1
|
St Johnston D. A PAR6-aPKC-LGL structure reveals how LGL antagonizes aPKC. Nat Struct Mol Biol 2025; 32:588-590. [PMID: 40016343 DOI: 10.1038/s41594-025-01506-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Affiliation(s)
- Daniel St Johnston
- The Gurdon Institute & the Department of Genetics, University of Cambridge, Cambridge, UK.
| |
Collapse
|
2
|
Earl CP, Cobbaut M, Barros-Carvalho A, Ivanova ME, Briggs DC, Morais-de-Sá E, Parker PJ, McDonald NQ. Capture, mutual inhibition and release mechanism for aPKC-Par6 and its multisite polarity substrate Lgl. Nat Struct Mol Biol 2025; 32:729-739. [PMID: 39762628 PMCID: PMC11996676 DOI: 10.1038/s41594-024-01425-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 10/15/2024] [Indexed: 02/23/2025]
Abstract
The mutually antagonistic relationship of atypical protein kinase C (aPKC) and partitioning-defective protein 6 (Par6) with the substrate lethal (2) giant larvae (Lgl) is essential for regulating polarity across many cell types. Although aPKC-Par6 phosphorylates Lgl at three serine sites to exclude it from the apical domain, aPKC-Par6 and Lgl paradoxically form a stable kinase-substrate complex, with conflicting roles proposed for Par6. We report the structure of human aPKCι-Par6α bound to full-length Llgl1, captured through an aPKCι docking site and a Par6PDZ contact. This complex traps a phospho-S663 Llgl1 intermediate bridging between aPKC and Par6, impeding phosphorylation progression. Thus, aPKCι is effectively inhibited by Llgl1pS663 while Llgl1 is captured by aPKCι-Par6. Mutational disruption of the Lgl-aPKC interaction impedes complex assembly and Lgl phosphorylation, whereas disrupting the Lgl-Par6PDZ contact promotes complex dissociation and Lgl phosphorylation. We demonstrate a Par6PDZ-regulated substrate capture-and-release model requiring binding by active Cdc42 and the apical partner Crumbs to drive complex disassembly. Our results suggest a mechanism for mutual regulation and spatial control of aPKC-Par6 and Lgl activities.
Collapse
Affiliation(s)
- Christopher P Earl
- Signalling and Structural Biology Laboratory, Francis Crick Institute, London, UK
| | - Mathias Cobbaut
- Signalling and Structural Biology Laboratory, Francis Crick Institute, London, UK.
- Protein Phosphorylation Laboratory, Francis Crick Institute, London, UK.
| | - André Barros-Carvalho
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Marina E Ivanova
- Signalling and Structural Biology Laboratory, Francis Crick Institute, London, UK
- Imperial College, London, UK
| | - David C Briggs
- Signalling and Structural Biology Laboratory, Francis Crick Institute, London, UK
| | - Eurico Morais-de-Sá
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Peter J Parker
- Protein Phosphorylation Laboratory, Francis Crick Institute, London, UK
- School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Campus, London, UK
| | - Neil Q McDonald
- Signalling and Structural Biology Laboratory, Francis Crick Institute, London, UK.
- Institute of Structural and Molecular Biology, School of Natural Sciences, Birkbeck College, London, UK.
| |
Collapse
|
3
|
Huang J, Luo S, Shen J, Lee M, Chen R, Ma S, Sun LQ, Li JJ. Cellular polarity pilots breast cancer progression and immunosuppression. Oncogene 2025; 44:783-793. [PMID: 40057606 PMCID: PMC11913746 DOI: 10.1038/s41388-025-03324-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 02/03/2025] [Accepted: 02/19/2025] [Indexed: 03/19/2025]
Abstract
Disrupted cellular polarity (DCP) is a hallmark of solid cancer, the malignant disease of epithelial tissues, which occupies ~90% of all human cancers. DCP has been identified to affect not only the cancer cell's aggressive behavior but also the migration and infiltration of immune cells, although the precise mechanism of DCP-affected tumor-immune cell interaction remains unclear. This review discusses immunosuppressive tumor microenvironments (TME) caused by DCP-driven tumor cell proliferation with DCP-impaired immune cell functions. We will revisit the fundamental roles of cell polarity (CP) proteins in sustaining mammary luminal homeostasis, epithelial transformation, and breast cancer progression. Then, the current data on CP involvement in immune cell activation, maturation, migration, and tumor infiltration are evaluated. The CP status on the immune effector cells and their targeted tumor cells are highlighted in tumor immune regulation, including the antigen presentation and the formation of immune synapses (IS). CP-regulated antigen presentation and delivery and the formation of IS between the immune cells, especially between the immune effectors and tumor cells, will be addressed. Alterations of CP on the tumor cells, infiltrated immune effector cells, or both are discussed with these aspects. We conclude that CP-mediated tumor aggressiveness coupled with DCP-impaired immune cell disability may decide the degree of immunosuppressive status and responsiveness to immune checkpoint blockade (ICB). Further elucidating the dynamics of CP- or DCP-mediated immune regulation in TME will provide more critical insights into tumor-immune cell dynamics, which is required to invent more effective approaches for cancer immunotherapy.
Collapse
Affiliation(s)
- Jie Huang
- Department of Thoracic Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, China
- Department of Radiation Oncology, University of California Davis, Sacramento, California, USA
| | - Shufeng Luo
- Hunan Key Laboratory of Molecular Radiation Oncology, Xiangya Cancer Center, Central South University, China, Hunan, Changsha
| | - Juan Shen
- Department of Thoracic Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, China
| | - Maya Lee
- Department of Radiation Oncology, University of California Davis, Sacramento, California, USA
| | - Rachel Chen
- Department of Radiation Oncology, University of California Davis, Sacramento, California, USA
| | - Shenglin Ma
- Department of Thoracic Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, China
| | - Lun-Quan Sun
- Hunan Key Laboratory of Molecular Radiation Oncology, Xiangya Cancer Center, Central South University, China, Hunan, Changsha.
| | - Jian Jian Li
- Department of Radiation Oncology, University of California Davis, Sacramento, California, USA.
