1
|
Hook JL, Kuebler WM. CFTR as a therapeutic target for severe lung infection. Am J Physiol Lung Cell Mol Physiol 2025; 328:L229-L238. [PMID: 39772994 DOI: 10.1152/ajplung.00289.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/17/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025] Open
Abstract
Lung infection is one of the leading causes of morbidity and mortality worldwide. Even with appropriate antibiotic and antiviral treatment, mortality in hospitalized patients often exceeds 10%, highlighting the need for the development of new therapeutic strategies. Of late, cystic fibrosis transmembrane conductance regulator (CFTR) is-in addition to its well-established roles in the lung airway and extrapulmonary organs-increasingly recognized as a key regulator of alveolar homeostasis and defense. In the alveolar epithelium, CFTR mediates alveolar fluid secretion and liquid homeostasis; in the microvascular endothelium, CFTR maintains vascular barrier function. CFTR also contributes to alveolar immunity. Yet, in lung infection, diverse molecular mechanisms reduce CFTR abundance and otherwise impair its function, promoting alveolar inflammation, edema, and cell death. Preservation or restoration of CFTR function by CFTR modulator drugs thus presents a promising avenue to combat lung infection in a pathogen-independent manner.
Collapse
Affiliation(s)
- Jaime L Hook
- Lung Imaging Laboratory, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Wolfgang M Kuebler
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Hook JL, Bhattacharya J. The pathogenesis of influenza in intact alveoli: virion endocytosis and its effects on the lung's air-blood barrier. Front Immunol 2024; 15:1328453. [PMID: 38343548 PMCID: PMC10853445 DOI: 10.3389/fimmu.2024.1328453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/03/2024] [Indexed: 02/15/2024] Open
Abstract
Lung infection by influenza A virus (IAV) is a major cause of global mortality from lung injury, a disease defined by widespread dysfunction of the lung's air-blood barrier. Endocytosis of IAV virions by the alveolar epithelium - the cells that determine barrier function - is central to barrier loss mechanisms. Here, we address the current understanding of the mechanistic steps that lead to endocytosis in the alveolar epithelium, with an eye to how the unique structure of lung alveoli shapes endocytic mechanisms. We highlight where future studies of alveolar interactions with IAV virions may lead to new therapeutic approaches for IAV-induced lung injury.
Collapse
Affiliation(s)
- Jaime L. Hook
- Lung Imaging Laboratory, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Global Health and Emerging Pathogens Institute, Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jahar Bhattacharya
- Department of Medicine, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, United States
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, United States
| |
Collapse
|
3
|
Ayuso-Jimeno IP, Ronchi P, Wang T, Gallori CE, Gross CT. Identifying long-range synaptic inputs using genetically encoded labels and volume electron microscopy. Sci Rep 2022; 12:10213. [PMID: 35715545 PMCID: PMC9205864 DOI: 10.1038/s41598-022-14309-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 06/06/2022] [Indexed: 11/08/2022] Open
Abstract
Enzymes that facilitate the local deposition of electron dense reaction products have been widely used as labels in electron microscopy (EM) for the identification of synaptic contacts in neural tissue. Peroxidases, in particular, can efficiently metabolize 3,3'-diaminobenzidine tetrahydrochloride hydrate (DAB) to produce precipitates with high contrast under EM following heavy metal staining, and can be genetically encoded to facilitate the labeling of specific cell-types or organelles. Nevertheless, the peroxidase/DAB method has so far not been reported to work in a multiplexed manner in combination with 3D volume EM techniques (e.g. Serial blockface electron microscopy, SBEM; Focused ion beam electron microscopy, FIBSEM) that are favored for the large-scale ultrastructural assessment of synaptic architecture However, a recently described peroxidase with enhanced enzymatic activity (dAPEX2) can efficienty deposit EM-visible DAB products in thick tissue without detergent treatment opening the possibility for the multiplex labeling of genetically defined cell-types in combination with volume EM methods. Here we demonstrate that multiplexed dAPEX2/DAB tagging is compatible with both FIBSEM and SBEM volume EM approaches and use them to map long-range genetically identified synaptic inputs from the anterior cingulate cortex to the periaqueductal gray in the mouse brain.
Collapse
Affiliation(s)
- Irene P Ayuso-Jimeno
- Epigenetics & Neurobiology Unit, European Molecular Biology Laboratory (EMBL), Via Ramarini 32, 00015, Monterotondo, RM, Italy
| | - Paolo Ronchi
- Electron Microscopy Core Facility (EMCF), European Molecular Biology Laboratory (EMBL), 69117, Meyerhofstr, Germany
| | - Tianzi Wang
- Epigenetics & Neurobiology Unit, European Molecular Biology Laboratory (EMBL), Via Ramarini 32, 00015, Monterotondo, RM, Italy
| | - Catherine E Gallori
- Epigenetics & Neurobiology Unit, European Molecular Biology Laboratory (EMBL), Via Ramarini 32, 00015, Monterotondo, RM, Italy
| | - Cornelius T Gross
- Epigenetics & Neurobiology Unit, European Molecular Biology Laboratory (EMBL), Via Ramarini 32, 00015, Monterotondo, RM, Italy.
| |
Collapse
|
4
|
Kim YH, Kim KJ, D’Argenio DZ, Crandall ED. Characteristics of Passive Solute Transport across Primary Rat Alveolar Epithelial Cell Monolayers. MEMBRANES 2021; 11:331. [PMID: 33946241 PMCID: PMC8145727 DOI: 10.3390/membranes11050331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 11/16/2022]
Abstract
Primary rat alveolar epithelial cell monolayers (RAECM) were grown without (type I cell-like phenotype, RAECM-I) or with (type II cell-like phenotype, RAECM-II) keratinocyte growth factor to assess passive transport of 11 hydrophilic solutes. We estimated apparent permeability (Papp) in the absence/presence of calcium chelator EGTA to determine the effects of perturbing tight junctions on "equivalent" pores. Papp across RAECM-I and -II in the absence of EGTA are similar and decrease as solute size increases. We modeled Papp of the hydrophilic solutes across RAECM-I/-II as taking place via heterogeneous populations of equivalent pores comprised of small (0.41/0.32 nm radius) and large (9.88/11.56 nm radius) pores, respectively. Total equivalent pore area is dominated by small equivalent pores (99.92-99.97%). The number of small and large equivalent pores in RAECM-I was 8.55 and 1.29 times greater, respectively, than those in RAECM-II. With EGTA, the large pore radius in RAECM-I/-II increased by 1.58/4.34 times and the small equivalent pore radius increased by 1.84/1.90 times, respectively. These results indicate that passive diffusion of hydrophilic solutes across an alveolar epithelium occurs via small and large equivalent pores, reflecting interactions of transmembrane proteins expressed in intercellular tight junctions of alveolar epithelial cells.
Collapse
Affiliation(s)
- Yong Ho Kim
- Will Rogers Institute Pulmonary Research Center and Hastings Center for Pulmonary Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033-0906, USA; (Y.H.K.); (K.-J.K.)
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033-0906, USA
| | - Kwang-Jin Kim
- Will Rogers Institute Pulmonary Research Center and Hastings Center for Pulmonary Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033-0906, USA; (Y.H.K.); (K.-J.K.)
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033-0906, USA
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089-1111, USA;
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089-9037, USA
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089-9121, USA
| | - David Z. D’Argenio
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089-1111, USA;
| | - Edward D. Crandall
- Will Rogers Institute Pulmonary Research Center and Hastings Center for Pulmonary Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033-0906, USA; (Y.H.K.); (K.-J.K.)
