1
|
Donker L, Godinho SA. Rethinking tubulin acetylation: From regulation to cellular adaptation. Curr Opin Cell Biol 2025; 94:102512. [PMID: 40220734 DOI: 10.1016/j.ceb.2025.102512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/26/2025] [Accepted: 03/18/2025] [Indexed: 04/14/2025]
Abstract
Ever since its discovery, acetylation of α-tubulin on lysine 40 (K40) has been associated with the presence of long-lived, stable microtubules. Indeed, later studies revealed that acetylation protects microtubules from mechanical breakage, yet the functional consequences of this modification at the cellular level are only beginning to emerge. Here, we outline novel insights into the mechanisms controlling tubulin acetylation, and its impact on microtubule properties and cellular functions. Finally, we highlight recent advances suggesting that tubulin acetylation can also occur as a dynamic modification in response to a variety of cellular stresses. These observations shed new light on the cell biological functions of tubulin acetylation and give rise to the notion that this modification could be a universal mechanism that allows cells to adapt to changes in their environment or intracellular state.
Collapse
Affiliation(s)
- Lisa Donker
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK.
| | - Susana A Godinho
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK.
| |
Collapse
|
2
|
Labat-de-Hoz L, Jiménez MÁ, Correas I, Alonso MA. Regulation of formin INF2 and its alteration in INF2-linked inherited disorders. Cell Mol Life Sci 2024; 81:463. [PMID: 39586895 PMCID: PMC11589041 DOI: 10.1007/s00018-024-05499-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/21/2024] [Accepted: 10/31/2024] [Indexed: 11/27/2024]
Abstract
Formins are proteins that catalyze the formation of linear filaments made of actin. INF2, a formin, is crucial for correct vesicular transport, microtubule stability and mitochondrial division. Its activity is regulated by a complex of cyclase-associated protein and lysine-acetylated G-actin (KAc-actin), which helps INF2 adopt an inactive conformation through the association of its N-terminal diaphanous inhibitory domain (DID) with its C-terminal diaphanous autoinhibitory domain. INF2 activation can occur through calmodulin binding, KAc-actin deacetylation, G-actin binding, or association with the Cdc42 GTPase. Mutations in the INF2 DID are linked to focal segmental glomerulosclerosis (FSGS), affecting podocytes, and Charcot-Marie-Tooth disease, which affects Schwann cells and leads to axonal loss. At least 80 pathogenic DID variants of INF2 have been identified, with potential for many more. These mutations disrupt INF2 regulation, leading to excessive actin polymerization. This in turn causes altered intracellular trafficking, abnormal mitochondrial dynamics, and profound transcriptional reprogramming via the MRTF/SRF complex, resulting in mitotic abnormalities and p53-mediated cell death. This sequence of events could be responsible for progressive podocyte loss during glomerular degeneration in FSGS patients. Pharmacological targeting of INF2 or actin polymerization could offer the therapeutic potential to halt the progression of FSGS and improve outcomes for patients with INF2-linked disease.
Collapse
Affiliation(s)
- Leticia Labat-de-Hoz
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain
| | - M Ángeles Jiménez
- Instituto de Química Física (IQF) Blas Cabrera, Consejo Superior de Investigaciones Científicas, 28006, Madrid, Spain
| | - Isabel Correas
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain
- Department of Molecular Biology, UAM, 28049, Madrid, Spain
| | - Miguel A Alonso
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain.
| |
Collapse
|
3
|
Spallotta F, Illi B. The Role of HDAC6 in Glioblastoma Multiforme: A New Avenue to Therapeutic Interventions? Biomedicines 2024; 12:2631. [PMID: 39595195 PMCID: PMC11591585 DOI: 10.3390/biomedicines12112631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Despite the great advances in basic research results, glioblastoma multiforme (GBM) still remains an incurable tumour. To date, a GBM diagnosis is a death sentence within 15-18 months, due to the high recurrence rate and resistance to conventional radio- and chemotherapy approaches. The effort the scientific community is lavishing on the never-ending battle against GBM is reflected by the huge number of clinical trials launched, about 2003 on 10 September 2024. However, we are still far from both an in-depth comprehension of the biological and molecular processes leading to GBM onset and progression and, importantly, a cure. GBM is provided with high intratumoral heterogeneity, immunosuppressive capacity, and infiltrative ability due to neoangiogenesis. These features impact both tumour aggressiveness and therapeutic vulnerability, which is further limited by the presence in the tumour core of niches of glioblastoma stem cells (GSCs) that are responsible for the relapse of this brain neoplasm. Epigenetic alterations may both drive and develop along GBM progression and also rely on changes in the expression of the genes encoding histone-modifying enzymes, including histone deacetylases (HDACs). Among them, HDAC6-a cytoplasmic HDAC-has recently gained attention because of its role in modulating several biological aspects of GBM, including DNA repair ability, massive growth, radio- and chemoresistance, and de-differentiation through primary cilia disruption. In this review article, the available information related to HDAC6 function in GBM will be presented, with the aim of proposing its inhibition as a valuable therapeutic route for this deadly brain tumour.
Collapse
Affiliation(s)
- Francesco Spallotta
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, 00185 Rome, Italy;
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, 00185 Rome, Italy
| | - Barbara Illi
- Institute of Molecular Biology and Pathology, National Research Council (IBPM-CNR), 00185 Rome, Italy
| |
Collapse
|
4
|
Labat-de-Hoz L, Fernández-Martín L, Correas I, Alonso MA. INF2 formin variants linked to human inherited kidney disease reprogram the transcriptome, causing mitotic chaos and cell death. Cell Mol Life Sci 2024; 81:279. [PMID: 38916773 PMCID: PMC11335204 DOI: 10.1007/s00018-024-05323-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/26/2024]
Abstract
Mutations in the human INF2 gene cause autosomal dominant focal segmental glomerulosclerosis (FSGS)-a condition characterized by podocyte loss, scarring, and subsequent kidney degeneration. To understand INF2-linked pathogenicity, we examined the effect of pathogenic INF2 on renal epithelial cell lines and human primary podocytes. Our study revealed an increased incidence of mitotic cells with surplus microtubule-organizing centers fostering multipolar spindle assembly, leading to nuclear abnormalities, particularly multi-micronucleation. The levels of expression of exogenous pathogenic INF2 were similar to those of endogenous INF2. The aberrant nuclear phenotypes were observed regardless of the expression method used (retrovirus infection or plasmid transfection) or the promoter (LTR or CMV) used, and were absent with exogenous wild type INF2 expression. This indicates that the effect of pathogenic INF2 is not due to overexpression or experimental cell manipulation, but instead to the intrinsic properties of pathogenic INF2. Inactivation of the INF2 catalytic domain prevented aberrant nuclei formation. Pathogenic INF2 triggered the translocation of the transcriptional cofactor MRTF into the nucleus. RNA sequencing revealed a profound alteration in the transcriptome that could be primarily attributed to the sustained activation of the MRTF-SRF transcriptional complex. Cells eventually underwent mitotic catastrophe and death. Reducing MRTF-SRF activation mitigated multi-micronucleation, reducing the extent of cell death. Our results, if validated in animal models, could provide insights into the mechanism driving glomerular degeneration in INF2-linked FSGS and may suggest potential therapeutic strategies for impeding FSGS progression.
Collapse
Affiliation(s)
- Leticia Labat-de-Hoz
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC) and Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain
| | - Laura Fernández-Martín
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC) and Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain
| | - Isabel Correas
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC) and Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain
- Department of Molecular Biology, UAM, 28049, Madrid, Spain
| | - Miguel A Alonso
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC) and Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain.
| |
Collapse
|
5
|
Iuzzolino A, Pellegrini FR, Rotili D, Degrassi F, Trisciuoglio D. The α-tubulin acetyltransferase ATAT1: structure, cellular functions, and its emerging role in human diseases. Cell Mol Life Sci 2024; 81:193. [PMID: 38652325 PMCID: PMC11039541 DOI: 10.1007/s00018-024-05227-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/25/2024]
Abstract
The acetylation of α-tubulin on lysine 40 is a well-studied post-translational modification which has been associated with the presence of long-lived stable microtubules that are more resistant to mechanical breakdown. The discovery of α-tubulin acetyltransferase 1 (ATAT1), the enzyme responsible for lysine 40 acetylation on α-tubulin in a wide range of species, including protists, nematodes, and mammals, dates to about a decade ago. However, the role of ATAT1 in different cellular activities and molecular pathways has been only recently disclosed. This review comprehensively summarizes the most recent knowledge on ATAT1 structure and substrate binding and analyses the involvement of ATAT1 in a variety of cellular processes such as cell motility, mitosis, cytoskeletal organization, and intracellular trafficking. Finally, the review highlights ATAT1 emerging roles in human diseases and discusses ATAT1 potential enzymatic and non-enzymatic roles and the current efforts in developing ATAT1 inhibitors.