- NCI-designated Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, California, USA.
| |
Collapse
|
4
|
Deutz LN, Sarıkaya S, Dickinson DJ. Membrane extraction in native lipid nanodiscs reveals dynamic regulation of Cdc42 complexes during cell polarization. Biophys J 2025; 124:876-890. [PMID: 38006206 PMCID: PMC11947473 DOI: 10.1016/j.bpj.2023.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/13/2023] [Accepted: 11/21/2023] [Indexed: 11/26/2023] Open
Abstract
Embryonic development requires the establishment of cell polarity to enable cell fate segregation and tissue morphogenesis. This process is regulated by Par complex proteins, which partition into polarized membrane domains and direct downstream polarized cell behaviors. The kinase aPKC (along with its cofactor Par6) is a key member of this network and can be recruited to the plasma membrane by either the small GTPase Cdc42 or the scaffolding protein Par3. Although in vitro interactions among these proteins are well established, much is still unknown about the complexes they form during development. Here, to enable the study of membrane-associated complexes ex vivo, we used a maleic acid copolymer to rapidly isolate membrane proteins from single C. elegans zygotes into lipid nanodiscs. We show that native lipid nanodisc formation enables detection of endogenous complexes involving Cdc42, which are undetectable when cells are lysed in detergent. We found that Cdc42 interacts more strongly with aPKC/Par6 during polarity maintenance than polarity establishment, two developmental stages that are separated by only a few minutes. We further show that Cdc42 and Par3 do not bind aPKC/Par6 simultaneously, confirming recent in vitro findings in an ex vivo context. Our findings establish a new tool for studying membrane-associated signaling complexes and reveal an unexpected mode of polarity regulation via Cdc42.
Collapse
Affiliation(s)
- Lars N Deutz
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas
| | - Sena Sarıkaya
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas
| | - Daniel J Dickinson
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas.
| |
Collapse
|
5
|
Vargas E, Penkert RR, Prehoda KE. A PDZ-kinase allosteric relay mediates Par complex regulator exchange. J Biol Chem 2025; 301:108097. [PMID: 39706275 PMCID: PMC11774777 DOI: 10.1016/j.jbc.2024.108097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 12/23/2024] Open
Abstract
The Par complex polarizes the plasma membrane of diverse animal cells using the catalytic activity of atypical PKC (aPKC) to pattern substrates. Two upstream regulators of the Par complex, Cdc42 and Par-3, bind separately to the complex to influence its activity in different ways. Each regulator binds a distinct member of the complex, Cdc42 to Par-6 and Par-3 to aPKC, making it unclear how they influence one another's binding. Here, we report the discovery that Par-3 binding to aPKC is regulated by aPKC autoinhibition and link this regulation to Cdc42 and Par-3 exchange. The Par-6 PDZ domain activates aPKC binding to Par-3 via a novel interaction with the aPKC kinase domain. Cdc42 and Par-3 have opposite effects on the Par-6 PDZ-aPKC kinase interaction: while the Par-6 kinase domain interaction competes with Cdc42 binding to the complex, Par-3 binding is enhanced by the interaction. The differential effect of Par-3 and Cdc42 on the Par-6 PDZ interaction with the aPKC kinase domain forms an allosteric relay that connects their binding sites and is responsible for the negative cooperativity that underlies Par complex polarization and activity.
Collapse
Affiliation(s)
- Elizabeth Vargas
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, 1229 University of Oregon, Eugene, Oregon, USA
| | - Rhiannon R Penkert
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, 1229 University of Oregon, Eugene, Oregon, USA
| | - Kenneth E Prehoda
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, 1229 University of Oregon, Eugene, Oregon, USA.
| |
Collapse
|
6
|
Vargas E, Penkert RR, Prehoda KE. A PDZ-kinase allosteric relay mediates Par complex regulator exchange. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.18.619144. [PMID: 39464081 PMCID: PMC11507878 DOI: 10.1101/2024.10.18.619144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The Par complex polarizes the plasma membrane of diverse animal cells using the catalytic activity of atypical Protein Kinase C (aPKC) to pattern substrates. Two upstream regulators of the Par complex, Cdc42 and Par-3, bind separately to the complex to influence its activity in different ways. Each regulator binds a distinct member of the complex, Cdc42 to Par-6 and Par-3 to aPKC, making it unclear how they influence one another's binding. Here we report the discovery that Par-3 binding to aPKC is regulated by aPKC autoinhibition and link this regulation to Cdc42 and Par-3 exchange. The Par-6 PDZ domain activates aPKC binding to Par-3 via a novel interaction with the aPKC kinase domain. Cdc42 and Par-3 have opposite effects on the Par-6 PDZ-aPKC kinase interaction: while the Par-6 kinase domain interaction competes with Cdc42 binding to the complex, Par-3 binding is enhanced by the interaction. The differential effect of Par-3 and Cdc42 on the Par-6 PDZ interaction with the aPKC kinase domain forms an allosteric relay that connects their binding sites and is responsible for the negative cooperativity that underlies Par complex polarization and activity.
Collapse
Affiliation(s)
| | | | - Kenneth E. Prehoda
- Institute of Molecular Biology, Department of Chemistry and Biochemistry, 1229 University of Oregon, Eugene, OR 97403
| |
Collapse
|
7
|
Pukhovaya EM, Ramalho JJ, Weijers D. Polar targeting of proteins - a green perspective. J Cell Sci 2024; 137:jcs262068. [PMID: 39330548 DOI: 10.1242/jcs.262068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024] Open
Abstract
Cell polarity - the asymmetric distribution of molecules and cell structures within the cell - is a feature that almost all cells possess. Even though the cytoskeleton and other intracellular organelles can have a direction and guide protein distribution, the plasma membrane is, in many cases, essential for the asymmetric localization of proteins because it helps to concentrate proteins and restrict their localization. Indeed, many proteins that exhibit asymmetric or polarized localization are either embedded in the PM or located close to it in the cellular cortex. Such proteins, which we refer to here as 'polar proteins', use various mechanisms of membrane targeting, including vesicle trafficking, direct phospholipid binding, or membrane anchoring mediated by post-translational modifications or binding to other proteins. These mechanisms are often shared with non-polar proteins, yet the unique combinations of several mechanisms or protein-specific factors assure the asymmetric distribution of polar proteins. Although there is a relatively detailed understanding of polar protein membrane targeting mechanisms in animal and yeast models, knowledge in plants is more fragmented and focused on a limited number of known polar proteins in different contexts. In this Review, we combine the current knowledge of membrane targeting mechanisms and factors for known plant transmembrane and cortical proteins and compare these with the mechanisms elucidated in non-plant systems. We classify the known factors as general or polarity specific, and we highlight areas where more knowledge is needed to construct an understanding of general polar targeting mechanisms in plants or to resolve controversies.
