D) microtissues mimicking key characteristics of the human midbrain (called "automated midbrain organoids," AMOs). AMOs build a reproducible, scalable foundation for creating next-generation 3D models of human neural disease that can fuel mechanism-agnostic phenotypic drug discovery in human in vitro PD models and beyond. Here, we explore the opportunities and challenges resulting from the convergence of organoid HTS and AI-driven data analytics and outline potential future avenues toward the discovery of novel mechanisms and drugs in PD research. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Henrik Renner
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Hans R Schöler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Jan M Bruder
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| |
Collapse
|
40
|
Suzuki G, Saito Y, Seki M, Evans-Yamamoto D, Negishi M, Kakoi K, Kawai H, Landry CR, Yachie N, Mitsuyama T. Machine learning approach for discrimination of genotypes based on bright-field cellular images. NPJ Syst Biol Appl 2021; 7:31. [PMID: 34290253 PMCID: PMC8295336 DOI: 10.1038/s41540-021-00190-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 07/01/2021] [Indexed: 12/19/2022] Open
Abstract
Morphological profiling is a combination of established optical microscopes and cutting-edge machine vision technologies, which stacks up successful applications in high-throughput phenotyping. One major question is how much information can be extracted from an image to identify genetic differences between cells. While fluorescent microscopy images of specific organelles have been broadly used for single-cell profiling, the potential ability of bright-field (BF) microscopy images of label-free cells remains to be tested. Here, we examine whether single-gene perturbation can be discriminated based on BF images of label-free cells using a machine learning approach. We acquired hundreds of BF images of single-gene mutant cells, quantified single-cell profiles consisting of texture features of cellular regions, and constructed a machine learning model to discriminate mutant cells from wild-type cells. Interestingly, the mutants were successfully discriminated from the wild type (area under the receiver operating characteristic curve = 0.773). The features that contributed to the discrimination were identified, and they included those related to the morphology of structures that appeared within cellular regions. Furthermore, functionally close gene pairs showed similar feature profiles of the mutant cells. Our study reveals that single-gene mutant cells can be discriminated from wild-type cells based on BF images, suggesting the potential as a useful tool for mutant cell profiling.
Collapse
Affiliation(s)
- Godai Suzuki
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, 135-0064, Japan
| | - Yutaka Saito
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, 135-0064, Japan
- AIST-Waseda University Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), Tokyo, 169-8555, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8561, Japan
| | - Motoaki Seki
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, 153-8904, Japan
| | - Daniel Evans-Yamamoto
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, 153-8904, Japan
- Institute for Advanced Biosciences, Keio University, Tsuruoka, 997-0035, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, 252-0882, Japan
| | - Mikiko Negishi
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, 153-8904, Japan
| | - Kentaro Kakoi
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, 153-8904, Japan
| | - Hiroki Kawai
- Research and Development Department, LPIXEL Inc., Tokyo, 100-0004, Japan
| | - Christian R Landry
- Institut de Biologie Intégrative et des Systémes, Université Laval, Québec, QC, G1V 0A6, Canada
- Département de Biochimie, Microbiologie et Bio-informatique, Faculté de sciences et génie, Université Laval, Québec, QC, G1V 0A6, Canada
- PROTEO, le regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines, Université Laval, Québec, QC, G1V 0A6, Canada
- Centre de Recherche en Données Massives (CRDM), Université Laval, Québec, QC, G1V 0A6, Canada
- Département de Biologie, Faculté des sciences et de Génie, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Nozomu Yachie
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, 153-8904, Japan.
- Institute for Advanced Biosciences, Keio University, Tsuruoka, 997-0035, Japan.
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, 252-0882, Japan.