Collapse
Affiliation(s)
- Angela Iuzzolino
- IBPM Institute of Molecular Biology and Pathology, CNR National Research Council of Italy, Via degli Apuli 4, Rome, 00185, Italy
| | - Francesca Romana Pellegrini
- IBPM Institute of Molecular Biology and Pathology, CNR National Research Council of Italy, Via degli Apuli 4, Rome, 00185, Italy
| | - Dante Rotili
- Department of Drug Chemistry & Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome, 00185, Italy
| | - Francesca Degrassi
- IBPM Institute of Molecular Biology and Pathology, CNR National Research Council of Italy, Via degli Apuli 4, Rome, 00185, Italy.
| | - Daniela Trisciuoglio
- IBPM Institute of Molecular Biology and Pathology, CNR National Research Council of Italy, Via degli Apuli 4, Rome, 00185, Italy.
| |
Collapse
|
6
|
Pero ME, Chowdhury F, Bartolini F. Role of tubulin post-translational modifications in peripheral neuropathy. Exp Neurol 2023; 360:114274. [PMID: 36379274 PMCID: PMC11320756 DOI: 10.1016/j.expneurol.2022.114274] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/14/2022]
Abstract
Peripheral neuropathy is a common disorder that results from nerve damage in the periphery. The degeneration of sensory axon terminals leads to changes or loss of sensory functions, often manifesting as debilitating pain, weakness, numbness, tingling, and disability. The pathogenesis of most peripheral neuropathies remains to be fully elucidated. Cumulative evidence from both early and recent studies indicates that tubulin damage may provide a common underlying mechanism of axonal injury in various peripheral neuropathies. In particular, tubulin post-translational modifications have been recently implicated in both toxic and inherited forms of peripheral neuropathy through regulation of axonal transport and mitochondria dynamics. This knowledge forms a new area of investigation with the potential for developing therapeutic strategies to prevent or delay peripheral neuropathy by restoring tubulin homeostasis.
Collapse
Affiliation(s)
- Maria Elena Pero
- Department of Pathology and Cell Biology, Columbia University, New York, USA; Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Italy
| | - Farihah Chowdhury
- Department of Pathology and Cell Biology, Columbia University, New York, USA
| | - Francesca Bartolini
- Department of Pathology and Cell Biology, Columbia University, New York, USA.
| |
Collapse
|
7
|
Putra VDL, Kilian KA, Knothe Tate ML. Biomechanical, biophysical and biochemical modulators of cytoskeletal remodelling and emergent stem cell lineage commitment. Commun Biol 2023; 6:75. [PMID: 36658332 PMCID: PMC9852586 DOI: 10.1038/s42003-022-04320-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 11/30/2022] [Indexed: 01/20/2023] Open
Abstract
Across complex, multi-time and -length scale biological systems, redundancy confers robustness and resilience, enabling adaptation and increasing survival under dynamic environmental conditions; this review addresses ubiquitous effects of cytoskeletal remodelling, triggered by biomechanical, biophysical and biochemical cues, on stem cell mechanoadaptation and emergent lineage commitment. The cytoskeleton provides an adaptive structural scaffold to the cell, regulating the emergence of stem cell structure-function relationships during tissue neogenesis, both in prenatal development as well as postnatal healing. Identification and mapping of the mechanical cues conducive to cytoskeletal remodelling and cell adaptation may help to establish environmental contexts that can be used prospectively as translational design specifications to target tissue neogenesis for regenerative medicine. In this review, we summarize findings on cytoskeletal remodelling in the context of tissue neogenesis during early development and postnatal healing, and its relevance in guiding lineage commitment for targeted tissue regeneration. We highlight how cytoskeleton-targeting chemical agents modulate stem cell differentiation and govern responses to mechanical cues in stem cells' emerging form and function. We further review methods for spatiotemporal visualization and measurement of cytoskeletal remodelling, as well as its effects on the mechanical properties of cells, as a function of adaptation. Research in these areas may facilitate translation of stem cells' own healing potential and improve the design of materials, therapies, and devices for regenerative medicine.
Collapse
Affiliation(s)
- Vina D L Putra
- School of Chemistry and School of Materials Science & Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Kristopher A Kilian
- School of Chemistry and School of Materials Science & Engineering, University of New South Wales, Sydney, NSW, Australia.
| | - Melissa L Knothe Tate
- Blue Mountains World Interdisciplinary Innovation Institute (bmwi³), Blue Mountains, NSW, Australia.
| |
Collapse
|
8
|
Actin-microtubule cytoskeletal interplay mediated by MRTF-A/SRF signaling promotes dilated cardiomyopathy caused by LMNA mutations. Nat Commun 2022; 13:7886. [PMID: 36550158 PMCID: PMC9780334 DOI: 10.1038/s41467-022-35639-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Mutations in the lamin A/C gene (LMNA) cause dilated cardiomyopathy associated with increased activity of ERK1/2 in the heart. We recently showed that ERK1/2 phosphorylates cofilin-1 on threonine 25 (phospho(T25)-cofilin-1) that in turn disassembles the actin cytoskeleton. Here, we show that in muscle cells carrying a cardiomyopathy-causing LMNA mutation, phospho(T25)-cofilin-1 binds to myocardin-related transcription factor A (MRTF-A) in the cytoplasm, thus preventing the stimulation of serum response factor (SRF) in the nucleus. Inhibiting the MRTF-A/SRF axis leads to decreased α-tubulin acetylation by reducing the expression of ATAT1 gene encoding α-tubulin acetyltransferase 1. Hence, tubulin acetylation is decreased in cardiomyocytes derived from male patients with LMNA mutations and in heart and isolated cardiomyocytes from Lmnap.H222P/H222P male mice. In Atat1 knockout mice, deficient for acetylated α-tubulin, we observe left ventricular dilation and mislocalization of Connexin 43 (Cx43) in heart. Increasing α-tubulin acetylation levels in Lmnap.H222P/H222P mice with tubastatin A treatment restores the proper localization of Cx43 and improves cardiac function. In summary, we show for the first time an actin-microtubule cytoskeletal interplay mediated by cofilin-1 and MRTF-A/SRF, promoting the dilated cardiomyopathy caused by LMNA mutations. Our findings suggest that modulating α-tubulin acetylation levels is a feasible strategy for improving cardiac function.
Collapse
|
9
|
Labat-de-Hoz L, Comas L, Rubio-Ramos A, Casares-Arias J, Fernández-Martín L, Pantoja-Uceda D, Martín MT, Kremer L, Jiménez MA, Correas I, Alonso MA. Structure and function of the N-terminal extension of the formin INF2. Cell Mol Life Sci 2022; 79:571. [PMID: 36306014 PMCID: PMC9616786 DOI: 10.1007/s00018-022-04581-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/19/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022]
Abstract
In INF2—a formin linked to inherited renal and neurological disease in humans—the DID is preceded by a short N-terminal extension of unknown structure and function. INF2 activation is achieved by Ca2+-dependent association of calmodulin (CaM). Here, we show that the N-terminal extension of INF2 is organized into two α-helices, the first of which is necessary to maintain the perinuclear F-actin ring and normal cytosolic F-actin content. Biochemical assays indicated that this helix interacts directly with CaM and contains the sole CaM-binding site (CaMBS) detected in INF2. The residues W11, L14 and L18 of INF2, arranged as a 1-4-8 motif, were identified as the most important residues for the binding, W11 being the most critical of the three. This motif is conserved in vertebrate INF2 and in the human population. NMR and biochemical analyses revealed that CaM interacts directly through its C-terminal lobe with the INF2 CaMBS. Unlike control cells, INF2 KO cells lacked the perinuclear F-actin ring, had little cytosolic F-actin content, did not respond to increased Ca2+ concentrations by making more F-actin, and maintained the transcriptional cofactor MRTF predominantly in the cytoplasm. Whereas expression of intact INF2 restored all these defects, INF2 with inactivated CaMBS did not. Our study reveals the structure of the N-terminal extension, its interaction with Ca2+/CaM, and its function in INF2 activation.