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033-0906, USA
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033-9092, USA
- Mork Family Department of Chemical Engineering and Materials Science, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089-1211, USA
| |
Collapse
|
5
|
Abstract
In recent years the epidermal Langerhans cell has been considered to belong to histiocytic rather than melanocytic lineage. However, the functional significance of the Langerhans cell granule, which has also been called Bribeck's granule or racket body, has not been settled. In this study, 0.1 ml of horseradish peroxidase solution (25 mg in 1.0 ml normal saline) was injected intradermally into six sites on the back of a normal adult guinea pig. The injected sites were biopsied at 10, 30, 60, 120, 180 and 300 minutes and later at 22, 120 and 142 hours. The epidermis was minced with sharp razor blades into 1 mm blocks and fixed in 5% glutaraldehyde in 0.1 M cacodylate buffer (pH 7.2) for 3 hours at 4°C. After overnight rinse in the same buffer, tissue blocks were minced again into smaller pieces to facilitate the penetration of benzidine and hydrogen peroxide. Benzidine reaction was done according to the method of Schneeberger-Keeley and Karnowsky.
Collapse
|
6
|
Abstract
The pulmonary blood-gas barrier represents a remarkable feat of engineering. It achieves the exquisite thinness needed for gas exchange by diffusion, the strength to withstand the stresses and strains of repetitive and changing ventilation, and the ability to actively maintain itself under varied demands. Understanding the design principles of this barrier is essential to understanding a variety of lung diseases, and to successfully regenerating or artificially recapitulating the barrier ex vivo. Many classical studies helped to elucidate the unique structure and morphology of the mammalian blood-gas barrier, and ongoing investigations have helped to refine these descriptions and to understand the biological aspects of blood-gas barrier function and regulation. This article reviews the key features of the blood-gas barrier that enable achievement of the necessary design criteria and describes the mechanical environment to which the barrier is exposed. It then focuses on the biological and mechanical components of the barrier that preserve integrity during homeostasis, but which may be compromised in certain pathophysiological states, leading to disease. Finally, this article summarizes recent key advances in efforts to engineer the blood-gas barrier ex vivo, using the platforms of lung-on-a-chip and tissue-engineered whole lungs. © 2020 American Physiological Society. Compr Physiol 10:415-452, 2020.
Collapse
Affiliation(s)
- Katherine L. Leiby
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
- Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Micha Sam Brickman Raredon
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
- Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Laura E. Niklason
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
- Yale School of Medicine, Yale University, New Haven, Connecticut, USA
- Department of Anesthesiology, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
7
|
Anderson CF, Grimmett ME, Domalewski CJ, Cui H. Inhalable nanotherapeutics to improve treatment efficacy for common lung diseases. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 12:e1586. [PMID: 31602823 DOI: 10.1002/wnan.1586] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/06/2019] [Accepted: 08/09/2019] [Indexed: 12/12/2022]
Abstract
Respiratory illnesses are prevalent around the world, and inhalation-based therapies provide an attractive, noninvasive means of directly delivering therapeutic agents to their site of action to improve treatment efficacy and limit adverse systemic side effects. Recent trends in medicine and nanoscience have prompted the development of inhalable nanomedicines to further enhance effectiveness, patient compliance, and quality of life for people suffering from lung cancer, chronic pulmonary diseases, and tuberculosis. Herein, we discuss recent advancements in the development of inhalable nanomaterial-based drug delivery systems and analyze several representative systems to illustrate their key design principles that can translate to improved therapeutic efficacy for prevalent respiratory diseases. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Respiratory Disease.
Collapse
Affiliation(s)
- Caleb F Anderson
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland
| | - Maria E Grimmett
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland
| | - Christopher J Domalewski
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland.,Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
8
|
Abstract
This review by O'Brown et al. discusses the cellular nature of the blood–brain barrier (BBB) and the conservation and variation of BBB function across taxa. It compares the BBB across organisms in order to provide insight into the human BBB both under normal physiological conditions and in neurological diseases. The blood–brain barrier (BBB) restricts free access of molecules between the blood and the brain and is essential for regulating the neural microenvironment. Here, we describe how the BBB was initially characterized and how the current field evaluates barrier properties. We next detail the cellular nature of the BBB and discuss both the conservation and variation of BBB function across taxa. Finally, we examine our current understanding of mouse and zebrafish model systems, as we expect that comparison of the BBB across organisms will provide insight into the human BBB under normal physiological conditions and in neurological diseases.
Collapse
Affiliation(s)
- Natasha M O'Brown
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Sarah J Pfau
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Chenghua Gu
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
9
|
Chow BW, Gu C. Gradual Suppression of Transcytosis Governs Functional Blood-Retinal Barrier Formation. Neuron 2017; 93:1325-1333.e3. [PMID: 28334606 DOI: 10.1016/j.neuron.2017.02.043] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 11/14/2016] [Accepted: 02/22/2017] [Indexed: 12/26/2022]
Abstract
Blood-central nervous system (CNS) barriers partition neural tissues from the blood, providing a homeostatic environment for proper neural function. The endothelial cells that form blood-CNS barriers have specialized tight junctions and low rates of transcytosis to limit the flux of substances between blood and CNS. However, the relative contributions of these properties to CNS barrier permeability are unknown. Here, by studying functional blood-retinal barrier (BRB) formation in mice, we found that immature vessel leakage occurs entirely through transcytosis, as specialized tight junctions are functional as early as vessel entry into the CNS. A functional barrier forms only when transcytosis is gradually suppressed during development. Mutant mice with elevated or reduced levels of transcytosis have delayed or precocious sealing of the BRB, respectively. Therefore, the temporal regulation of transcytosis governs the development of a functional BRB, and suppression of transcytosis is a principal contributor for functional barrier formation.
Collapse
Affiliation(s)
- Brian Wai Chow
- Department of Neurobiology, Harvard Medical School, 220 Longwood Ave., Boston, MA 02115, USA
| | - Chenghua Gu
- Department of Neurobiology, Harvard Medical School, 220 Longwood Ave., Boston, MA 02115, USA.
| |
Collapse
|
10
|
Jones DK, Higenbottam TW, Wheeldon D, Kneeshaw J, Bethune D. Prostacyclin, cardiopulmonary bypass and the alveolar capillary membrane. Perfusion 2016. [DOI: 10.1177/026765918600100303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In a double blind controlled study of 24 patients undergoing coronary artery bypass grafting, 12 received an infusion of prostacyclin at 20 ng/kg/min during cardiopulmonary bypass in an attempt to reduce the previously reported increased alveolar capillary membrane permeability that occurs postoperatively. Prostacyclin significantly reduced platelet activation but had no effect in reducing complement activation or transpulmonary neutrophil sequestration. Alveolar epithelial permeability as assessed by measuring the clearance of inhaled 99mTc-DTPA from lung to blood did not change postoperatively in either group. In order to fully evaluate pulmonary damage following cardiopulmonary bypass a marker for pulmonary endothelial damage may need to be used.
Collapse
Affiliation(s)
- DK Jones
- Department of Respiratory Physiology, Papworth Hosital
| | | | - D. Wheeldon
- Department of Cardiothoracic Surgery, Papworth Hospital
| | | | - D. Bethune
- Department of Anaesthesia Papworth Hospital
| |
Collapse
|
11
|
Haque S, Whittaker MR, McIntosh MP, Pouton CW, Kaminskas LM. Disposition and safety of inhaled biodegradable nanomedicines: Opportunities and challenges. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:1703-24. [PMID: 27033834 DOI: 10.1016/j.nano.2016.03.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 02/22/2016] [Accepted: 03/02/2016] [Indexed: 10/22/2022]
Abstract
The inhaled delivery of nanomedicines can provide a novel, non-invasive therapeutic strategy for the more localised treatment of lung-resident diseases and potentially also enable the systemic delivery of therapeutics that are otherwise administered via injection alone. However, the clinical translation of inhalable nanomedicine is being hampered by our lack of understanding about their disposition and clearance from the lungs. This review provides a comprehensive overview of the biodegradable nanomaterials that are currently being explored as inhalable drug delivery systems and our current understanding of their disposition within, and clearance from the lungs. The safety of biodegradable nanomaterials in the lungs is discussed and latest updates are provided on the impact of inflammation on the pulmonary pharmacokinetics of inhaled nanomaterials. Overall, the review provides an in-depth and critical assessment of the lung clearance mechanisms for inhaled biodegradable nanomedicines and highlights the opportunities and challenges for their translation into the clinic.