- School of Biomedical Engineering, The University of British Columbia, Vancouver, V6T1Z3, Canada.
| | - Toutai Mitsuyama
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, 135-0064, Japan.
| |
Collapse
|
41
|
Zhao N, Powell RT, Yuan X, Bae G, Roarty KP, Stossi F, Strempfl M, Toneff MJ, Johnson HL, Mani SA, Jones P, Stephan CC, Rosen JM. Morphological screening of mesenchymal mammary tumor organoids to identify drugs that reverse epithelial-mesenchymal transition. Nat Commun 2021; 12:4262. [PMID: 34253738 PMCID: PMC8275587 DOI: 10.1038/s41467-021-24545-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 06/18/2021] [Indexed: 02/06/2023] Open
Abstract
The epithelial-mesenchymal transition (EMT) has been implicated in conferring stem cell properties and therapeutic resistance to cancer cells. Therefore, identification of drugs that can reprogram EMT may provide new therapeutic strategies. Here, we report that cells derived from claudin-low mammary tumors, a mesenchymal subtype of triple-negative breast cancer, exhibit a distinctive organoid structure with extended "spikes" in 3D matrices. Upon a miR-200 induced mesenchymal-epithelial transition (MET), the organoids switch to a smoother round morphology. Based on these observations, we developed a morphological screening method with accompanying analytical pipelines that leverage deep neural networks and nearest neighborhood classification to screen for EMT-reversing drugs. Through screening of a targeted epigenetic drug library, we identified multiple class I HDAC inhibitors and Bromodomain inhibitors that reverse EMT. These data support the use of morphological screening of mesenchymal mammary tumor organoids as a platform to identify drugs that reverse EMT.
Collapse
Affiliation(s)
- Na Zhao
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Reid T Powell
- Center for Translational Cancer Research, Texas A&M Health Science Center, Institute of Biosciences and Technology, Houston, TX, USA
| | - Xueying Yuan
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Goeun Bae
- Center for Translational Cancer Research, Texas A&M Health Science Center, Institute of Biosciences and Technology, Houston, TX, USA
| | - Kevin P Roarty
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Fabio Stossi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Integrated Microscopy Core, Baylor College of Medicine, Houston, TX, USA
| | | | | | - Hannah L Johnson
- Integrated Microscopy Core, Baylor College of Medicine, Houston, TX, USA
| | - Sendurai A Mani
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Philip Jones
- Institute of Applied Cancer Science (IACS), University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Clifford C Stephan
- Center for Translational Cancer Research, Texas A&M Health Science Center, Institute of Biosciences and Technology, Houston, TX, USA
| | - Jeffrey M Rosen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
42
|
Palano G, Foinquinos A, Müllers E. In vitro Assays and Imaging Methods for Drug Discovery for Cardiac Fibrosis. Front Physiol 2021; 12:697270. [PMID: 34305651 PMCID: PMC8298031 DOI: 10.3389/fphys.2021.697270] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/07/2021] [Indexed: 12/20/2022] Open
Abstract
As a result of stress, injury, or aging, cardiac fibrosis is characterized by excessive deposition of extracellular matrix (ECM) components resulting in pathological remodeling, tissue stiffening, ventricular dilatation, and cardiac dysfunction that contribute to heart failure (HF) and eventually death. Currently, there are no effective therapies specifically targeting cardiac fibrosis, partially due to limited understanding of the pathological mechanisms and the lack of predictive in vitro models for high-throughput screening of antifibrotic compounds. The use of more relevant cell models, three-dimensional (3D) models, and coculture systems, together with high-content imaging (HCI) and machine learning (ML)-based image analysis, is expected to improve predictivity and throughput of in vitro models for cardiac fibrosis. In this review, we present an overview of available in vitro assays for cardiac fibrosis. We highlight the potential of more physiological 3D cardiac organoids and coculture systems and discuss HCI and automated artificial intelligence (AI)-based image analysis as key methods able to capture the complexity of cardiac fibrosis in vitro. As 3D and coculture models will soon be sufficiently mature for application in large-scale preclinical drug discovery, we expect the combination of more relevant models and high-content analysis to greatly increase translation from in vitro to in vivo models and facilitate the discovery of novel targets and drugs against cardiac fibrosis.