Collapse
Affiliation(s)
- Leticia Labat-de-Hoz
- Centro de Biología Molecular (CBM) Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Laura Comas
- Instituto de Química Física Rocasolano (IQFR), Consejo Superior de Investigaciones Científicas, 28006, Madrid, Spain
| | - Armando Rubio-Ramos
- Centro de Biología Molecular (CBM) Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Javier Casares-Arias
- Centro de Biología Molecular (CBM) Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Laura Fernández-Martín
- Centro de Biología Molecular (CBM) Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - David Pantoja-Uceda
- Instituto de Química Física Rocasolano (IQFR), Consejo Superior de Investigaciones Científicas, 28006, Madrid, Spain
| | - M Teresa Martín
- Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas, 28049, Madrid, Spain
| | - Leonor Kremer
- Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas, 28049, Madrid, Spain
| | - M Angeles Jiménez
- Instituto de Química Física Rocasolano (IQFR), Consejo Superior de Investigaciones Científicas, 28006, Madrid, Spain
| | - Isabel Correas
- Centro de Biología Molecular (CBM) Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, 28049, Madrid, Spain.,Department of Molecular Biology, Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain
| | - Miguel A Alonso
- Centro de Biología Molecular (CBM) Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| |
Collapse
|
10
|
Shao X, Liu Z, Mao S, Han L. Unraveling the Mechanobiology Underlying Traumatic Brain Injury with Advanced Technologies and Biomaterials. Adv Healthc Mater 2022; 11:e2200760. [PMID: 35841392 DOI: 10.1002/adhm.202200760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/27/2022] [Indexed: 01/27/2023]
Abstract
Traumatic brain injury (TBI) is a worldwide health and socioeconomic problem, associated with prolonged and complex neurological aftermaths, including a variety of functional deficits and neurodegenerative disorders. Research on the long-term effects has highlighted that TBI shall be regarded as a chronic health condition. The initiation and exacerbation of TBI involve a series of mechanical stimulations and perturbations, accompanied by mechanotransduction events within the brain tissues. Mechanobiology thus offers a unique perspective and likely promising approach to unravel the underlying molecular and biochemical mechanisms leading to neural cells dysfunction after TBI, which may contribute to the discovery of novel targets for future clinical treatment. This article investigates TBI and the subsequent brain dysfunction from a lens of neuromechanobiology. Following an introduction, the mechanobiological insights are examined into the molecular pathology of TBI, and then an overview is given of the latest research technologies to explore neuromechanobiology, with particular focus on microfluidics and biomaterials. Challenges and prospects in the current field are also discussed. Through this article, it is hoped that extensive technical innovation in biomedical devices and materials can be encouraged to advance the field of neuromechanobiology, paving potential ways for the research and rehabilitation of neurotrauma and neurological diseases.
Collapse
Affiliation(s)
- Xiaowei Shao
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266237, China.,Suzhou Research Institute, Shandong University, Suzhou, Jiangsu, 215123, China
| | - Zhongqian Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Shijie Mao
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Lin Han
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266237, China
| |
Collapse
|
11
|
Kage F, Vicente-Manzanares M, McEwan BC, Kettenbach AN, Higgs HN. Myosin II proteins are required for organization of calcium-induced actin networks upstream of mitochondrial division. Mol Biol Cell 2022; 33:ar63. [PMID: 35427150 PMCID: PMC9561854 DOI: 10.1091/mbc.e22-01-0005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The formin INF2 polymerizes a calcium-activated cytoplasmic network of actin filaments, which we refer to as calcium-induced actin polymerization (CIA). CIA plays important roles in multiple cellular processes, including mitochondrial dynamics and vesicle transport. Here, we show that nonmuscle myosin II (NMII) is activated within 60 s of calcium stimulation and rapidly recruited to the CIA network. Knockout of any individual NMII in U2OS cells affects the organization of the CIA network, as well as three downstream effects: endoplasmic-reticulum-to-mitochondrial calcium transfer, mitochondrial Drp1 recruitment, and mitochondrial division. Interestingly, while NMIIC is the least abundant NMII in U2OS cells (>200-fold less than NMIIA and >10-fold less than NMIIB), its knockout is equally deleterious to CIA. On the basis of these results, we propose that myosin II filaments containing all three NMII heavy chains exert organizational and contractile roles in the CIA network. In addition, NMIIA knockout causes a significant decrease in myosin regulatory light chain levels, which might have additional effects.
Collapse
Affiliation(s)
- Frieda Kage
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover NH 03755, USA
| | - Miguel Vicente-Manzanares
- Centro de Investigacion del Cancer/Instituto de Biologia Molecular y Celular del Cancer, Centro Mixto Universidad de Salamanca, 37007 Salamanca, Spain
| | - Brennan C. McEwan
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover NH 03755, USA
- Program in Cancer Biology, Geisel School of Medicine at Dartmouth College, Hanover NH 03755, USA
| | - Arminja N. Kettenbach
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover NH 03755, USA
- Program in Cancer Biology, Geisel School of Medicine at Dartmouth College, Hanover NH 03755, USA
| | - Henry N. Higgs
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover NH 03755, USA
| |
Collapse
|
12
|
Seetharaman S, Vianay B, Roca V, Farrugia AJ, De Pascalis C, Boëda B, Dingli F, Loew D, Vassilopoulos S, Bershadsky A, Théry M, Etienne-Manneville S. Microtubules tune mechanosensitive cell responses. NATURE MATERIALS 2022; 21:366-377. [PMID: 34663953 DOI: 10.1101/2020.07.22.205203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 08/20/2021] [Indexed: 05/24/2023]
Abstract
Mechanotransduction is a process by which cells sense the mechanical properties of their surrounding environment and adapt accordingly to perform cellular functions such as adhesion, migration and differentiation. Integrin-mediated focal adhesions are major sites of mechanotransduction and their connection with the actomyosin network is crucial for mechanosensing as well as for the generation and transmission of forces onto the substrate. Despite having emerged as major regulators of cell adhesion and migration, the contribution of microtubules to mechanotransduction still remains elusive. Here, we show that talin- and actomyosin-dependent mechanosensing of substrate rigidity controls microtubule acetylation (a tubulin post-translational modification) by promoting the recruitment of α-tubulin acetyltransferase 1 (αTAT1) to focal adhesions. Microtubule acetylation tunes the mechanosensitivity of focal adhesions and Yes-associated protein (YAP) translocation. Microtubule acetylation, in turn, promotes the release of the guanine nucleotide exchange factor GEF-H1 from microtubules to activate RhoA, actomyosin contractility and traction forces. Our results reveal a fundamental crosstalk between microtubules and actin in mechanotransduction that contributes to mechanosensitive cell adhesion and migration.
Collapse
Affiliation(s)
- Shailaja Seetharaman
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur, UMR3691 CNRS, Equipe Labellisée Ligue Contre le Cancer, Paris, France
- Université Paris Descartes, Paris, France
| | - Benoit Vianay
- Paris University, INSERM, CEA, Hôpital Saint Louis, Institut Universitaire d'Hematologie, Paris, France
| | - Vanessa Roca
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur, UMR3691 CNRS, Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Aaron J Farrugia
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Chiara De Pascalis
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur, UMR3691 CNRS, Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Batiste Boëda
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur, UMR3691 CNRS, Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Florent Dingli
- PSL Research University, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, Institut Curie, Paris, France
| | - Damarys Loew
- PSL Research University, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, Institut Curie, Paris, France
| | | | - Alexander Bershadsky
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Manuel Théry
- Paris University, INSERM, CEA, Hôpital Saint Louis, Institut Universitaire d'Hematologie, Paris, France
| | - Sandrine Etienne-Manneville
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur, UMR3691 CNRS, Equipe Labellisée Ligue Contre le Cancer, Paris, France.
| |
Collapse
|
13
|
Zhao Y, Zhang H, Wang H, Ye M, Jin X. Role of formin INF2 in human diseases. Mol Biol Rep 2021; 49:735-746. [PMID: 34698992 DOI: 10.1007/s11033-021-06869-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/21/2021] [Indexed: 01/08/2023]
Abstract
Formin proteins catalyze actin nucleation and microfilament polymerization. Inverted formin 2 (INF2) is an atypical diaphanous-related formin characterized by polymerization and depolymerization of actin. Accumulating evidence showed that INF2 is associated with kidney disease focal segmental glomerulosclerosis and cancers, such as colorectal and thyroid cancer where it functions as a tumor suppressor, glioblastoma, breast, prostate, and gastric cancer, via its oncogenic function. However, studies on the underlying molecular mechanisms of the different roles of INF2 in diverse cancers are limited. This review comprehensively describes the structure, biochemical features, and primary pathogenic mutations of INF2.
