1
|
Fang J, Tian W, Quintanilla MA, Beach JR, Lerit DA. The PCM scaffold enables RNA localization to centrosomes. Mol Biol Cell 2025; 36:ar75. [PMID: 40305119 DOI: 10.1091/mbc.e25-03-0117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025] Open
Abstract
As microtubule-organizing centers, centrosomes direct assembly of the bipolar mitotic spindle required for chromosome segregation and genome stability. Centrosome activity requires the dynamic assembly of pericentriolar material (PCM), the composition and organization of which changes throughout the cell cycle. Recent studies highlight the conserved localization of several mRNAs encoded from centrosome-associated genes enriched at centrosomes, including Pericentrin-like protein (Plp) mRNA. However, relatively little is known about how RNAs localize to centrosomes and influence centrosome function. Here, we examine mechanisms underlying the subcellular localization of Plp mRNA. We find that Plp mRNA localization is puromycin-sensitive, and the Plp-coding sequence (CDS) is both necessary and sufficient for RNA localization, consistent with a cotranslational transport mechanism. We identify regions within the Plp CDS that regulate Plp mRNA localization. Finally, we show that protein-protein interactions critical for elaboration of the PCM scaffold permit RNA localization to centrosomes. Taken together, these findings inform the mechanistic basis of Plp mRNA localization and lend insight into the oscillatory enrichment of RNA at centrosomes.
Collapse
Affiliation(s)
- Junnan Fang
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322
| | - Weiyi Tian
- Emory College of Arts and Sciences, Emory University, Atlanta, GA 30322
| | - Melissa A Quintanilla
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153
| | - Jordan R Beach
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153
| | - Dorothy A Lerit
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322
- Cell and Molecular Biology Research Program, Winship Cancer Institute, Atlanta, GA 30322
| |
Collapse
|
2
|
Yeow ZY, Sarju S, Chang FC, Xu LY, van Breugel M, Holland AJ. Mesoscale regulation of microtubule-organizing centers by the E3 ligase TRIM37. Nat Struct Mol Biol 2025:10.1038/s41594-025-01540-6. [PMID: 40415023 DOI: 10.1038/s41594-025-01540-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 03/19/2025] [Indexed: 05/27/2025]
Abstract
Centrosomes ensure accurate chromosome segregation during cell division. Although the regulation of centrosome number is well established, less is known about the suppression of noncentrosomal microtubule-organizing centers (ncMTOCs). The E3 ligase TRIM37, implicated in Mulibrey nanism and 17q23-amplified cancers, has emerged as a key regulator of both centrosomes and ncMTOCs. Yet, the mechanism by which TRIM37 achieves enzymatic activation to target these mesoscale structures had thus far remained unknown. Here we elucidate the activation process of TRIM37, unveiling a process that initiates with TRAF domain-directed substrate recognition followed by B-box domain-mediated oligomerization and culminates in RING domain dimerization. Using optogenetics, we demonstrate that the E3 activity of TRIM37 is directly coupled to the assembly state of its substrates, being activated only when centrosomal proteins cluster into higher-order assemblies resembling MTOCs. This regulatory framework provides a mechanistic basis for understanding TRIM37-driven pathologies and echoes the restriction of the human immunodeficiency virus capsid by TRIM5, thus unveiling a conserved activation blueprint among TRIM proteins to control turnover of complexes assembled at the mesoscale level.