Collapse
Affiliation(s)
- Evgeniya M Pukhovaya
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, 6708WE, Wageningen, The Netherlands
| | - João Jacob Ramalho
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, 6708WE, Wageningen, The Netherlands
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, 6708WE, Wageningen, The Netherlands
| |
Collapse
|
8
|
Packer J, Gubieda AG, Brooks A, Deutz LN, Squires I, Ellison S, Schneider C, Naganathan SR, Wollman AJ, Dickinson DJ, Rodriguez J. Atypical Protein Kinase C Promotes its own Asymmetric Localisation by Phosphorylating Cdc42 in the C. elegans zygote. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.27.563985. [PMID: 38009101 PMCID: PMC10675845 DOI: 10.1101/2023.10.27.563985] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
Atypical protein kinase C (aPKC) is a major regulator of cell polarity. Acting in conjunction with Par6, Par3 and the small GTPase Cdc42, aPKC becomes asymmetrically localised and drives the polarisation of cells. aPKC activity is crucial for its own asymmetric localisation, suggesting a hitherto unknown feedback mechanism contributing to polarisation. Here we show in the C. elegans zygote that the feedback relies on aPKC phosphorylation of Cdc42 at serine 71. The turnover of CDC-42 phosphorylation ensures optimal aPKC asymmetry and activity throughout polarisation by tuning Par6/aPKC association with Par3 and Cdc42. Moreover, turnover of Cdc42 phosphorylation regulates actomyosin cortex dynamics that are known to drive aPKC asymmetry. Given the widespread role of aPKC and Cdc42 in cell polarity, this form of self-regulation of aPKC may be vital for the robust control of polarisation in many cell types.
Collapse
Affiliation(s)
- John Packer
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- These authors contributed equally
| | - Alicia G. Gubieda
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- These authors contributed equally
| | - Aaron Brooks
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- These authors contributed equally
| | - Lars N. Deutz
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
- These authors contributed equally
| | - Iolo Squires
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- These authors contributed equally
| | | | | | - Sundar Ram Naganathan
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Adam J.M. Wollman
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Daniel J. Dickinson
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
| | - Josana Rodriguez
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Lead contact
| |
Collapse
|
9
|
Penkert RR, LaFoya B, Moholt-Siebert L, Vargas E, Welch SE, Prehoda KE. The Drosophila neuroblast polarity cycle at a glance. J Cell Sci 2024; 137:jcs261789. [PMID: 38465513 PMCID: PMC10984279 DOI: 10.1242/jcs.261789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024] Open
Abstract
Drosophila neural stem cells, or neuroblasts, rapidly proliferate during embryonic and larval development to populate the central nervous system. Neuroblasts divide asymmetrically to create cellular diversity, with each division producing one sibling cell that retains the neuroblast fate and another that differentiates into glia or neurons. This asymmetric outcome is mediated by the transient polarization of numerous factors to the cell cortex during mitosis. The powerful genetics and outstanding imaging tractability of the neuroblast make it an excellent model system for studying the mechanisms of cell polarity. This Cell Science at a Glance article and the accompanying poster explore the phases of the neuroblast polarity cycle and the regulatory circuits that control them. We discuss the key features of the cycle - the targeted recruitment of proteins to specific regions of the plasma membrane and multiple phases of highly dynamic actomyosin-dependent cortical flows that pattern both protein distribution and membrane structure.
Collapse
|
10
|
Cobbaut M, Parker PJ, McDonald NQ. Into the fold: advances in understanding aPKC membrane dynamics. Biochem J 2023; 480:2037-2044. [PMID: 38100320 PMCID: PMC10754278 DOI: 10.1042/bcj20230390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023]
Abstract
Atypical protein kinase Cs (aPKCs) are part of the PKC family of protein kinases and are atypical because they don't respond to the canonical PKC activators diacylglycerol (DAG) and Ca2+. They are central to the organization of polarized cells and are deregulated in several cancers. aPKC recruitment to the plasma membrane compartment is crucial to their encounter with substrates associated with polarizing functions. However, in contrast with other PKCs, the mechanism by which atypical PKCs are recruited there has remained elusive until recently. Here, we bring aPKC into the fold, summarizing recent reports on the direct recruitment of aPKC to membranes, providing insight into seemingly discrepant findings and integrating them with existing literature.
Collapse
Affiliation(s)
| | - Peter J. Parker
- Protein Phosphorylation Laboratory, The Francis Crick Institute, NW1 1AT London, U.K
- School of Cancer and Pharmaceutical Sciences, King's College London, London, U.K
| | - Neil Q. McDonald
- Signalling and Structural Biology Laboratory, The Francis Crick Institute, NW1 1AT London, U.K
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, London, U.K
| |
Collapse
|
11
|
Watson JL, Krüger LK, Ben-Sasson AJ, Bittleston A, Shahbazi MN, Planelles-Herrero VJ, Chambers JE, Manton JD, Baker D, Derivery E. Synthetic Par polarity induces cytoskeleton asymmetry in unpolarized mammalian cells. Cell 2023; 186:4710-4727.e35. [PMID: 37774705 PMCID: PMC10765089 DOI: 10.1016/j.cell.2023.08.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/04/2023] [Accepted: 08/25/2023] [Indexed: 10/01/2023]
Abstract
Polarized cells rely on a polarized cytoskeleton to function. Yet, how cortical polarity cues induce cytoskeleton polarization remains elusive. Here, we capitalized on recently established designed 2D protein arrays to ectopically engineer cortical polarity of virtually any protein of interest during mitosis in various cell types. This enables direct manipulation of polarity signaling and the identification of the cortical cues sufficient for cytoskeleton polarization. Using this assay, we dissected the logic of the Par complex pathway, a key regulator of cytoskeleton polarity during asymmetric cell division. We show that cortical clustering of any Par complex subunit is sufficient to trigger complex assembly and that the primary kinetic barrier to complex assembly is the relief of Par6 autoinhibition. Further, we found that inducing cortical Par complex polarity induces two hallmarks of asymmetric cell division in unpolarized mammalian cells: spindle orientation, occurring via Par3, and central spindle asymmetry, depending on aPKC activity.