Collapse
Affiliation(s)
- Giorgia Palano
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ariana Foinquinos
- Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Erik Müllers
- Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
43
|
Rozova VS, Anwer AG, Guller AE, Es HA, Khabir Z, Sokolova AI, Gavrilov MU, Goldys EM, Warkiani ME, Thiery JP, Zvyagin AV. Machine learning reveals mesenchymal breast carcinoma cell adaptation in response to matrix stiffness. PLoS Comput Biol 2021; 17:e1009193. [PMID: 34297718 PMCID: PMC8336795 DOI: 10.1371/journal.pcbi.1009193] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 08/04/2021] [Accepted: 06/17/2021] [Indexed: 12/31/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) and its reverse process, mesenchymal-epithelial transition (MET), are believed to play key roles in facilitating the metastatic cascade. Metastatic lesions often exhibit a similar epithelial-like state to that of the primary tumour, in particular, by forming carcinoma cell clusters via E-cadherin-mediated junctional complexes. However, the factors enabling mesenchymal-like micrometastatic cells to resume growth and reacquire an epithelial phenotype in the target organ microenvironment remain elusive. In this study, we developed a workflow using image-based cell profiling and machine learning to examine morphological, contextual and molecular states of individual breast carcinoma cells (MDA-MB-231). MDA-MB-231 heterogeneous response to the host organ microenvironment was modelled by substrates with controllable stiffness varying from 0.2kPa (soft tissues) to 64kPa (bone tissues). We identified 3 distinct morphological cell types (morphs) varying from compact round-shaped to flattened irregular-shaped cells with lamellipodia, predominantly populating 2-kPa and >16kPa substrates, respectively. These observations were accompanied by significant changes in E-cadherin and vimentin expression. Furthermore, we demonstrate that the bone-mimicking substrate (64kPa) induced multicellular cluster formation accompanied by E-cadherin cell surface localisation. MDA-MB-231 cells responded to different substrate stiffness by morphological adaptation, changes in proliferation rate and cytoskeleton markers, and cluster formation on bone-mimicking substrate. Our results suggest that the stiffest microenvironment can induce MET.
Collapse
Affiliation(s)
- Vlada S. Rozova
- ARC Centre of Excellence for Nanoscale Biophotonics, Macquarie University, Sydney, Australia
- Institute for Biology and Biomedicine, Lobachevsky State University, Nizhny Novgorod, Russia
| | - Ayad G. Anwer
- ARC Centre of Excellence for Nanoscale Biophotonics, Macquarie University, Sydney, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia
| | - Anna E. Guller
- ARC Centre of Excellence for Nanoscale Biophotonics, Macquarie University, Sydney, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
| | | | - Zahra Khabir
- ARC Centre of Excellence for Nanoscale Biophotonics, Macquarie University, Sydney, Australia
| | - Anastasiya I. Sokolova
- Centre of Biomedical Engineering, Sechenov University, Moscow, Russia
- Laboratory of Medical Nanotechnologies, Federal Biomedical Agency, Moscow, Russia
| | - Maxim U. Gavrilov
- Centre of Biomedical Engineering, Sechenov University, Moscow, Russia
| | - Ewa M. Goldys
- ARC Centre of Excellence for Nanoscale Biophotonics, Macquarie University, Sydney, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia
| | | | - Jean Paul Thiery
- Centre of Biomedical Engineering, Sechenov University, Moscow, Russia
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health, Guangdong Laboratory, Guangzhou, China
| | - Andrei V. Zvyagin
- ARC Centre of Excellence for Nanoscale Biophotonics, Macquarie University, Sydney, Australia
- Centre of Biomedical Engineering, Sechenov University, Moscow, Russia
- Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
44
|
Mattiazzi Usaj M, Yeung CHL, Friesen H, Boone C, Andrews BJ. Single-cell image analysis to explore cell-to-cell heterogeneity in isogenic populations. Cell Syst 2021; 12:608-621. [PMID: 34139168 PMCID: PMC9112900 DOI: 10.1016/j.cels.2021.05.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/26/2021] [Accepted: 05/12/2021] [Indexed: 12/26/2022]
Abstract
Single-cell image analysis provides a powerful approach for studying cell-to-cell heterogeneity, which is an important attribute of isogenic cell populations, from microbial cultures to individual cells in multicellular organisms. This phenotypic variability must be explained at a mechanistic level if biologists are to fully understand cellular function and address the genotype-to-phenotype relationship. Variability in single-cell phenotypes is obscured by bulk readouts or averaging of phenotypes from individual cells in a sample; thus, single-cell image analysis enables a higher resolution view of cellular function. Here, we consider examples of both small- and large-scale studies carried out with isogenic cell populations assessed by fluorescence microscopy, and we illustrate the advantages, challenges, and the promise of quantitative single-cell image analysis.