Collapse
Affiliation(s)
- Yiting Zhao
- Department of Hepato-Biliary-Pancreatic Surgery, The Affiliated Ningbo Medical Center of LiHuiLi Hospital of Medical School of Ningbo University, Ningbo, 315048, China.,The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315020, China
| | - Hui Zhang
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, 315211, China.,The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315020, China
| | - Haibiao Wang
- Department of Hepato-Biliary-Pancreatic Surgery, The Affiliated Ningbo Medical Center of LiHuiLi Hospital of Medical School of Ningbo University, Ningbo, 315048, China. .,Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, 315211, China.
| | - Meng Ye
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, 315211, China. .,The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315020, China.
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, 315211, China. .,The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315020, China.
| |
Collapse
|
14
|
Abstract
Almost 25 years have passed since a mutation of a formin gene, DIAPH1, was identified as being responsible for a human inherited disorder: a form of sensorineural hearing loss. Since then, our knowledge of the links between formins and disease has deepened considerably. Mutations of DIAPH1 and six other formin genes (DAAM2, DIAPH2, DIAPH3, FMN2, INF2 and FHOD3) have been identified as the genetic cause of a variety of inherited human disorders, including intellectual disability, renal disease, peripheral neuropathy, thrombocytopenia, primary ovarian insufficiency, hearing loss and cardiomyopathy. In addition, alterations in formin genes have been associated with a variety of pathological conditions, including developmental defects affecting the heart, nervous system and kidney, aging-related diseases, and cancer. This review summarizes the most recent discoveries about the involvement of formin alterations in monogenic disorders and other human pathological conditions, especially cancer, with which they have been associated. In vitro results and experiments in modified animal models are discussed. Finally, we outline the directions for future research in this field.
Collapse
Affiliation(s)
| | - Miguel A. Alonso
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| |
Collapse
|
15
|
Speight P, Rozycki M, Venugopal S, Szászi K, Kofler M, Kapus A. Myocardin-related transcription factor and serum response factor regulate cilium turnover by both transcriptional and local mechanisms. iScience 2021; 24:102739. [PMID: 34278253 PMCID: PMC8261663 DOI: 10.1016/j.isci.2021.102739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 11/02/2020] [Accepted: 06/15/2021] [Indexed: 12/31/2022] Open
Abstract
Turnover of the primary cilium (PC) is critical for proliferation and tissue homeostasis. Each key component of the PC resorption machinery, the HEF1/Aurora kinase A (AurA)/HDAC6 pathway harbors cis-elements potentially targeted by the transcriptional co-activator myocardin-related transcription factor (MRTF) and/or its partner serum response factor (SRF). Thus we investigated if MRTF and/or SRF regulate PC turnover. Here we show that (1) both MRTF and SRF are indispensable for serum-induced PC resorption, and (2) they act via both transcriptional and local mechanisms. Intriguingly, MRTF and SRF are present in the basal body and/or the PC, and serum facilitates ciliary MRTF recruitment. MRTF promotes the stability and ciliary accumulation of AurA and facilitates SRF phosphorylation. Ciliary SRF interacts with AurA and HDAC6. MRTF also inhibits ciliogenesis. It interacts with and is required for the correct localization of the ciliogenesis modulator CEP290. Thus, MRTF and SRF are critical regulators of PC assembly and/or disassembly, acting both as transcription factors and as PC constituents.
Collapse
Affiliation(s)
- Pam Speight
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, University of Toronto, Room 621, 209 Victoria Street, Toronto, ON M5B 1T8, Canada
| | - Matthew Rozycki
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, University of Toronto, Room 621, 209 Victoria Street, Toronto, ON M5B 1T8, Canada
| | - Shruthi Venugopal
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, University of Toronto, Room 621, 209 Victoria Street, Toronto, ON M5B 1T8, Canada
| | - Katalin Szászi
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, University of Toronto, Room 621, 209 Victoria Street, Toronto, ON M5B 1T8, Canada
- Department of Surgery, University of Toronto, Toronto, ON M5B 1T8, Canada
| | - Michael Kofler
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, University of Toronto, Room 621, 209 Victoria Street, Toronto, ON M5B 1T8, Canada
| | - András Kapus
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, University of Toronto, Room 621, 209 Victoria Street, Toronto, ON M5B 1T8, Canada
- Department of Surgery, University of Toronto, Toronto, ON M5B 1T8, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5B 1T8, Canada
| |
Collapse
|
16
|
Du P, Wang J, He Y, Zhang S, Hu B, Xue X, Miao L, Ren H. AtFH14 crosslinks actin filaments and microtubules in different manners. Biol Cell 2021; 113:235-249. [PMID: 33386758 DOI: 10.1111/boc.202000147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND INFORMATION In many cellular processes including cell division, the synergistic dynamics of actin filaments and microtubules play vital roles. However, the regulatory mechanisms of these synergistic dynamics are not fully understood. Proteins such as formins are involved in actin filament-microtubule interactions and Arabidopsis thaliana formin 14 (AtFH14) may function as a crosslinker between actin filaments and microtubules in cell division, but the molecular mechanism underlying such crosslinking remains unclear. RESULTS Without microtubules, formin homology (FH) 1/FH2 of AtFH14 nucleated actin polymerisation from actin monomers and capped the barbed end of actin filaments. However, in the presence of microtubules, quantitative analysis showed that the binding affinity of AtFH14 FH1FH2 to microtubules was higher than that to actin filaments. Moreover, microtubule-bound AtFH14 FH1FH2 neither nucleated actin polymerisation nor inhibited barbed end elongation. In contrast, tubulin did not affect AtFH14 FH1FH2 to nucleate actin polymerisation and inhibit barbed end elongation. Nevertheless, microtubule-bound AtFH14 FH1FH2 bound actin filaments and the bound actin filaments slid and elongated along the microtubules or elongated away from the microtubules, which induced bundling or crosslinking of actin filaments and microtubules. Pharmacological analyses indicated that AtFH14 FH1FH2 promoted crosslinking of actin filaments and microtubules in vivo. Additionally, co-sedimentation and fluorescent dye-labelling experiments of AtFH14 FH2-truncated proteins in vitro revealed the essential motifs of bundling actin filaments or microtubules, which were 63-92 aa and 42-62 aa in the AtFH14 FH2 N-terminal, respectively, and 42-62 aa was the essential motif to crosslink actin filaments and microtubules. CONCLUSIONS AND SIGNIFICANCE Our results aid in explaining how AtFH14 functions as a crosslinker between actin filaments and microtubules to regulate their dynamics via different manners during cell division. They also facilitate further understanding of the molecular mechanisms of the interactions between actin filaments and microtubules.
