1
|
Bu W, Di J, Zhao J, Liu R, Wu Y, Ran J, Li T. Dynein Light Intermediate Chains Exhibit Different Arginine Methylation Patterns. J Clin Lab Anal 2024; 38:e25030. [PMID: 38525916 PMCID: PMC11033342 DOI: 10.1002/jcla.25030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 03/26/2024] Open
Abstract
BACKGROUND The motor protein dynein is integral to retrograde transport along microtubules and interacts with numerous cargoes through the recruitment of cargo-specific adaptor proteins. This interaction is mediated by dynein light intermediate chain subunits LIC1 (DYNC1LI1) and LIC2 (DYNC1LI2), which govern the adaptor binding and are present in distinct dynein complexes with overlapping and unique functions. METHODS Using bioinformatics, we analyzed the C-terminal domains (CTDs) of LIC1 and LIC2, revealing similar structural features but diverse post-translational modifications (PTMs). The methylation status of LIC2 and the proteins involved in this modification were examined through immunoprecipitation and immunoblotting analyses. The specific methylation sites on LIC2 were identified through a site-directed mutagenesis analysis, contributing to a deeper understanding of the regulatory mechanisms of the dynein complex. RESULTS We found that LIC2 is specifically methylated at the arginine 397 residue, a reaction that is catalyzed by protein arginine methyltransferase 1 (PRMT1). CONCLUSIONS The distinct PTMs of the LIC subunits offer a versatile mechanism for dynein to transport diverse cargoes efficiently. Understanding how these PTMs influence the functions of LIC2, and how they differ from LIC1, is crucial for elucidating the role of dynein-related transport pathways in a range of diseases. The discovery of the arginine 397 methylation site on LIC2 enhances our insight into the regulatory PTMs of dynein functions.
Collapse
Affiliation(s)
- Weiwen Bu
- Department of Genetics and Cell Biology, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life SciencesNankai UniversityTianjinChina
| | - Jie Di
- Department of Genetics and Cell Biology, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life SciencesNankai UniversityTianjinChina
| | - Junkui Zhao
- Department of Genetics and Cell Biology, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life SciencesNankai UniversityTianjinChina
| | - Ruming Liu
- Department of Genetics and Cell Biology, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life SciencesNankai UniversityTianjinChina
| | - Yue Wu
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life SciencesShandong Normal UniversityJinanChina
| | - Jie Ran
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life SciencesShandong Normal UniversityJinanChina
| | - Te Li
- Department of Genetics and Cell Biology, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life SciencesNankai UniversityTianjinChina
| |
Collapse
|
2
|
Rao L, Gennerich A. Structure and Function of Dynein's Non-Catalytic Subunits. Cells 2024; 13:330. [PMID: 38391943 PMCID: PMC10886578 DOI: 10.3390/cells13040330] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024] Open
Abstract
Dynein, an ancient microtubule-based motor protein, performs diverse cellular functions in nearly all eukaryotic cells, with the exception of land plants. It has evolved into three subfamilies-cytoplasmic dynein-1, cytoplasmic dynein-2, and axonemal dyneins-each differentiated by their cellular functions. These megadalton complexes consist of multiple subunits, with the heavy chain being the largest subunit that generates motion and force along microtubules by converting the chemical energy of ATP hydrolysis into mechanical work. Beyond this catalytic core, the functionality of dynein is significantly enhanced by numerous non-catalytic subunits. These subunits are integral to the complex, contributing to its stability, regulating its enzymatic activities, targeting it to specific cellular locations, and mediating its interactions with other cofactors. The diversity of non-catalytic subunits expands dynein's cellular roles, enabling it to perform critical tasks despite the conservation of its heavy chains. In this review, we discuss recent findings and insights regarding these non-catalytic subunits.