Collapse
Affiliation(s)
- Shadabul Haque
- Drug Delivery Disposition and Dynamics Group, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Michael R Whittaker
- Drug Delivery Disposition and Dynamics Group, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Michelle P McIntosh
- Drug Delivery Disposition and Dynamics Group, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Colin W Pouton
- Drug Delivery Disposition and Dynamics Group, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Lisa M Kaminskas
- Drug Delivery Disposition and Dynamics Group, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia.
| |
Collapse
|
12
|
The discovery of the blood–thymus barrier. Immunol Lett 2015; 168:325-8. [DOI: 10.1016/j.imlet.2015.10.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 10/16/2015] [Accepted: 10/23/2015] [Indexed: 12/11/2022]
|
13
|
Mendivil CO, Koziel H, Brain JD. Metabolic hormones, apolipoproteins, adipokines, and cytokines in the alveolar lining fluid of healthy adults: compartmentalization and physiological correlates. PLoS One 2015; 10:e0123344. [PMID: 25848795 PMCID: PMC4388476 DOI: 10.1371/journal.pone.0123344] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 02/26/2015] [Indexed: 11/18/2022] Open
Abstract
Objectives Our current understanding of hormone regulation in lung parenchyma is quite limited. We aimed to quantify a diverse array of biologically relevant protein mediators in alveolar lining fluid (ALF), compared to serum concentrations, and explore factors associated with protein compartmentalization on either side of the air-blood barrier. Research Design and Methods Participants were 24 healthy adult non-smoker volunteers without respiratory symptoms or significant medical conditions, with normal lung exams and office spirometry. Cell-free bronchoalveolar lavage fluid and serum were analyzed for 24 proteins (including enteric and metabolic hormones, apolipoproteins, adipokines, and cytokines) using a highly sensitive multiplex ELISA. Measurements were normalized to ALF concentrations. The ALF:serum concentration ratios were examined in relation to measures of protein size, hydrophobicity, charge, and to participant clinical and spirometric values. Results ALF measurements from 24 individuals detected 19 proteins, including adiponectin, adipsin, apoA-I, apoA-II, apoB, apoC-II, apoC-III, apoE, C-reactive protein, ghrelin, glucose-dependent insulinotropic peptide (GIP), glucagon-like peptide-1 (GLP-1), glucagon, insulin, leptin, monocyte chemoattractant protein-1, plasminogen activator inhibitor-1, resistin, and visfatin. C-peptide and serpin E1 were not detected in ALF for any individual, and IL-6, IL-10, and TNF-alpha were not detected in either ALF or serum for any individual. In general, ALF levels were similar or lower in concentration for most proteins compared to serum. However, ghrelin, resistin, insulin, visfatin and GLP-1 had ALF concentrations significantly higher compared to serum. Importantly, elevated ALF:serum ratios of ghrelin, visfatin and resistin correlated with protein net charge and isoelectric point, but not with molecular weight or hydrophobicity. Conclusions Biologically relevant enteric and metabolic hormones, apolipoproteins, adipokines, and cytokines can be detected in the ALF of healthy individuals. For the proteins measured, charge may influence trafficking and compartmentalization to the alveolar airspace more than molecular weight or hydrophobicity. These data may have implications for homeostasis and drug delivery to the lung.
Collapse
Affiliation(s)
- Carlos O. Mendivil
- School of Medicine, Universidad de los Andes, Bogotá, Colombia
- Section of Endocrinology, Hospital Universitario Fundación Santa Fe de Bogotá, Bogotá, Colombia
- Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Henry Koziel
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Joseph D. Brain
- Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
14
|
Dekali S, Gamez C, Kortulewski T, Blazy K, Rat P, Lacroix G. Assessment of an in vitro model of pulmonary barrier to study the translocation of nanoparticles. Toxicol Rep 2014; 1:157-171. [PMID: 28962236 PMCID: PMC5598380 DOI: 10.1016/j.toxrep.2014.03.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 03/10/2014] [Accepted: 03/10/2014] [Indexed: 12/22/2022] Open
Abstract
As the lung is one of the main routes of exposure to manufactured nanoparticles, we developed an in vitro model resembling the alveolo-capillary barrier for the study of nanoparticle translocation. In order to provide a relevant and ethical in vitro model, cost effective and easy-to-implement human cell lines were used. Pulmonary epithelial cells (Calu-3 cell line) and macrophages (THP-1 differentiated cells) were cultivated on the apical side and pulmonary endothelial cells (HPMEC-ST1.6R cell line) on the basal side of a microporous polyester membrane (Transwell®). Translocation of non-functionalized (51 and 110 nm) and aminated (52 nm) fluorescent polystyrene (PS) nanobeads was studied in this system. The use of Calu-3 cells allowed high transepithelial electrical resistance (TEER) values (>1000 Ω cm2) in co-cultures with or without macrophages. After 24 h of exposure to non-cytotoxic concentrations of non-functionalized PS nanobeads, the relative TEER values (%/t0) were significantly decreased in co-cultures. Epithelial cells and macrophages were able to internalize PS nanobeads. Regarding translocation, Transwell® membranes per se limit the passage of nanoparticles between apical and basal side. However, small non-functionalized PS nanobeads (51 nm) were able to translocate as they were detected in the basal side of co-cultures. Altogether, these results show that this co-culture model present good barrier properties allowing the study of nanoparticle translocation but research effort need to be done to improve the neutrality of the porous membrane delimitating apical and basal sides of the model.
Collapse
Affiliation(s)
- Samir Dekali
- INERIS (Institut National de l’Environnement industriel et des RISques), Unité de Toxicologie expérimentale, 60550 Verneuil-en-Halatte, France
- Laboratoire de chimie et toxicologie analytique et cellulaire (C-TAC), Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes (PRES Sorbonne Paris Cité), 75270 Paris Cedex 06, France
| | - Christelle Gamez
- INERIS (Institut National de l’Environnement industriel et des RISques), Unité de Toxicologie expérimentale, 60550 Verneuil-en-Halatte, France
| | - Thierry Kortulewski
- CEA, DSV, iRCM, Plateforme imagerie photonique, 92260 Fontenay-aux-Roses, France
| | - Kelly Blazy
- INERIS (Institut National de l’Environnement industriel et des RISques), Unité de Toxicologie expérimentale, 60550 Verneuil-en-Halatte, France
| | - Patrice Rat
- Laboratoire de chimie et toxicologie analytique et cellulaire (C-TAC), Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes (PRES Sorbonne Paris Cité), 75270 Paris Cedex 06, France
| | - Ghislaine Lacroix
- INERIS (Institut National de l’Environnement industriel et des RISques), Unité de Toxicologie expérimentale, 60550 Verneuil-en-Halatte, France
- Corresponding author at: INERIS, Parc technologique ALATA, BP2, 60550, Verneuil-en-Halatte, France. Tel.: +33 3 44 55 63 15; fax: +33 3 44 55 66 05
| |
Collapse
|
15
|
Fernandez de Castro JP, Mullins RF, Manea AM, Hernandez J, Wallen T, Kuehn MH. Lipofuscin in human glaucomatous optic nerves. Exp Eye Res 2013; 111:61-6. [PMID: 23567206 DOI: 10.1016/j.exer.2013.03.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 03/08/2013] [Accepted: 03/26/2013] [Indexed: 11/27/2022]
Abstract
Lipofuscin accumulation has been observed in a number of neurodegenerative diseases. We recently found that autofluorescent particles also occur in the aged human optic nerve. In this study we sought to determine the nature of these particles and their correlation with aging, age-related macular degeneration (AMD) and primary open angle glaucoma (POAG). Groups of eight optic nerves from patients diagnosed with primary open angle glaucoma, age-related macular degeneration, age-matched controls and four optic nerves derived from controls younger than 42 years were used for the study. All samples were fixed in paraformaldehyde and frozen frontal sections were prepared. Sections were analyzed with fluorescence microscopy, bright field microscopy, Sudan black staining and spectrofluorometry using a confocal laser scanning microscope. Sections were photographed and analyzed to establish the distribution, quantity, and size of the autofluorescent particles. Additionally, transmission electron microscopy was used to determine the ultrastructural location of the granules. On unstained sections under light microscopy granules are detectable as pale brown inclusions and are easily stained with oil-soluble dyes, such as Sudan black. Granules fluoresce when excited at all tested wavelengths but lose their fluorescence after staining with Sudan black. These particles are distributed throughout the axonal columns, but not in the septa, and appear to be located within the glia ensheathing optic nerve axons. The histologic properties of the granules seen in the optic nerve sections correspond to lipofuscin aggregates, a result of incomplete degradation of oxidized proteins. Our morphometric analyses indicate that overall the optic nerves from control, glaucoma, and AMD donors contain similar amounts of lipofuscin. However, optic nerves derived from donors with glaucoma contain lipofuscin particles that are larger than those observed in the age-matched control and AMD groups. Furthermore optic nerves from glaucoma donors display a smaller diameter than those from age-matched controls resulting in a higher concentration of lipofuscin in glaucomatous optic nerves.