Collapse
Affiliation(s)
- Zhong Y Yeow
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Sonia Sarju
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Fang-Chi Chang
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lance Y Xu
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mark van Breugel
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Andrew J Holland
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
3
|
Tollervey F, Rios MU, Zagoriy E, Woodruff JB, Mahamid J. Molecular architectures of centrosomes in C. elegans embryos visualized by cryo-electron tomography. Dev Cell 2025; 60:885-900.e5. [PMID: 39721584 PMCID: PMC11948214 DOI: 10.1016/j.devcel.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/29/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024]
Abstract
Centrosomes organize microtubules that are essential for mitotic divisions in animal cells. They consist of centrioles surrounded by pericentriolar material (PCM). Questions related to mechanisms of centriole assembly, PCM organization, and spindle microtubule formation remain unanswered, partly due to limited availability of molecular-resolution structural data inside cells. Here, we use cryo-electron tomography to visualize centrosomes across the cell cycle in cells isolated from C. elegans embryos. We describe a pseudo-timeline of centriole assembly and identify distinct structural features in both mother and daughter centrioles. We find that centrioles and PCM microtubules differ in protofilament number (13 versus 11), which could be explained by atypical γ-tubulin ring complexes with 11-fold symmetry identified at the minus ends of short PCM microtubule segments. We further characterize a porous and disordered network that forms the interconnected PCM. Thus, our work builds a three-dimensional structural atlas that helps explain how centrosomes assemble, grow, and achieve function.
Collapse
Affiliation(s)
- Fergus Tollervey
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany; Collaboration for Joint PhD Degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Manolo U Rios
- Department of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Evgenia Zagoriy
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Jeffrey B Woodruff
- Department of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Julia Mahamid
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany; Cell Biology and Biophysics Unit, EMBL, 69117 Heidelberg, Germany.
| |
Collapse
|
4
|
Lee M, Vetter J, Eichwald C. The influence of the cytoskeleton on the development and behavior of viral factories in mammalian orthoreovirus. Virology 2025; 604:110423. [PMID: 39889480 DOI: 10.1016/j.virol.2025.110423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/06/2025] [Accepted: 01/21/2025] [Indexed: 02/03/2025]
Abstract
Cytosolic viral factories (VFs) of mammalian orthoreovirus (MRV) are sites for viral genome replication and assembly of virus progeny. Despite advancements in reverse genetics, the formation and dynamics of VFs still need to be clarified. MRV exploits host cytoskeletal components like microtubules (MTs) throughout its life cycle, including cell entry, replication, and release. MRV VFs, membrane-less cytosolic inclusions, rely on the viral proteins μ2 and μNS for formation. Protein μ2 interacts and stabilizes MTs through acetylation, supporting VF formation and viral replication, while scaffold protein μNS influences cellular components to aid VF maturation. The disruption of the MT network reduces viral replication, underscoring its importance. Additionally, μ2 associates with MT-organizing centers, modulating the MT dynamics to favor viral replication. In summary, MRV subverts the cytoskeleton to facilitate VF dynamics and promote viral replication and assembly to promote VF dynamics, replication, and assembly, highlighting the critical role of the cytoskeleton in viral replication.
Collapse
Affiliation(s)
- Melissa Lee
- Institute of Virology, University of Zurich, Zurich, Switzerland
| | - Janine Vetter
- Institute of Virology, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
5
|
Banerjee DS, Banerjee S. Catalytic growth in a shared enzyme pool ensures robust control of centrosome size. eLife 2025; 12:RP92203. [PMID: 39968956 PMCID: PMC11839165 DOI: 10.7554/elife.92203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025] Open
Abstract
Accurate regulation of centrosome size is essential for ensuring error-free cell division, and dysregulation of centrosome size has been linked to various pathologies, including developmental defects and cancer. While a universally accepted model for centrosome size regulation is lacking, prior theoretical and experimental works suggest a centrosome growth model involving autocatalytic assembly of the pericentriolar material. Here, we show that the autocatalytic assembly model fails to explain the attainment of equal centrosome sizes, which is crucial for error-free cell division. Incorporating latest experimental findings into the molecular mechanisms governing centrosome assembly, we introduce a new quantitative theory for centrosome growth involving catalytic assembly within a shared pool of enzymes. Our model successfully achieves robust size equality between maturing centrosome pairs, mirroring cooperative growth dynamics observed in experiments. To validate our theoretical predictions, we compare them with available experimental data and demonstrate the broad applicability of the catalytic growth model across different organisms, which exhibit distinct growth dynamics and size scaling characteristics.