Collapse
Affiliation(s)
- Lu Rao
- Department of Biochemistry and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Arne Gennerich
- Department of Biochemistry and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
3
|
Garner KE, Salter A, Lau CK, Gurusaran M, Villemant CM, Granger EP, McNee G, Woodman PG, Davies OR, Burke BE, Allan VJ. The meiotic LINC complex component KASH5 is an activating adaptor for cytoplasmic dynein. J Cell Biol 2023; 222:e202204042. [PMID: 36946995 PMCID: PMC10071310 DOI: 10.1083/jcb.202204042] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 12/15/2022] [Accepted: 02/10/2023] [Indexed: 03/23/2023] Open
Abstract
Cytoplasmic dynein-driven movement of chromosomes during prophase I of mammalian meiosis is essential for synapsis and genetic exchange. Dynein connects to chromosome telomeres via KASH5 and SUN1 or SUN2, which together span the nuclear envelope. Here, we show that KASH5 promotes dynein motility in vitro, and cytosolic KASH5 inhibits dynein's interphase functions. KASH5 interacts with a dynein light intermediate chain (DYNC1LI1 or DYNC1LI2) via a conserved helix in the LIC C-terminal, and this region is also needed for dynein's recruitment to other cellular membranes. KASH5's N-terminal EF-hands are essential as the interaction with dynein is disrupted by mutation of key calcium-binding residues, although it is not regulated by cellular calcium levels. Dynein can be recruited to KASH5 at the nuclear envelope independently of dynactin, while LIS1 is essential for dynactin incorporation into the KASH5-dynein complex. Altogether, we show that the transmembrane protein KASH5 is an activating adaptor for dynein and shed light on the hierarchy of assembly of KASH5-dynein-dynactin complexes.
Collapse
Affiliation(s)
- Kirsten E.L. Garner
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Anna Salter
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- A*STAR Institute of Medical Biology, Singapore, Singapore
| | - Clinton K. Lau
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, UK
| | - Manickam Gurusaran
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Cécile M. Villemant
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Elizabeth P. Granger
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Gavin McNee
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Philip G. Woodman
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Owen R. Davies
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Brian E. Burke
- A*STAR Institute of Medical Biology, Singapore, Singapore
| | - Victoria J. Allan
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- A*STAR Institute of Medical Biology, Singapore, Singapore
| |
Collapse
|
4
|
Hernandez-Perez I, Rubio J, Baumann A, Girao H, Ferrando M, Rebollo E, Aragay AM, Geli MI. Kazrin promotes dynein/dynactin-dependent traffic from early to recycling endosomes. eLife 2023; 12:e83793. [PMID: 37096882 PMCID: PMC10181827 DOI: 10.7554/elife.83793] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 04/24/2023] [Indexed: 04/26/2023] Open
Abstract
Kazrin is a protein widely expressed in vertebrates whose depletion causes a myriad of developmental defects, in part derived from altered cell adhesion and migration, as well as failure to undergo epidermal to mesenchymal transition. However, the primary molecular role of kazrin, which might contribute to all these functions, has not been elucidated yet. We previously identified one of its isoforms, kazrin C, as a protein that potently inhibits clathrin-mediated endocytosis when overexpressed. We now generated kazrin knock-out mouse embryonic fibroblasts to investigate its endocytic function. We found that kazrin depletion delays juxtanuclear enrichment of internalized material, indicating a role in endocytic traffic from early to recycling endosomes. Consistently, we found that the C-terminal domain of kazrin C, predicted to be an intrinsically disordered region, directly interacts with several early endosome (EE) components, and that kazrin depletion impairs retrograde motility of these organelles. Further, we noticed that the N-terminus of kazrin C shares homology with dynein/dynactin adaptors and that it directly interacts with the dynactin complex and the dynein light intermediate chain 1. Altogether, the data indicate that one of the primary kazrin functions is to facilitate endocytic recycling by promoting dynein/dynactin-dependent transport of EEs or EE-derived transport intermediates to the recycling endosomes.
