1
|
Wang M, Mu G, Qiu B, Wang S, Tao C, Mao Y, Zhao X, Liu J, Chen K, Li Z, Wang W, Yang E, Yang Y. Competitive antagonism of KAT7 crotonylation against acetylation affects procentriole formation and colorectal tumorigenesis. Nat Commun 2025; 16:2379. [PMID: 40064919 PMCID: PMC11893896 DOI: 10.1038/s41467-025-57546-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Accurate procentriole formation is critical for centriole duplication. However, the holistic transcriptional regulatory mechanisms underlying this process remain elusive. Here, we show that KAT7 crotonylation, facilitated by the crotonyltransferase hMOF, competes against its acetylation regulated by the deacetylase HDAC2 at the K432 residue upon DNA damage stimulation. This competition diminishes its histone acetyltransferase activity, leading to the inhibition of procentriole formation in colorectal cancer cells. Mechanistically, the reduction of KAT7 histone acetyltransferase activity by the antagonistic effect of KAT7 crotonylation against its acetylation decreases the gene expression associated with procentriole formation by modulating the enrichment of H3K14ac at their promoters and plays an important role in colorectal tumorigenesis. Furthermore, KAT7 crotonylation and acetylation are associated with the prognosis in colorectal cancer patients. Collectively, our findings uncover a previously unidentified role of KAT7 in the regulation of procentriole formation and colorectal tumorigenesis via competitive antagonism of its crotonylation against acetylation.
Collapse
Affiliation(s)
- Meng Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Beijing, 100191, China
| | - Guanqun Mu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Bingquan Qiu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Shuo Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Changyu Tao
- Department of Human Anatomy, Histology & Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Yutong Mao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Xinhui Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Jiansong Liu
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Keyu Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Ziyu Li
- Department of Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Weibin Wang
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Ence Yang
- Department of Medical Bioinformatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| | - Yang Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Beijing, 100191, China.
| |
Collapse
|
2
|
Iyer SS, Chen F, Ogunmolu FE, Moradi S, Volkov VA, van Grinsven EJ, van Hoorn C, Wu J, Andrea N, Hua S, Jiang K, Vakonakis I, Potočnjak M, Herzog F, Gigant B, Gudimchuk N, Stecker KE, Dogterom M, Steinmetz MO, Akhmanova A. Centriolar cap proteins CP110 and CPAP control slow elongation of microtubule plus ends. J Cell Biol 2025; 224:e202406061. [PMID: 39847124 PMCID: PMC11756378 DOI: 10.1083/jcb.202406061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/24/2024] [Accepted: 12/09/2024] [Indexed: 01/30/2025] Open
Abstract
Centrioles are microtubule-based organelles required for the formation of centrosomes and cilia. Centriolar microtubules, unlike their cytosolic counterparts, are stable and grow very slowly, but the underlying mechanisms are poorly understood. Here, we reconstituted in vitro the interplay between the proteins that cap distal centriole ends and control their elongation: CP110, CEP97, and CPAP/SAS-4. We found that whereas CEP97 does not bind to microtubules directly, CP110 autonomously binds microtubule plus ends, blocks their growth, and inhibits depolymerization. Cryo-electron tomography revealed that CP110 associates with the luminal side of microtubule plus ends and suppresses protofilament flaring. CP110 directly interacts with CPAP, which acts as a microtubule polymerase that overcomes CP110-induced growth inhibition. Together, the two proteins impose extremely slow processive microtubule growth. Disruption of CP110-CPAP interaction in cells inhibits centriole elongation and increases incidence of centriole defects. Our findings reveal how two centriolar cap proteins with opposing activities regulate microtubule plus-end elongation and explain their antagonistic relationship during centriole formation.
Collapse
Affiliation(s)
- Saishree S. Iyer
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Fangrui Chen
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Funso E. Ogunmolu
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Shoeib Moradi
- Division of Biology and Chemistry, Laboratory of Biomolecular Research, Paul Scherrer Institut, Villigen, Switzerland
| | - Vladimir A. Volkov
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Emma J. van Grinsven
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Chris van Hoorn
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Jingchao Wu
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Nemo Andrea
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Shasha Hua
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Kai Jiang
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | | | - Mia Potočnjak
- Ludwig-Maximilians-Universität München, Munich, Germany
| | - Franz Herzog
- Ludwig-Maximilians-Universität München, Munich, Germany
| | - Benoît Gigant
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette, France
| | - Nikita Gudimchuk
- Department of Physics, and Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, Lomonosov Moscow State University, Moscow, Russia
| | - Kelly E. Stecker
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
- Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Marileen Dogterom
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Michel O. Steinmetz
- Division of Biology and Chemistry, Laboratory of Biomolecular Research, Paul Scherrer Institut, Villigen, Switzerland
- University of Basel, Biozentrum, Basel, Switzerland
| | - Anna Akhmanova
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
3
|
Nagy A, Kovacs L, Rangone H, Fu J, Ladinsky M, Glover DM. Interactions of N- and C-terminal parts of Ana1 permitting centriole duplication but not elongation. Open Biol 2025; 15:240325. [PMID: 39904373 PMCID: PMC11793955 DOI: 10.1098/rsob.240325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/18/2024] [Accepted: 01/09/2025] [Indexed: 02/06/2025] Open
Abstract
The conserved process of centriole duplication requires the establishment of a Sas6-centred cartwheel initiated by Plk4's phosphorylation of Ana1/STIL. Subsequently, the centriole undergoes conversion to a centrosome requiring its radial expansion and elongation, mediated by a network requiring interactions between Cep135, Ana1/Cep295 and Asterless/Cep152. Here, we show that mutant alleles encoding overlapping N- and C-terminal parts of Ana1 are capable of intragenic complementation to rescue radial expansion. This permits the recruitment of Asl and thereby centriole duplication and mechanosensory cilia formation to restore the coordination defects of these mutants. This genetic combination also rescues centriole duplication in the male germ line but does not rescue the elongation of the triplet microtubule-containing centrioles of primary spermatocytes. Consequently, these males are coordinated but sterile. Such centriole elongation is rescued by the continuous, full-length Ana1 sequence. We define a region that when deleted within otherwise intact Ana1 does not permit primary spermatocyte centrioles to elongate but still allows recruitment of Asl. Our findings point to differing demands upon the physical organization of Ana1 for the distinct processes of radial expansion and elongation of centrioles.
Collapse
Affiliation(s)
- Agota Nagy
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125, USA
| | - Levente Kovacs
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125, USA
- Babeș-Bolyai University, Cluj-Napoca, Romania
| | - Helene Rangone
- Department of Genetics, University of Cambridge, CambridgeCB2 3EH, UK
| | - Jingyan Fu
- Department of Genetics, University of Cambridge, CambridgeCB2 3EH, UK
| | - Mark Ladinsky
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125, USA
| | - David M. Glover
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125, USA
- Department of Genetics, University of Cambridge, CambridgeCB2 3EH, UK
| |
Collapse
|
4
|
Nagy A, Kovacs L, Rangone H, Fu J, Ladinsky M, Glover DM. Interactions of N- and C-terminal parts of Ana1 permitting centriole duplication but not elongation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.28.620588. [PMID: 39554154 PMCID: PMC11565839 DOI: 10.1101/2024.10.28.620588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
The conserved process of centriole duplication requires establishment of a Sas6-centred cartwheel initiated by Plk4's phosphorylation of Ana1/STIL. Subsequently the centriole undergoes conversion to a centrosome requiring its radial expansion and elongation, mediated by a network requiring interactions between Cep135, Ana1/Cep295, and Asterless/Cep152. Here we show that mutant alleles encoding overlapping N- and C-terminal parts of Ana1 are capable of intragenic complementation to rescue radial expansion. This permits recruitment of Asl and thereby centriole duplication and mechanosensory cilia formation to restore the coordination defects of these mutants. This genetic combination also rescues centriole duplication in the male germ line but does not rescue the elongation of the triplet microtubule-containing centrioles of primary spermatocytes and consequently these males are coordinated but sterile. Such centriole elongation is rescued by the continuous, full-length Ana1 sequence. We define a region that when deleted within otherwise intact Ana1 does not permit primary spermatocyte centrioles to elongate but still allows recruitment of Asl. Our findings point to differing demands upon the physical organization of Ana1 for the distinct processes of radial expansion and elongation of centrioles.
Collapse
Affiliation(s)
- Agota Nagy
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Levente Kovacs
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
- Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Helene Rangone
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Jingyan Fu
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
- Present address: College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Mark Ladinsky
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - David M Glover
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| |
Collapse
|
5
|
Jaiswal A, Boring A, Mukherjee A, Avidor-Reiss T. Fly Fam161 is an essential centriole and cilium transition zone protein with unique and diverse cell type-specific localizations. Open Biol 2024; 14:240036. [PMID: 39255847 PMCID: PMC11500687 DOI: 10.1098/rsob.240036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/17/2024] [Accepted: 07/15/2024] [Indexed: 09/12/2024] Open
Abstract
Family with sequence similarity 161 (Fam161) is an ancient family of microtubule-binding proteins located at the centriole and cilium transition zone (TZ) lumen that exhibit rapid evolution in mice. However, their adaptive role is unclear. Here, we used flies to gain insight into their cell type-specific adaptations. Fam161 is the sole orthologue of FAM161A and FAM161B found in flies. Mutating Fam161 results in reduced male reproduction and abnormal geotaxis behaviour. Fam161 localizes to sensory neuron centrioles and their specialized TZ (the connecting cilium) in a cell type-specific manner, sometimes labelling only the centrioles, sometimes labelling the centrioles and cilium TZ and sometimes labelling the TZ with varying lengths that are longer than other TZ proteins, defining a new ciliary compartment, the extra distal TZ. These findings suggest that Fam161 is an essential centriole and TZ protein with a unique cell type-specific localization in fruit flies that can produce cell type-specific adaptations.
Collapse
Affiliation(s)
- Ankit Jaiswal
- Department of Biological Sciences, University of Toledo, Toledo, OH43606, USA
| | - Andrew Boring
- Department of Biological Sciences, University of Toledo, Toledo, OH43606, USA
- Department of Urology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH43614, USA
| | - Avik Mukherjee
- Department of Biological Sciences, University of Toledo, Toledo, OH43606, USA
| | - Tomer Avidor-Reiss
- Department of Biological Sciences, University of Toledo, Toledo, OH43606, USA
- Department of Urology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH43614, USA
| |
Collapse
|
6
|
Otani H, Nakazato R, Koike K, Ohta K, Ikegami K. Excess microtubule and F-actin formation mediates shortening and loss of primary cilia in response to a hyperosmotic milieu. J Cell Sci 2024; 137:jcs261988. [PMID: 39056167 DOI: 10.1242/jcs.261988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
The primary cilium is a small organelle protruding from the cell surface that receives signals from the extracellular milieu. Although dozens of studies have reported that several genetic factors can impair the structure of primary cilia, evidence for environmental stimuli affecting primary cilia structures is limited. Here, we investigated an extracellular stress that affected primary cilia morphology and its underlying mechanisms. Hyperosmotic shock induced reversible shortening and disassembly of the primary cilia of murine intramedullary collecting duct cells. The shortening of primary cilia caused by hyperosmotic shock followed delocalization of the pericentriolar material (PCM). Excessive microtubule and F-actin formation in the cytoplasm coincided with the hyperosmotic shock-induced changes to primary cilia and the PCM. Treatment with a microtubule-disrupting agent, nocodazole, partially prevented the hyperosmotic shock-induced disassembly of primary cilia and almost completely prevented delocalization of the PCM. An actin polymerization inhibitor, latrunculin A, also partially prevented the hyperosmotic shock-induced shortening and disassembly of primary cilia and almost completely prevented delocalization of the PCM. We demonstrate that hyperosmotic shock induces reversible morphological changes in primary cilia and the PCM in a manner dependent on excessive formation of microtubule and F-actin.