Collapse
Affiliation(s)
- Deb Sankar Banerjee
- Department of Physics, Carnegie Mellon UniversityPittsburghUnited States
- James Franck Institute, University of ChicagoChicagoUnited States
| | - Shiladitya Banerjee
- Department of Physics, Carnegie Mellon UniversityPittsburghUnited States
- School of Physics, Georgia Institute of TechnologyAtlantaUnited States
| |
Collapse
|
6
|
Banerjee DS, Banerjee S. Catalytic growth in a shared enzyme pool ensures robust control of centrosome size. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.06.543875. [PMID: 37333186 PMCID: PMC10274694 DOI: 10.1101/2023.06.06.543875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Accurate regulation of centrosome size is essential for ensuring error-free cell division, and dysregulation of centrosome size has been linked to various pathologies, including developmental defects and cancer. While a universally accepted model for centrosome size regulation is lacking, prior theoretical and experimental works suggest a centrosome growth model involving autocatalytic assembly of the pericentriolar material. Here we show that the autocatalytic assembly model fails to explain the attainment of equal centrosome sizes, which is crucial for error-free cell division. Incorporating latest experimental findings into the molecular mechanisms governing centrosome assembly, we introduce a new quantitative theory for centrosome growth involving catalytic assembly within a shared pool of enzymes. Our model successfully achieves robust size equality between maturing centrosome pairs, mirroring cooperative growth dynamics observed in experiments. To validate our theoretical predictions, we compare them with available experimental data and demonstrate the broad applicability of the catalytic growth model across different organisms, which exhibit distinct growth dynamics and size scaling characteristics.
Collapse
Affiliation(s)
- Deb Sankar Banerjee
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- James Franck Institute, University of Chicago, Chicago, IL 60637, USA
| | - Shiladitya Banerjee
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
7
|
Yeow ZY, Sarju S, Breugel MV, Holland AJ. Mesoscale regulation of MTOCs by the E3 ligase TRIM37. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.09.617407. [PMID: 39416078 PMCID: PMC11482927 DOI: 10.1101/2024.10.09.617407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Centrosomes ensure accurate chromosome segregation during cell division. Although the regulation of centrosome number is well-established, less is known about the suppression of non-centrosomal MTOCs (ncMTOCs). The E3 ligase TRIM37, implicated in Mulibrey nanism and 17q23-amplified cancers, has emerged as a key regulator of both centrosomes and ncMTOCs. Yet, the mechanism by which TRIM37 achieves enzymatic activation to target these mesoscale structures had remained unknown. Here, we elucidate TRIM37's activation process, beginning with TRAF domain-directed substrate recognition, progressing through B-box domain-mediated oligomerization, and culminating in RING domain dimerization. Using optogenetics, we demonstrate that TRIM37's E3 activity is directly coupled to the assembly state of its substrates, activating only when centrosomal proteins cluster into higher-order assemblies resembling MTOCs. This regulatory framework provides a mechanistic basis for understanding TRIM37-driven pathologies and, by echoing TRIM5's restriction of the HIV capsid, unveils a conserved activation blueprint among TRIM proteins for controlling mesoscale assembly turnover.