Collapse
Affiliation(s)
- Ines Hernandez-Perez
- Institute for Molecular Biology of Barcelona (IBMB, CSIC), Baldiri Reixac 15BarcelonaSpain
| | - Javier Rubio
- Institute for Molecular Biology of Barcelona (IBMB, CSIC), Baldiri Reixac 15BarcelonaSpain
| | - Adrian Baumann
- Institute for Molecular Biology of Barcelona (IBMB, CSIC), Baldiri Reixac 15BarcelonaSpain
| | - Henrique Girao
- Institute for Molecular Biology of Barcelona (IBMB, CSIC), Baldiri Reixac 15BarcelonaSpain
| | - Miriam Ferrando
- Institute for Molecular Biology of Barcelona (IBMB, CSIC), Baldiri Reixac 15BarcelonaSpain
| | - Elena Rebollo
- Institute for Molecular Biology of Barcelona (IBMB, CSIC), Baldiri Reixac 15BarcelonaSpain
| | - Anna M Aragay
- Institute for Molecular Biology of Barcelona (IBMB, CSIC), Baldiri Reixac 15BarcelonaSpain
| | - María Isabel Geli
- Institute for Molecular Biology of Barcelona (IBMB, CSIC), Baldiri Reixac 15BarcelonaSpain
| |
Collapse
|
5
|
Gould R, Brady S. Identifying mRNAs Residing in Myelinating Oligodendrocyte Processes as a Basis for Understanding Internode Autonomy. Life (Basel) 2023; 13:945. [PMID: 37109474 PMCID: PMC10142070 DOI: 10.3390/life13040945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
In elaborating and maintaining myelin sheaths on multiple axons/segments, oligodendrocytes distribute translation of some proteins, including myelin basic protein (MBP), to sites of myelin sheath assembly, or MSAS. As mRNAs located at these sites are selectively trapped in myelin vesicles during tissue homogenization, we performed a screen to identify some of these mRNAs. To confirm locations, we used real-time quantitative polymerase chain reaction (RT-qPCR), to measure mRNA levels in myelin (M) and 'non-myelin' pellet (P) fractions, and found that five (LPAR1, TRP53INP2, TRAK2, TPPP, and SH3GL3) of thirteen mRNAs were highly enriched in myelin (M/P), suggesting residences in MSAS. Because expression by other cell-types will increase p-values, some MSAS mRNAs might be missed. To identify non-oligodendrocyte expression, we turned to several on-line resources. Although neurons express TRP53INP2, TRAK2 and TPPP mRNAs, these expressions did not invalidate recognitions as MSAS mRNAs. However, neuronal expression likely prevented recognition of KIF1A and MAPK8IP1 mRNAs as MSAS residents and ependymal cell expression likely prevented APOD mRNA assignment to MSAS. Complementary in situ hybridization (ISH) is recommended to confirm residences of mRNAs in MSAS. As both proteins and lipids are synthesized in MSAS, understanding myelination should not only include efforts to identify proteins synthesized in MSAS, but also the lipids.
Collapse
Affiliation(s)
- Robert Gould
- Whitman Research Center, Marine Biology Laboratory, Woods Hole, MA 02543, USA
| | - Scott Brady
- Departments of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA;
| |
Collapse
|
6
|
Kittock CM, Pilaz LJ. Advances in in utero electroporation. Dev Neurobiol 2023; 83:73-90. [PMID: 36861639 DOI: 10.1002/dneu.22910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/02/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023]
Abstract
In utero electroporation (IUE) is a technique developed in the early 2000s to transfect the neurons and neural progenitors of embryonic brains, thus enabling continued development in utero and subsequent analyses of neural development. Early IUE experiments focused on ectopic expression of plasmid DNA to analyze parameters such as neuron morphology and migration. Recent advances made in other fields, such as CRISPR/CAS9 genome editing, have been incorporated into IUE techniques as they were developed. Here, we provide a general review of the mechanics and techniques involved in IUE and explore the breadth of approaches that can be used in conjunction with IUE to study cortical development in a rodent model, with a focus on the novel advances in IUE techniques. We also highlight a few cases that exemplify the potential of IUE to study a broad range of questions in neural development.
Collapse
Affiliation(s)
- Claire M Kittock
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, South Dakota, USA
- Sanford School of Medicine, University of South Dakota, Sioux Falls, South Dakota, USA
| | - Louis-Jan Pilaz
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, South Dakota, USA
- Sanford School of Medicine, University of South Dakota, Sioux Falls, South Dakota, USA
| |
Collapse
|
7
|
Yi J, Zhao X, Noell CR, Helmer P, Solmaz SR, Vallee RB. Role of Nesprin-2 and RanBP2 in BICD2-associated brain developmental disorders. PLoS Genet 2023; 19:e1010642. [PMID: 36930595 PMCID: PMC10022797 DOI: 10.1371/journal.pgen.1010642] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 01/28/2023] [Indexed: 03/18/2023] Open
Abstract
Bicaudal D2 (BICD2) is responsible for recruiting cytoplasmic dynein to diverse forms of subcellular cargo for their intracellular transport. Mutations in the human BICD2 gene have been found to cause an autosomal dominant form of spinal muscular atrophy (SMA-LED2), and brain developmental defects. Whether and how the latter mutations are related to roles we and others have identified for BICD2 in brain development remains little understood. BICD2 interacts with the nucleoporin RanBP2 to recruit dynein to the nuclear envelope (NE) of Radial Glial Progenitor cells (RGPs) to mediate their well-known but mysterious cell-cycle-regulated interkinetic nuclear migration (INM) behavior, and their subsequent differentiation to form cortical neurons. We more recently found that BICD2 also mediates NE dynein recruitment in migrating post-mitotic neurons, though via a different interactor, Nesprin-2. Here, we report that Nesprin-2 and RanBP2 compete for BICD2-binding in vitro. To test the physiological implications of this behavior, we examined the effects of known BICD2 mutations using in vitro biochemical and in vivo electroporation-mediated brain developmental assays. We find a clear relationship between the ability of BICD2 to bind RanBP2 vs. Nesprin-2 in controlling of nuclear migration and neuronal migration behavior. We propose that mutually exclusive RanBP2-BICD2 vs. Nesprin-2-BICD2 interactions at the NE play successive, critical roles in INM behavior in RGPs and in post-mitotic neuronal migration and errors in these processes contribute to specific human brain malformations.