Collapse
Affiliation(s)
- J P Fernandez de Castro
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, KY, USA
| | | | | | | | | | | |
Collapse
|
16
|
Bates PJ, Nicholls PJ, Farr SJ. The Influence of Organic Fibre Dust Extracts on Airway Permeability in the Guinea-Pig. J Pharm Pharmacol 2011. [DOI: 10.1111/j.2042-7158.1990.tb14388.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- P J Bates
- Welsh School of Pharmacy, University of Wales, College of Cardiff, PO Box 13, Cardiff CF1 3XF
| | - P J Nicholls
- Welsh School of Pharmacy, University of Wales, College of Cardiff, PO Box 13, Cardiff CF1 3XF
| | - S J Farr
- Welsh School of Pharmacy, University of Wales, College of Cardiff, PO Box 13, Cardiff CF1 3XF
| |
Collapse
|
17
|
Chatterjea SM, Resing KA, Old W, Nirunsuksiri W, Fleckman P. Optimization of filaggrin expression and processing in cultured rat keratinocytes. J Dermatol Sci 2011; 61:51-9. [PMID: 21146962 PMCID: PMC3031422 DOI: 10.1016/j.jdermsci.2010.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 10/11/2010] [Accepted: 11/06/2010] [Indexed: 12/11/2022]
Abstract
BACKGROUND In normal mammalian epidermis, cell division occurs primarily in the basal layer where cells are attached to the basement membrane. Upon release from the basement membrane, these basal cells stop dividing and begin to differentiate and stratify producing cornified cells expressing differentiation markers, including the keratin bundling protein filaggrin, and cornified envelope proteins. Little is understood about the regulatory mechanisms of these processes. A rat epidermal keratinocyte cell line synthesizing and processing profilaggrin at confluence in a synchronous manner for 4-5 days provides a useful culture model for epidermal differentiation. Profilaggrin expression in this cell line however decreases with passaging, and its processing involves extensive nonspecific proteolysis. OBJECTIVE Our objective was to identify culture conditions that effect the decrease in profilaggrin expression with passaging and nonspecific proteolysis of profilaggrin in order to study epidermal differentiation more closely. METHOD The large amount of nonspecific proteolysis suggested autophagocytosis. To test this, cells were cultured in the presence of 3-methyladenine (3-MA). Two known gradients in epidermis are decreasing serum components and increasing calcium concentrations in the upper cell layers. To determine whether these gradients effected processing, cells were cultured in serum/DMEM or in serum-free KGM and under varying external calcium concentrations. Cells were also cultured in presence of aminoguanidine in an attempt to maintain profilaggrin expression with passaging. RESULTS Profilaggrin expression was enhanced in the presence of 3-MA, with optimum around 6mM. In the absence of aminoguanidine, profilaggrin expression decreased as a function of increasing passage number; in its presence, profilaggrin expression remained high in some, but not in all of the independently maintained cell lines. Thus, culturing in aminoguanidine was necessary, but not sufficient, for sustained ability to express profilaggrin at confluence. Production of filaggrin from profilaggrin was maximized in a serum-free medium with [Ca(2+)] at 5mM. Filaggrin associates with phospholipid vesicles in vitro forming aggregates similar to those seen in vivo, suggesting that filaggrin release induces vesicular aggregation and autophagocytosis. CONCLUSION We have used a keratinocyte cell line that synthesizes and processes profilaggrin after confluence as a culture model to study epidermal differentiation. In this system profilaggrin processing must be preceded by inhibition of autophagosome formation and/or modulation of vesicular trafficking, and these processes are regulated by epidermal calcium and serum factor gradients.
Collapse
Affiliation(s)
| | - Katheryn A. Resing
- Dept. of Chemistry & Biochemistry, University of Colorado at Boulder, Boulder CO, 80309
| | - William Old
- Dept. of Chemistry & Biochemistry, University of Colorado at Boulder, Boulder CO, 80309
| | | | - Philip Fleckman
- Division of Dermatology, University of Washington, Seattle WA, 98195
| |
Collapse
|
18
|
|
19
|
|
20
|
|
21
|
Abstract
Targeted nanoparticles have the potential to improve drug delivery efficiencies by more than two orders of magnitude, from the ~ 0.1% which is common today. Most pharmacologically agents on the market today are small drug molecules, which diffuse across the body’s blood-tissue barriers and distribute not only into the lesion, but into almost all organs. Drug actions in the non-lesion organs are an inescapable part of the drug delivery principle, causing “side-effects” which limit the maximally tolerable doses and result in inadequate therapy of many lesions. Nanoparticles only cross barriers by design, so side-effects are not built into their mode of operation. Delivery rates of almost 90% have been reported. This review examines the significance of these statements and checks how far they need qualification. What type of targeting is required? Is a single targeting sufficient? What new types of clinical challenge, such as immunogenicity, might attend the use of targeted nanoparticles?
Collapse
|
22
|
Selg E, Acevedo F, Nybom R, Blomgren B, Ryrfeldt Å, Gerde P. Delivering Horseradish Peroxidase as a Respirable Powder to the Isolated, Perfused, and Ventilated Lung of the Rat: The Pulmonary Disposition of an Inhaled Model Biopharmaceutical. J Aerosol Med Pulm Drug Deliv 2010; 23:273-84. [DOI: 10.1089/jamp.2009.0790] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ewa Selg
- Inhalation Sciences Sweden AB, Stockholm, Sweden
| | | | - Rolf Nybom
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Bo Blomgren
- Safety Assessment, AstraZeneca R&D, Södertälje, Sweden
| | - Åke Ryrfeldt
- Division of Physiology, The National Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Per Gerde
- Inhalation Sciences Sweden AB, Stockholm, Sweden
- Division of Physiology, The National Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
23
|
Schneeberger EE, Karnovsky MJ. The influence of intravascular fluid volume on the permeability of newborn and adult mouse lungs to ultrastructural protein tracers. ACTA ACUST UNITED AC 2010; 49:319-34. [PMID: 19866761 PMCID: PMC2108318 DOI: 10.1083/jcb.49.2.319] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The permeability of the alveolar-capillary membrane of newborn and adult mice to horseradish peroxidase (HRP) and catalase was studied by means of ultrastructural cytochemistry, and the permeability to ferritin was studied by electron microscopy. The influence of varying volumes of intravenously injected fluid on the rate of leakage of the tracers from pulmonary capillaries was examined. The tracers were injected intravenously and the mice were sacrificed at timed intervals. Experiments on newborn mice with intranasally instilled HRP were also done. The tissues were fixed in formaldehyde-glutaraldehyde fixative. Chopped sections were incubated in Graham and Karnovsky's medium for peroxidase and in a modification of this medium for catalase. Tissues were postfixed in OsO4 and processed for electron microscopy. In both newborn and adult mice, the ready passage of peroxidase through endothelial clefts was dependent on the injection of the tracer in large volumes of saline. When the tracer was injected in small volumes of saline, its passage through endothelial clefts was greatly reduced. Endothelial junctions of newborn mice were somewhat more permeable to HRP than those of adult mice. In all animals, alveolar epithelial junctions were impermeable to HRP. Catalase and ferritin did not pass through endothelial junctions. Intranasally instilled HRP in newborn mice was taken up by pinocytotic vesicles and tubules of flat alveolar cells.