Collapse
Affiliation(s)
- Zhong Y Yeow
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sonia Sarju
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mark V Breugel
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, E1 2AT, UK
| | - Andrew J Holland
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
8
|
Zein-Sabatto H, Brockett JS, Jin L, Husbands CA, Lee J, Fang J, Buehler J, Bullock SL, Lerit DA. Centrocortin potentiates co-translational localization of its mRNA to the centrosome via dynein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.09.607365. [PMID: 39149256 PMCID: PMC11326273 DOI: 10.1101/2024.08.09.607365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Centrosomes rely upon proteins within the pericentriolar material to nucleate and organize microtubules. Several mRNAs also reside at centrosomes, although less is known about how and why they accumulate there. We previously showed that local Centrocortin (Cen) mRNA supports centrosome separation, microtubule organization, and viability in Drosophila embryos. Here, using Cen mRNA as a model, we examine mechanisms of centrosomal mRNA localization. We find that while the Cen N'-terminus is sufficient for protein enrichment at centrosomes, multiple domains cooperate to concentrate Cen mRNA at this location. We further identify an N'-terminal motif within Cen that is conserved among dynein cargo adaptor proteins and test its contribution to RNA localization. Our results support a model whereby Cen protein enables the accumulation of its own mRNA to centrosomes through a mechanism requiring active translation, microtubules, and the dynein motor complex. Taken together, our data uncover the basis of translation-dependent localization of a centrosomal RNA required for mitotic integrity.
Collapse
Affiliation(s)
- Hala Zein-Sabatto
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322
| | - Jovan S. Brockett
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322
| | - Li Jin
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | - Jina Lee
- Emory College of Arts and Sciences, Emory University, Atlanta, GA 30322
- Present Address: University of Pennsylvania School of Dental Medicine, Philadelphia, PA 19104
| | - Junnan Fang
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322
| | - Joseph Buehler
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322
| | - Simon L. Bullock
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge, UK
- co-corresponding authors
| | - Dorothy A. Lerit
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322
- co-corresponding authors
| |
Collapse
|
9
|
Yeh HW, Chen PP, Yeh TC, Lin SL, Chen YT, Lin WP, Chen T, Pang JM, Lin KT, Wang LHC, Lin YC, Shih O, Jeng US, Hsia KC, Cheng HC. Cep57 regulates human centrosomes through multivalent interactions. Proc Natl Acad Sci U S A 2024; 121:e2305260121. [PMID: 38857398 PMCID: PMC11194501 DOI: 10.1073/pnas.2305260121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 04/15/2024] [Indexed: 06/12/2024] Open
Abstract
Human Cep57 is a coiled-coil scaffold at the pericentriolar matrix (PCM), controlling centriole duplication and centrosome maturation for faithful cell division. Genetic truncation mutations of Cep57 are associated with the mosaic-variegated aneuploidy (MVA) syndrome. During interphase, Cep57 forms a complex with Cep63 and Cep152, serving as regulators for centrosome maturation. However, the molecular interplay of Cep57 with these essential scaffolding proteins remains unclear. Here, we demonstrate that Cep57 undergoes liquid-liquid phase separation (LLPS) driven by three critical domains (NTD, CTD, and polybasic LMN). In vitro Cep57 condensates catalyze microtubule nucleation via the LMN motif-mediated tubulin concentration. In cells, the LMN motif is required for centrosomal microtubule aster formation. Moreover, Cep63 restricts Cep57 assembly, expansion, and microtubule polymerization activity. Overexpression of competitive constructs for multivalent interactions, including an MVA mutation, leads to excessive centrosome duplication. In Cep57-depleted cells, self-assembly mutants failed to rescue centriole disengagement and PCM disorganization. Thus, Cep57's multivalent interactions are pivotal for maintaining the accurate structural and functional integrity of human centrosomes.