Collapse
Affiliation(s)
- Joseph L Watson
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK
| | - Lara K Krüger
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK
| | - Ariel J Ben-Sasson
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Alice Bittleston
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK
| | - Marta N Shahbazi
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK
| | | | - Joseph E Chambers
- Cambridge Institute for Medical Research, Department of Medicine, University of Cambridge, Hills Rd, Cambridge, UK
| | - James D Manton
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Emmanuel Derivery
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK.
| |
Collapse
|
12
|
Tokamov SA, Nouri N, Rich A, Buiter S, Glotzer M, Fehon RG. Apical polarity and actomyosin dynamics control Kibra subcellular localization and function in Drosophila Hippo signaling. Dev Cell 2023; 58:1864-1879.e4. [PMID: 37729921 PMCID: PMC10591919 DOI: 10.1016/j.devcel.2023.08.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/02/2023] [Accepted: 08/24/2023] [Indexed: 09/22/2023]
Abstract
The Hippo pathway is an evolutionarily conserved regulator of tissue growth that integrates inputs from both polarity and actomyosin networks. An upstream activator of the Hippo pathway, Kibra, localizes at the junctional and medial regions of the apical cortex in epithelial cells, and medial accumulation promotes Kibra activity. Here, we demonstrate that cortical Kibra distribution is controlled by a tug-of-war between apical polarity and actomyosin dynamics. We show that while the apical polarity network, in part via atypical protein kinase C (aPKC), tethers Kibra at the junctional cortex to silence its activity, medial actomyosin flows promote Kibra-mediated Hippo complex formation at the medial cortex, thereby activating the Hippo pathway. This study provides a mechanistic understanding of the relationship between the Hippo pathway, polarity, and actomyosin cytoskeleton, and it offers novel insights into how fundamental features of epithelial tissue architecture can serve as inputs into signaling cascades that control tissue growth, patterning, and morphogenesis.
Collapse
Affiliation(s)
- Sherzod A Tokamov
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA; Committee on Development, Regeneration, and Stem Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Nicki Nouri
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Ashley Rich
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Stephan Buiter
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Michael Glotzer
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Richard G Fehon
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA; Committee on Development, Regeneration, and Stem Cell Biology, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
13
|
Jones KA, Drummond ML, Penkert RR, Prehoda KE. Cooperative regulation of C1-domain membrane recruitment polarizes atypical protein kinase C. J Cell Biol 2023; 222:e202112143. [PMID: 37589718 PMCID: PMC10435729 DOI: 10.1083/jcb.202112143] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 03/15/2023] [Accepted: 08/01/2023] [Indexed: 08/18/2023] Open
Abstract
Recruitment of the Par complex protein atypical protein kinase C (aPKC) to a specific membrane domain is a key step in the polarization of animal cells. While numerous proteins and phospholipids interact with aPKC, how these interactions cooperate to control its membrane recruitment has been unknown. Here, we identify aPKC's C1 domain as a phospholipid interaction module that targets aPKC to the membrane of Drosophila neural stem cells (NSCs). The isolated C1 binds the NSC membrane in an unpolarized manner during interphase and mitosis and is uniquely sufficient among aPKC domains for targeting. Other domains, including the catalytic module and those that bind the upstream regulators Par-6 and Bazooka, restrict C1's membrane targeting activity-spatially and temporally-to the apical NSC membrane during mitosis. Our results suggest that aPKC polarity results from cooperative activation of autoinhibited C1-mediated membrane binding activity.
Collapse
Affiliation(s)
- Kimberly A. Jones
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of Oregon, Eugene, OR, USA
| | - Michael L. Drummond
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of Oregon, Eugene, OR, USA
| | - Rhiannon R. Penkert
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of Oregon, Eugene, OR, USA
| | - Kenneth E. Prehoda
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of Oregon, Eugene, OR, USA
| |
Collapse
|
14
|
Shaha S, Patel K, Riddell M. Cell polarity signaling in the regulation of syncytiotrophoblast homeostasis and inflammatory response. Placenta 2023; 141:26-34. [PMID: 36443107 DOI: 10.1016/j.placenta.2022.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022]
Abstract
Maintenance of cell polarity and the structure of the apical surface of epithelial cells is a tightly regulated process necessary for tissue homeostasis. The syncytiotrophoblast of the human placenta is an entirely unique epithelial layer. It is a single giant multinucleate syncytial layer that comprises the maternal-facing surface of the human placenta. Like other epithelia, the syncytiotrophoblast is highly polarized with the apical surface dominated by microvillar membrane protrusions. Syncytiotrophoblast dysfunction is a key feature of pregnancy complications like preeclampsia. Preeclampsia is commonly associated with a heightened maternal immune response and pro-inflammatory environment. Importantly, reports have observed disruption of syncytiotrophoblast apical microvilli in placentas from preeclamptic pregnancies, indicating a loss of apical polarity, but little is known about how the syncytiotrophoblast regulates polarity. Here, we review the evolutionarily conserved mechanisms that regulate apical-basal polarization in epithelial cells, and the emerging evidence that PAR polarity complex components are critical regulators of syncytiotrophoblast homeostasis and apical membrane structure. Pro-inflammatory cytokines have been shown to disrupt the expression of polarity regulating proteins. We also discuss initial data showing that syncytiotrophoblast apical polarity can be disrupted by the addition of the pro-inflammatory cytokine tumor necrosis factor-α, revealing that physiologically relevant signals can modulate syncytiotrophoblast polarization. Since disrupted polarity is a feature of preeclampsia, further elucidation of the syncytiotrophoblast-specific polarity signaling network and testing whether the disruption of polarity-factor signaling networks may contribute to the development of preeclampsia is warranted.
Collapse
Affiliation(s)
- Sumaiyah Shaha
- Department of Physiology, University of Alberta, Edmonton, T6G 2S2, Canada
| | - Khushali Patel
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, T6G 2S2, Canada
| | - Meghan Riddell
- Department of Physiology, University of Alberta, Edmonton, T6G 2S2, Canada; Department of Obstetrics and Gynecology, University of Alberta, Edmonton, T6G 2S2, Canada.
| |
Collapse
|
15
|
Carrasco-Rando M, Culi J, Campuzano S, Ruiz-Gómez M. An acytokinetic cell division creates PIP2-enriched membrane asymmetries leading to slit diaphragm assembly in Drosophila nephrocytes. Development 2023; 150:dev201708. [PMID: 37681291 PMCID: PMC10546876 DOI: 10.1242/dev.201708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 08/31/2023] [Indexed: 09/09/2023]
Abstract
Vertebrate podocytes and Drosophila nephrocytes display slit diaphragms, specialised cell junctions that are essential for the execution of the basic excretory function of ultrafiltration. To elucidate the mechanisms of slit diaphragm assembly we have studied their formation in Drosophila embryonic garland nephrocytes. These cells of mesenchymal origin lack overt apical-basal polarity. We find that their initial membrane symmetry is broken by an acytokinetic cell division that generates PIP2-enriched domains at their equator. The PIP2-enriched equatorial cortex becomes a favourable domain for hosting slit diaphragm proteins and the assembly of the first slit diaphragms. Indeed, when this division is either prevented or forced to complete cytokinesis, the formation of diaphragms is delayed to larval stages. Furthermore, although apical polarity determinants also accumulate at the equatorial cortex, they do not appear to participate in the recruitment of slit diaphragm proteins. The mechanisms we describe allow the acquisition of functional nephrocytes in embryos, which may confer on them a biological advantage similar to the formation of the first vertebrate kidney, the pronephros.