Collapse
Affiliation(s)
- Julie Yi
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, United States of America
| | - Xiaoxin Zhao
- Department of Chemistry, Binghamton University, Binghamton, New York, New York, United States of America
| | - Crystal R. Noell
- Department of Chemistry, Binghamton University, Binghamton, New York, New York, United States of America
| | - Paige Helmer
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, United States of America
| | - Sozanne R. Solmaz
- Department of Chemistry, Binghamton University, Binghamton, New York, New York, United States of America
| | - Richard B. Vallee
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, United States of America
| |
Collapse
|
8
|
Braschi B, Omran H, Witman GB, Pazour GJ, Pfister KK, Bruford EA, King SM. Consensus nomenclature for dyneins and associated assembly factors. J Cell Biol 2022; 221:e202109014. [PMID: 35006274 PMCID: PMC8754002 DOI: 10.1083/jcb.202109014] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/10/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022] Open
Abstract
Dyneins are highly complex, multicomponent, microtubule-based molecular motors. These enzymes are responsible for numerous motile behaviors in cytoplasm, mediate retrograde intraflagellar transport (IFT), and power ciliary and flagellar motility. Variants in multiple genes encoding dyneins, outer dynein arm (ODA) docking complex subunits, and cytoplasmic factors involved in axonemal dynein preassembly (DNAAFs) are associated with human ciliopathies and are of clinical interest. Therefore, clear communication within this field is particularly important. Standardizing gene nomenclature, and basing it on orthology where possible, facilitates discussion and genetic comparison across species. Here, we discuss how the human gene nomenclature for dyneins, ODA docking complex subunits, and DNAAFs has been updated to be more functionally informative and consistent with that of the unicellular green alga Chlamydomonas reinhardtii, a key model organism for studying dyneins and ciliary function. We also detail additional nomenclature updates for vertebrate-specific genes that encode dynein chains and other proteins involved in dynein complex assembly.
Collapse
Affiliation(s)
- Bryony Braschi
- HUGO Gene Nomenclature Committee, European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridgeshire, UK
| | - Heymut Omran
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - George B. Witman
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA
| | - Gregory J. Pazour
- Program in Molecular Medicine, University of Massachusetts Medical School, Biotech II, Worcester, MA
| | - K. Kevin Pfister
- Cell Biology Department, School of Medicine University of Virginia, Charlottesville, VA
| | - Elspeth A. Bruford
- HUGO Gene Nomenclature Committee, European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridgeshire, UK
- Department of Haematology, University of Cambridge School of Clinical Medicine, Cambridge, Cambridgeshire, UK
| | - Stephen M. King
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT
| |
Collapse
|
9
|
Rahman F, Johnson JL, Zhang J, He J, Pestonjamasp K, Cherqui S, Catz SD. DYNC1LI2 regulates localization of the chaperone-mediated autophagy receptor LAMP2A and improves cellular homeostasis in cystinosis. Autophagy 2021; 18:1108-1126. [PMID: 34643468 PMCID: PMC9196850 DOI: 10.1080/15548627.2021.1971937] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The dynein motor protein complex is required for retrograde transport but the functions of the intermediate-light chains that form the cargo-binding complex are not elucidated and the importance of individual subunits in maintaining cellular homeostasis is unknown. Here, using mRNA arrays and protein analysis, we show that the dynein subunit, DYNC1LI2 (dynein, cytoplasmic 1 light intermediate chain 2) is downregulated in cystinosis, a lysosomal storage disorder caused by genetic defects in CTNS (cystinosin, lysosomal