Collapse
Affiliation(s)
- Pingzhou Du
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Center for Biological Science and Technology, Advanced Institute of Natural Science, Beijing Normal University, Zhuhai, 519087, China
| | - Jiaojiao Wang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Center for Biological Science and Technology, Advanced Institute of Natural Science, Beijing Normal University, Zhuhai, 519087, China
| | - Yunqiu He
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Center for Biological Science and Technology, Advanced Institute of Natural Science, Beijing Normal University, Zhuhai, 519087, China
| | - Sha Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Center for Biological Science and Technology, Advanced Institute of Natural Science, Beijing Normal University, Zhuhai, 519087, China
| | - Bailing Hu
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Center for Biological Science and Technology, Advanced Institute of Natural Science, Beijing Normal University, Zhuhai, 519087, China
| | - Xiuhua Xue
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Center for Biological Science and Technology, Advanced Institute of Natural Science, Beijing Normal University, Zhuhai, 519087, China
| | - Long Miao
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haiyun Ren
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Center for Biological Science and Technology, Advanced Institute of Natural Science, Beijing Normal University, Zhuhai, 519087, China
| |
Collapse
|
17
|
Watson RW, Azam H, Aura C, Russell N, McCormack J, Corey E, Morrissey C, Crown J, Gallagher WM, Prencipe M. Inhibition of Serum Response Factor Improves Response to Enzalutamide in Prostate Cancer. Cancers (Basel) 2020; 12:cancers12123540. [PMID: 33260953 PMCID: PMC7760758 DOI: 10.3390/cancers12123540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/18/2020] [Accepted: 11/25/2020] [Indexed: 01/29/2023] Open
Abstract
Castrate-resistant prostate cancer (CRPC) is challenging to treat with the androgen receptor (AR), the main target and key focus of resistance. Understanding the mechanisms of AR interaction with co-regulators will identify new therapeutic targets to overcome AR resistance mechanisms. We previously identified the serum response factor (SRF) as a lead target in an in vitro model of CRPC and showed that SRF expression in tissues of CRPC patients was associated with shorter survival. Here, we tested SRF inhibition in vitro and in vivo to assess SRF as a potential target in CRPC. Inhibition of SRF with the small-molecule inhibitor CCG1423 resulted in enhanced response to enzalutamide in vitro and reduced tumour volume of LuCaP 35CR, a CRPC patient-derived xenograft model. Nuclear localisation of AR post-CCG1423 was significantly decreased and was associated with decreased α-tubulin acetylation in vitro and decreased prostate specific antigen (PSA) levels in vivo. SRF immunoreactivity was tested in metastatic tissues from CRPC patients to investigate its role in enzalutamide response. Kaplan-Meier curves showed that high SRF expression was associated with shorter response to enzalutamide. Our study supports the use of SRF inhibitors to improve response to enzalutamide.
Collapse
Affiliation(s)
- R. William Watson
- Conway Institute of Biomolecular and Biomedical Research, UCD School of Medicine, University College Dublin, Belfield, D4, Dublin, Ireland;
| | - Haleema Azam
- Cancer Biology and Therapeutics Laboratory, UCD Conway Institute, University College Dublin, Belfield, D4, Dublin, Ireland; (H.A.); (C.A.); (N.R.); (W.M.G.)
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, D4, Dublin, Ireland
| | - Claudia Aura
- Cancer Biology and Therapeutics Laboratory, UCD Conway Institute, University College Dublin, Belfield, D4, Dublin, Ireland; (H.A.); (C.A.); (N.R.); (W.M.G.)
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, D4, Dublin, Ireland
| | - Niamh Russell
- Cancer Biology and Therapeutics Laboratory, UCD Conway Institute, University College Dublin, Belfield, D4, Dublin, Ireland; (H.A.); (C.A.); (N.R.); (W.M.G.)
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, D4, Dublin, Ireland
| | - Janet McCormack
- Research Pathology Core, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield D4, Dublin, Ireland;
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, WA 98195, USA; (E.C.); (C.M.)
| | - Colm Morrissey
- Department of Urology, University of Washington, Seattle, WA 98195, USA; (E.C.); (C.M.)
| | - John Crown
- Department of Medical Oncology, St Vincent’s University Hospital, Dublin, Ireland;
| | - William M Gallagher
- Cancer Biology and Therapeutics Laboratory, UCD Conway Institute, University College Dublin, Belfield, D4, Dublin, Ireland; (H.A.); (C.A.); (N.R.); (W.M.G.)
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, D4, Dublin, Ireland
| | - Maria Prencipe
- Cancer Biology and Therapeutics Laboratory, UCD Conway Institute, University College Dublin, Belfield, D4, Dublin, Ireland; (H.A.); (C.A.); (N.R.); (W.M.G.)
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, D4, Dublin, Ireland
- Correspondence:
| |
Collapse
|
18
|
Loss of DIAPH3, a Formin Family Protein, Leads to Cytokinetic Failure Only under High Temperature Conditions in Mouse FM3A Cells. Int J Mol Sci 2020; 21:ijms21228493. [PMID: 33187357 PMCID: PMC7696919 DOI: 10.3390/ijms21228493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/07/2020] [Accepted: 11/09/2020] [Indexed: 11/17/2022] Open
Abstract
Cell division is essential for the maintenance of life and involves chromosome segregation and subsequent cytokinesis. The processes are tightly regulated at both the spatial and temporal level by various genes, and failures in this regulation are associated with oncogenesis. Here, we investigated the gene responsible for defects in cell division by using murine temperature-sensitive (ts) mutant strains, tsFT101 and tsFT50 cells. The ts mutants normally grow in a low temperature environment (32 °C) but fail to divide in a high temperature environment (39 °C). Exome sequencing and over-expression analyses identified Diaph3, a member of the formin family, as the cause of the temperature sensitivity observed in tsFT101 and tsFT50 cells. Interestingly, Diaph3 knockout cells showed abnormality in cytokinesis at 39 °C, and the phenotype was rescued by re-expression of Diaph3 WT, but not Diaph1 and Diaph2, other members of the formin family. Furthermore, Diaph3 knockout cells cultured at 39 °C showed a significant increase in the level of acetylated α-tubulin, an index of stabilized microtubules, and the level was reduced by Diaph3 expression. These results suggest that Diaph3 is required for cytokinesis only under high temperature conditions. Therefore, our study provides a new insight into the mechanisms by which regulatory factors of cell division function in a temperature-dependent manner.
Collapse
|
19
|
Labat-de-Hoz L, Alonso MA. The formin INF2 in disease: progress from 10 years of research. Cell Mol Life Sci 2020; 77:4581-4600. [PMID: 32451589 PMCID: PMC11104792 DOI: 10.1007/s00018-020-03550-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 05/04/2020] [Accepted: 05/13/2020] [Indexed: 02/07/2023]
Abstract
Formins are a conserved family of proteins that primarily act to form linear polymers of actin. Despite their importance to the normal functioning of the cytoskeleton, for a long time, the only two formin genes known to be a genetic cause of human disorders were DIAPH1 and DIAPH3, whose mutation causes two distinct forms of hereditary deafness. In the last 10 years, however, the formin INF2 has emerged as an important target of mutations responsible for the appearance of focal segmental glomerulosclerosis, which are histological lesions associated with glomerulus degeneration that often leads to end-stage renal disease. In some rare cases, focal segmental glomerulosclerosis concurs with Charcot-Marie-Tooth disease, which is a degenerative neurological disorder affecting peripheral nerves. All known INF2 gene mutations causing disease map to the exons encoding the amino-terminal domain. In this review, we summarize the structure, biochemical features and functions of INF2, conduct a systematic and comprehensive analysis of the pathogenic INF2 mutations, including a detailed study exon-by-exon of patient cases and mutations, address the impact of the pathogenic mutations on the structure, regulation and known functions of INF2, draw a series of conclusions that could be useful for INF2-related disease diagnosis, and suggest lines of research for future work on the molecular mechanisms by which INF2 causes disease.
Collapse
Affiliation(s)
- Leticia Labat-de-Hoz
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
| | - Miguel A Alonso
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
20
|
A M, Latario CJ, Pickrell LE, Higgs HN. Lysine acetylation of cytoskeletal proteins: Emergence of an actin code. J Biophys Biochem Cytol 2020; 219:211455. [PMID: 33044556 PMCID: PMC7555357 DOI: 10.1083/jcb.202006151] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/26/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023] Open
Abstract
Reversible lysine acetylation of nuclear proteins such as histones is a long-established important regulatory mechanism for chromatin remodeling and transcription. In the cytoplasm, acetylation of a number of cytoskeletal proteins, including tubulin, cortactin, and the formin mDia2, regulates both cytoskeletal assembly and stability. More recently, acetylation of actin itself was revealed to regulate cytoplasmic actin polymerization through the formin INF2, with downstream effects on ER-to-mitochondrial calcium transfer, mitochondrial fission, and vesicle transport. This finding raises the possibility that actin acetylation, along with other post-translational modifications to actin, might constitute an "actin code," similar to the "histone code" or "tubulin code," controlling functional shifts to these central cellular proteins. Given the multiple roles of actin in nuclear functions, its modifications might also have important roles in gene expression.