Collapse
Affiliation(s)
- Marta Carrasco-Rando
- Centro de Biología Molecular Severo Ochoa, CSIC and UAM, Nicolás Cabrera 1, Cantoblanco 28049, Madrid, Spain
| | - Joaquim Culi
- Centro de Biología Molecular Severo Ochoa, CSIC and UAM, Nicolás Cabrera 1, Cantoblanco 28049, Madrid, Spain
| | - Sonsoles Campuzano
- Centro de Biología Molecular Severo Ochoa, CSIC and UAM, Nicolás Cabrera 1, Cantoblanco 28049, Madrid, Spain
| | - Mar Ruiz-Gómez
- Centro de Biología Molecular Severo Ochoa, CSIC and UAM, Nicolás Cabrera 1, Cantoblanco 28049, Madrid, Spain
| |
Collapse
|
16
|
Cobbaut M, McDonald NQ, Parker PJ. Control of atypical PKCι membrane dissociation by tyrosine phosphorylation within a PB1-C1 interdomain interface. J Biol Chem 2023; 299:104847. [PMID: 37211093 PMCID: PMC10333572 DOI: 10.1016/j.jbc.2023.104847] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/28/2023] [Accepted: 05/11/2023] [Indexed: 05/23/2023] Open
Abstract
Atypical PKCs are cell polarity kinases that operate at the plasma membrane where they function within multiple molecular complexes to contribute to the establishment and maintenance of polarity. In contrast to the classical and novel PKCs, atypical PKCs do not respond to diacylglycerol cues to bind the membrane compartment. Until recently, it was not clear how aPKCs are recruited; whether aPKCs can directly interact with membranes or whether they are dependent on other protein interactors to do so. Two recent studies identified the pseudosubstrate region and the C1 domain as direct membrane interaction modules; however, their relative importance and coupling are unknown. We combined molecular modeling and functional assays to show that the regulatory module of aPKCι, comprising the PB1 pseudosubstrate and C1 domains, forms a cooperative and spatially continuous invariant membrane interaction platform. Furthermore, we show the coordinated orientation of membrane-binding elements within the regulatory module requires a key PB1-C1 interfacial β-strand (beta-strand linker). We show this element contains a highly conserved Tyr residue that can be phosphorylated and that negatively regulates the integrity of the regulatory module, leading to membrane release. We thus expose a hitherto unknown regulatory mechanism of aPKCι membrane binding and release during cell polarization.
Collapse
Affiliation(s)
- Mathias Cobbaut
- Signalling and Structural Biology Laboratory, The Francis Crick Institute, London, UK; Protein Phosphorylation Laboratory, The Francis Crick Institute, London, UK.
| | - Neil Q McDonald
- Signalling and Structural Biology Laboratory, The Francis Crick Institute, London, UK; Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, London, UK.
| | - Peter J Parker
- Protein Phosphorylation Laboratory, The Francis Crick Institute, London, UK; School of Cancer and Pharmaceutical Sciences, King's College London, London, UK.
| |
Collapse
|
17
|
Vargas E, Prehoda KE. Negative cooperativity underlies dynamic assembly of the Par complex regulators Cdc42 and Par-3. J Biol Chem 2023; 299:102749. [PMID: 36436559 PMCID: PMC9793311 DOI: 10.1016/j.jbc.2022.102749] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/26/2022] Open
Abstract
The Par complex polarizes diverse animal cells through the concerted action of multiple regulators. Binding to the multi-PDZ domain containing protein Par-3 couples the complex to cortical flows that construct the Par membrane domain. Once localized properly, the complex is thought to transition from Par-3 to the Rho GTPase Cdc42 to activate the complex. While this transition is a critical step in Par-mediated polarity, little is known about how it occurs. Here, we used a biochemical reconstitution approach with purified, intact Par complex and qualitative binding assays and found that Par-3 and Cdc42 exhibit strong negative cooperativity for the Par complex. The energetic coupling arises from interactions between the second and third PDZ protein interaction domains of Par-3 and the aPKC Kinase-PBM (PDZ binding motif) that mediate the displacement of Cdc42 from the Par complex. Our results indicate that Par-3, Cdc42, Par-6, and aPKC are the minimal components that are sufficient for this transition to occur and that no external factors are required. Our findings provide the mechanistic framework for understanding a critical step in the regulation of Par complex polarization and activity.
Collapse
Affiliation(s)
- Elizabeth Vargas
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, Eugene, Oregon, USA
| | - Kenneth E Prehoda
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, Eugene, Oregon, USA.
| |
Collapse
|
18
|
Wills RC, Hammond GRV. PI(4,5)P2: signaling the plasma membrane. Biochem J 2022; 479:2311-2325. [PMID: 36367756 PMCID: PMC9704524 DOI: 10.1042/bcj20220445] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 11/13/2022]
Abstract
In the almost 70 years since the first hints of its existence, the phosphoinositide, phosphatidyl-D-myo-inositol 4,5-bisphosphate has been found to be central in the biological regulation of plasma membrane (PM) function. Here, we provide an overview of the signaling, transport and structural roles the lipid plays at the cell surface in animal cells. These include being substrate for second messenger generation, direct modulation of receptors, control of membrane traffic, regulation of ion channels and transporters, and modulation of the cytoskeleton and cell polarity. We conclude by re-evaluating PI(4,5)P2's designation as a signaling molecule, instead proposing a cofactor role, enabling PM-selective function for many proteins.