Collapse
Affiliation(s)
- Hiroshi Otani
- Department of Anatomy and Developmental Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Ryota Nakazato
- Department of Anatomy and Developmental Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Kanae Koike
- Natural Science Center for Basic Research and Development , Hiroshima University, Higashi Hiroshima 739-8527, Japan
| | - Keisuke Ohta
- Advanced Imaging Research Center , Kurume University School of Medicine, Kurume 830-0011, Japan
| | - Koji Ikegami
- Department of Anatomy and Developmental Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Kawaguchi 332-0012, Japan
| |
Collapse
|
7
|
Langner E, Cheng T, Kefaloyianni E, Gluck C, Wang B, Mahjoub MR. Cep120 is essential for kidney stromal progenitor cell growth and differentiation. EMBO Rep 2024; 25:428-454. [PMID: 38177914 PMCID: PMC10897188 DOI: 10.1038/s44319-023-00019-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/15/2023] [Accepted: 11/22/2023] [Indexed: 01/06/2024] Open
Abstract
Mutations in genes that disrupt centrosome structure or function can cause congenital kidney developmental defects and lead to fibrocystic pathologies. Yet, it is unclear how defective centrosome biogenesis impacts renal progenitor cell physiology. Here, we examined the consequences of impaired centrosome duplication on kidney stromal progenitor cell growth, differentiation, and fate. Conditional deletion of the ciliopathy gene Cep120, which is essential for centrosome duplication, in the stromal mesenchyme resulted in reduced abundance of interstitial lineages including pericytes, fibroblasts and mesangial cells. These phenotypes were caused by a combination of delayed mitosis, activation of the mitotic surveillance pathway leading to apoptosis, and changes in both Wnt and Hedgehog signaling that are key for differentiation of stromal cells. Cep120 ablation resulted in small hypoplastic kidneys with medullary atrophy and delayed nephron maturation. Finally, Cep120 and centrosome loss in the interstitium sensitized kidneys of adult mice, causing rapid fibrosis after renal injury via enhanced TGF-β/Smad3-Gli2 signaling. Our study defines the cellular and developmental defects caused by loss of Cep120 and aberrant centrosome biogenesis in the embryonic kidney stroma.
Collapse
Affiliation(s)
- Ewa Langner
- Department of Medicine (Nephrology Division), Washington University, St Louis, MO, USA
| | - Tao Cheng
- Department of Medicine (Nephrology Division), Washington University, St Louis, MO, USA
| | - Eirini Kefaloyianni
- Department of Medicine (Rheumatology Division), Washington University, St Louis, MO, USA
| | - Charles Gluck
- Department of Medicine (Nephrology Division), Washington University, St Louis, MO, USA
| | - Baolin Wang
- Department of Genetic Medicine, Weill Medical College of Cornell University, New York, NY, USA
| | - Moe R Mahjoub
- Department of Medicine (Nephrology Division), Washington University, St Louis, MO, USA.
- Department of Cell Biology and Physiology, Washington University, St Louis, MO, USA.
| |
Collapse
|
8
|
Lyu Q, Li Q, Zhou J, Zhao H. Formation and function of multiciliated cells. J Cell Biol 2024; 223:e202307150. [PMID: 38032388 PMCID: PMC10689204 DOI: 10.1083/jcb.202307150] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/29/2023] [Accepted: 11/14/2023] [Indexed: 12/01/2023] Open
Abstract
In vertebrates, multiciliated cells (MCCs) are terminally differentiated cells that line the airway tracts, brain ventricles, and reproductive ducts. Each MCC contains dozens to hundreds of motile cilia that beat in a synchronized manner to drive fluid flow across epithelia, the dysfunction of which is associated with a group of human diseases referred to as motile ciliopathies, such as primary cilia dyskinesia. Given the dynamic and complex process of multiciliogenesis, the biological events essential for forming multiple motile cilia are comparatively unelucidated. Thanks to advancements in genetic tools, omics technologies, and structural biology, significant progress has been achieved in the past decade in understanding the molecular mechanism underlying the regulation of multiple motile cilia formation. In this review, we discuss recent studies with ex vivo culture MCC and animal models, summarize current knowledge of multiciliogenesis, and particularly highlight recent advances and their implications.
Collapse
Affiliation(s)
- Qian Lyu
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Qingchao Li
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Jun Zhou
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin, China
| | - Huijie Zhao
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
9
|
Fuentes‐Antrás J, Bedard PL, Cescon DW. Seize the engine: Emerging cell cycle targets in breast cancer. Clin Transl Med 2024; 14:e1544. [PMID: 38264947 PMCID: PMC10807317 DOI: 10.1002/ctm2.1544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/10/2023] [Accepted: 12/31/2023] [Indexed: 01/25/2024] Open
Abstract
Breast cancer arises from a series of molecular alterations that disrupt cell cycle checkpoints, leading to aberrant cell proliferation and genomic instability. Targeted pharmacological inhibition of cell cycle regulators has long been considered a promising anti-cancer strategy. Initial attempts to drug critical cell cycle drivers were hampered by poor selectivity, modest efficacy and haematological toxicity. Advances in our understanding of the molecular basis of cell cycle disruption and the mechanisms of resistance to CDK4/6 inhibitors have reignited interest in blocking specific components of the cell cycle machinery, such as CDK2, CDK4, CDK7, PLK4, WEE1, PKMYT1, AURKA and TTK. These targets play critical roles in regulating quiescence, DNA replication and chromosome segregation. Extensive preclinical data support their potential to overcome CDK4/6 inhibitor resistance, induce synthetic lethality or sensitise tumours to immune checkpoint inhibitors. This review provides a biological and drug development perspective on emerging cell cycle targets and novel inhibitors, many of which exhibit favourable safety profiles and promising activity in clinical trials.
Collapse
Affiliation(s)
- Jesús Fuentes‐Antrás
- Division of Medical Oncology and HematologyDepartment of MedicinePrincess Margaret Cancer CentreUniversity Health NetworkUniversity of TorontoTorontoOntarioCanada
- NEXT OncologyHospital Universitario QuironSalud MadridMadridSpain
| | - Philippe L. Bedard
- Division of Medical Oncology and HematologyDepartment of MedicinePrincess Margaret Cancer CentreUniversity Health NetworkUniversity of TorontoTorontoOntarioCanada
| | - David W. Cescon
- Division of Medical Oncology and HematologyDepartment of MedicinePrincess Margaret Cancer CentreUniversity Health NetworkUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
10
|
Arslanhan MD, Cengiz-Emek S, Odabasi E, Steib E, Hamel V, Guichard P, Firat-Karalar EN. CCDC15 localizes to the centriole inner scaffold and controls centriole length and integrity. J Cell Biol 2023; 222:e202305009. [PMID: 37934472 PMCID: PMC10630097 DOI: 10.1083/jcb.202305009] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/23/2023] [Accepted: 09/23/2023] [Indexed: 11/08/2023] Open
Abstract
Centrioles are microtubule-based organelles responsible for forming centrosomes and cilia, which serve as microtubule-organizing, signaling, and motility centers. Biogenesis and maintenance of centrioles with proper number, size, and architecture are vital for their functions during development and physiology. While centriole number control has been well-studied, less is understood about their maintenance as stable structures with conserved size and architecture during cell division and ciliary motility. Here, we identified CCDC15 as a centriole protein that colocalizes with and interacts with the inner scaffold, a crucial centriolar subcompartment for centriole size control and integrity. Using ultrastructure expansion microscopy, we found that CCDC15 depletion affects centriole length and integrity, leading to defective cilium formation, maintenance, and response to Hedgehog signaling. Moreover, loss-of-function experiments showed CCDC15's role in recruiting both the inner scaffold protein POC1B and the distal SFI1/Centrin-2 complex to centrioles. Our findings reveal players and mechanisms of centriole architectural integrity and insights into diseases linked to centriolar defects.
Collapse
Affiliation(s)
- Melis D. Arslanhan
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | - Seyma Cengiz-Emek
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | - Ezgi Odabasi
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | - Emmanuelle Steib
- Department of Bioengineering, Imperial College London, London, UK
| | - Virginie Hamel
- Department of Molecular and Cellular Biology, Sciences III, University of Geneva, Geneva, Switzerland
| | - Paul Guichard
- Department of Molecular and Cellular Biology, Sciences III, University of Geneva, Geneva, Switzerland
| | - Elif Nur Firat-Karalar
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
- Koç University School of Medicine, Istanbul, Turkey
| |
Collapse
|
11
|
Wilmott ZM, Goriely A, Raff JW. A simple Turing reaction-diffusion model explains how PLK4 breaks symmetry during centriole duplication and assembly. PLoS Biol 2023; 21:e3002391. [PMID: 37983248 PMCID: PMC10659181 DOI: 10.1371/journal.pbio.3002391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/18/2023] [Indexed: 11/22/2023] Open
Abstract
Centrioles duplicate when a mother centriole gives birth to a daughter that grows from its side. Polo-like-kinase 4 (PLK4), the master regulator of centriole duplication, is recruited symmetrically around the mother centriole, but it then concentrates at a single focus that defines the daughter centriole assembly site. How PLK4 breaks symmetry is unclear. Here, we propose that phosphorylated and unphosphorylated species of PLK4 form the 2 components of a classical Turing reaction-diffusion system. These 2 components bind to/unbind from the surface of the mother centriole at different rates, allowing a slow-diffusing activator species of PLK4 to accumulate at a single site on the mother, while a fast-diffusing inhibitor species of PLK4 suppresses activator accumulation around the rest of the centriole. This "short-range activation/long-range inhibition," inherent to Turing systems, can drive PLK4 symmetry breaking on a either a continuous or compartmentalised Plk4-binding surface, with PLK4 overexpression producing multiple PLK4 foci and PLK4 kinase inhibition leading to a lack of symmetry-breaking and PLK4 accumulation-as observed experimentally.
Collapse
Affiliation(s)
- Zachary M. Wilmott
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- Mathematical Institute, University of Oxford, Oxford, United Kingdom
| | - Alain Goriely
- Mathematical Institute, University of Oxford, Oxford, United Kingdom
| | - Jordan W. Raff
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
12
|
Farcy S, Hachour H, Bahi-Buisson N, Passemard S. Genetic Primary Microcephalies: When Centrosome Dysfunction Dictates Brain and Body Size. Cells 2023; 12:1807. [PMID: 37443841 PMCID: PMC10340463 DOI: 10.3390/cells12131807] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/04/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
Primary microcephalies (PMs) are defects in brain growth that are detectable at or before birth and are responsible for neurodevelopmental disorders. Most are caused by biallelic or, more rarely, dominant mutations in one of the likely hundreds of genes encoding PM proteins, i.e., ubiquitous centrosome or microtubule-associated proteins required for the division of neural progenitor cells in the embryonic brain. Here, we provide an overview of the different types of PMs, i.e., isolated PMs with or without malformations of cortical development and PMs associated with short stature (microcephalic dwarfism) or sensorineural disorders. We present an overview of the genetic, developmental, neurological, and cognitive aspects characterizing the most representative PMs. The analysis of phenotypic similarities and differences among patients has led scientists to elucidate the roles of these PM proteins in humans. Phenotypic similarities indicate possible redundant functions of a few of these proteins, such as ASPM and WDR62, which play roles only in determining brain size and structure. However, the protein pericentrin (PCNT) is equally required for determining brain and body size. Other PM proteins perform both functions, albeit to different degrees. Finally, by comparing phenotypes, we considered the interrelationships among these proteins.