Collapse
Affiliation(s)
- Mojca Mattiazzi Usaj
- Department of Chemistry and Biology, Ryerson University, Toronto, ON M5B 2K3, Canada
| | - Clarence Hue Lok Yeung
- The Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Helena Friesen
- The Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Charles Boone
- The Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada; RIKEN Centre for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Brenda J Andrews
- The Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada.
| |
Collapse
|
45
|
Pratapa A, Doron M, Caicedo JC. Image-based cell phenotyping with deep learning. Curr Opin Chem Biol 2021; 65:9-17. [PMID: 34023800 DOI: 10.1016/j.cbpa.2021.04.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 04/10/2021] [Indexed: 12/25/2022]
Abstract
A cell's phenotype is the culmination of several cellular processes through a complex network of molecular interactions that ultimately result in a unique morphological signature. Visual cell phenotyping is the characterization and quantification of these observable cellular traits in images. Recently, cellular phenotyping has undergone a massive overhaul in terms of scale, resolution, and throughput, which is attributable to advances across electronic, optical, and chemical technologies for imaging cells. Coupled with the rapid acceleration of deep learning-based computational tools, these advances have opened up new avenues for innovation across a wide variety of high-throughput cell biology applications. Here, we review applications wherein deep learning is powering the recognition, profiling, and prediction of visual phenotypes to answer important biological questions. As the complexity and scale of imaging assays increase, deep learning offers computational solutions to elucidate the details of previously unexplored cellular phenotypes.
Collapse
|
46
|
Setting molecular traps in yeast for identification of anticancer drug targets. Proc Natl Acad Sci U S A 2021; 118:2105547118. [PMID: 33853860 PMCID: PMC8106309 DOI: 10.1073/pnas.2105547118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
47
|
Chao JT, Roskelley CD, Loewen CJR. MAPS: machine-assisted phenotype scoring enables rapid functional assessment of genetic variants by high-content microscopy. BMC Bioinformatics 2021; 22:202. [PMID: 33879063 PMCID: PMC8056608 DOI: 10.1186/s12859-021-04117-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 04/02/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Genetic testing is widely used in evaluating a patient's predisposition to hereditary diseases. In the case of cancer, when a functionally impactful mutation (i.e. genetic variant) is identified in a disease-relevant gene, the patient is at elevated risk of developing a lesion in their lifetime. Unfortunately, as the rate and coverage of genetic testing has accelerated, our ability to assess the functional status of new variants has fallen behind. Therefore, there is an urgent need for more practical, streamlined and cost-effective methods for classifying variants. RESULTS To directly address this issue, we designed a new approach that uses alterations in protein subcellular localization as a key indicator of loss of function. Thus, new variants can be rapidly functionalized using high-content microscopy (HCM). To facilitate the analysis of the large amounts of imaging data, we developed a new software toolkit, named MAPS for machine-assisted phenotype scoring, that utilizes deep learning to extract and classify cell-level features. MAPS helps users leverage cloud-based deep learning services that are easy to train and deploy to fit their specific experimental conditions. Model training is code-free and can be done with limited training images. Thus, MAPS allows cell biologists to easily incorporate deep learning into their image analysis pipeline. We demonstrated an effective variant functionalization workflow that integrates HCM and MAPS to assess missense variants of PTEN, a tumor suppressor that is frequently mutated in hereditary and somatic cancers. CONCLUSIONS This paper presents a new way to rapidly assess variant function using cloud deep learning. Since most tumor suppressors have well-defined subcellular localizations, our approach could be widely applied to functionalize variants of uncertain significance and help improve the utility of genetic testing.