Collapse
Affiliation(s)
- Rachel C. Wills
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, U.S.A
| | - Gerald R. V. Hammond
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, U.S.A
| |
Collapse
|
19
|
Apical-basal polarity and the control of epithelial form and function. Nat Rev Mol Cell Biol 2022; 23:559-577. [PMID: 35440694 DOI: 10.1038/s41580-022-00465-y] [Citation(s) in RCA: 134] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2022] [Indexed: 02/02/2023]
Abstract
Epithelial cells are the most common cell type in all animals, forming the sheets and tubes that compose most organs and tissues. Apical-basal polarity is essential for epithelial cell form and function, as it determines the localization of the adhesion molecules that hold the cells together laterally and the occluding junctions that act as barriers to paracellular diffusion. Polarity must also target the secretion of specific cargoes to the apical, lateral or basal membranes and organize the cytoskeleton and internal architecture of the cell. Apical-basal polarity in many cells is established by conserved polarity factors that define the apical (Crumbs, Stardust/PALS1, aPKC, PAR-6 and CDC42), junctional (PAR-3) and lateral (Scribble, DLG, LGL, Yurt and RhoGAP19D) domains, although recent evidence indicates that not all epithelia polarize by the same mechanism. Research has begun to reveal the dynamic interactions between polarity factors and how they contribute to polarity establishment and maintenance. Elucidating these mechanisms is essential to better understand the roles of apical-basal polarity in morphogenesis and how defects in polarity contribute to diseases such as cancer.
Collapse
|
20
|
Lu J, Dong W, Hammond GR, Hong Y. Hypoxia controls plasma membrane targeting of polarity proteins by dynamic turnover of PI4P and PI(4,5)P2. eLife 2022; 11:79582. [PMID: 35678383 PMCID: PMC9242647 DOI: 10.7554/elife.79582] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022] Open
Abstract
Phosphatidylinositol 4-phosphate (PI4P) and phosphatidylinositol 4,5-biphosphate (PIP2) are key phosphoinositides that determine the identity of the plasma membrane (PM) and regulate numerous key biological events there. To date, mechanisms regulating the homeostasis and dynamic turnover of PM PI4P and PIP2 in response to various physiological conditions and stresses remain to be fully elucidated. Here, we report that hypoxia in Drosophila induces acute and reversible depletion of PM PI4P and PIP2 that severely disrupts the electrostatic PM targeting of multiple polybasic polarity proteins. Genetically encoded ATP sensors confirmed that hypoxia induces acute and reversible reduction of cellular ATP levels which showed a strong real-time correlation with the levels of PM PI4P and PIP2 in cultured cells. By combining genetic manipulations with quantitative imaging assays we showed that PI4KIIIα, as well as Rbo/EFR3 and TTC7 that are essential for targeting PI4KIIIα to PM, are required for maintaining the homeostasis and dynamic turnover of PM PI4P and PIP2 under normoxia and hypoxia. Our results revealed that in cells challenged by energetic stresses triggered by hypoxia, ATP inhibition and possibly ischemia, dramatic turnover of PM PI4P and PIP2 could have profound impact on many cellular processes including electrostatic PM targeting of numerous polybasic proteins.
Collapse
Affiliation(s)
- Juan Lu
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, China [CN]
| | - Wei Dong
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, United States
| | - Gerald R Hammond
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, United States
| | - Yang Hong
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, United States
| |
Collapse
|
21
|
García-Fojeda B, Minutti CM, Montero-Fernández C, Stamme C, Casals C. Signaling Pathways That Mediate Alveolar Macrophage Activation by Surfactant Protein A and IL-4. Front Immunol 2022; 13:860262. [PMID: 35444643 PMCID: PMC9014242 DOI: 10.3389/fimmu.2022.860262] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/14/2022] [Indexed: 01/03/2023] Open
Abstract
Activation of tissue repair program in macrophages requires the integration of IL-4/IL-13 cytokines and tissue-specific signals. In the lung, surfactant protein A (SP-A) is a tissue factor that amplifies IL-4Rα-dependent alternative activation and proliferation of alveolar macrophages (AMs) through the myosin18A receptor. However, the mechanism by which SP-A and IL-4 synergistically increase activation and proliferation of AMs is unknown. Here we show that SP-A amplifies IL-4-mediated phosphorylation of STAT6 and Akt by binding to myosin18A. Blocking PI3K activity or the myosin18A receptor abrogates SP-A´s amplifying effects on IL-4 signaling. SP-A alone activates Akt, mTORC1, and PKCζ and inactivates GSK3α/β by phosphorylation, but it cannot activate arginase-1 activity or AM proliferation on its own. The combined effects of IL-4 and SP-A on the mTORC1 and GSK3 branches of PI3K-Akt signaling contribute to increased AM proliferation and alternative activation, as revealed by pharmacological inhibition of Akt (inhibitor VIII) and mTORC1 (rapamycin and torin). On the other hand, the IL-4+SP-A-driven PKCζ signaling axis appears to intersect PI3K activation with STAT6 phosphorylation to achieve more efficient alternative activation of AMs. Consistent with IL-4+SP-A-driven activation of mTORC1 and mTORC2, both agonists synergistically increased mitochondrial respiration and glycolysis in AMs, which are necessary for production of energy and metabolic intermediates for proliferation and alternative activation. We conclude that SP-A signaling in AMs activates PI3K-dependent branched pathways that amplify IL-4 actions on cell proliferation and the acquisition of AM effector functions.