Collapse
Affiliation(s)
- Sarah Farcy
- UMR144, Institut Curie, 75005 Paris, France;
- Inserm UMR-S 1163, Institut Imagine, 75015 Paris, France
| | - Hassina Hachour
- Service de Neurologie Pédiatrique, DMU INOV-RDB, APHP, Hôpital Robert Debré, 75019 Paris, France;
| | - Nadia Bahi-Buisson
- Service de Neurologie Pédiatrique, DMU MICADO, APHP, Hôpital Necker Enfants Malades, 75015 Paris, France;
- Université Paris Cité, Inserm UMR-S 1163, Institut Imagine, 75015 Paris, France
| | - Sandrine Passemard
- Service de Neurologie Pédiatrique, DMU INOV-RDB, APHP, Hôpital Robert Debré, 75019 Paris, France;
- Université Paris Cité, Inserm UMR 1141, NeuroDiderot, 75019 Paris, France
| |
Collapse
|
13
|
Langner E, Cheng T, Kefaloyianni E, Gluck C, Wang B, Mahjoub MR. Impaired centrosome biogenesis in kidney stromal progenitors reduces abundance of interstitial lineages and accelerates injury-induced fibrosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.04.535583. [PMID: 37066241 PMCID: PMC10104024 DOI: 10.1101/2023.04.04.535583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Defective centrosome function can disrupt embryonic kidney development, by causing changes to the renal interstitium that leads to fibrocystic disease pathologies. Yet, it remains unknown how mutations in centrosome genes impact kidney interstitial cells. Here, we examined the consequences of defective centrosome biogenesis on stromal progenitor cell growth, differentiation and fate. Conditional deletion of Cep120 , a ciliopathy gene essential for centrosome duplication, in the stromal mesenchyme resulted in reduced abundance of pericytes, interstitial fibroblasts and mesangial cells. This was due to delayed mitosis, increased apoptosis, and changes in Wnt and Hedgehog signaling essential for differentiation of stromal lineages. Cep120 ablation resulted in hypoplastic kidneys with medullary atrophy and delayed nephron maturation. Finally, centrosome loss in the interstitium sensitized kidneys of adult mice, causing rapid fibrosis via enhanced TGF-β/Smad3-Gli2 signaling after renal injury. Our study defines the cellular and developmental defects caused by centrosome dysfunction in embryonic kidney stroma. Highlights Defective centrosome biogenesis in kidney stroma causes:Reduced abundance of stromal progenitors, interstitial and mesangial cell populationsDefects in cell-autonomous and paracrine signalingAbnormal/delayed nephrogenesis and tubular dilationsAccelerates injury-induced fibrosis via defective TGF-β/Smad3-Gli2 signaling axis.
Collapse
|
14
|
Gomez Melo S, Wörthmüller D, Gönczy P, Banterle N, Schwarz US. Grand canonical Brownian dynamics simulations of adsorption and self-assembly of SAS-6 rings on a surface. J Chem Phys 2023; 158:085102. [PMID: 36859084 DOI: 10.1063/5.0135349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
The Spindle Assembly Abnormal Protein 6 (SAS-6) forms dimers, which then self-assemble into rings that are critical for the nine-fold symmetry of the centriole organelle. It has recently been shown experimentally that the self-assembly of SAS-6 rings is strongly facilitated on a surface, shifting the reaction equilibrium by four orders of magnitude compared to the bulk. Moreover, a fraction of non-canonical symmetries (i.e., different from nine) was observed. In order to understand which aspects of the system are relevant to ensure efficient self-assembly and selection of the nine-fold symmetry, we have performed Brownian dynamics computer simulation with patchy particles and then compared our results with the experimental ones. Adsorption onto the surface was simulated by a grand canonical Monte Carlo procedure and random sequential adsorption kinetics. Furthermore, self-assembly was described by Langevin equations with hydrodynamic mobility matrices. We find that as long as the interaction energies are weak, the assembly kinetics can be described well by coagulation-fragmentation equations in the reaction-limited approximation. By contrast, larger interaction energies lead to kinetic trapping and diffusion-limited assembly. We find that the selection of nine-fold symmetry requires a small value for the angular interaction range. These predictions are confirmed by the experimentally observed reaction constant and angle fluctuations. Overall, our simulations suggest that the SAS-6 system works at the crossover between a relatively weak binding energy that avoids kinetic trapping and a small angular range that favors the nine-fold symmetry.
Collapse
Affiliation(s)
- Santiago Gomez Melo
- Institute for Theoretical Physics, Heidelberg University, Philosophenweg 19, 69120 Heidelberg, Germany
| | - Dennis Wörthmüller
- Institute for Theoretical Physics, Heidelberg University, Philosophenweg 19, 69120 Heidelberg, Germany
| | - Pierre Gönczy
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Niccolo Banterle
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Ulrich S Schwarz
- Institute for Theoretical Physics, Heidelberg University, Philosophenweg 19, 69120 Heidelberg, Germany
| |
Collapse
|
15
|
Microtubules as a potential platform for energy transfer in biological systems: a target for implementing individualized, dynamic variability patterns to improve organ function. Mol Cell Biochem 2023; 478:375-392. [PMID: 35829870 DOI: 10.1007/s11010-022-04513-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/24/2022] [Indexed: 02/07/2023]
Abstract
Variability characterizes the complexity of biological systems and is essential for their function. Microtubules (MTs) play a role in structural integrity, cell motility, material transport, and force generation during mitosis, and dynamic instability exemplifies the variability in the proper function of MTs. MTs are a platform for energy transfer in cells. The dynamic instability of MTs manifests itself by the coexistence of growth and shortening, or polymerization and depolymerization. It results from a balance between attractive and repulsive forces between tubulin dimers. The paper reviews the current data on MTs and their potential roles as energy-transfer cellular structures and presents how variability can improve the function of biological systems in an individualized manner. The paper presents the option for targeting MTs to trigger dynamic improvement in cell plasticity, regulate energy transfer, and possibly control quantum effects in biological systems. The described system quantifies MT-dependent variability patterns combined with additional personalized signatures to improve organ function in a subject-tailored manner. The platform can regulate the use of MT-targeting drugs to improve the response to chronic therapies. Ongoing trials test the effects of this platform on various disorders.
Collapse
|
16
|
Favaron PO, Carter AM. The trophoblast giant cells of cricetid rodents. Front Cell Dev Biol 2023; 10:1097854. [PMID: 36726588 PMCID: PMC9885145 DOI: 10.3389/fcell.2022.1097854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/16/2022] [Indexed: 01/19/2023] Open
Abstract
Giant cells are a prominent feature of placentation in cricetid rodents. Once thought to be maternal in origin, they are now known to be trophoblast giant cells (TGCs). The large size of cricetid TGCs and their nuclei reflects a high degree of polyploidy. While some TGCs are found at fixed locations, others migrate throughout the placenta and deep into the uterus where they sometimes survive postpartum. Herein, we review the distribution of TGCs in the placenta of cricetids, including our own data from the New World subfamily Sigmodontinae, and attempt a comparison between the TGCs of cricetid and murid rodents. In both families, parietal TGCs are found in the parietal yolk sac and as a layer between the junctional zone and decidua. In cricetids alone, large numbers of TGCs, likely from the same lineage, accumulate at the edge of the placental disk. Common to murids and cricetids is a haemotrichorial placental barrier where the maternal-facing layer consists of cytotrophoblasts characterized as sinusoidal TGCs. The maternal channels of the labyrinth are supplied by trophoblast-lined canals. Whereas in the mouse these are lined largely by canal TGCs, in cricetids canal TGCs are interspersed with syncytiotrophoblast. Transformation of the uterine spiral arteries occurs in both murids and cricetids and spiral artery TGCs line segments of the arteries that have lost their endothelium and smooth muscle. Since polyploidization of TGCs can amplify selective genomic regions required for specific functions, we argue that the TGCs of cricetids deserve further study and suggest avenues for future research.
Collapse
Affiliation(s)
- Phelipe O. Favaron
- Department of General Biology, Biological Sciences Center, State University of Londrina, Paraná, Brazil
| | - Anthony M. Carter
- Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
17
|
Ortiz-Álvarez G, Fortoul A, Srivastava A, Moreau MX, Bouloudi B, Mailhes-Hamon C, Delgehyr N, Faucourt M, Bahin M, Blugeon C, Breau M, Géli V, Causeret F, Meunier A, Spassky N. p53/p21 pathway activation contributes to the ependymal fate decision downstream of GemC1. Cell Rep 2022; 41:111810. [PMID: 36516767 DOI: 10.1016/j.celrep.2022.111810] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/08/2022] [Accepted: 11/18/2022] [Indexed: 12/14/2022] Open
Abstract
Multiciliated ependymal cells and adult neural stem cells are components of the adult neurogenic niche, essential for brain homeostasis. These cells share a common glial cell lineage regulated by the Geminin family members Geminin and GemC1/Mcidas. Ependymal precursors require GemC1/Mcidas expression to massively amplify centrioles and become multiciliated cells. Here, we show that GemC1-dependent differentiation is initiated in actively cycling radial glial cells, in which a DNA damage response, including DNA replication-associated damage and dysfunctional telomeres, is induced, without affecting cell survival. Genotoxic stress is not sufficient by itself to induce ependymal cell differentiation, although the absence of p53 or p21 in progenitors hinders differentiation by maintaining cell division. Activation of the p53-p21 pathway downstream of GemC1 leads to cell-cycle slowdown/arrest, which permits timely onset of ependymal cell differentiation in progenitor cells.