Collapse
Affiliation(s)
- E E Schneeberger
- Department of Nutrition, Harvard School of Public Health, and the Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115
| | | |
Collapse
|
24
|
|
25
|
Ericsson JL, Rammer L. Renal morphology in burned rats. ACTA PATHOLOGICA ET MICROBIOLOGICA SCANDINAVICA. SECTION A, PATHOLOGY 2009; 80:671-86. [PMID: 5081880 DOI: 10.1111/j.1699-0463.1972.tb00333.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
26
|
Skeie JM, Mullins RF. Elastin-mediated choroidal endothelial cell migration: possible role in age-related macular degeneration. Invest Ophthalmol Vis Sci 2008; 49:5574-80. [PMID: 18708613 PMCID: PMC2609900 DOI: 10.1167/iovs.08-1984] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Endothelial cell (EC) migration is a key event in angiogenesis, and is likely to play an important role in choroidal neovascularization in age-related macular degeneration (AMD). Altered elastin metabolism has been described in AMD, and the present study sought to determine the effects of elastin-derived peptides (EDPs) on choroidal EC migration and proliferation. METHODS Migration of the chorioretinal EC line Rf/6a and a primary culture of human choroidal ECs through polycarbonate membrane inserts was quantified in the presence of elastin bioactive hexapeptides (BPs), EDPs, bovine serum albumin (BSA), or balanced salt solution. Proliferation assays and in vitro wound closure experiments were also performed in the presence of elastin fragments or balanced salt solution (control). Elastin overlay experiments were performed on sections of human eyes. RESULTS For both Rf/6a and human primary choroidal ECs exposed to EDPs or BPs, the number of ECs that migrated through the polycarbonate membrane was significantly higher than ECs exposed to balanced salt solution alone or to BSA (P < 0.05) in all experiments. In contrast, the rate of EC proliferation did not significantly change in comparison to controls. Elastin binding sites were identified on choroidal ECs in human eyes. CONCLUSIONS Elastin fragments increase choroidal EC migration, whereas they do not appear to increase or decrease EC proliferation. Local or systemic abnormalities in elastin physiology may participate in pathologic neovascular membrane formation in AMD.
Collapse
Affiliation(s)
- Jessica M. Skeie
- Center for Macular Degeneration, Department of Ophthalmology and Visual Science, University of Iowa, Iowa City, Iowa
- Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa
| | - Robert F. Mullins
- Center for Macular Degeneration, Department of Ophthalmology and Visual Science, University of Iowa, Iowa City, Iowa
| |
Collapse
|
27
|
|
28
|
Staub NC, Gee M, Vreim C. Mechanism of alveolar flooding in acute pulmonary oedema. CIBA FOUNDATION SYMPOSIUM 2008:255-72. [PMID: 1047639 DOI: 10.1002/9780470720202.ch15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In severe pulmonary oedema, the alveoli fill rapidly with fluid of essentially the same protein composition as free interstitial fluid. The usual explanation is that the normally 'tight' alveolar epithelial intercellular junctions suddenly become freely permeable to proteins. But the pathophysiological basis for such a change is unknown. In seven anaesthetized dogs one lower lobe was filled with iso-osmotic fluid containing 125I-labelled albumin. The calculated alveolus-blood albumin permeability over three hours averaged 0.06 X 10(-7) cm/s. It decreased nearly 50% when the alveolar tracer concentration was tripled for three more hours. At autopsy, large interstitial free fluid cuffs around blood vessels and airways were found. Isolated lung lobes were filled with isosmotic fluid containing tracer albumin at 10 and 20 cmH2O (0.98-1.96 kPa) airway pressure. Free interstitial fluid cuffs developed within 30 and 10 minutes, respectively. The tracer protein concentration in the cuff fluid averaged 0.9 that of the alveolar fluid. It is postulated that the terminal airway epithelium is normally permeable to protein and water. In acute pulmonary oedema alveolar flooding may occur along the same pathway after the loose interstitial tissue space is fluid-filled and its pressure exceeds that in the airway. The anatomical site of the bulk fluid and protein leak has not been identified.
Collapse
|
29
|
Fishman AP, Pietra GG. Permeability of pulmonary vascular endothelium. CIBA FOUNDATION SYMPOSIUM 2008:29-48. [PMID: 181219 DOI: 10.1002/9780470720202.ch3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Three aspects of transendothelial exchange in the lungs are considered: stretching of interendothelial junctions of pulmonary microvessels by increase in pulmonary capillary pressures; selective stretching of interendothelial junctions of bronchial venules in response to histamine, bradykinin and endotoxin; active transport of peptides across the body of the endothelial cell after enzymic action at or near the luminal surface of the endothelial cell. Stretching of interendothelial junctions between the cells lining the pulmonary capillaries was demonstrated using a variety of macromolecular tracers under controlled haemodynamic conditions. Selective leakage of bronchial venules, the systemic venules of the lungs, was shown using colloidal carbon as a tracer. Transendothelial transport of peptides across the pulmonary capillary lining involved the use of electron microscopic autoradiography after intravenous administration of radioactively-labelled lipoproteins. Different mechanisms appear to provide routes of entry into the perivascular interstitial spaces of the lungs.
Collapse
|
30
|
Keynes RD. Comparative aspects of salt and water transport across lung. CIBA FOUNDATION SYMPOSIUM 2008:125-32. [PMID: 1047638 DOI: 10.1002/9780470720202.ch8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Calculation suggests that the outward flux of water from the surface of the lung into the expired air could be driven by a relatively small standing osmotic gradient. The structure of this alveolar epithelium does not appear to possess the characteristics of a typical secretory epithelium. These considerations argue against the occurrence of active transport in the alveoli of the adult mammalian lung.
Collapse
|
31
|
Simionescu M. Ultrastructural organization of the alveolar-capillary unit. CIBA FOUNDATION SYMPOSIUM 2008; 78:11-36. [PMID: 6907080 DOI: 10.1002/9780470720615.ch2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
As a result of its special position in the circulatory system the lung can screen and monitor the composition of the blood which comes from and is returned to all the tissues. This function, together with the exchange of gases, takes place at the level of the alveolar-capillary unit. The cellular components of the unit are: the epithelium, lining the air spaces, and the endothelium, facing the blood compartment. The epithelium is composed of two types of cells: type I--broad, squamous, highly branched cells occupying approximately 97% of the total alveolar surface; these cells seem to be involved mostly in exchange of gases; and type II--cuboidal cells containing characteristic osmiophilic lamellar bodies in their cytoplasm. The epithelial cells are connected to one another by tight junctions. A thin layer of a surface-active material--the surfactant--covers the epithelium toward the air space, where its role is to lower the surface tension. Surfactant is a mixture of lipids (approximately 75%) and proteins; dipalmitoyl-phosphatidylcholine is the major lipid component and is synthesized and secreted by type II epithelial cells. The endothelium is of continuous type and has a large population of plasmalemmal vesicles; the cells are linked together by tight junctions. Morphometric studies indicate that in humans the capillary surface area is approximately 120 m2 and the alveolar surface area is approximately 140 m2. Some of the metabolic functions ascribed to the lung have been localized to cellular components. Phospholipids needed for the constantly renewed surfactant are synthesized in type II epithelial cells. Angiotensin-converting enzyme is associated with the endothelial cell membrane and vesicles opening to the blood front. There are indications that pulmonary cells also intervene in the metabolism of circulating vasoactive substances which during their passage through the lung can be activated (angiotensin I), inactivated (bradykinin) or removed from the circulation (5-hydroxytryptamine). The lung is a metabolically active organ where the anabolism and catabolism of pharmacologically active substances and the synthesis of lipids take place and a proper balance for blood homeostasis is maintained.