Collapse
|
21
|
Kamal MA, Al-Zahrani MH, Khan SH, Khan MH, Al-Subhi HA, Kuerban A, Aslam M, Al-Abbasi FA, Anwar F. Tubulin Proteins in Cancer Resistance: A Review. Curr Drug Metab 2020; 21:178-185. [DOI: 10.2174/1389200221666200226123638] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 11/26/2019] [Accepted: 12/03/2019] [Indexed: 12/26/2022]
Abstract
Cancer cells are altered with cell cycle genes or they are mutated, leading to a high rate of proliferation
compared to normal cells. Alteration in these genes leads to mitosis dysregulation and becomes the basis of tumor
progression and resistance to many drugs. The drugs which act on the cell cycle fail to arrest the process, making
cancer cell non-responsive to apoptosis or cell death. Vinca alkaloids and taxanes fall in this category and are
referred to as antimitotic agents. Microtubule proteins play an important role in mitosis during cell division as a
target site for vinca alkaloids and taxanes. These proteins are dynamic in nature and are composed of α-β-tubulin
heterodimers. β-tubulin specially βΙΙΙ isotype is generally altered in expression within cancerous cells. Initially,
these drugs were very effective in the treatment of cancer but failed to show their desired action after initial
chemotherapy. The present review highlights some of the important targets and their mechanism of resistance
offered by cancer cells with new promising drugs from natural sources that can lead to the development of a new
approach to chemotherapy.
Collapse
Affiliation(s)
- Mohammad Amjad Kamal
- Metabolomics and Enzymology Unit, Fundamental and Applied Biology Group, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Maryam Hassan Al-Zahrani
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Salman Hasan Khan
- Department of Orthodontics, and Dentofacial Orthopaedics, TMU Dental College, Moradabad, Uttar Pradesh, India
| | - Mateen Hasan Khan
- Department of Pharmacology, Shri Venkateshwara University, Gajraula, Amroha, Uttar Pradesh, India
| | - Hani Awad Al-Subhi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abudukadeer Kuerban
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Muhammad Aslam
- Department of Statistics, Faculy of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Fahad Ahmed Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Firoz Anwar
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
22
|
Green HLH, Zuidscherwoude M, Alenazy F, Smith CW, Bender M, Thomas SG. SMIFH2 inhibition of platelets demonstrates a critical role for formin proteins in platelet cytoskeletal dynamics. J Thromb Haemost 2020; 18:955-967. [PMID: 31930764 PMCID: PMC7186844 DOI: 10.1111/jth.14735] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 01/07/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Reorganization of the actin cytoskeleton is required for proper functioning of platelets following activation in response to vascular damage. Formins are a family of proteins that regulate actin polymerization and cytoskeletal organization via a number of domains including the FH2 domain. However, the role of formins in platelet spreading has not been studied in detail. OBJECTIVES Several formin proteins are expressed in platelets so we used an inhibitor of FH2 domains (SMIFH2) to uncover the role of these proteins in platelet spreading and in maintenance of resting platelet shape. METHODS Washed human and mouse platelets were treated with various concentrations of SMIFH2 and the effects on platelet spreading, platelet size, platelet cytoskeletal dynamics, and organization were analyzed using fluorescence and electron microscopy. RESULTS Pretreatment with SMIFH2 completely blocks platelet spreading in both mouse and human platelets through effects on the organization and dynamics of actin and microtubules. However, platelet aggregation and secretion are unaffected. SMIFH2 also caused a decrease in resting platelet size and disrupted the balance of tubulin post-translational modification. CONCLUSIONS These data therefore demonstrated an important role for formin-mediated actin polymerization in platelet spreading and highlighted the importance of formins in cross-talk between the actin and tubulin cytoskeletons.
Collapse
Affiliation(s)
- Hannah L. H. Green
- Institute of Cardiovascular SciencesUniversity of BirminghamBirminghamUK
- Present address:
School of Cardiovascular Medicine & SciencesBHF Centre of Research ExcellenceKing's College LondonLondonUK
| | - Malou Zuidscherwoude
- Institute of Cardiovascular SciencesUniversity of BirminghamBirminghamUK
- Centre of Membrane Proteins and Receptors (COMPARE)University of Birmingham and University of NottinghamMidlandsUK
| | - Fawaz Alenazy
- Institute of Cardiovascular SciencesUniversity of BirminghamBirminghamUK
| | | | - Markus Bender
- Institute of Experimental Biomedicine – Chair IUniversity Hospital and Rudolf Virchow CenterWürzburgGermany
| | - Steven G. Thomas
- Institute of Cardiovascular SciencesUniversity of BirminghamBirminghamUK
- Centre of Membrane Proteins and Receptors (COMPARE)University of Birmingham and University of NottinghamMidlandsUK
| |
Collapse
|
23
|
Actin-based regulation of ciliogenesis - The long and the short of it. Semin Cell Dev Biol 2019; 102:132-138. [PMID: 31862221 DOI: 10.1016/j.semcdb.2019.12.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/23/2019] [Accepted: 12/07/2019] [Indexed: 12/11/2022]
Abstract
The primary cilia is found on the mammalian cell surface where it serves as an antenna for the reception and transmission of a variety of cellular signaling pathways. At its core the cilium is a microtubule-based organelle, but it is clear that its assembly and function are dependent upon the coordinated regulation of both actin and microtubule dynamics. In particular, the discovery that the centrosome is able to act as both a microtubule and actin organizing centre implies that both cytoskeletal networks are acting directly on the process of cilia assembly. In this review, we set our recent results with the formin FHDC1 in the context of current reports that show each stage of ciliogenesis is impacted by changes in actin dynamics. These include direct effects of actin filament assembly on basal body positioning, vesicle trafficking to and entry into the cilium, cilia length, cilia membrane organization and cilia-dependent signaling.
Collapse
|
24
|
Seetharaman S, Etienne-Manneville S. Microtubules at focal adhesions – a double-edged sword. J Cell Sci 2019; 132:132/19/jcs232843. [DOI: 10.1242/jcs.232843] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
ABSTRACT
Cell adhesion to the extracellular matrix is essential for cellular processes, such as migration and invasion. In response to cues from the microenvironment, integrin-mediated adhesions alter cellular behaviour through cytoskeletal rearrangements. The tight association of the actin cytoskeleton with adhesive structures has been extensively studied, whereas the microtubule network in this context has gathered far less attention. In recent years, however, microtubules have emerged as key regulators of cell adhesion and migration through their participation in adhesion turnover and cellular signalling. In this Review, we focus on the interactions between microtubules and integrin-mediated adhesions, in particular, focal adhesions and podosomes. Starting with the association of microtubules with these adhesive structures, we describe the classical role of microtubules in vesicular trafficking, which is involved in the turnover of cell adhesions, before discussing how microtubules can also influence the actin–focal adhesion interplay through RhoGTPase signalling, thereby orchestrating a very crucial crosstalk between the cytoskeletal networks and adhesions.
Collapse
Affiliation(s)
- Shailaja Seetharaman
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur, UMR3691 CNRS, Equipe Labellisée Ligue Contre le Cancer, 75015 Paris, France
- Université Paris Descartes, Center for Research and Interdisciplinarity, Sorbonne Paris Cité, 12 Rue de l'École de Médecine, 75006 Paris, France
| | - Sandrine Etienne-Manneville
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur, UMR3691 CNRS, Equipe Labellisée Ligue Contre le Cancer, 75015 Paris, France
| |
Collapse
|
25
|
Logan CM, Menko AS. Microtubules: Evolving roles and critical cellular interactions. Exp Biol Med (Maywood) 2019; 244:1240-1254. [PMID: 31387376 DOI: 10.1177/1535370219867296] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Microtubules are cytoskeletal elements known as drivers of directed cell migration, vesicle and organelle trafficking, and mitosis. In this review, we discuss new research in the lens that has shed light into further roles for stable microtubules in the process of development and morphogenesis. In the lens, as well as other systems, distinct roles for characteristically dynamic microtubules and stabilized populations are coming to light. Understanding the mechanisms of microtubule stabilization and the associated microtubule post-translational modifications is an evolving field of study. Appropriate cellular homeostasis relies on not only one cytoskeletal element, but also rather an interaction between cytoskeletal proteins as well as other cellular regulators. Microtubules are key integrators with actin and intermediate filaments, as well as cell–cell junctional proteins and other cellular regulators including myosin and RhoGTPases to maintain this balance.Impact statementThe role of microtubules in cellular functioning is constantly expanding. In this review, we examine new and exciting fields of discovery for microtubule’s involvement in morphogenesis, highlight our evolving understanding of differential roles for stabilized versus dynamic subpopulations, and further understanding of microtubules as a cellular integrator.