Collapse
Affiliation(s)
- Jesse T Chao
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, V6T1Z3, Canada.
| | - Calvin D Roskelley
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, V6T1Z3, Canada
| | - Christopher J R Loewen
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, V6T1Z3, Canada
| |
Collapse
|
48
|
Ziegler S, Sievers S, Waldmann H. Morphological profiling of small molecules. Cell Chem Biol 2021; 28:300-319. [PMID: 33740434 DOI: 10.1016/j.chembiol.2021.02.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/22/2021] [Accepted: 02/17/2021] [Indexed: 12/30/2022]
Abstract
Profiling approaches such as gene expression or proteome profiling generate small-molecule bioactivity profiles that describe a perturbed cellular state in a rather unbiased manner and have become indispensable tools in the evaluation of bioactive small molecules. Automated imaging and image analysis can record morphological alterations that are induced by small molecules through the detection of hundreds of morphological features in high-throughput experiments. Thus, morphological profiling has gained growing attention in academia and the pharmaceutical industry as it enables detection of bioactivity in compound collections in a broader biological context in the early stages of compound development and the drug-discovery process. Profiling may be used successfully to predict mode of action or targets of unexplored compounds and to uncover unanticipated activity for already characterized small molecules. Here, we review the reported approaches to morphological profiling and the kind of bioactivity that can be detected so far and, thus, predicted.
Collapse
Affiliation(s)
- Slava Ziegler
- Max-Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany.
| | - Sonja Sievers
- Max-Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Herbert Waldmann
- Max-Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany; Technical University Dortmund, Faculty of Chemistry and Chemical Biology, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany.
| |
Collapse
|
49
|
Chandrasekaran SN, Ceulemans H, Boyd JD, Carpenter AE. Image-based profiling for drug discovery: due for a machine-learning upgrade? Nat Rev Drug Discov 2021; 20:145-159. [PMID: 33353986 PMCID: PMC7754181 DOI: 10.1038/s41573-020-00117-w] [Citation(s) in RCA: 189] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2020] [Indexed: 12/20/2022]
Abstract
Image-based profiling is a maturing strategy by which the rich information present in biological images is reduced to a multidimensional profile, a collection of extracted image-based features. These profiles can be mined for relevant patterns, revealing unexpected biological activity that is useful for many steps in the drug discovery process. Such applications include identifying disease-associated screenable phenotypes, understanding disease mechanisms and predicting a drug's activity, toxicity or mechanism of action. Several of these applications have been recently validated and have moved into production mode within academia and the pharmaceutical industry. Some of these have yielded disappointing results in practice but are now of renewed interest due to improved machine-learning strategies that better leverage image-based information. Although challenges remain, novel computational technologies such as deep learning and single-cell methods that better capture the biological information in images hold promise for accelerating drug discovery.
Collapse
Affiliation(s)
| | - Hugo Ceulemans
- Discovery Data Sciences, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Justin D Boyd
- High Content Imaging Technology Center, Internal Medicine Research Unit, Pfizer Inc., Cambridge, MA, USA
| | - Anne E Carpenter
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
50
|
Malandraki-Miller S, Riley PR. Use of artificial intelligence to enhance phenotypic drug discovery. Drug Discov Today 2021; 26:887-901. [PMID: 33484947 DOI: 10.1016/j.drudis.2021.01.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/28/2020] [Accepted: 01/15/2021] [Indexed: 01/17/2023]
Abstract
Research and development (R&D) productivity across the pharmaceutical industry has received close scrutiny over the past two decades, especially taking into consideration reports of attrition rates and the colossal cost for drug development. The respective merits of the two main drug discovery approaches, phenotypic and target based, have divided opinion across the research community, because each hold different advantages for identifying novel molecular entities with a successful path to the market. Nevertheless, both have low translatability in the clinic. Artificial intelligence (AI) and adoption of machine learning (ML) tools offer the promise of revolutionising drug development, and overcoming obstacles in the drug discovery pipeline. Here, we assess the potential of target-driven and phenotypic-based approaches and offer a holistic description of the current state of the field, from both a scientific and industry perspective. With the emerging partnerships between AI/ML and pharma still in their relative infancy, we investigate the potential and current limitations with a particular focus on phenotypic drug discovery. Finally, we emphasise the value of public-private partnerships (PPPs) and cross-disciplinary collaborations to foster innovation and facilitate efficient drug discovery programmes.
Collapse
Affiliation(s)
| | - Paul R Riley
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|