Collapse
Affiliation(s)
- Gonzalo Ortiz-Álvarez
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Département de Biologie, Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, Université PSL, 75005 Paris, France
| | - Aurélien Fortoul
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Département de Biologie, Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, Université PSL, 75005 Paris, France
| | - Ayush Srivastava
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Département de Biologie, Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, Université PSL, 75005 Paris, France
| | - Matthieu X Moreau
- Université de Paris, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, 75015 Paris, France; Université de Paris, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, 75014 Paris, France
| | - Benoît Bouloudi
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Département de Biologie, Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, Université PSL, 75005 Paris, France
| | - Caroline Mailhes-Hamon
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Département de Biologie, Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, Université PSL, 75005 Paris, France
| | - Nathalie Delgehyr
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Département de Biologie, Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, Université PSL, 75005 Paris, France
| | - Marion Faucourt
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Département de Biologie, Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, Université PSL, 75005 Paris, France
| | - Mathieu Bahin
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Département de Biologie, Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, Université PSL, 75005 Paris, France
| | - Corinne Blugeon
- Genomics Core Facility, Institut de Biologie de l'ENS (IBENS), Département de Biologie, Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, Université PSL, 75005 Paris, France
| | - Marielle Breau
- Marseille Cancer Research Centre (CRCM), U1068 INSERM, UMR7258 CNRS, UM105 Aix-Marseille University, Institut Paoli-Calmettes, Ligue Nationale Contre le Cancer (Équipe Labellisée) Marseille, 13009 Marseille, France
| | - Vincent Géli
- Marseille Cancer Research Centre (CRCM), U1068 INSERM, UMR7258 CNRS, UM105 Aix-Marseille University, Institut Paoli-Calmettes, Ligue Nationale Contre le Cancer (Équipe Labellisée) Marseille, 13009 Marseille, France
| | - Frédéric Causeret
- Université de Paris, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, 75015 Paris, France; Université de Paris, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, 75014 Paris, France
| | - Alice Meunier
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Département de Biologie, Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, Université PSL, 75005 Paris, France
| | - Nathalie Spassky
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Département de Biologie, Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, Université PSL, 75005 Paris, France.
| |
Collapse
|
18
|
Steinacker TL, Wong SS, Novak ZA, Saurya S, Gartenmann L, van Houtum EJ, Sayers JR, Lagerholm BC, Raff JW. Centriole growth is limited by the Cdk/Cyclin-dependent phosphorylation of Ana2/STIL. J Cell Biol 2022; 221:e202205058. [PMID: 35861803 PMCID: PMC9442473 DOI: 10.1083/jcb.202205058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/29/2022] [Accepted: 07/06/2022] [Indexed: 11/25/2022] Open
Abstract
Centrioles duplicate once per cell cycle, but it is unclear how daughter centrioles assemble at the right time and place and grow to the right size. Here, we show that in Drosophila embryos the cytoplasmic concentrations of the key centriole assembly proteins Asl, Plk4, Ana2, Sas-6, and Sas-4 are low, but remain constant throughout the assembly process-indicating that none of them are limiting for centriole assembly. The cytoplasmic diffusion rate of Ana2/STIL, however, increased significantly toward the end of S-phase as Cdk/Cyclin activity in the embryo increased. A mutant form of Ana2 that cannot be phosphorylated by Cdk/Cyclins did not exhibit this diffusion change and allowed daughter centrioles to grow for an extended period. Thus, the Cdk/Cyclin-dependent phosphorylation of Ana2 seems to reduce the efficiency of daughter centriole assembly toward the end of S-phase. This helps to ensure that daughter centrioles stop growing at the correct time, and presumably also helps to explain why centrioles cannot duplicate during mitosis.
Collapse
Affiliation(s)
| | - Siu-Shing Wong
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Zsofia A. Novak
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Saroj Saurya
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Lisa Gartenmann
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | | - Judith R. Sayers
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | | - Jordan W. Raff
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| |
Collapse
|
19
|
Sladky VC, Akbari H, Tapias-Gomez D, Evans LT, Drown CG, Strong MA, LoMastro GM, Larman T, Holland AJ. Centriole signaling restricts hepatocyte ploidy to maintain liver integrity. Genes Dev 2022; 36:gad.349727.122. [PMID: 35981754 PMCID: PMC9480857 DOI: 10.1101/gad.349727.122] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/27/2022] [Indexed: 01/03/2023]
Abstract
Hepatocyte polyploidization is a tightly controlled process that is initiated at weaning and increases with age. The proliferation of polyploid hepatocytes in vivo is restricted by the PIDDosome-P53 axis, but how this pathway is triggered remains unclear. Given that increased hepatocyte ploidy protects against malignant transformation, the evolutionary driver that sets the upper limit for hepatocyte ploidy remains unknown. Here we show that hepatocytes accumulate centrioles during cycles of polyploidization in vivo. The presence of excess mature centrioles containing ANKRD26 was required to activate the PIDDosome in polyploid cells. As a result, mice lacking centrioles in the liver or ANKRD26 exhibited increased hepatocyte ploidy. Under normal homeostatic conditions, this increase in liver ploidy did not impact organ function. However, in response to chronic liver injury, blocking centriole-mediated ploidy control leads to a massive increase in hepatocyte polyploidization, severe liver damage, and impaired liver function. These results show that hyperpolyploidization sensitizes the liver to injury, posing a trade-off for the cancer-protective effect of increased hepatocyte ploidy. Our results may have important implications for unscheduled polyploidization that frequently occurs in human patients with chronic liver disease.
Collapse
Affiliation(s)
- Valentina C Sladky
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Hanan Akbari
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Daniel Tapias-Gomez
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Lauren T Evans
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Chelsea G Drown
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Margaret A Strong
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Gina M LoMastro
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Tatianna Larman
- Divison of Gastrointestinal and Liver Pathology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | - Andrew J Holland
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
20
|
Sabat‐Pośpiech D, Fabian‐Kolpanowicz K, Kalirai H, Kipling N, Coupland SE, Coulson JM, Fielding AB. Aggressive uveal melanoma displays a high degree of centrosome amplification, opening the door to therapeutic intervention. J Pathol Clin Res 2022; 8:383-394. [PMID: 35474453 PMCID: PMC9161346 DOI: 10.1002/cjp2.272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/18/2022] [Accepted: 03/28/2022] [Indexed: 11/22/2022]
Abstract
Uveal melanoma (UM) is the most common intraocular cancer in adults. Whilst treatment of primary UM (PUM) is often successful, around 50% of patients develop metastatic disease with poor outcomes, linked to chromosome 3 loss (monosomy 3, M3). Advances in understanding UM cell biology may indicate new therapeutic options. We report that UM exhibits centrosome abnormalities, which in other cancers are associated with increased invasiveness and worse prognosis, but also represent a potential Achilles' heel for cancer-specific therapeutics. Analysis of 75 PUM patient samples revealed both higher centrosome numbers and an increase in centrosomes with enlarged pericentriolar matrix (PCM) compared to surrounding normal tissue, both indicative of centrosome amplification. The PCM phenotype was significantly associated with M3 (t-test, p < 0.01). Centrosomes naturally enlarge as cells approach mitosis; however, whilst UM with higher mitotic scores had enlarged PCM regardless of genetic status, the PCM phenotype remained significantly associated with M3 in UM with low mitotic scores (ANOVA, p = 0.021) suggesting that this is independent of proliferation. Phenotypic analysis of patient-derived cultures and established UM lines revealed comparable levels of centrosome amplification in PUM cells to archetypal triple-negative breast cancer cell lines, whilst metastatic UM (MUM) cell lines had even higher levels. Importantly, many UM cells also exhibit centrosome clustering, a common strategy employed by other cancer cells with centrosome amplification to survive cell division. As UM samples with M3 display centrosome abnormalities indicative of amplification, this phenotype may contribute to the development of MUM, suggesting that centrosome de-clustering drugs may provide a novel therapeutic approach.
Collapse
Affiliation(s)
- Dorota Sabat‐Pośpiech
- Molecular Physiology and Cell Signalling, Institute of Systems Molecular & Integrative BiologyUniversity of LiverpoolLiverpoolUK
- Molecular and Clinical Cancer Medicine, Institute of Systems Molecular & Integrative BiologyUniversity of LiverpoolLiverpoolUK
| | - Kim Fabian‐Kolpanowicz
- Biomedical and Life Sciences, Faculty of Health and MedicineLancaster UniversityLancasterUK
| | - Helen Kalirai
- Molecular and Clinical Cancer Medicine, Institute of Systems Molecular & Integrative BiologyUniversity of LiverpoolLiverpoolUK
| | - Natalie Kipling
- Molecular and Clinical Cancer Medicine, Institute of Systems Molecular & Integrative BiologyUniversity of LiverpoolLiverpoolUK
| | - Sarah E Coupland
- Molecular and Clinical Cancer Medicine, Institute of Systems Molecular & Integrative BiologyUniversity of LiverpoolLiverpoolUK
| | - Judy M Coulson
- Molecular Physiology and Cell Signalling, Institute of Systems Molecular & Integrative BiologyUniversity of LiverpoolLiverpoolUK
| | - Andrew B Fielding
- Molecular Physiology and Cell Signalling, Institute of Systems Molecular & Integrative BiologyUniversity of LiverpoolLiverpoolUK
- Biomedical and Life Sciences, Faculty of Health and MedicineLancaster UniversityLancasterUK
| |
Collapse
|
21
|
Takumi K, Kitagawa D. Experimental and Natural Induction of de novo Centriole Formation. Front Cell Dev Biol 2022; 10:861864. [PMID: 35445021 PMCID: PMC9014216 DOI: 10.3389/fcell.2022.861864] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/14/2022] [Indexed: 01/11/2023] Open
Abstract
In cycling cells, new centrioles are assembled in the vicinity of pre-existing centrioles. Although this canonical centriole duplication is a tightly regulated process in animal cells, centrioles can also form in the absence of pre-existing centrioles; this process is termed de novo centriole formation. De novo centriole formation is triggered by the removal of all pre-existing centrioles in the cell in various manners. Moreover, overexpression of polo-like kinase 4 (Plk4), a master regulatory kinase for centriole biogenesis, can induce de novo centriole formation in some cell types. Under these conditions, structurally and functionally normal centrioles can be formed de novo. While de novo centriole formation is normally suppressed in cells with intact centrioles, depletion of certain suppressor proteins leads to the ectopic formation of centriole-related protein aggregates in the cytoplasm. It has been shown that de novo centriole formation also occurs naturally in some species. For instance, during the multiciliogenesis of vertebrate epithelial cells, massive de novo centriole amplification occurs to form numerous motile cilia. In this review, we summarize the previous findings on de novo centriole formation, particularly under experimental conditions, and discuss its regulatory mechanisms.
Collapse
Affiliation(s)
- Kasuga Takumi
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Tokyo, Japan
| | - Daiju Kitagawa
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
22
|
Zhao H, Sun J, Insinna C, Lu Q, Wang Z, Nagashima K, Stauffer J, Andresson T, Specht S, Perera S, Daar IO, Westlake CJ. Male infertility-associated Ccdc108 regulates multiciliogenesis via the intraflagellar transport machinery. EMBO Rep 2022; 23:e52775. [PMID: 35201641 PMCID: PMC8982597 DOI: 10.15252/embr.202152775] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 01/03/2022] [Accepted: 01/12/2022] [Indexed: 12/11/2022] Open
Abstract
Motile cilia on the cell surface generate movement and directional fluid flow that is crucial for various biological processes. Dysfunction of these cilia causes human diseases such as sinopulmonary disease and infertility. Here, we show that Ccdc108, a protein linked to male infertility, has an evolutionarily conserved requirement in motile multiciliation. Using Xenopus laevis embryos, Ccdc108 is shown to be required for the migration and docking of basal bodies to the apical membrane in epidermal multiciliated cells (MCCs). We demonstrate that Ccdc108 interacts with the IFT‐B complex, and the ciliation requirement for Ift74 overlaps with Ccdc108 in MCCs. Both Ccdc108 and IFT‐B proteins localize to migrating centrioles, basal bodies, and cilia in MCCs. Importantly, Ccdc108 governs the centriolar recruitment of IFT while IFT licenses the targeting of Ccdc108 to the cilium. Moreover, Ccdc108 is required for the centriolar recruitment of Drg1 and activated RhoA, factors that help establish the apical actin network in MCCs. Together, our studies indicate that Ccdc108 and IFT‐B complex components cooperate in multiciliogenesis.