Collapse
Affiliation(s)
- Belén García-Fojeda
- Department of Biochemistry and Molecular Biology, Complutense University of Madrid, Madrid, Spain
| | - Carlos M Minutti
- Department of Biochemistry and Molecular Biology, Complutense University of Madrid, Madrid, Spain
| | - Carlos Montero-Fernández
- Department of Biochemistry and Molecular Biology, Complutense University of Madrid, Madrid, Spain
| | - Cordula Stamme
- Division of Cellular Pneumology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany.,Department of Anesthesiology and Intensive Care, University of Lübeck, Lübeck, Germany
| | - Cristina Casals
- Department of Biochemistry and Molecular Biology, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
22
|
Zou D, Li Q, Pan W, Chen P, Sun M, Bao X. A novel non‑selective atypical PKC agonist could protect neuronal cell line from Aβ‑oligomer induced toxicity by suppressing Aβ generation. Mol Med Rep 2022; 25:153. [PMID: 35244193 PMCID: PMC8941380 DOI: 10.3892/mmr.2022.12669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/15/2022] [Indexed: 12/04/2022] Open
Abstract
Atypical protein kinase C (aPKCs) serve key functions in embryonic development by regulating apical-basal polarity. Previous studies have shed light on their roles during adulthood, especially in the development of Alzheimer's disease (AD). Although the crystal structure of PKCι has been resolved, an agonist of aPKCs remains to be discovered. In the present study, by using the Discovery Studio program and LibDock methodology, a small molecule library (K66-X4436 KINA Set) of compounds were screened for potential binding to PKCι. Subsequently, the computational docking results were validated using affinity selection-mass spectrometry, before in vitro kinase activity was used to determine the function of the hit compounds. A cell-based model assay that can mimic the pathology of AD was then established and used to assess the function of these hit compounds. As a result, the aPKC agonist Z640 was identified, which could bind to PKCι in silico, in vitro and in this cell-based model. Z640 was further confirmed as a non-selective aPKC agonist that can activate the kinase activity of both PKCι and PKCζ. In the cell-based assay, Z640 was found to protect neuronal cell lines from amyloid-β (Aβ) oligomer-induced cell death by reducing reactive oxygen species production and restore mitochondrial function. In addition, Z640 could reduce Aβ40 generation in a dose-dependent manner and shift amyloid precursor protein processing towards the non-amyloid pathway. To conclude, the present study is the first, to the best of the authors' knowledge to identify an aPKC agonist by combining computer-assisted drug discovery and cell-based assays. The present study also revealed that aPKC agonists have therapeutic potential for the treatment of AD.
Collapse
Affiliation(s)
- Dongmei Zou
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Qian Li
- Department of Biology, College of Staten Island, Staten Island, NY 10314, USA
| | - Wenyang Pan
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Peng Chen
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Miao Sun
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Xiaofeng Bao
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
23
|
Lu J, Dong W, Tao Y, Hong Y. Electrostatic plasma membrane targeting contributes to Dlg function in cell polarity and tumorigenesis. Development 2021; 148:dev196956. [PMID: 33688074 PMCID: PMC8034875 DOI: 10.1242/dev.196956] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 02/26/2021] [Indexed: 12/31/2022]
Abstract
Discs large (Dlg) is an essential polarity protein and a tumor suppressor originally characterized in Drosophila but also well conserved in vertebrates. Like the majority of polarity proteins, plasma membrane (PM)/cortical localization of Dlg is required for its function in polarity and tumorigenesis, but the exact mechanisms targeting Dlg to the PM remain to be fully elucidated. Here, we show that, similar to recently discovered polybasic polarity proteins such as Lgl and aPKC, Dlg also contains a positively charged polybasic domain that electrostatically binds the PM phosphoinositides PI4P and PI(4,5)P2 Electrostatic targeting by the polybasic domain contributes significantly to the PM localization of Dlg in follicular and early embryonic epithelial cells, and is crucial for Dlg to regulate both polarity and tumorigenesis. The electrostatic PM targeting of Dlg is controlled by a potential phosphorylation-dependent allosteric regulation of its polybasic domain, and is specifically enhanced by the interactions between Dlg and another basolateral polarity protein and tumor suppressor, Scrib. Our studies highlight an increasingly significant role of electrostatic PM targeting of polarity proteins in regulating cell polarity.
Collapse
Affiliation(s)
- Juan Lu
- Department of Cell Biology, University of Pittsburgh Medical School, Pittsburgh, PA 15261, USA
| | - Wei Dong
- Department of Cell Biology, University of Pittsburgh Medical School, Pittsburgh, PA 15261, USA
| | - Yan Tao
- Jiangsu University, Zhengjiang, Jiangsu 212013, People's Republic of China
| | - Yang Hong
- Department of Cell Biology, University of Pittsburgh Medical School, Pittsburgh, PA 15261, USA
| |
Collapse
|
24
|
Fic W, Bastock R, Raimondi F, Los E, Inoue Y, Gallop JL, Russell RB, St Johnston D. RhoGAP19D inhibits Cdc42 laterally to control epithelial cell shape and prevent invasion. J Cell Biol 2021; 220:211832. [PMID: 33646271 PMCID: PMC7927664 DOI: 10.1083/jcb.202009116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/04/2020] [Accepted: 01/14/2021] [Indexed: 01/01/2023] Open
Abstract
Cdc42-GTP is required for apical domain formation in epithelial cells, where it recruits and activates the Par-6-aPKC polarity complex, but how the activity of Cdc42 itself is restricted apically is unclear. We used sequence analysis and 3D structural modeling to determine which Drosophila GTPase-activating proteins (GAPs) are likely to interact with Cdc42 and identified RhoGAP19D as the only high-probability Cdc42GAP required for polarity in the follicular epithelium. RhoGAP19D is recruited by α-catenin to lateral E-cadherin adhesion complexes, resulting in exclusion of active Cdc42 from the lateral domain. rhogap19d mutants therefore lead to lateral Cdc42 activity, which expands the apical domain through increased Par-6/aPKC activity and stimulates lateral contractility through the myosin light chain kinase, Genghis khan (MRCK). This causes buckling of the epithelium and invasion into the adjacent tissue, a phenotype resembling that of precancerous breast lesions. Thus, RhoGAP19D couples lateral cadherin adhesion to the apical localization of active Cdc42, thereby suppressing epithelial invasion.