cystine transporter). Reconstitution of DYNC1LI2 expression in ctns-/- cells reestablished endolysosomal dynamics. Defective vesicular trafficking in cystinotic cells was rescued by DYNC1LI2 expression which correlated with decreased endoplasmic reticulum stress manifested as decreased expression levels of the chaperone HSPA5/GRP78, and the transcription factors ATF4 and DDIT3/CHOP. Mitochondrial fragmentation, membrane potential and endolysosomal-mitochondrial association in cystinotic cells were rescued by DYNC1LI2. Survival of cystinotic cells to oxidative stress was increased by DYNC1LI2 reconstitution but not by its paralog DYNC1LI1, which also failed to decrease ER stress and mitochondrial fragmentation. DYNC1LI2 expression rescued the localization of the chaperone-mediated autophagy (CMA) receptor LAMP2A, CMA activity, cellular homeostasis and LRP2/megalin expression in cystinotic proximal tubule cells, the primary cell type affected in cystinosis. DYNC1LI2 failed to rescue phenotypes in cystinotic cells when LAMP2A was downregulated or when co-expressed with dominant negative (DN) RAB7 or DN-RAB11, which impaired LAMP2A trafficking. DYNC1LI2 emerges as a regulator of cellular homeostasis and potential target to repair underlying trafficking and CMA in cystinosis, a mechanism that is not restored by lysosomal cystine depletion therapies. Abbreviations: ACTB: actin, beta; ATF4: activating transcription factor 4; CMA: chaperone-mediated autophagy; DYNC1LI1: dynein cytoplasmic 1 light intermediate chain 1; DYNC1LI2: dynein cytoplasmic 1 light intermediate chain 2; ER: endoplasmic reticulum; LAMP1: lysosomal associated membrane protein 1; LAMP2A: lysosomal associated membrane protein 2A; LIC: light-intermediate chains; LRP2/Megalin: LDL receptor related protein 2; PTCs: proximal tubule cells; RAB: RAB, member RAS oncogene family; RAB11FIP3: RAB11 family interacting protein 3; RILP: Rab interacting lysosomal protein
Collapse
Affiliation(s)
- Farhana Rahman
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Jennifer L Johnson
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Jinzhong Zhang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Jing He
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Kersi Pestonjamasp
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Stephanie Cherqui
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Sergio D Catz
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
10
|
Hernandez-Toledano D, Vega L. The cytoskeleton as a non-cholinergic target of organophosphate compounds. Chem Biol Interact 2021; 346:109578. [PMID: 34265256 DOI: 10.1016/j.cbi.2021.109578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/19/2021] [Accepted: 07/12/2021] [Indexed: 12/29/2022]
Abstract
Current organophosphate (OP) toxicity research now considers potential non-cholinergic mechanisms for these compounds, since the inhibition of acetylcholinesterase (AChE) cannot completely explain all the adverse biological effects of OP. Thanks to the development of new strategies for OP detection, some potential molecular targets have been identified. Among these molecules are several cytoskeletal proteins, including actin, tubulin, intermediate filament proteins, and associated proteins, such as motor proteins, microtubule-associated proteins (MAPs), and cofilin. in vitro, ex vivo, and some in vivo reports have identified alterations in the cytoskeleton following OP exposure, including cell morphology defects, cells detachments, intracellular transport disruption, aberrant mitotic spindle formation, modification of cell motility, and reduced phagocytic capability, which implicate the cytoskeleton in OP toxicity. Here, we reviewed the evidence indicating the cytoskeletal targets of OP compounds, including their strategies, the potential effects of their alterations, and their possible participation in neurotoxicity, embryonic development, cell division, and immunotoxicity related to OP compounds exposure.