Collapse
Affiliation(s)
- Huijie Zhao
- Laboratory of Cellular and Developmental Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Jian Sun
- Cancer & Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Christine Insinna
- Laboratory of Cellular and Developmental Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Quanlong Lu
- Laboratory of Cellular and Developmental Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Ziqiu Wang
- Cancer Research Technology Program, Electron Microscopy Laboratory, Frederick National Laboratory for Cancer Research (FNLCR), Leidos Biomedical Research Inc., Frederick, MD, USA
| | - Kunio Nagashima
- Cancer Research Technology Program, Electron Microscopy Laboratory, Frederick National Laboratory for Cancer Research (FNLCR), Leidos Biomedical Research Inc., Frederick, MD, USA
| | - Jimmy Stauffer
- Laboratory of Cellular and Developmental Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Thorkell Andresson
- Protein Characterization Laboratory (PCL) Mass Spectrometry Center, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Suzanne Specht
- Laboratory of Cellular and Developmental Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Sumeth Perera
- Laboratory of Cellular and Developmental Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Ira O Daar
- Cancer & Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Christopher J Westlake
- Laboratory of Cellular and Developmental Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| |
Collapse
|
23
|
Roux-Bourdieu ML, Dwivedi D, Harry D, Meraldi P. PLK1 controls centriole distal appendage formation and centrobin removal via independent pathways. J Cell Sci 2022; 135:275085. [PMID: 35343570 DOI: 10.1242/jcs.259120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 03/18/2022] [Indexed: 11/20/2022] Open
Abstract
Centrioles are central structural elements of centrosomes and cilia. In human cells daughter centrioles are assembled adjacent to existing centrioles in S-phase and reach their full functionality with the formation of distal and subdistal appendages one-and-a-half cell cycle later, as they exit their second mitosis. Current models postulate that the centriolar protein centrobin acts as placeholder for distal appendage proteins that must be removed to complete distal appendage formation. Here, we investigated in non-transformed human epithelial RPE1 cells the mechanisms controlling centrobin removal and its effect on distal appendage formation. Our data are consistent with a speculative model in which centrobin is removed from older centrioles due to a higher affinity for the newly born daughter centrioles, under the control of the centrosomal kinase Plk1. This removal also depends on the presence of subdistal appendage proteins on the oldest centriole. Removing centrobin, however, is not required for the recruitment of distal appendage proteins, even though this process is equally dependent on Plk1. We conclude that Plk1 kinase regulates centrobin removal and distal appendage formation during centriole maturation via separate pathways.
Collapse
Affiliation(s)
- Morgan Le Roux-Bourdieu
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Devashish Dwivedi
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Daniela Harry
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Patrick Meraldi
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland.,Translational Research Centre in Onco-haematology, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
24
|
Cunningham NHJ, Bouhlel IB, Conduit PT. Daughter centrioles assemble preferentially towards the nuclear envelope in Drosophila syncytial embryos. Open Biol 2022; 12:210343. [PMID: 35042404 PMCID: PMC8767211 DOI: 10.1098/rsob.210343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Centrosomes are important organizers of microtubules within animal cells. They comprise a pair of centrioles surrounded by the pericentriolar material, which nucleates and organizes the microtubules. To maintain centrosome numbers, centrioles must duplicate once and only once per cell cycle. During S-phase, a single new ‘daughter’ centriole is built orthogonally on one side of each radially symmetric ‘mother’ centriole. Mis-regulation of duplication can result in the simultaneous formation of multiple daughter centrioles around a single mother centriole, leading to centrosome amplification, a hallmark of cancer. It remains unclear how a single duplication site is established. It also remains unknown whether this site is pre-defined or randomly positioned around the mother centriole. Here, we show that within Drosophila syncytial embryos daughter centrioles preferentially assemble on the side of the mother facing the nuclear envelope, to which the centrosomes are closely attached. This positional preference is established early during duplication and remains stable throughout daughter centriole assembly, but is lost in centrosomes forced to lose their connection to the nuclear envelope. This shows that non-centrosomal cues influence centriole duplication and raises the possibility that these external cues could help establish a single duplication site.
Collapse
Affiliation(s)
- Neil H J Cunningham
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Imène B Bouhlel
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Paul T Conduit
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK.,Université de Paris, CNRS, Institut Jacques Monod, 75006 Paris, France
| |
Collapse
|
25
|
Tian Y, Yan Y, Fu J. Nine-fold symmetry of centriole: The joint efforts of its core proteins. Bioessays 2022; 44:e2100262. [PMID: 34997615 DOI: 10.1002/bies.202100262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/22/2021] [Accepted: 12/30/2021] [Indexed: 12/14/2022]
Abstract
The centriole is a widely conserved organelle required for the assembly of centrosomes, cilia, and flagella. Its striking feature - the nine-fold symmetrical structure, was discovered over 70 years ago by transmission electron microscopy, and since elaborated mostly by cryo-electron microscopy and super-resolution microscopy. Here, we review the discoveries that led to the current understanding of how the nine-fold symmetrical structure is built. We focus on the recent findings of the centriole structure in high resolution, its assembly pathways, and its nine-fold distributed components. We propose a model that the assembly of the nine-fold symmetrical centriole depends on the concerted efforts of its core proteins.
Collapse
Affiliation(s)
- Yuan Tian
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yuxuan Yan
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jingyan Fu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
26
|
Guichard P, Laporte MH, Hamel V. The centriolar tubulin code. Semin Cell Dev Biol 2021; 137:16-25. [PMID: 34896019 DOI: 10.1016/j.semcdb.2021.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 11/25/2022]
Abstract
Centrioles are microtubule-based cell organelles present in most eukaryotes. They participate in the control of cell division as part of the centrosome, the major microtubule-organizing center of the cell, and are also essential for the formation of primary and motile cilia. During centriole assembly as well as across its lifetime, centriolar tubulin display marks defined by post-translational modifications (PTMs), such as glutamylation or acetylation. To date, the functions of these PTMs at centrioles are not well understood, although pioneering experiments suggest a role in the stability of this organelle. Here, we review the current knowledge regarding PTMs at centrioles with a particular focus on a possible link between these modifications and centriole's architecture, and propose possible hypothesis regarding centriolar tubulin PTMs's function.
Collapse
Affiliation(s)
- Paul Guichard
- University of Geneva, Department of Cell Biology, Geneva, Switzerland.
| | - Marine H Laporte
- University of Geneva, Department of Cell Biology, Geneva, Switzerland
| | - Virginie Hamel
- University of Geneva, Department of Cell Biology, Geneva, Switzerland.
| |
Collapse
|
27
|
Kinetic and structural roles for the surface in guiding SAS-6 self-assembly to direct centriole architecture. Nat Commun 2021; 12:6180. [PMID: 34702818 PMCID: PMC8548535 DOI: 10.1038/s41467-021-26329-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 09/24/2021] [Indexed: 11/24/2022] Open
Abstract
Discovering mechanisms governing organelle assembly is a fundamental pursuit in biology. The centriole is an evolutionarily conserved organelle with a signature 9-fold symmetrical chiral arrangement of microtubules imparted onto the cilium it templates. The first structure in nascent centrioles is a cartwheel, which comprises stacked 9-fold symmetrical SAS-6 ring polymers emerging orthogonal to a surface surrounding each resident centriole. The mechanisms through which SAS-6 polymerization ensures centriole organelle architecture remain elusive. We deploy photothermally-actuated off-resonance tapping high-speed atomic force microscopy to decipher surface SAS-6 self-assembly mechanisms. We show that the surface shifts the reaction equilibrium by ~104 compared to solution. Moreover, coarse-grained molecular dynamics and atomic force microscopy reveal that the surface converts the inherent helical propensity of SAS-6 polymers into 9-fold rings with residual asymmetry, which may guide ring stacking and impart chiral features to centrioles and cilia. Overall, our work reveals fundamental design principles governing centriole assembly. The centriole exhibits an evolutionarily conserved 9-fold radial symmetry that stems from a cartwheel containing vertically stacked ring polymers that harbor 9 homodimers of the protein SAS-6. Here the authors show how dual properties inherent to surface-guided SAS-6 self-assembly possess spatial information that dictates correct scaffolding of centriole architecture.
Collapse
|
28
|
Stemm-Wolf AJ, O’Toole ET, Sheridan RM, Morgan JT, Pearson CG. The SON RNA splicing factor is required for intracellular trafficking structures that promote centriole assembly and ciliogenesis. Mol Biol Cell 2021; 32:ar4. [PMID: 34406792 PMCID: PMC8684746 DOI: 10.1091/mbc.e21-06-0305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/16/2021] [Accepted: 07/23/2021] [Indexed: 11/11/2022] Open
Abstract
Control of centrosome assembly is critical for cell division, intracellular trafficking, and cilia. Regulation of centrosome number occurs through the precise duplication of centrioles that reside in centrosomes. Here we explored transcriptional control of centriole assembly and find that the RNA splicing factor SON is specifically required for completing procentriole assembly. Whole genome mRNA sequencing identified genes whose splicing and expression are affected by the reduction of SON, with an enrichment in genes involved in the microtubule (MT) cytoskeleton, centrosome, and centriolar satellites. SON is required for the proper splicing and expression of CEP131, which encodes a major centriolar satellite protein and is required to organize the trafficking and MT network around the centrosomes. This study highlights the importance of the distinct MT trafficking network that is intimately associated with nascent centrioles and is responsible for procentriole development and efficient ciliogenesis.
Collapse
Affiliation(s)
- Alexander J. Stemm-Wolf
- Department of Cell and Developmental Biology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045
| | | | - Ryan M. Sheridan
- RNA Biosciences Initiative (RBI), University of Colorado, Anschutz Medical Campus, Aurora, CO 80045
| | - Jacob T. Morgan
- Department of Cell and Developmental Biology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045
| | - Chad G. Pearson
- Department of Cell and Developmental Biology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
29
|
The Cilioprotist Cytoskeleton , a Model for Understanding How Cell Architecture and Pattern Are Specified: Recent Discoveries from Ciliates and Comparable Model Systems. Methods Mol Biol 2021; 2364:251-295. [PMID: 34542858 DOI: 10.1007/978-1-0716-1661-1_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
The cytoskeletons of eukaryotic, cilioprotist microorganisms are complex, highly patterned, and diverse, reflecting the varied and elaborate swimming, feeding, reproductive, and sensory behaviors of the multitude of cilioprotist species that inhabit the aquatic environment. In the past 10-20 years, many new discoveries and technologies have helped to advance our understanding of how cytoskeletal organelles are assembled in many different eukaryotic model systems, in relation to the construction and modification of overall cellular architecture and function. Microtubule organizing centers, particularly basal bodies and centrioles, have continued to reveal their central roles in architectural engineering of the eukaryotic cell, including in the cilioprotists. This review calls attention to (1) published resources that illuminate what is known of the cilioprotist cytoskeleton; (2) recent studies on cilioprotists and other model organisms that raise specific questions regarding whether basal body- and centriole-associated nucleic acids, both DNA and RNA, should continue to be considered when seeking to employ cilioprotists as model systems for cytoskeletal research; and (3) new, mainly imaging, technologies that have already proven useful for, but also promise to enhance, future cytoskeletal research on cilioprotists.