Collapse
Affiliation(s)
- Weronika Fic
- Gurdon Institute, University of Cambridge, Cambridge, UK,Department of Genetics, University of Cambridge, Cambridge, UK
| | - Rebecca Bastock
- Gurdon Institute, University of Cambridge, Cambridge, UK,Department of Genetics, University of Cambridge, Cambridge, UK
| | - Francesco Raimondi
- BioQuant and Biochemie Zentrum Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Erinn Los
- Gurdon Institute, University of Cambridge, Cambridge, UK,Department of Genetics, University of Cambridge, Cambridge, UK
| | - Yoshiko Inoue
- Gurdon Institute, University of Cambridge, Cambridge, UK,Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Jennifer L. Gallop
- Gurdon Institute, University of Cambridge, Cambridge, UK,Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Robert B. Russell
- BioQuant and Biochemie Zentrum Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Daniel St Johnston
- Gurdon Institute, University of Cambridge, Cambridge, UK,Department of Genetics, University of Cambridge, Cambridge, UK,Correspondence to Daniel St Johnston:
| |
Collapse
|
25
|
Thompson BJ. Par-3 family proteins in cell polarity & adhesion. FEBS J 2021; 289:596-613. [PMID: 33565714 PMCID: PMC9290619 DOI: 10.1111/febs.15754] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/19/2021] [Accepted: 02/08/2021] [Indexed: 12/27/2022]
Abstract
The Par‐3/Baz family of polarity determinants is highly conserved across metazoans and includes C. elegans PAR‐3, Drosophila Bazooka (Baz), human Par‐3 (PARD3), and human Par‐3‐like (PARD3B). The C. elegans PAR‐3 protein localises to the anterior pole of asymmetrically dividing zygotes with cell division cycle 42 (CDC42), atypical protein kinase C (aPKC), and PAR‐6. The same C. elegans ‘PAR complex’ can also localise in an apical ring in epithelial cells. Drosophila Baz localises to the apical pole of asymmetrically dividing neuroblasts with Cdc42‐aPKC‐Par6, while in epithelial cells localises both in an apical ring with Cdc42‐aPKC‐Par6 and with E‐cadherin at adherens junctions. These apical and junctional localisations have become separated in human PARD3, which is strictly apical in many epithelia, and human PARD3B, which is strictly junctional in many epithelia. We discuss the molecular basis for this fundamental difference in localisation, as well as the possible functions of Par‐3/Baz family proteins as oligomeric clustering agents at the apical domain or at adherens junctions in epithelial stem cells. The evolution of Par‐3 family proteins into distinct apical PARD3 and junctional PARD3B orthologs coincides with the emergence of stratified squamous epithelia in vertebrates, where PARD3B, but not PARD3, is strongly expressed in basal layer stem cells – which lack a typical apical domain. We speculate that PARD3B may contribute to clustering of E‐cadherin, signalling from adherens junctions via Src family kinases or mitotic spindle orientation by adherens junctions in response to mechanical forces.
Collapse
Affiliation(s)
- Barry J Thompson
- ACRF Department of Cancer Biology & Therapeutics, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
26
|
Martin E, Girardello R, Dittmar G, Ludwig A. New insights into the organization and regulation of the apical polarity network in mammalian epithelial cells. FEBS J 2021; 288:7073-7095. [DOI: 10.1111/febs.15710] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 12/11/2022]
Affiliation(s)
- Eleanor Martin
- School of Biological Sciences Nanyang Technological University Singapore City Singapore
- Proteomics of Cellular Signaling Luxembourg Institute of Health Strassen Luxembourg
| | - Rossana Girardello
- School of Biological Sciences Nanyang Technological University Singapore City Singapore
- Proteomics of Cellular Signaling Luxembourg Institute of Health Strassen Luxembourg
| | - Gunnar Dittmar
- Proteomics of Cellular Signaling Luxembourg Institute of Health Strassen Luxembourg
- Department of Life Sciences and Medicine University of Luxembourg Luxembourg
| | - Alexander Ludwig
- School of Biological Sciences Nanyang Technological University Singapore City Singapore
- NTU Institute of Structural Biology (NISB) Experimental Medicine Building Nanyang Technological University Singapore City Singapore
| |
Collapse
|
27
|
Velnati S, Centonze S, Girivetto F, Capello D, Biondi RM, Bertoni A, Cantello R, Ragnoli B, Malerba M, Graziani A, Baldanzi G. Identification of Key Phospholipids That Bind and Activate Atypical PKCs. Biomedicines 2021; 9:biomedicines9010045. [PMID: 33419210 PMCID: PMC7825596 DOI: 10.3390/biomedicines9010045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/30/2020] [Accepted: 01/01/2021] [Indexed: 12/02/2022] Open
Abstract
PKCζ and PKCι/λ form the atypical protein kinase C subgroup, characterised by a lack of regulation by calcium and the neutral lipid diacylglycerol. To better understand the regulation of these kinases, we systematically explored their interactions with various purified phospholipids using the lipid overlay assays, followed by kinase activity assays to evaluate the lipid effects on their enzymatic activity. We observed that both PKCζ and PKCι interact with phosphatidic acid and phosphatidylserine. Conversely, PKCι is unique in binding also to phosphatidylinositol-monophosphates (e.g., phosphatidylinositol 3-phosphate, 4-phosphate, and 5-phosphate). Moreover, we observed that phosphatidylinositol 4-phosphate specifically activates PKCι, while both isoforms are responsive to phosphatidic acid and phosphatidylserine. Overall, our results suggest that atypical Protein kinase C (PKC) localisation and activity are regulated by membrane lipids distinct from those involved in conventional PKCs and unveil a specific regulation of PKCι by phosphatidylinositol-monophosphates.
Collapse
Affiliation(s)
- Suresh Velnati
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (S.C.); (F.G.); (D.C.); (A.B.); (R.C.); (M.M.); (G.B.)
- Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), University of Piemonte Orientale, 28100 Novara, Italy
- Correspondence:
| | - Sara Centonze
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (S.C.); (F.G.); (D.C.); (A.B.); (R.C.); (M.M.); (G.B.)
- Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), University of Piemonte Orientale, 28100 Novara, Italy
| | - Federico Girivetto
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (S.C.); (F.G.); (D.C.); (A.B.); (R.C.); (M.M.); (G.B.)
- Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), University of Piemonte Orientale, 28100 Novara, Italy
| | - Daniela Capello
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (S.C.); (F.G.); (D.C.); (A.B.); (R.C.); (M.M.); (G.B.)
- UPO Biobank, University of Piemonte Orientale, 28100 Novara, Italy
| | - Ricardo M. Biondi
- Department of Internal Medicine 1, Goethe University Hospital Frankfurt, 60590 Frankfurt, Germany;
- Biomedicine Research Institute of Buenos Aires—CONICET—Partner Institute of the Max Planck Society, Buenos Aires C1425FQD, Argentina
| | - Alessandra Bertoni
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (S.C.); (F.G.); (D.C.); (A.B.); (R.C.); (M.M.); (G.B.)
| | - Roberto Cantello
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (S.C.); (F.G.); (D.C.); (A.B.); (R.C.); (M.M.); (G.B.)
| | | | - Mario Malerba
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (S.C.); (F.G.); (D.C.); (A.B.); (R.C.); (M.M.); (G.B.)
- Respiratory Unit, Sant’Andrea Hospital, 13100 Vercelli, Italy;
| | - Andrea Graziani
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Turin, Italy;
- Division of Oncology, Università Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Gianluca Baldanzi
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (S.C.); (F.G.); (D.C.); (A.B.); (R.C.); (M.M.); (G.B.)
- Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), University of Piemonte Orientale, 28100 Novara, Italy
| |
Collapse
|