Collapse
Affiliation(s)
- David Hernandez-Toledano
- Department of Toxicology, Center for Research and Advanced Studies of the National Polytechnic Institute. Av. IPN 2508, San Pedro Zacatenco, C.P. 07360, Mexico City, Mexico
| | - Libia Vega
- Department of Toxicology, Center for Research and Advanced Studies of the National Polytechnic Institute. Av. IPN 2508, San Pedro Zacatenco, C.P. 07360, Mexico City, Mexico.
| |
Collapse
|
11
|
[Effect of dexamethasone on the expression of Dynein heavy chain and Dynactin in the cytoplasm of fetal rat cerebral cortical neurons cultured in vitro]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2021; 23. [PMID: 34130788 PMCID: PMC8213999 DOI: 10.7499/j.issn.1008-8830.2103151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
OBJECTIVE To study the effect of dexamethasone (DEX) on the expression of Dynein heavy chain (DHC) and Dynactin in the cytoplasm of fetal rat cerebral cortical neurons cultured in vitro. METHODS Primary cerebral cortical neurons of fetal rats were cultured in vitro and were used to establish a cellular model of DEX intervention. According to the final concentration of DEX, the neurons were divided into three groups:control (without DEX), 0.1 μmol/L DEX, and 1.0 μmol/L DEX. On days 1, 3, and 7 after intervention, the quantitative PCR was used to observe the effect of DEX on the mRNA expression of DHC and Dynactin. The Western blot was used to observe the effect of DEX on the protein expression of DHC and Dynactin. RESULTS There was no significant difference in the mRNA expression levels of DHC and Dynactin among the three groups at all time points (P > 0.05). On day 7 after DEX intervention, the protein expression of DHC in the 1.0 μmol/L DEX group gradually increased and reached the peak over time, which was significantly higher than that in the control and 0.1 μmol/L DEX groups (P < 0.05). The control and 0.1 μmol/L DEX groups had a significant increase in the protein expression of Dynactin from day 1 to days 3 and 7 after DEX intervention (P < 0.05). The control group had a significant increase in the protein expression of Dynactin from day 3 to day 7 after intervention (P < 0.05), while the 0.1 μmol/L DEX group had a significant reduction in the protein expression of Dynactin from day 3 to day 7 after intervention (P < 0.05). On days 3 and 7 after DEX intervention, the 0.1 μmol/L DEX and 1.0 μmol/L DEX groups had a significantly lower protein expression level of Dynactin in the cerebral cortical neurons than the control group (P < 0.05). On day 7 after DEX intervention, the 1.0 μmol/L DEX group had a significantly lower protein expression level of Dynactin than the 0.1 μmol/L DEX group (P < 0.05). CONCLUSIONS DEX affects the protein expression of DHC and Dynactin in the fetal rat cerebral cortical neurons cultured in vitro, possibly in a concentration- and time-dependent manner.
Collapse
|
12
|
Kumari A, Kumar C, Wasnik N, Mylavarapu SVS. Dynein light intermediate chains as pivotal determinants of dynein multifunctionality. J Cell Sci 2021; 134:268315. [PMID: 34014309 DOI: 10.1242/jcs.254870] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In animal cells, a single cytoplasmic dynein motor mediates microtubule minus-end-directed transport, counterbalancing dozens of plus-end-directed kinesins. The remarkable ability of dynein to interact with a diverse cargo spectrum stems from its tightly regulated recruitment of cargo-specific adaptor proteins, which engage the dynactin complex to make a tripartite processive motor. Adaptor binding is governed by the homologous dynein light intermediate chain subunits LIC1 (DYNC1LI1) and LIC2 (DYNC1LI2), which exist in mutually exclusive dynein complexes that can perform both unique and overlapping functions. The intrinsically disordered and variable C-terminal domains of the LICs are indispensable for engaging a variety of structurally divergent adaptors. Here, we hypothesize that numerous spatiotemporally regulated permutations of posttranslational modifications of the LICs, as well as of the adaptors and cargoes, exponentially expand the spectrum of dynein-adaptor-cargo complexes. We thematically illustrate the possibilities that could generate a vast set of biochemical variations required to support the wide range of dynein functions.
Collapse
Affiliation(s)
- Amrita Kumari
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India.,Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Chandan Kumar
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
| | - Neeraj Wasnik
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
| | - Sivaram V S Mylavarapu
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India.,Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| |
Collapse
|
13
|
Vallee RB, Yi J, Quintremil S, Khobrekar N. Roles of the multivalent dynein adaptors BicD2 and RILP in neurons. Neurosci Lett 2021; 752:135796. [PMID: 33667600 DOI: 10.1016/j.neulet.2021.135796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/18/2021] [Accepted: 02/20/2021] [Indexed: 01/18/2023]
Abstract
Cytoplasmic dynein is responsible for all forms of retrograde transport in neurons and other cells. Work over several years has led to the identification of a class of coiled-coil domain containing "adaptor" proteins that are responsible for expanding dynein's range of cargo interactions, as well as regulating dynein motor behavior. This brief review focuses first on the BicD family of adaptor proteins, which clearly serve to expand the number of dynein cargo interactions. RILP, another adaptor protein, also interacts with multiple proteins. Surprisingly, this is to mediate a series of steps within a common pathway, higher eukaryotic autophagy. These distinct features have important implications for understanding the full range of dynein adaptor functions.