Collapse
|
30
|
Pereira SG, Dias Louro MA, Bettencourt-Dias M. Biophysical and Quantitative Principles of Centrosome Biogenesis and Structure. Annu Rev Cell Dev Biol 2021; 37:43-63. [PMID: 34314592 DOI: 10.1146/annurev-cellbio-120219-051400] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The centrosome is a main orchestrator of the animal cellular microtubule cytoskeleton. Dissecting its structure and assembly mechanisms has been a goal of cell biologists for over a century. In the last two decades, a good understanding of the molecular constituents of centrosomes has been achieved. Moreover, recent breakthroughs in electron and light microscopy techniques have enabled the inspection of the centrosome and the mapping of its components with unprecedented detail. However, we now need a profound and dynamic understanding of how these constituents interact in space and time. Here, we review the latest findings on the structural and molecular architecture of the centrosome and how its biogenesis is regulated, highlighting how biophysical techniques and principles as well as quantitative modeling are changing our understanding of this enigmatic cellular organelle. Expected final online publication date for the Annual Review of Cell and Developmental Biology, Volume 37 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
|
31
|
Khanal S, Leung MR, Royfman A, Fishman EL, Saltzman B, Bloomfield-Gadêlha H, Zeev-Ben-Mordehai T, Avidor-Reiss T. A dynamic basal complex modulates mammalian sperm movement. Nat Commun 2021; 12:3808. [PMID: 34155206 PMCID: PMC8217517 DOI: 10.1038/s41467-021-24011-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/28/2021] [Indexed: 01/04/2023] Open
Abstract
Reproductive success depends on efficient sperm movement driven by axonemal dynein-mediated microtubule sliding. Models predict sliding at the base of the tail - the centriole - but such sliding has never been observed. Centrioles are ancient organelles with a conserved architecture; their rigidity is thought to restrict microtubule sliding. Here, we show that, in mammalian sperm, the atypical distal centriole (DC) and its surrounding atypical pericentriolar matrix form a dynamic basal complex (DBC) that facilitates a cascade of internal sliding deformations, coupling tail beating with asymmetric head kinking. During asymmetric tail beating, the DC's right side and its surroundings slide ~300 nm rostrally relative to the left side. The deformation throughout the DBC is transmitted to the head-tail junction; thus, the head tilts to the left, generating a kinking motion. These findings suggest that the DBC evolved as a dynamic linker coupling sperm head and tail into a single self-coordinated system.
Collapse
Affiliation(s)
- Sushil Khanal
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | - Miguel Ricardo Leung
- The Division of Structural Biology, Wellcome Centre for Human Genetics, The University of Oxford, Oxford, UK
- Cryo-Electron Microscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Abigail Royfman
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | - Emily L Fishman
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | - Barbara Saltzman
- School of Population Health, College of Health and Human Services, University of Toledo, Toledo, OH, USA
| | - Hermes Bloomfield-Gadêlha
- Department of Engineering Mathematics and Bristol Robotics Laboratory, University of Bristol, Bristol, UK
| | - Tzviya Zeev-Ben-Mordehai
- The Division of Structural Biology, Wellcome Centre for Human Genetics, The University of Oxford, Oxford, UK.
- Cryo-Electron Microscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands.
| | - Tomer Avidor-Reiss
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA.
- Department of Urology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA.
| |
Collapse
|
32
|
Meitinger F, Kong D, Ohta M, Desai A, Oegema K, Loncarek J. TRIM37 prevents formation of condensate-organized ectopic spindle poles to ensure mitotic fidelity. J Cell Biol 2021; 220:212098. [PMID: 33983387 PMCID: PMC8127006 DOI: 10.1083/jcb.202010180] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 02/25/2021] [Accepted: 04/06/2021] [Indexed: 12/19/2022] Open
Abstract
Centrosomes are composed of a centriolar core surrounded by pericentriolar material that nucleates microtubules. The ubiquitin ligase TRIM37 localizes to centrosomes, but its centrosomal roles are not yet defined. We show that TRIM37 does not control centriole duplication, structure, or the ability of centrioles to form cilia but instead prevents assembly of an ectopic centrobin-scaffolded structured condensate that forms by budding off of centrosomes. In ∼25% of TRIM37-deficient cells, the condensate organizes an ectopic spindle pole, recruiting other centrosomal proteins and acquiring microtubule nucleation capacity during mitotic entry. Ectopic spindle pole-associated transient multipolarity and multipolar segregation in TRIM37-deficient cells are suppressed by removing centrobin, which interacts with and is ubiquitinated by TRIM37. Thus, TRIM37 ensures accurate chromosome segregation by preventing the formation of centrobin-scaffolded condensates that organize ectopic spindle poles. Mutations in TRIM37 cause the disorder mulibrey nanism, and patient-derived cells harbor centrobin condensate-organized ectopic poles, leading us to propose that chromosome missegregation is a pathological mechanism in this disorder.
Collapse
Affiliation(s)
- Franz Meitinger
- Ludwig Institute for Cancer Research, La Jolla, CA.,Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA.,Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA
| | - Dong Kong
- Laboratory of Protein Dynamics and Signaling, National Institutes of Health, National Cancer Institute, Center for Cancer Research, Frederick, MD
| | - Midori Ohta
- Ludwig Institute for Cancer Research, La Jolla, CA.,Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA.,Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA
| | - Arshad Desai
- Ludwig Institute for Cancer Research, La Jolla, CA.,Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA.,Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA
| | - Karen Oegema
- Ludwig Institute for Cancer Research, La Jolla, CA.,Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA.,Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA
| | - Jadranka Loncarek
- Laboratory of Protein Dynamics and Signaling, National Institutes of Health, National Cancer Institute, Center for Cancer Research, Frederick, MD
| |
Collapse
|
33
|
Primary cilia and the DNA damage response: linking a cellular antenna and nuclear signals. Biochem Soc Trans 2021; 49:829-841. [PMID: 33843966 DOI: 10.1042/bst20200751] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 11/17/2022]
Abstract
The maintenance of genome stability involves integrated biochemical activities that detect DNA damage or incomplete replication, delay the cell cycle, and direct DNA repair activities on the affected chromatin. These processes, collectively termed the DNA damage response (DDR), are crucial for cell survival and to avoid disease, particularly cancer. Recent work has highlighted links between the DDR and the primary cilium, an antenna-like, microtubule-based signalling structure that extends from a centriole docked at the cell surface. Ciliary dysfunction gives rise to a range of complex human developmental disorders termed the ciliopathies. Mutations in ciliopathy genes have been shown to impact on several functions that relate to centrosome integrity, DNA damage signalling, responses to problems in DNA replication and the control of gene expression. This review covers recent findings that link cilia and the DDR and explores the various roles played by key genes in these two contexts. It outlines how proteins encoded by ciliary genes impact checkpoint signalling, DNA replication and repair, gene expression and chromatin remodelling. It discusses how these diverse activities may integrate nuclear responses with those that affect a structure of the cell periphery. Additional directions for exploration of the interplay between these pathways are highlighted, with a focus on new ciliary gene candidates that alter genome stability.
Collapse
|
34
|
Hall NA, Hehnly H. A centriole's subdistal appendages: contributions to cell division, ciliogenesis and differentiation. Open Biol 2021; 11:200399. [PMID: 33561384 PMCID: PMC8061701 DOI: 10.1098/rsob.200399] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The centrosome is a highly conserved structure composed of two centrioles surrounded by pericentriolar material. The mother, and inherently older, centriole has distal and subdistal appendages, whereas the daughter centriole is devoid of these appendage structures. Both appendages have been primarily linked to functions in cilia formation. However, subdistal appendages present with a variety of potential functions that include spindle placement, chromosome alignment, the final stage of cell division (abscission) and potentially cell differentiation. Subdistal appendages are particularly interesting in that they do not always display a conserved ninefold symmetry in appendage organization on the mother centriole across eukaryotic species, unlike distal appendages. In this review, we aim to differentiate both the morphology and role of the distal and subdistal appendages, with a particular focus on subdistal appendages.
Collapse
Affiliation(s)
- Nicole A Hall
- Department of Biology, Syracuse University, Syracuse NY, USA
| | - Heidi Hehnly
- Department of Biology, Syracuse University, Syracuse NY, USA
| |
Collapse
|
35
|
Tischer J, Carden S, Gergely F. Accessorizing the centrosome: new insights into centriolar appendages and satellites. Curr Opin Struct Biol 2021; 66:148-155. [PMID: 33279729 DOI: 10.1016/j.sbi.2020.10.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/07/2020] [Accepted: 10/18/2020] [Indexed: 02/06/2023]
Abstract
Centrosomes comprise two centrioles, the mother and daughter, embedded within a multi-layered proteinaceous matrix known as the pericentriolar material. In proliferating cells, centrosomes duplicate once per cell cycle and organise interphase and mitotic microtubule arrays, whereas in quiescent cells, the mother centriole templates primary cilium formation. Centrosomes have acquired various accessory structures to facilitate these disparate functions. In some eukaryotic lineages, mother centrioles can be distinguished from their daughter by the presence of appendages at their distal end, which anchor microtubule minus ends and tether Golgi-derived vesicles involved in ciliogenesis. Moreover, in vertebrate cells, centrosomes are surrounded by a system of cytoplasmic granules known as centriolar satellites. In this review, we will discuss these centriolar accessories and outline recent findings pertaining to their composition, assembly and regulation.
Collapse
Affiliation(s)
- Julia Tischer
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | - Sarah Carden
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | - Fanni Gergely
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK; Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU, UK.
| |
Collapse
|
36
|
Jana SC. Centrosome structure and biogenesis: Variations on a theme? Semin Cell Dev Biol 2021; 110:123-138. [PMID: 33455859 DOI: 10.1016/j.semcdb.2020.10.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/19/2020] [Accepted: 10/29/2020] [Indexed: 12/30/2022]
Abstract
Centrosomes are composed of two orthogonally arranged centrioles surrounded by an electron-dense matrix called the pericentriolar material (PCM). Centrioles are cylinders with diameters of ~250 nm, are several hundred nanometres in length and consist of 9-fold symmetrically arranged microtubules (MT). In dividing animal cells, centrosomes act as the principal MT-organising centres and they also organise actin, which tunes cytoplasmic MT nucleation. In some specialised cells, the centrosome acquires additional critical structures and converts into the base of a cilium with diverse functions including signalling and motility. These structures are found in most eukaryotes and are essential for development and homoeostasis at both cellular and organism levels. The ultrastructure of centrosomes and their derived organelles have been known for more than half a century. However, recent advances in a number of techniques have revealed the high-resolution structures (at Å-to-nm scale resolution) of centrioles and have begun to uncover the molecular principles underlying their properties, including: protein components; structural elements; and biogenesis in various model organisms. This review covers advances in our understanding of the features and processes that are critical for the biogenesis of the evolutionarily conserved structures of the centrosomes. Furthermore, it discusses how variations of these aspects can generate diversity in centrosome structure and function among different species and even between cell types within a multicellular organism.
Collapse
Affiliation(s)
- Swadhin Chandra Jana
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal; National Centre for Biological Sciences-TIFR, Bellary Road, 560065 Bangalore, India.
| |
Collapse
|
37
|
Bornens M. Centrosome organization and functions. Curr Opin Struct Biol 2020; 66:199-206. [PMID: 33338884 DOI: 10.1016/j.sbi.2020.11.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/23/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023]
Abstract
The centrosome, discovered near 1875, was named by Boveri when proposing the chromosomal theory of heredity. After a long eclipse, a considerable amount of molecular data has been accumulated on the centrosome and its biogenesis in the last 30 years, summarized regularly in excellent reviews. Major questions are still at stake in 2021 however, as we lack a comprehensive view of the centrosome functions. I will first try to see how progress towards a unified view of the role of centrosomes during evolution is possible, and then review recent data on only some of the many important questions raised by this organelle.
Collapse
Affiliation(s)
- Michel Bornens
- Institut Curie, PSL University, CNRS - UMR 144, 75005 Paris, France.
| |
Collapse
|
38
|
Abstract
Centrosomes are the main microtubule-organizing centers in animal cells, indispensable for cell division and the building of a wide range of cilia, which include sensory and motile cilia. We are now inviting submissions related to the fascinating field of centrosomes, cilia and all of the processes that they are involved in with the aim of highlighting this work in a Special Collection.