Collapse
|
32
|
Schneeberger EE. Ultrastructural basis for alveolar-capillary permeability to protein. CIBA FOUNDATION SYMPOSIUM 2008:3-28. [PMID: 181220 DOI: 10.1002/9780470720202.ch2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The intravenous injection into mice of small volumes (less than 0.1 ml) of peroxidatic enzymes of molecular weight of 40 000 daltons or greater results in little if any penetration of these probe molecules into endothelial junctions. The injection of cytochrome c (12 000 daltons), on the other hand, results in the localization of this tracer in some but not all endothelial junctions. When horseradish peroxidase (EC 1.11.1.7) is injected in a large volume of saline (0.5 ml), reaction product is present in endothelial junctions and basement membrane, but is prevented from entering the alveolar space by zonulae occludentes between epithelial cells. These experiments indicate that although endothelial junctions, under physiological conditions, are largely impermeable to molecules the size of horseradish peroxidase, and presumably most serum proteins, they are labile and susceptible to stretching if intravascular pressure is increased. Freeze-fracture studies show that pulmonary capillary endothelial junctions are composed of one or at the most two strands which show areas of discontinuity. Epithelial junctions, by contrast, are composed of a continuous, complex network of anastomosing fibres. These observations confirm physiological experiments which indicate that it is the pulmonary epithelium rather than the endothelium which determines the permeability properties of the alveolar-capillary membrane to lipid-insoluble molecules. Bidirectional pinocytic transport is an additional mechanism whereby lipid-insoluble molecules are transported across both endothelial and epithelial layers. The relative contribution of this transport mechanism to the total amount transported remains to be established.
Collapse
|
33
|
Affiliation(s)
- Morris J Karnovsky
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA.
| |
Collapse
|
34
|
|
35
|
De Pasquale CG, Arnolda LF, Doyle IR, Aylward PE, Russell AE, Bersten AD. Circulating surfactant protein-B levels increase acutely in response to exercise-induced left ventricular dysfunction. Clin Exp Pharmacol Physiol 2005; 32:622-7. [PMID: 16120188 DOI: 10.1111/j.0305-1870.2005.04241.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
1. As a result of its enormous surface area and necessary thinness for gas exchange, the alveolocapillary barrier is vulnerable to mechanical disruption from raised pulmonary microvascular pressure (Pmv). 2. Because surfactant protein-B (SP-B) leaks into the blood stream from the alveoli in response to alveolocapillary barrier damage and exercise leads to increased Pmv, we sought to determine whether exercise results in increased plasma SP-B. Moreover, in the setting of exercise-induced left ventricular dysfunction, the consequent increase in left heart filling pressure and, therefore, P(mv) would be expected to further increase plasma SP-B levels. 3. Twenty consecutive subjects referred for treadmill exercise stress echocardiography (ESE) had venous blood sampled immediately before and after ESE for batch atrial natriuretic peptide (ANP) and SP-B assay. Echocardiographic measures of pulmonary haemodynamics (pulmonary artery flow acceleration time (pafAT) and right ventricular outflow tract velocity time integral (rVTI)) were also taken pre- and post-exercise. 4. Although circulating ANP levels increased following exercise (P < 0.001), there was no change in circulating SP-B levels in the entire cohort. 5. Ten subjects had a positive ESE for ventricular dysfunction. Although circulating ANP was increased post-exercise in both the negative and positive ESE groups (P < 0.05 and P < 0.01, respectively), circulating SP-B only increased post-exercise in the positive ESE group (P < 0.05). Echocardiographic parameters supported an increment in P(mv) in the cohort with exercise-induced left ventricular dysfunction because this group had an increase in pafAT (P < 0.05; reflecting pulmonary artery pressure) and no change in rVTI. 6. Physical exertion associated with a Bruce protocol ESE is insufficient to increase circulating SP-B, despite evidence of increased left atrial and pulmonary vascular pressure. However, in the setting of exercise-induced myocardial dysfunction, there is a detectable increase in circulating SP-B. 7. The exaggerated increase in pulmonary vascular pressure in exercise-induced myocardial dysfunction may result in increased SP-B leakage from the alveoli into the circulation by altering the integrity of the alveolocapillary barrier to protein.
Collapse
|
36
|
Steimer A, Haltner E, Lehr CM. Cell culture models of the respiratory tract relevant to pulmonary drug delivery. ACTA ACUST UNITED AC 2005; 18:137-82. [PMID: 15966771 DOI: 10.1089/jam.2005.18.137] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The respiratory tract holds promise as an alternative site of drug delivery due to fast absorption and rapid onset of drug action, with avoidance of hepatic and intestinal first-pass metabolism as an additional benefit compared to oral drug delivery. At present, the pharmaceutical industry increasingly relies on appropriate in vitro models for the faster evaluation of drug absorption and metabolism as an alternative to animal testing. This article reviews the various existing cell culture systems that may be applied as in vitro models of the human air-blood barrier, for instance, in order to enable the screening of large numbers of new drug candidates at low cost with high reliability and within a short time span. Apart from such screening, cell culture-based in vitro systems may also contribute to improve our understanding of the mechanisms of drug transport across such epithelial tissues, and the mechanisms of action how advanced drug carriers, such as nanoparticles or liposomes, can help to overcome these barriers. After all, the increasing use and acceptance of such in vitro models may lead to a significant acceleration of the drug development process by facilitating the progress into clinical studies and product registration.
Collapse
Affiliation(s)
- A Steimer
- Across Barriers GmbH, Department R&D Cell & Tissue Based Systems, Science Park Saar, Saarbrücken, Germany
| | | | | |
Collapse
|
37
|
Maina JN, West JB. Thin and strong! The bioengineering dilemma in the structural and functional design of the blood-gas barrier. Physiol Rev 2005; 85:811-44. [PMID: 15987796 DOI: 10.1152/physrev.00022.2004] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In gas exchangers, the tissue barrier, the partition that separates the respiratory media (water/air and hemolymph/blood), is exceptional for its remarkable thinness, striking strength, and vast surface area. These properties formed to meet conflicting roles: thinness was essential for efficient flux of oxygen by passive diffusion, and strength was crucial for maintaining structural integrity. What we have designated as "three-ply" or "laminated tripartite" architecture of the barrier appeared very early in the evolution of the vertebrate gas exchanger. The design is conspicuous in the water-blood barrier of the fish gills through the lungs of air-breathing vertebrates, where the plan first appeared in lungfishes (Dipnoi) some 400 million years ago. The similarity of the structural design of the barrier in respiratory organs of animals that remarkably differ phylogenetically, behaviorally, and ecologically shows that the construction has been highly conserved both vertically and horizontally, i.e., along and across the evolutionary continuum. It is conceivable that the blueprint may have been the only practical construction that could simultaneously grant satisfactory strength and promote gas exchange. In view of the very narrow allometric range of the thickness of the blood-gas barrier in the lungs of different-sized vertebrate groups, the measurement has seemingly been optimized. There is convincing, though indirect, evidence that the extracellular matrix and particularly the type IV collagen in the lamina densa of the basement membrane is the main stress-bearing component of the blood-gas barrier. Under extreme conditions of operation and in some disease states, the barrier fails with serious consequences. The lamina densa which in many parts of the blood-gas barrier is <50 nm thin is a lifeline in the true sense of the word.
Collapse
Affiliation(s)
- John N Maina
- School of Anatomical Sciences, Faculty of Health Sciences, The University of Witwatersrand, Johannesburg, South Africa
| | | |
Collapse
|
38
|
Kaner RJ, Crystal RG. Pathogenesis of high altitude pulmonary edema: does alveolar epithelial lining fluid vascular endothelial growth factor exacerbate capillary leak? High Alt Med Biol 2005; 5:399-409. [PMID: 15671629 DOI: 10.1089/ham.2004.5.399] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) is a potent mediator of capillary leak if it gains access to its receptors on the capillary endothelium. We have observed that there are high levels of VEGF compartmentalized in the alveolar epithelial lining fluid of normal humans at levels 500-fold greater than plasma. The potential for high altitude to result in compromise of alveolar epithelial tight junctions and experimental animal studies in which pulmonary edema is induced when VEGF is overexpressed in the alveolar epithelium, suggest a mechanism. We hypothesize that when the epithelial barrier is compromised at high altitude the normally high level of VEGF in the alveolar epithelial fluid has access to the pulmonary endothelium, where it acutely alters permeability, markedly exacerbating the high permeability pulmonary edema that characterizes high altitude pulmonary edema. If correct, this paradigm opens the possibility of testing available anti-VEGF therapies to treat this potentially fatal disorder.