Collapse
Affiliation(s)
- Richard B Vallee
- Columbia University, Department of Pathology and Cell Biology, United States
| | - Julie Yi
- Columbia University, Department of Pathology and Cell Biology, United States
| | | | - Noopur Khobrekar
- Columbia University, Department of Pathology and Cell Biology, United States.
| |
Collapse
|
14
|
Gonçalves JC, Quintremil S, Yi J, Vallee RB. Nesprin-2 Recruitment of BicD2 to the Nuclear Envelope Controls Dynein/Kinesin-Mediated Neuronal Migration In Vivo. Curr Biol 2020; 30:3116-3129.e4. [PMID: 32619477 PMCID: PMC9670326 DOI: 10.1016/j.cub.2020.05.091] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/29/2020] [Accepted: 05/28/2020] [Indexed: 01/06/2023]
Abstract
Vertebrate brain development depends on a complex program of cell proliferation and migration. Post-mitotic neuronal migration in the developing cerebral cortex involves Nesprin-2, which recruits cytoplasmic dynein, kinesin, and actin to the nuclear envelope (NE) in other cell types. However, the relative importance of these interactions in neurons has remained poorly understood. To address these issues, we performed in utero electroporation into the developing rat brain to interfere with Nesprin-2 function. We find that an ∼100-kDa "mini" form of the ∼800-kDa Nesprin-2 protein, which binds dynein and kinesin, is sufficient, remarkably, to support neuronal migration. In contrast to dynein's role in forward nuclear migration in these cells, we find that kinesin-1 inhibition accelerates neuronal migration, suggesting a novel role for the opposite-directed motor proteins in regulating migration velocity. In contrast to studies in fibroblasts, the actin-binding domain of Nesprin-2 was dispensable for neuronal migration. We find further that, surprisingly, the motor proteins interact with Nesprin-2 through the dynein/kinesin "adaptor" BicD2, both in neurons and in non-mitotic fibroblasts. Furthermore, mutation of the Nesprin-2 LEWD sequence, implicated in nuclear envelope kinesin recruitment in other systems, interferes with BicD2 binding. Although disruption of the Nesprin-2/BicD2 interaction severely inhibited nuclear movement, centrosome advance proceeded unimpeded, supporting an independent mechanism for centrosome advance. Our data together implicate Nesprin-2 as a novel and fundamentally important form of BicD2 cargo and help explain BicD2's role in neuronal migration and human disease.
Collapse
Affiliation(s)
- João Carlos Gonçalves
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York City, NY 10032, USA; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus of Gualtar, Braga 4710-057, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães 4710-057, Portugal
| | - Sebastian Quintremil
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York City, NY 10032, USA
| | - Julie Yi
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York City, NY 10032, USA
| | - Richard B Vallee
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York City, NY 10032, USA.