Collapse
|
39
|
Zhao H, Yang S, Chen Q, Duan X, Li G, Huang Q, Zhu X, Yan X. Cep57 and Cep57l1 function redundantly to recruit the Cep63-Cep152 complex for centriole biogenesis. J Cell Sci 2020; 133:jcs241836. [PMID: 32503940 DOI: 10.1242/jcs.241836] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 05/27/2020] [Indexed: 12/30/2022] Open
Abstract
The Cep63-Cep152 complex located at the mother centriole recruits Plk4 to initiate centriole biogenesis. How the complex is targeted to mother centrioles, however, is unclear. In this study, we show that Cep57 and its paralog, Cep57l1, colocalize with Cep63 and Cep152 at the proximal end of mother centrioles in both cycling cells and multiciliated cells undergoing centriole amplification. Both Cep57 and Cep57l1 bind to the centrosomal targeting region of Cep63. The depletion of both proteins, but not either one, blocks loading of the Cep63-Cep152 complex to mother centrioles and consequently prevents centriole duplication. We propose that Cep57 and Cep57l1 function redundantly to ensure recruitment of the Cep63-Cep152 complex to the mother centrioles for procentriole formation.
Collapse
Affiliation(s)
- Huijie Zhao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Sen Yang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingxia Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
| | - Xiaomeng Duan
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Guoqing Li
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qiongping Huang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xueliang Zhu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
| | - Xiumin Yan
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
40
|
Wilhelm T, Said M, Naim V. DNA Replication Stress and Chromosomal Instability: Dangerous Liaisons. Genes (Basel) 2020; 11:E642. [PMID: 32532049 PMCID: PMC7348713 DOI: 10.3390/genes11060642] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 12/16/2022] Open
Abstract
Chromosomal instability (CIN) is associated with many human diseases, including neurodevelopmental or neurodegenerative conditions, age-related disorders and cancer, and is a key driver for disease initiation and progression. A major source of structural chromosome instability (s-CIN) leading to structural chromosome aberrations is "replication stress", a condition in which stalled or slowly progressing replication forks interfere with timely and error-free completion of the S phase. On the other hand, mitotic errors that result in chromosome mis-segregation are the cause of numerical chromosome instability (n-CIN) and aneuploidy. In this review, we will discuss recent evidence showing that these two forms of chromosomal instability can be mechanistically interlinked. We first summarize how replication stress causes structural and numerical CIN, focusing on mechanisms such as mitotic rescue of replication stress (MRRS) and centriole disengagement, which prevent or contribute to specific types of structural chromosome aberrations and segregation errors. We describe the main outcomes of segregation errors and how micronucleation and aneuploidy can be the key stimuli promoting inflammation, senescence, or chromothripsis. At the end, we discuss how CIN can reduce cellular fitness and may behave as an anticancer barrier in noncancerous cells or precancerous lesions, whereas it fuels genomic instability in the context of cancer, and how our current knowledge may be exploited for developing cancer therapies.
Collapse
Affiliation(s)
- Therese Wilhelm
- CNRS UMR9019 Genome Integrity and Cancers, Université Paris Saclay, Gustave Roussy, 94805 Villejuif, France; (T.W.); (M.S.)
- UMR144 Cell Biology and Cancer, Institut Curie, 75005 Paris, France
| | - Maha Said
- CNRS UMR9019 Genome Integrity and Cancers, Université Paris Saclay, Gustave Roussy, 94805 Villejuif, France; (T.W.); (M.S.)
| | - Valeria Naim
- CNRS UMR9019 Genome Integrity and Cancers, Université Paris Saclay, Gustave Roussy, 94805 Villejuif, France; (T.W.); (M.S.)
| |
Collapse
|
41
|
Arslanhan MD, Gulensoy D, Firat-Karalar EN. A Proximity Mapping Journey into the Biology of the Mammalian Centrosome/Cilium Complex. Cells 2020; 9:E1390. [PMID: 32503249 PMCID: PMC7348975 DOI: 10.3390/cells9061390] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 05/23/2020] [Accepted: 05/27/2020] [Indexed: 02/07/2023] Open
Abstract
The mammalian centrosome/cilium complex is composed of the centrosome, the primary cilium and the centriolar satellites, which together regulate cell polarity, signaling, proliferation and motility in cells and thereby development and homeostasis in organisms. Accordingly, deregulation of its structure and functions is implicated in various human diseases including cancer, developmental disorders and neurodegenerative diseases. To better understand these disease connections, the molecular underpinnings of the assembly, maintenance and dynamic adaptations of the centrosome/cilium complex need to be uncovered with exquisite detail. Application of proximity-based labeling methods to the centrosome/cilium complex generated spatial and temporal interaction maps for its components and provided key insights into these questions. In this review, we first describe the structure and cell cycle-linked regulation of the centrosome/cilium complex. Next, we explain the inherent biochemical and temporal limitations in probing the structure and function of the centrosome/cilium complex and describe how proximity-based labeling approaches have addressed them. Finally, we explore current insights into the knowledge we gained from the proximity mapping studies as it pertains to centrosome and cilium biogenesis and systematic characterization of the centrosome, cilium and centriolar satellite interactomes.
Collapse
Affiliation(s)
| | | | - Elif Nur Firat-Karalar
- Department of Molecular Biology and Genetics, Koc University, 34450 Istanbul, Turkey; (M.D.A.); (D.G.)
| |
Collapse
|
42
|
Debec A, Loppin B, Zheng C, Liu X, Megraw TL. The Enigma of Centriole Loss in the 1182-4 Cell Line. Cells 2020; 9:cells9051300. [PMID: 32456186 PMCID: PMC7290863 DOI: 10.3390/cells9051300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/19/2020] [Accepted: 05/19/2020] [Indexed: 02/07/2023] Open
Abstract
The Drosophila melanogaster cell line 1182-4, which constitutively lacks centrioles, was established many years ago from haploid embryos laid by females homozygous for the maternal haploid (mh) mutation. This was the first clear example of animal cells regularly dividing in the absence of this organelle. However, the cause of the acentriolar nature of the 1182-4 cell line remained unclear and could not be clearly assigned to a particular genetic event. Here, we detail historically the longstanding mystery of the lack of centrioles in this Drosophila cell line. Recent advances, such as the characterization of the mh gene and the genomic analysis of 1182-4 cells, allow now a better understanding of the physiology of these cells. By combining these new data, we propose three reasonable hypotheses of the genesis of this remarkable phenotype.
Collapse
Affiliation(s)
- Alain Debec
- Institute of Ecology and Environmental Sciences, iEES, Sorbonne University, UPEC, CNRS, IRD, INRA, F-75005 Paris, France
- Correspondence: (A.D.); (B.L.); (T.L.M.)
| | - Benjamin Loppin
- Laboratoire de Biologie et de Modélisation de la Cellule—CNRS UMR 5239, École Normale Supérieure de Lyon, University of Lyon, F-69007 Lyon, France
- Correspondence: (A.D.); (B.L.); (T.L.M.)
| | - Chunfeng Zheng
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306-4300, USA;
| | - Xiuwen Liu
- Department of Computer Science, Florida State University, Tallahassee, FL 32306-4530, USA;
| | - Timothy L. Megraw
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306-4300, USA;
- Correspondence: (A.D.); (B.L.); (T.L.M.)
| |
Collapse
|
43
|
Collins C, Majekodunmi A, Mitchell B. Centriole Number and the Accumulation of Microtubules Modulate the Timing of Apical Insertion during Radial Intercalation. Curr Biol 2020; 30:1958-1964.e3. [PMID: 32243862 PMCID: PMC7239760 DOI: 10.1016/j.cub.2020.03.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 02/03/2020] [Accepted: 03/05/2020] [Indexed: 12/13/2022]
Abstract
Centrioles are microtubule (MT)-based structures that provide important functions during cell migration, cell division, and cell signaling [1]. Modulating centriole number in 3D cell cultures has been shown to influence protrusive behavior [2-5]. Here, we address in vivo the role of centrioles and the accumulation of MTs on the protrusive behavior required during the initiation of radial intercalation. Radial intercalation is an important developmental process whereby cells undergo polarized movements and interdigitate into a more superficial layer [6, 7]. It is commonly employed during metamorphic events, such as the tissue thinning coupled with expansion or during the introduction of different cell types into an epithelium. During radial intercalation, cells emerge from a basal layer by undergoing a process of apical migration, apical insertion, and expansion [8]. In Xenopus skin, multiciliated cells (MCCs), which contain ∼150 centrioles, and ionocytes (ICs), which contain two centrioles, differentiate during the same developmental window, but MCCs complete intercalation prior to ICs. Here, we utilize this difference in timing to create a quantifiable assay for insertion and find that the timing of insertion is modulated by changes in centriole number and the accumulation of acetylated MTs. Additionally, centrioles align between the nucleus and the leading edge creating an axis of migration with apically oriented (+) ends. Using the MT (-) end protein CAMSAP1 fused to the apically positioned Par6 protein, we have artificially reversed the orientation of MTs and find that the accumulation of MTs in either orientation is sufficient to promote apical insertion.
Collapse
Affiliation(s)
- Caitlin Collins
- Department of Cell and Developmental Biology, Lurie Comprehensive Cancer Center, Northwestern University, Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL 60611, USA
| | - Ahmed Majekodunmi
- Department of Cell and Developmental Biology, Lurie Comprehensive Cancer Center, Northwestern University, Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL 60611, USA
| | - Brian Mitchell
- Department of Cell and Developmental Biology, Lurie Comprehensive Cancer Center, Northwestern University, Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL 60611, USA.
| |
Collapse
|
44
|
Pierron M, Kalbfuss N, Borrego-Pinto J, Lénárt P, Gönczy P. Centriole foci persist in starfish oocytes despite Polo-like kinase 1 inactivation or loss of microtubule nucleation activity. Mol Biol Cell 2020; 31:873-880. [PMID: 32073992 PMCID: PMC7185973 DOI: 10.1091/mbc.e19-06-0346] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 02/05/2020] [Accepted: 02/11/2020] [Indexed: 11/29/2022] Open
Abstract
Centrioles must be eliminated or inactivated from the oocyte to ensure that only the two functional centrioles contributed by the sperm are present in the zygote. Such removal can occur during oogenesis, as in Drosophila, where departure of Polo kinase from centrosomes leads to loss of microtubule nucleating activity and centriole removal. In other species, oocyte-derived centrioles are removed around the time of fertilization through incompletely understood mechanisms. Here, we use confocal imaging of live starfish oocytes and zygotes expressing markers of microtubule nucleating activity and centrioles to investigate this question. We first assay the role of Polo-like kinase 1 (Plk1) in centriole elimination. We find that although Plk1 localizes around oocyte-derived centrioles, kinase impairment with BI-2536 does not protect centrioles from removal in the bat star Patiria miniata. Moreover, we uncover that all four oocyte-derived centrioles lose microtubule nucleating activity when retained experimentally in the zygote of the radiate star Asterias forbesi. Interestingly, two such centrioles nevertheless retain the centriolar markers mEGFP::PACT and pmPoc1::mEGFP. Together, these findings indicate that centrioles can persist when Plk1 activity is impaired, as well as when microtubule nucleating activity is lacking, uncovering further diversity in the mechanisms governing centriole removal.