Collapse
Affiliation(s)
- Robert J Kaner
- Division of Pulmonary and Critical Care Medicine, Department of Genetic Medicine, Weill Medical College of Cornell University, 515 East 71st Street S-1000, New York, NY 10021, USA.
| | | |
Collapse
|
39
|
Functions of Basement Membranes. CURRENT TOPICS IN MEMBRANES 2005. [DOI: 10.1016/s1063-5823(05)56004-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
40
|
Wang H, Fu W, Im JH, Zhou Z, Santoro SA, Iyer V, DiPersio CM, Yu QC, Quaranta V, Al-Mehdi A, Muschel RJ. Tumor cell alpha3beta1 integrin and vascular laminin-5 mediate pulmonary arrest and metastasis. J Cell Biol 2004; 164:935-41. [PMID: 15024036 PMCID: PMC2172296 DOI: 10.1083/jcb.200309112] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2003] [Accepted: 02/10/2004] [Indexed: 11/22/2022] Open
Abstract
Arrest of circulating tumor cells in distant organs is required for hematogenous metastasis, but the tumor cell surface molecules responsible have not been identified. Here, we show that the tumor cell alpha3beta1 integrin makes an important contribution to arrest in the lung and to early colony formation. These analyses indicated that pulmonary arrest does not occur merely due to size restriction, and raised the question of how the tumor cell alpha3beta1 integrin contacts its best-defined ligand, laminin (LN)-5, a basement membrane (BM) component. Further analyses revealed that LN-5 is available to the tumor cell in preexisting patches of exposed BM in the pulmonary vasculature. The early arrest of tumor cells in the pulmonary vasculature through interaction of alpha3beta1 integrin with LN-5 in exposed BM provides both a molecular and a structural basis for cell arrest during pulmonary metastasis.
Collapse
Affiliation(s)
- Hui Wang
- Dept. of Pathology, Rm. 916D ARC, Children's Hospital of Philadelphia, 3615 Civic Center Blvd., Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Kim KJ, Matsukawa Y, Yamahara H, Kalra VK, Lee VHL, Crandall ED. Absorption of intact albumin across rat alveolar epithelial cell monolayers. Am J Physiol Lung Cell Mol Physiol 2003; 284:L458-65. [PMID: 12573985 DOI: 10.1152/ajplung.00237.2002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Transport characteristics of intact albumin were investigated using primary cultured rat alveolar epithelial cell monolayers. The apical-to-basolateral (ab) flux of intact fluorescein isothiocyanate (FITC)-labeled albumin (F-Alb) is greater than basolateral-to-apical (ba) flux at the same upstream [F-Alb]. Net absorption of intact F-Alb occurs with half-maximal concentration of approximately 1.6 microM and maximal transport rate of approximately 0.15 fmol.cm(-2).s(-1). At 15 and 4 degrees C, both ab and ba F-Alb fluxes are not different from zero, collapsing net absorption. The presence of excess unlabeled albumin (but not other macromolecule species) in either the apical or basolateral fluid significantly reduces both ab and ba unidirectional F-Alb fluxes. Photoaffinity labeling of apical cell membranes revealed an approximately 60-kDa protein that exhibits specificity for albumin. These data indicate that net absorption of intact albumin takes place via saturable receptor-mediated transcellular endocytotic processes recognizing albumin, but not other macromolecules, that may play an important role in alveolar homeostasis in the mammalian lung.
Collapse
Affiliation(s)
- Kwang-Jin Kim
- Department of Medicine, School of Medicine, University of Southern California, Los Angeles, California 90033, USA.
| | | | | | | | | | | |
Collapse
|
42
|
Matthay MA, Folkesson HG, Clerici C. Lung epithelial fluid transport and the resolution of pulmonary edema. Physiol Rev 2002; 82:569-600. [PMID: 12087129 DOI: 10.1152/physrev.00003.2002] [Citation(s) in RCA: 499] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The discovery of mechanisms that regulate salt and water transport by the alveolar and distal airway epithelium of the lung has generated new insights into the regulation of lung fluid balance under both normal and pathological conditions. There is convincing evidence that active sodium and chloride transporters are expressed in the distal lung epithelium and are responsible for the ability of the lung to remove alveolar fluid at the time of birth as well as in the mature lung when pathological conditions lead to the development of pulmonary edema. Currently, the best described molecular transporters are the epithelial sodium channel, the cystic fibrosis transmembrane conductance regulator, Na+-K+-ATPase, and several aquaporin water channels. Both catecholamine-dependent and -independent mechanisms can upregulate isosmolar fluid transport across the distal lung epithelium. Experimental and clinical studies have made it possible to examine the role of these transporters in the resolution of pulmonary edema.
Collapse
Affiliation(s)
- Michael A Matthay
- Cardiovascular Research Institute and Department of Medicine, University of California, San Francisco, California 94143-0624, USA.
| | | | | |
Collapse
|
43
|
Inoue S. Basement membrane and beta amyloid fibrillogenesis in Alzheimer's disease. INTERNATIONAL REVIEW OF CYTOLOGY 2002; 210:121-61. [PMID: 11580205 DOI: 10.1016/s0074-7696(01)10005-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
High-resolution ultrastructural and immunohistochemical studies revealed that in situ beta amyloid fibrils of Alzheimer's disease were made up of a core consisting of a solid column of amyloid P component (AP) and associated chondroitin sulfate proteoglycan, and a heparan sulfate proteoglycan surface layer with externally associated fine filaments of beta protein. The main body of beta amyloid fibrils closely resembled that of microfibrils. Abundant microfibrils were reported to be present at the basement membrane of capillaries with "leaky" blood-urine or blood-air barriers. Similarly, abundant microfibril-like beta amyloid fibrils are formed at the microvascular basement membrane in cerebrovascular amyloid angiopathy with altered blood-brain barrier. Since AP is an indispensable major component of microfibrils and microfibril-like structures, the formation of microfibrils may depend on, among other factors, the availability of AP. Thus, in beta amyloid fibrillogenesis fibrils may be built around AP which continuously leaks out from circulation into vascular basement membrane, and beta amyloid fibrils may be regarded as pathologically altered basement membrane-associated microfibrils. With no source of AP around them, senile plaque fibrils may also be derived from perivascular amyloid.
Collapse
Affiliation(s)
- S Inoue
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
44
|
Gumbleton M. Caveolae as potential macromolecule trafficking compartments within alveolar epithelium. Adv Drug Deliv Rev 2001; 49:281-300. [PMID: 11551400 DOI: 10.1016/s0169-409x(01)00142-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
With inhalational delivery the alveolar epithelium appears to be the appropriate lung surface to target for the systemic delivery of macromolecules, such as therapeutic proteins. The existence of a high numerical density of smooth-coated or non-coated plasma membrane vesicles or invaginations within the alveolar epithelial type I cell has long been recognised. The putative function of these vesicles in macromolecule transport remains the focus of research in both pulmonary physiology and pharmaceutical science disciplines. These vesicles, or subpopulations thereof, have been shown to biochemically possess caveolin, a marker protein for caveolae. This review considers the morphometric and biochemical studies that have progressed the characterisation of the vesicle populations within alveolar type I epithelium. Parallel research findings from the endothelial literature have been considered to contrast the state of progress of caveolae research in alveolar epithelium. Speculation is made on a model of caveolae vesicle-mediated transport that may satisfy some of the pulmonary pharmacokinetic data that has been generated for macromolecule absorption. The putative transport function of caveolae within alveolar epithelium is reviewed with respect to in-situ tracer studies conducted within the alveolar airspace. Finally, the functional characterisation of in-vitro alveolar epithelial cell cultures is considered with respect to the role of caveolae in macromolecule transport. A potentially significant role for alveolar caveolae in mediating the alveolar airspace to blood transport of macromolecules cannot be dismissed. Considerable research is required, however, to address this issue in a quantitative manner. A better understanding of the membrane dynamics of caveolae in alveolar epithelium will help resolve the function of these vesicular compartments and may lead to the development of more specific drug targeting approaches for promoting pulmonary drug delivery.