| |
Collapse
|
15
|
Sharma A, Dagar S, Mylavarapu SVS. Transgelin-2 and phosphoregulation of the LIC2 subunit of dynein govern mitotic spindle orientation. J Cell Sci 2020; 133:jcs239673. [PMID: 32467330 DOI: 10.1242/jcs.239673] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 04/29/2020] [Indexed: 08/31/2023] Open
Abstract
The molecular motor dynein is essential for mitotic spindle orientation, which defines the axis of cell division. The light intermediate chain subunits, LIC1 and LIC2, define biochemically and functionally distinct vertebrate dynein complexes, with LIC2-dynein playing a crucial role in ensuring spindle orientation. We reveal a novel, mitosis-specific interaction of LIC2-dynein with the cortical actin-bundling protein transgelin-2. Transgelin-2 is required for maintaining proper spindle length, equatorial metaphase chromosome alignment, spindle orientation and timely anaphase onset. We show that transgelin-2 stabilizes the cortical recruitment of LGN-NuMA, which together with dynein is required for spindle orientation. The opposing actions of transgelin-2 and LIC2-dynein maintain optimal cortical levels of LGN-NuMA. In addition, we show that the highly conserved serine 194 phosphorylation of LIC2 is required for proper spindle orientation, by maintaining mitotic centrosome integrity to ensure optimal astral microtubule nucleation. The work reveals two specific mechanisms through which LIC2-dynein regulates mitotic spindle orientation; namely, through a new interactor transgelin-2, which is required for engagement of LGN-NuMA with the actin cortex, and through mitotic phosphoregulation of LIC2 to control microtubule nucleation from the poles.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Amit Sharma
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
- Affiliated to the Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Sunayana Dagar
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
- Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha 751024, India
| | - Sivaram V S Mylavarapu
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
- Affiliated to the Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
- Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha 751024, India
| |
Collapse
|
16
|
Dutta R, Sarkar SR. Role of Dynein and Dynactin (DCTN-1) in Neurodegenerative Diseases. ACTA ACUST UNITED AC 2019. [DOI: 10.33805/2641-8991.123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The pathophysiology and concept of degeneration in central nervous system is very complex and overwhelming at times. There is a complex mechanism which exists among different molecules in the cytoplasm of cell bodies of neurons, antegrade and retrograde axonal transport of cargoes and accumulation of certain substances and proteins which can influence the excitatory neurotransmitter like glutamate initiating the process of neurodegeneration. Neurons have extensive processes and communication between those processes and the cell body is crucial to neuronal function, viability and survival over time with progression of age. Researchers believe neurons are uniquely dependent on microtubule-based cargo transport. There is enough evidence to support that deficits in retrograde axonal transport contribute to pathogenesis in multiple neurodegenerative diseases. Cytoplasmic dynein and its regulation by Dynactin (DCTN1) is the major molecular motor cargo involved in autophagy, mitosis and neuronal cell survival. Mutation in dynactin gene located in 2p13.1,is indeed studied very extensively and is considered to be involved directly or indirectly to various conditions like Perry syndrome, familial and sporadic Amyotrophic lateral sclerosis, Hereditary spastic paraplegia, Spinocerebellar Ataxia (SCA-5), Huntingtons disease, Alzheimers disease, Charcot marie tooth disease, Hereditary motor neuropathy 7B, prion disease, parkinsons disease, malformation of cortical development, polymicrogyria to name a few with exception of Multiple Sclerosis (MS).
Collapse
|
17
|
Will L, Portegies S, van Schelt J, van Luyk M, Jaarsma D, Hoogenraad CC. Dynein activating adaptor BICD2 controls radial migration of upper-layer cortical neurons in vivo. Acta Neuropathol Commun 2019; 7:162. [PMID: 31655624 PMCID: PMC6815425 DOI: 10.1186/s40478-019-0827-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/03/2019] [Indexed: 01/19/2023] Open
Abstract
For the proper organization of the six-layered mammalian neocortex it is required that neurons migrate radially from their place of birth towards their designated destination. The molecular machinery underlying this neuronal migration is still poorly understood. The dynein-adaptor protein BICD2 is associated with a spectrum of human neurological diseases, including malformations of cortical development. Previous studies have shown that knockdown of BICD2 interferes with interkinetic nuclear migration in radial glial progenitor cells, and that Bicd2-deficient mice display an altered laminar organization of the cerebellum and the neocortex. However, the precise in vivo role of BICD2 in neocortical development remains unclear. By comparing cell-type specific conditional Bicd2 knock-out mice, we found that radial migration in the cortex predominantly depends on BICD2 function in post-mitotic neurons. Neuron-specific Bicd2 cKO mice showed severely impaired radial migration of late-born upper-layer neurons. BICD2 depletion in cortical neurons interfered with proper Golgi organization, and neuronal maturation and survival of cortical plate neurons. Single-neuron labeling revealed a specific role of BICD2 in bipolar locomotion. Rescue experiments with wildtype and disease-related mutant BICD2 constructs revealed that a point-mutation in the RAB6/RANBP2-binding-domain, associated with cortical malformation in patients, fails to restore proper cortical neuron migration. Together, these findings demonstrate a novel, cell-intrinsic role of BICD2 in cortical neuron migration in vivo and provide new insights into BICD2-dependent dynein-mediated functions during cortical development.
Collapse
|