Collapse
Affiliation(s)
- Caitlin M Logan
- Pathology Anatomy and Cell Biology Department, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - A Sue Menko
- Pathology Anatomy and Cell Biology Department, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
26
|
Fernández-Barrera J, Correas I, Alonso MA. Age-related neuropathies and tubulin acetylation. Aging (Albany NY) 2019; 10:524-525. [PMID: 29706610 PMCID: PMC5940115 DOI: 10.18632/aging.101432] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 04/26/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Jaime Fernández-Barrera
- Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
| | - Isabel Correas
- Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain.,Department of Molecular Biology, Universidad Autónoma de Madrid, Madrid, Spain
| | - Miguel A Alonso
- Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
27
|
A M, Fung TS, Kettenbach AN, Chakrabarti R, Higgs HN. A complex containing lysine-acetylated actin inhibits the formin INF2. Nat Cell Biol 2019; 21:592-602. [PMID: 30962575 PMCID: PMC6501848 DOI: 10.1038/s41556-019-0307-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 02/28/2019] [Indexed: 11/10/2022]
Abstract
Inverted formin 2 (INF2) is a member of the formin family of actin assembly factors. Dominant missense mutations in INF2 are linked to two diseases: focal segmental glomerulosclerosis, a kidney disease, and Charcot-Marie-Tooth disease, a neuropathy. All of the disease mutations map to the autoinhibitory diaphanous inhibitory domain. Interestingly, purified INF2 is not autoinhibited, suggesting the existence of other cellular inhibitors. Here, we purified an INF2 inhibitor from mouse brain tissue, and identified it as a complex of lysine-acetylated actin (KAc-actin) and cyclase-associated protein (CAP). Inhibition of INF2 by CAP-KAc-actin is dependent on the INF2 diaphanous inhibitory domain (DID). Treatment of CAP-KAc-actin-inhibited INF2 with histone deacetylase 6 releases INF2 inhibition, whereas inhibitors of histone deacetylase 6 block the activation of cellular INF2. Disease-associated INF2 mutants are poorly inhibited by CAP-KAc-actin, suggesting that focal segmental glomerulosclerosis and Charcot-Marie-Tooth disease result from reduced CAP-KAc-actin binding. These findings reveal a role for KAc-actin in the regulation of an actin assembly factor by a mechanism that we call facilitated autoinhibition.
Collapse
Affiliation(s)
- Mu A
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Tak Shun Fung
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Arminja N Kettenbach
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Rajarshi Chakrabarti
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Henry N Higgs
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.
| |
Collapse
|
28
|
Shi P, Wang Y, Huang Y, Zhang C, Li Y, Liu Y, Li T, Wang W, Liang X, Wu C. Arp2/3-branched actin regulates microtubule acetylation levels and affects mitochondrial distribution. J Cell Sci 2019; 132:jcs.226506. [PMID: 30782777 DOI: 10.1242/jcs.226506] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 02/05/2019] [Indexed: 12/11/2022] Open
Abstract
Actin and microtubule cytoskeletons regulate cell morphology, participate in organelle trafficking and function in response to diverse environmental cues. Precise spatial-temporal coordination between these two cytoskeletons is essential for cells to live and move. Here, we report a novel crosstalk between actin and microtubules, in which the branched actin maintains microtubule organization, dynamics and stability by affecting tubulin acetylation levels. We observed that acetylated tubulin significantly decreases upon perturbation of the Arp2/3-branched actin. We subsequently discover that HDAC6 participates in this process by altering its interaction with tubulin and the Arp2/3-stabilizer cortactin. We further identify that the homeostasis of branched actin controls mitochondrial distribution via this microtubule acetylation-dependent mechanism. Our findings shed new light on the integral view of cytoskeletal networks, highlighting post-translational modification as another possible form of cytoskeletal inter-regulation, aside from the established crosstalks through structural connection or upstream signaling pathways.
Collapse
Affiliation(s)
- Peng Shi
- Institute of Systems Biomedicine, Peking University Health Science Center, Beijing 100191, China
| | - Yuan Wang
- Institute of Systems Biomedicine, Peking University Health Science Center, Beijing 100191, China
| | - Yuxing Huang
- Institute of Systems Biomedicine, Peking University Health Science Center, Beijing 100191, China
| | - Chunlei Zhang
- Institute of Systems Biomedicine, Peking University Health Science Center, Beijing 100191, China
| | - Ying Li
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yaoping Liu
- Institute of Microelectronics, Peking University, Beijing 100871, China
| | - Tingting Li
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Wei Wang
- Institute of Microelectronics, Peking University, Beijing 100871, China
| | - Xin Liang
- Tsinghua-Peking Joint Center for Life Sciences and Max-Plank Partner Group, School of Life Science, Tsinghua University, Beijing 100084, China
| | - Congying Wu
- Institute of Systems Biomedicine, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
29
|
Abstract
Formin homology proteins (formins) are a highly conserved family of cytoskeletal remodeling proteins that are involved in a diverse array of cellular functions. Formins are best known for their ability to regulate actin dynamics, but the same functional domains also govern stability and organization of microtubules. It is thought that this dual activity allows them to coordinate the activity of these two major cytoskeletal networks and thereby influence cellular architecture. Golgi ribbon assembly is dependent upon cooperative interactions between actin filaments and cytoplasmic microtubules originating both at the Golgi itself and from the centrosome. Similarly, centrosome assembly, centriole duplication, and centrosome positioning are also reliant on a dialogue between both cytoskeletal networks. As presented in this chapter, a growing body of evidence suggests that multiple formin proteins play essential roles in these central cellular processes.
Collapse
Affiliation(s)
- John Copeland
- Faculty of Medicine, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
30
|
Zhang M, Urabe G, Little C, Wang B, Kent AM, Huang Y, Kent KC, Guo LW. HDAC6 Regulates the MRTF-A/SRF Axis and Vascular Smooth Muscle Cell Plasticity. JACC Basic Transl Sci 2018; 3:782-795. [PMID: 30623138 PMCID: PMC6314972 DOI: 10.1016/j.jacbts.2018.08.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 07/31/2018] [Accepted: 08/23/2018] [Indexed: 01/04/2023]
Abstract
Distinct from other histone deacetylases, HDAC6 primarily resides in the cytosol. Unexpectedly, HDAC6-selective inhibition (or silencing) enhances the nuclear activity of SRF. HDAC6 inhibition elevates acetylation and protein levels of myocardin-related transcription factor A, a cytoplasmic-nuclear shuttling co-activator of SRF. Myocardin-related transcription factor A/SRF are known to critically regulate vascular smooth muscle cell phenotypic stability. HDAC6 inhibition prevents smooth muscle cell dedifferentiation in vitro and reduces neointima and restenosis in vivo.