Collapse
Affiliation(s)
- M Gumbleton
- Pharmaceutical Cell Biology, Welsh School of Pharmacy, Redwood Building, Cardiff University, Cardiff CF10 3XF, UK.
| |
Collapse
|
45
|
|
46
|
Wolff RK. Safety of inhaled proteins for therapeutic use. JOURNAL OF AEROSOL MEDICINE : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY FOR AEROSOLS IN MEDICINE 1999; 11:197-219. [PMID: 10346664 DOI: 10.1089/jam.1998.11.197] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The use of the inhalation route for delivery of inhaled proteins has received increasing attention recently. The purpose of this article is to review the available information related to the safety aspects of inhaled proteins. The review focuses primarily on possible toxicity to the respiratory tract, because usually one is either considering an agent to treat the lung or an agent for which the systemic toxicity has been investigated following subcutaneous (s.c.) administration in its clinical use as a therapeutic agent. Some background is provided on mechanisms of absorption and reasons why inhalation delivery is considered for many proteins. Available data are summarized from clinical trials of proteins and protein-like biomolecules, generally showing minimal, if any, adverse respiratory effects. The results of the animal toxicology studies that have been published are presented. In general, the observed lung toxicity has been relatively low, and it has been difficult to interpret in cases where the animal protein differs considerably from the human protein. Discussion is presented on the possibility of adverse immune reactions, suggesting that this is not likely to be any greater issue than it is for subcutaneously injected materials. Although the safety information is relatively sparse at present, the available data suggest that the inhalation route can be an attractive route to consider for many therapeutic proteins.
Collapse
Affiliation(s)
- R K Wolff
- Toxicology Research Labs, Lilly Research Laboratory, Greenfield, IN 46140, USA.
| |
Collapse
|
47
|
West JB, Mathieu-Costello O. Structure, strength, failure, and remodeling of the pulmonary blood-gas barrier. Annu Rev Physiol 1999; 61:543-72. [PMID: 10099701 DOI: 10.1146/annurev.physiol.61.1.543] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The pulmonary blood-gas barrier needs to satisfy two conflicting requirements. It must be extremely thin for efficient gas exchange, but also immensely strong to withstand the extremely high stresses in the capillary wall when capillary pressure rises during exercise. The strength of the blood-gas barrier on the thin side is attributable to the type IV collagen in the basement membranes. However, when the wall stresses rise to very high levels, ultrastructural changes in the barrier occur, a condition known as stress failure. Physiological conditions that alter the properties of the barrier include intense exercise in elite human athletes. Some animals, such as Thoroughbred racehorses, consistently break their alveolar capillaries during galloping, causing hemorrhage. Pathophysiological conditions causing stress failure include neurogenic pulmonary edema, high-altitude pulmonary edema, left heart failure, and overinflation of the lung. Remodeling of the capillary wall occurs in response to increased wall stress, a good example being the thickening of the capillary basement membrane in diseases such as mitral stenosis. The blood-gas barrier is able to maintain its extreme thinness with sufficient strength only through continual regulation of its wall structure. Recent experimental work suggests that rapid changes in gene expression for extracellular matrix proteins and growth factors occur in response to increases in capillary wall stress. How the blood-gas barrier is regulated to be extremely thin but sufficiently strong is a central issue in lung biology.
Collapse
Affiliation(s)
- J B West
- Department of Medicine, University of California at San Diego, La Jolla 92093-0623, USA.
| | | |
Collapse
|
48
|
Inoue S, Kuroiwa M, Kisilevsky R. Basement membranes, microfibrils and beta amyloid fibrillogenesis in Alzheimer's disease: high resolution ultrastructural findings. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1999; 29:218-31. [PMID: 10209233 DOI: 10.1016/s0165-0173(98)00055-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It is known that beta amyloid fibrils are deposited at the basement membrane of the cerebromicrovasculature in the brains of patients with Alzheimer's disease, and the assembly of the fibrils may be in continuation with the core of senile plaques. The fibrils accumulate in a manner similar to that in which microfibrils accumulate in the glomerular basement membrane of the rat kidney during long-term experimental diabetes, and in the alveolar-capillary basement membrane of the normal lung. beta amyloid fibrils in-situ are known to be about 10 nm wide tubular structures and they closely resemble connective tissue microfibrils. Our recent high resolution ultrastructural studies combined with immunogold labeling demonstrated that beta amyloid fibrils in-situ are indeed microfibril-like structures, and the beta protein is associated with their surface in the form of loose assemblies of 1 nm wide flexible filaments. Thus, the result of this study indicates that in-situ a major component of the beta amyloid deposit is the microfibril-like structure. The elucidation of the mechanism of cerebral beta amyloid fibrillogenesis in Alzheimer's disease may therefore require understanding the mechanism of 'normal' microfibrils biogenesis.
Collapse
Affiliation(s)
- S Inoue
- Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montreal, Quebec, Canada
| | | | | |
Collapse
|
49
|
Hermans C, Bernard A. Lung epithelium-specific proteins: characteristics and potential applications as markers. Am J Respir Crit Care Med 1999; 159:646-78. [PMID: 9927386 DOI: 10.1164/ajrccm.159.2.9806064] [Citation(s) in RCA: 329] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- C Hermans
- Industrial Toxicology and Occupational Medicine Unit, Faculty of Medicine, Catholic University of Louvain, Brussels, Belgium.
| | | |
Collapse
|
50
|
Matsukawa Y, Lee VH, Crandall ED, Kim KJ. Size-dependent dextran transport across rat alveolar epithelial cell monolayers. J Pharm Sci 1997; 86:305-9. [PMID: 9050797 DOI: 10.1021/js960352x] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The transport of dextrans (approximately 4 to approximately 150 kDa) across an in vitro model of the alveolar epithelial barrier was studied to determine the effects of molecular size on pulmonary absorption of macromolecular drugs. Fluorescein isothiocyanate (FITC)-labeled dextrans (FDs) with average molecular weights (all in kDa) of 3.86 (FD4), 9 (FD10), 19.8 (FD20), 40.5 (FD40), 71.6 (FD70), and 156.9 (FD150) were utilized as model macromolecular drugs. Unidirectional fluxes of FDs at 37 and 4 degrees C were measured from the appearance rates of FD in the receiver fluid of open-circuited monolayers (>2000 omega-cm2) of rat alveolar epithelial cells. Apparent permeability coefficients (P(app)) were estimated from the observed flux and the corresponding concentration gradient of FD. Results showed that FD fluxes were the same in both apical-to-basolateral (AB) and opposite (BA) directions at each molecular weight studied. The P(app) was not significantly different at 0.5 and 1.0 mg/mL FD40 donor concentrations. The FD P(app) (x 10(-8)cm/s) decreased gradually from 1.35 for FD4 to 0.32 for FD40, indicating an apparent inverse relationship between P(app) and molecular weight of FD. By contrast, P(app) was about the same at 0.13 for both FD70 and FD150. When experimental temperature was lowered to 4 degrees C, P(app) decreased by approximately 40% for FDs of 4 through 40 kDa, whereas the decrease in P(app) was by approximately 80% for larger FDs of both 70 and 150 kDa. Moreover, these FDs were found to be relatively intact (approximately 90%) in either receiver fluid after 5-h flux experiments without detectable levels of metabolites in the respective donor fluid, suggesting that alveolar epithelial cells allow translocation of FDs intact across the barrier. Equivalent pore analysis, assuming restricted diffusion of FDs of 4-40 kDa via cylindrical, water-filled pores across the cell monolayer revealed a population of large equivalent pores with approximately 5.6 nm radius. These data suggest that smaller macromolecules (radius <5 nm) traverse the alveolar epithelial barrier via paracellular pathways, and that larger (i.e., radius > or = 6 nm) macromolecules likely cross the barrier via other pathways (e.g., pinocytosis).
Collapse
Affiliation(s)
- Y Matsukawa
- Department of Pharmaceutical Sciences, University of Southern California, Los Angeles 90033, USA
| | | | | | | |
Collapse
|