Collapse
Affiliation(s)
- Marie Pierron
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Nils Kalbfuss
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Joana Borrego-Pinto
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), D-69117 Heidelberg, Germany
| | - Péter Lénárt
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), D-69117 Heidelberg, Germany
- Max Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany
| | - Pierre Gönczy
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
45
|
von der Heyde EL, Hallmann A. Babo1, formerly Vop1 and Cop1/2, is no eyespot photoreceptor but a basal body protein illuminating cell division in Volvox carteri. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:276-298. [PMID: 31778231 DOI: 10.1111/tpj.14623] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/29/2019] [Accepted: 11/19/2019] [Indexed: 06/10/2023]
Abstract
In photosynthetic organisms many processes are light dependent and sensing of light requires light-sensitive proteins. The supposed eyespot photoreceptor protein Babo1 (formerly Vop1) has previously been classified as an opsin due to the capacity for binding retinal. Here, we analyze Babo1 and provide evidence that it is no opsin. Due to the localization at the basal bodies, the former Vop1 and Cop1/2 proteins were renamed V.c. Babo1 and C.r. Babo1. We reveal a large family of more than 60 Babo1-related proteins from a wide range of species. The detailed subcellular localization of fluorescence-tagged Babo1 shows that it accumulates at the basal apparatus. More precisely, it is located predominantly at the basal bodies and to a lesser extent at the four strands of rootlet microtubules. We trace Babo1 during basal body separation and cell division. Dynamic structural rearrangements of Babo1 particularly occur right before the first cell division. In four-celled embryos Babo1 was exclusively found at the oldest basal bodies of the embryo and on the corresponding d-roots. The unequal distribution of Babo1 in four-celled embryos could be an integral part of a geometrical system in early embryogenesis, which establishes the anterior-posterior polarity and influences the spatial arrangement of all embryonic structures and characteristics. Due to its retinal-binding capacity, Babo1 could also be responsible for the unequal distribution of retinoids, knowing that such concentration gradients of retinoids can be essential for the correct patterning during embryogenesis of more complex organisms. Thus, our findings push the Babo1 research in another direction.
Collapse
Affiliation(s)
- Eva L von der Heyde
- Department of Cellular and Developmental Biology of Plants, University of Bielefeld, Universitätsstr 25, 33615, Bielefeld, Germany
| | - Armin Hallmann
- Department of Cellular and Developmental Biology of Plants, University of Bielefeld, Universitätsstr 25, 33615, Bielefeld, Germany
| |
Collapse
|
46
|
Galletta BJ, Ortega JM, Smith SL, Fagerstrom CJ, Fear JM, Mahadevaraju S, Oliver B, Rusan NM. Sperm Head-Tail Linkage Requires Restriction of Pericentriolar Material to the Proximal Centriole End. Dev Cell 2020; 53:86-101.e7. [PMID: 32169161 DOI: 10.1016/j.devcel.2020.02.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/22/2019] [Accepted: 02/07/2020] [Indexed: 01/27/2023]
Abstract
The centriole, or basal body, is the center of attachment between the sperm head and tail. While the distal end of the centriole templates the cilia, the proximal end associates with the nucleus. Using Drosophila, we identify a centriole-centric mechanism that ensures proper proximal end docking to the nucleus. This mechanism relies on the restriction of pericentrin-like protein (PLP) and the pericentriolar material (PCM) to the proximal end of the centriole. PLP is restricted proximally by limiting its mRNA and protein to the earliest stages of centriole elongation. Ectopic positioning of PLP to more distal portions of the centriole is sufficient to redistribute PCM and microtubules along the entire centriole length. This results in erroneous, lateral centriole docking to the nucleus, leading to spermatid decapitation as a result of a failure to form a stable head-tail linkage.
Collapse
Affiliation(s)
- Brian J Galletta
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Jacob M Ortega
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Samantha L Smith
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Carey J Fagerstrom
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Justin M Fear
- Developmental Genomics Section, Laboratory of Cell and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sharvani Mahadevaraju
- Developmental Genomics Section, Laboratory of Cell and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Brian Oliver
- Developmental Genomics Section, Laboratory of Cell and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nasser M Rusan
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
47
|
NANOG/NANOGP8 Localizes at the Centrosome and is Spatiotemporally Associated with Centriole Maturation. Cells 2020; 9:cells9030692. [PMID: 32168958 PMCID: PMC7140602 DOI: 10.3390/cells9030692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 12/20/2022] Open
Abstract
NANOG is a transcription factor involved in the regulation of pluripotency and stemness. The functional paralog of NANOG, NANOGP8, differs from NANOG in only three amino acids and exhibits similar reprogramming activity. Given the transcriptional regulatory role played by NANOG, the nuclear localization of NANOG/NANOGP8 has primarily been considered to date. In this study, we investigated the intriguing extranuclear localization of NANOG and demonstrated that a substantial pool of NANOG/NANOGP8 is localized at the centrosome. Using double immunofluorescence, the colocalization of NANOG protein with pericentrin was identified by two independent anti-NANOG antibodies among 11 tumor and non-tumor cell lines. The validity of these observations was confirmed by transient expression of GFP-tagged NANOG, which also colocalized with pericentrin. Mass spectrometry of the anti-NANOG immunoprecipitated samples verified the antibody specificity and revealed the expression of both NANOG and NANOGP8, which was further confirmed by real-time PCR. Using cell fractionation, we show that a considerable amount of NANOG protein is present in the cytoplasm of RD and NTERA-2 cells. Importantly, cytoplasmic NANOG was unevenly distributed at the centrosome pair during the cell cycle and colocalized with the distal region of the mother centriole, and its presence was markedly associated with centriole maturation. Along with the finding that the centrosomal localization of NANOG/NANOGP8 was detected in various tumor and non-tumor cell types, these results provide the first evidence suggesting a common centrosome-specific role of NANOG.
Collapse
|
48
|
Barabino A, Flamier A, Hanna R, Héon E, Freedman BS, Bernier G. Deregulation of Neuro-Developmental Genes and Primary Cilium Cytoskeleton Anomalies in iPSC Retinal Sheets from Human Syndromic Ciliopathies. Stem Cell Reports 2020; 14:357-373. [PMID: 32160518 PMCID: PMC7066374 DOI: 10.1016/j.stemcr.2020.02.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 01/22/2023] Open
Abstract
Ciliopathies are heterogeneous genetic diseases affecting primary cilium structure and function. Meckel-Gruber (MKS) and Bardet-Biedl (BBS) syndromes are severe ciliopathies characterized by skeletal and neurodevelopment anomalies, including polydactyly, cognitive impairment, and retinal degeneration. We describe the generation and molecular characterization of human induced pluripotent stem cell (iPSC)-derived retinal sheets (RSs) from controls, and MKS (TMEM67) and BBS (BBS10) cases. MKS and BBS RSs displayed significant common alterations in the expression of hundreds of developmental genes and members of the WNT and BMP pathways. Induction of crystallin molecular chaperones was prominent in MKS and BBS RSs suggesting a stress response to misfolded proteins. Unique to MKS photoreceptors was the presence of supernumerary centrioles and cilia, and aggregation of ciliary proteins. Unique to BBS photoreceptors was the accumulation of DNA damage and activation of the mitotic spindle checkpoint. This study reveals how combining cell reprogramming, organogenesis, and next-generation sequencing enables the elucidation of mechanisms involved in human ciliopathies.
Collapse
Affiliation(s)
- Andrea Barabino
- Stem Cell and Developmental Biology Laboratory, Hôpital Maisonneuve-Rosemont, 5415 Boul. Assomption, Montreal, QC H1T 2M4, Canada
| | - Anthony Flamier
- Stem Cell and Developmental Biology Laboratory, Hôpital Maisonneuve-Rosemont, 5415 Boul. Assomption, Montreal, QC H1T 2M4, Canada
| | - Roy Hanna
- Stem Cell and Developmental Biology Laboratory, Hôpital Maisonneuve-Rosemont, 5415 Boul. Assomption, Montreal, QC H1T 2M4, Canada
| | - Elise Héon
- Hospital for Sick Children, Department of Ophthalmology and Vision Sciences, Program of Genetics and Genome Biology, 555 University av., Toronto, ON M5G 1X8, Canada
| | - Benjamin S Freedman
- Department of Medicine, Division of Nephrology, Kidney Research Institute, and Institute of Stem Cell and Regenerative Medicine, and Department of Pathology, University of Washington School of Medicine, Seattle, WA 98109, USA.
| | - Gilbert Bernier
- Stem Cell and Developmental Biology Laboratory, Hôpital Maisonneuve-Rosemont, 5415 Boul. Assomption, Montreal, QC H1T 2M4, Canada; Department of Neurosciences, University of Montreal, Montreal, QC H3C 3J7, Canada; Department of Ophthalmology, University of Montreal, Montreal, QC H3C 3J7, Canada.
| |
Collapse
|
49
|
Targeting centrosome amplification, an Achilles' heel of cancer. Biochem Soc Trans 2020; 47:1209-1222. [PMID: 31506331 PMCID: PMC6824836 DOI: 10.1042/bst20190034] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/08/2019] [Accepted: 08/13/2019] [Indexed: 12/12/2022]
Abstract
Due to cell-cycle dysregulation, many cancer cells contain more than the normal compliment of centrosomes, a state referred to as centrosome amplification (CA). CA can drive oncogenic phenotypes and indeed can cause cancer in flies and mammals. However, cells have to actively manage CA, often by centrosome clustering, in order to divide. Thus, CA is also an Achilles' Heel of cancer cells. In recent years, there have been many important studies identifying proteins required for the management of CA and it has been demonstrated that disruption of some of these proteins can cause cancer-specific inhibition of cell growth. For certain targets therapeutically relevant interventions are being investigated, for example, small molecule inhibitors, although none are yet in clinical trials. As the field is now poised to move towards clinically relevant interventions, it is opportune to summarise the key work in targeting CA thus far, with particular emphasis on recent developments where small molecule or other strategies have been proposed. We also highlight the relatively unexplored paradigm of reversing CA, and thus its oncogenic effects, for therapeutic gain.
Collapse
|
50
|
Remo A, Li X, Schiebel E, Pancione M. The Centrosome Linker and Its Role in Cancer and Genetic Disorders. Trends Mol Med 2020; 26:380-393. [PMID: 32277932 DOI: 10.1016/j.molmed.2020.01.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/26/2019] [Accepted: 01/21/2020] [Indexed: 02/07/2023]
Abstract
Centrosome cohesion, the joining of the two centrosomes of a cell, is increasingly appreciated as a major regulator of cell functions such as Golgi organization and cilia positioning. One major element of centrosome cohesion is the centrosome linker that consists of a growing number of proteins. The timely disassembly of the centrosome linker enables centrosomes to separate and assemble a functional bipolar mitotic spindle that is crucial for maintaining genomic integrity. Exciting new findings link centrosome linker defects to cell transformation and genetic disorders. We review recent data on the molecular mechanisms of the assembly and disassembly of the centrosome linker, and discuss how defects in the proper execution of these processes cause DNA damage and genomic instability leading to disease.
Collapse
Affiliation(s)
- Andrea Remo
- Pathology Unit, Mater Salutis Hospital, Azienda Unità Locale Socio Sanitaria (AULSS) 9 'Scaligera', Verona, Italy
| | - Xue Li
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Deutsches Krebsforschungszentrum (DKFZ)-ZMBH Allianz, Heidelberg, Germany; Heidelberg Biosciences International Graduate School (HBIGS), Universität Heidelberg, Heidelberg, Germany
| | - Elmar Schiebel
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Deutsches Krebsforschungszentrum (DKFZ)-ZMBH Allianz, Heidelberg, Germany.
| | - Massimo Pancione
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy; Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain.
| |
Collapse
|