Cellular plasticity is fundamental in biology and disease. Vascular smooth muscle cell (SMC) dedifferentiation (loss of contractile proteins) initiates and perpetrates vascular pathologies such as restenosis. Contractile gene expression is governed by the master transcription factor, serum response factor (SRF). Unlike other histone deacetylases, histone deacetylase 6 (HDAC6) primarily resides in the cytosol. Whether HDAC6 regulates SRF nuclear activity was previously unknown in any cell type. This study found that selective inhibition of HDAC6 with tubastatin A preserved the contractile protein (alpha-smooth muscle actin) that was otherwise diminished by platelet-derived growth factor-BB. Tubastatin A also enhanced SRF transcriptional (luciferase) activity, and this effect was confirmed by HDAC6 knockdown. Interestingly, HDAC6 inhibition increased acetylation and total protein of myocardin-related transcription factor A (MRTF-A), a transcription co-activator known to translocate from the cytosol to the nucleus, thereby activating SRF. Consistently, HDAC6 co-immunoprecipitated with MRTF-A. In vivo studies showed that tubastatin A treatment of injured rat carotid arteries mitigated neointimal lesion, which is known to be formed largely by dedifferentiated SMCs. This report is the first to show HDAC6 regulation of the MRTF-A/SRF axis and SMC plasticity, thus opening a new perspective for interventions of vascular pathologies.
Collapse
Key Words
- DMEM, Dulbecco’s modified Eagle’s medium
- DNA, deoxyribonucleic acid
- EEL, external elastic lamina
- FBS, fetal bovine serum
- HDAC, histone deacetylase
- HDAC6
- IEL, internal elastic lamina
- IH, intimal hyperplasia
- IgG, immunoglobulin G
- MMP, matrix metalloproteinase
- MRTF-A
- MRTF-A, myocardin-related transcription factor A
- PDGF-BB, platelet-derived growth factor-BB
- SMA, smooth muscle actin
- SMC, vascular smooth muscle cell
- SMHC, smooth muscle myosin heavy chain
- SRF
- SRF, serum response factor
- TNF, tumor necrosis factor
- TSA, trichostatin A
- dedifferentiation
- siRNA, small interfering ribonucleic acid
- vascular smooth muscle cell
Collapse
Affiliation(s)
- Mengxue Zhang
- Department of Surgery and Department of Physiology and Cell Biology, College of Medicine, and the Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, Ohio.,Cellular and Molecular Pathology Graduate Program, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Go Urabe
- Department of Surgery and Department of Physiology and Cell Biology, College of Medicine, and the Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, Ohio.,Department of Surgery, College of Medicine, and the Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, Ohio
| | - Christopher Little
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Bowen Wang
- Department of Surgery, College of Medicine, and the Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, Ohio
| | - Alycia M Kent
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Yitao Huang
- Department of Surgery and Department of Physiology and Cell Biology, College of Medicine, and the Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, Ohio
| | - K Craig Kent
- Department of Surgery, College of Medicine, and the Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, Ohio
| | - Lian-Wang Guo
- Department of Surgery and Department of Physiology and Cell Biology, College of Medicine, and the Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, Ohio
| |
Collapse
|
31
|
Gau D, Roy P. SRF'ing and SAP'ing - the role of MRTF proteins in cell migration. J Cell Sci 2018; 131:131/19/jcs218222. [PMID: 30309957 DOI: 10.1242/jcs.218222] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Actin-based cell migration is a fundamental cellular activity that plays a crucial role in a wide range of physiological and pathological processes. An essential feature of the remodeling of actin cytoskeleton during cell motility is the de novo synthesis of factors involved in the regulation of the actin cytoskeleton and cell adhesion in response to growth-factor signaling, and this aspect of cell migration is critically regulated by serum-response factor (SRF)-mediated gene transcription. Myocardin-related transcription factors (MRTFs) are key coactivators of SRF that link actin dynamics to SRF-mediated gene transcription. In this Review, we provide a comprehensive overview of the role of MRTF in both normal and cancer cell migration by discussing its canonical SRF-dependent as well as its recently emerged SRF-independent functions, exerted through its SAP domain, in the context of cell migration. We conclude by highlighting outstanding questions for future research in this field.
Collapse
Affiliation(s)
- David Gau
- Department of Bioengineering, University of Pittsburgh, PA 15213, USA
| | - Partha Roy
- Department of Bioengineering, University of Pittsburgh, PA 15213, USA .,Department of Pathology, University of Pittsburgh, PA, 15213, USA
| |
Collapse
|
32
|
Fernández-Barrera J, Alonso MA. Coordination of microtubule acetylation and the actin cytoskeleton by formins. Cell Mol Life Sci 2018; 75:3181-3191. [PMID: 29947928 PMCID: PMC11105221 DOI: 10.1007/s00018-018-2855-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/22/2018] [Accepted: 06/12/2018] [Indexed: 12/12/2022]
Abstract
The acetylation of the lysine 40 residue of α-tubulin was described more than 30 years ago and has been the subject of intense research ever since. Although the exact function of this covalent modification of tubulin in the cell remains unknown, it has been established that tubulin acetylation confers resilience to mechanical stress on the microtubules. Formins have a dual role in the fate of the actin and tubulin cytoskeletons. On the one hand, they catalyze the formation of actin filaments, and on the other, they bind microtubules, act on their stability, and regulate their acetylation and alignment with actin fibers. Recent evidence indicates that formins coordinate the actin cytoskeleton and tubulin acetylation by modulating the levels of free globular actin (G-actin). G-actin, in turn, controls the activity of the myocardin-related transcription factor-serum response factor transcriptional complex that regulates the expression of the α-tubulin acetyltransferase 1 (α-TAT1) gene, which encodes the main enzyme responsible for tubulin acetylation. The effect of formins on tubulin acetylation is the combined result of their ability to activate α-TAT1 gene transcription and of their capacity to regulate microtubule stabilization. The contribution of these two mechanisms in different formins is discussed, particularly with respect to INF2, a formin that is mutated in hereditary human renal and neurodegenerative disorders.
Collapse
Affiliation(s)
- Jaime Fernández-Barrera
- Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma, Madrid, Spain
| | - Miguel A Alonso
- Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma, Madrid, Spain.
| |
Collapse
|
33
|
Heuser VD, Mansuri N, Mogg J, Kurki S, Repo H, Kronqvist P, Carpén O, Gardberg M. Formin Proteins FHOD1 and INF2 in Triple-Negative Breast Cancer: Association With Basal Markers and Functional Activities. BREAST CANCER-BASIC AND CLINICAL RESEARCH 2018; 12:1178223418792247. [PMID: 30158824 PMCID: PMC6109849 DOI: 10.1177/1178223418792247] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 07/11/2018] [Indexed: 12/17/2022]
Abstract
Basal-like breast cancer is an aggressive form of breast cancer with limited treatment options. The subgroup can be identified immunohistochemically, by lack of hormone receptor expression combined with expression of basal markers such as CK5/6 and/or epidermal growth factor receptor (EGFR). In vitro, several regulators of the actin cytoskeleton are essential for efficient invasion of basal-like breast cancer cell lines. Whether these proteins are expressed in vivo determines the applicability of these findings in clinical settings. The actin-regulating formin protein FHOD1 participates in invasion of the triple-negative breast cancer cell line MDA-MB-231. Here, we measure the expression of FHOD1 protein in clinical triple-negative breast cancers by using immunohistochemistry and further characterize the expression of another formin protein, INF2. We report that basal-like breast cancers frequently overexpress formin proteins FHOD1 and INF2. In cell studies using basal-like breast cancer cell lines, we show that knockdown of FHOD1 or INF2 interferes with very similar processes: maintenance of cell shape, migration, invasion, and proliferation. Inhibition of EGFR, PI3K, or mitogen-activated protein kinase activity does not alter the expression of FHOD1 and INF2 in these cell lines. We conclude that the experimental studies on these formins have implications in the clinical behavior of basal-like breast cancer.
Collapse
Affiliation(s)
- Vanina D Heuser
- Institute of Biomedicine, University of Turku, Turku, Finland.,Department of Pathology, Turku University Hospital, Turku, Finland.,MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Naziha Mansuri
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Jasper Mogg
- Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Samu Kurki
- Auria Biobank, Turku University Hospital and University of Turku, Turku, Finland
| | - Heli Repo
- Institute of Biomedicine, University of Turku, Turku, Finland.,Department of Pathology, Turku University Hospital, Turku, Finland
| | - Pauliina Kronqvist
- Institute of Biomedicine, University of Turku, Turku, Finland.,Department of Pathology, Turku University Hospital, Turku, Finland
| | - Olli Carpén
- Institute of Biomedicine, University of Turku, Turku, Finland.,Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Maria Gardberg
- Institute of Biomedicine, University of Turku, Turku, Finland.,Department of Pathology, Turku University Hospital, Turku, Finland
| |
Collapse
|