Collapse
Affiliation(s)
- Hung-Wei Yeh
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu30013, Taiwan
| | - Po-Pang Chen
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu30013, Taiwan
| | - Tzu-Chen Yeh
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu30013, Taiwan
| | - Shiou-Lan Lin
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu30013, Taiwan
| | - Yue-Ting Chen
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu30013, Taiwan
| | - Wan-Ping Lin
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu30013, Taiwan
| | - Ting Chen
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu30013, Taiwan
| | - Jia Meng Pang
- Institute of Biotechnology, National Tsing Hua University, Hsinchu30013, Taiwan
| | - Kai-Ti Lin
- Institute of Biotechnology, National Tsing Hua University, Hsinchu30013, Taiwan
| | - Lily Hui-Ching Wang
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu30013, Taiwan
| | - Yu-Chun Lin
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu30013, Taiwan
| | - Orion Shih
- National Synchrotron Radiation Research Center, Hsinchu30076, Taiwan
| | - U-Ser Jeng
- National Synchrotron Radiation Research Center, Hsinchu30076, Taiwan
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu30013, Taiwan
| | - Kuo-Chiang Hsia
- Institute of Molecular Biology, Academia Sinica, Taipei11529, Taiwan
| | - Hui-Chun Cheng
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu30013, Taiwan
| |
Collapse
|
10
|
Tollervey F, Rios MU, Zagoriy E, Woodruff JB, Mahamid J. Native molecular architectures of centrosomes in C. elegans embryos. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.03.587742. [PMID: 38617234 PMCID: PMC11014625 DOI: 10.1101/2024.04.03.587742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Centrosomes organize microtubules that are essential for mitotic divisions in animal cells. They consist of centrioles surrounded by Pericentriolar Material (PCM). Questions related to mechanisms of centriole assembly, PCM organization, and microtubule formation remain unanswered, in part due to limited availability of molecular-resolution structural analyses in situ. Here, we use cryo-electron tomography to visualize centrosomes across the cell cycle in cells isolated from C. elegans embryos. We describe a pseudo-timeline of centriole assembly and identify distinct structural features including a cartwheel in daughter centrioles, and incomplete microtubule doublets surrounded by a star-shaped density in mother centrioles. We find that centriole and PCM microtubules differ in protofilament number (13 versus 11) indicating distinct nucleation mechanisms. This difference could be explained by atypical γ-tubulin ring complexes with 11-fold symmetry identified at the minus ends of short PCM microtubules. We further characterize a porous and disordered network that forms the interconnected PCM. Thus, our work builds a three-dimensional structural atlas that helps explain how centrosomes assemble, grow, and achieve function.
Collapse
Affiliation(s)
- Fergus Tollervey
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
- Collaboration for Joint PhD Degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Manolo U. Rios
- Department of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Evgenia Zagoriy
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Jeffrey B. Woodruff
- Department of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Julia Mahamid
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
- Cell Biology and Biophysics Unit, EMBL, 69117 Heidelberg, Germany
| |
Collapse
|
11
|
Fang J, Tian W, Quintanilla MA, Beach JR, Lerit DA. The PCM scaffold enables RNA localization to centrosomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.13.575509. [PMID: 38469150 PMCID: PMC10926663 DOI: 10.1101/2024.01.13.575509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
As microtubule-organizing centers, centrosomes direct assembly of the bipolar mitotic spindle required for chromosome segregation and genome stability. Centrosome activity requires the dynamic assembly of pericentriolar material (PCM), the composition and organization of which changes throughout the cell cycle. Recent studies highlight the conserved localization of several mRNAs encoded from centrosome-associated genes enriched at centrosomes, including Pericentrin-like protein (Plp) mRNA. However, relatively little is known about how RNAs localize to centrosomes and influence centrosome function. Here, we examine mechanisms underlying the subcellular localization of Plp mRNA. We find that Plp mRNA localization is puromycin-sensitive, and the Plp coding sequence is both necessary and sufficient for RNA localization, consistent with a co-translational transport mechanism. We identify regions within the Plp coding sequence that regulate Plp mRNA localization. Finally, we show that protein-protein interactions critical for elaboration of the PCM scaffold permit RNA localization to centrosomes. Taken together, these findings inform the mechanistic basis of Plp mRNA localization and lend insight into the oscillatory enrichment of RNA at centrosomes.
Collapse
Affiliation(s)
- Junnan Fang
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322
- Equal contributions
| | - Weiyi Tian
- Equal contributions
- Emory College of Arts and Sciences, Emory University, Atlanta, GA 30322
| | - Melissa A. Quintanilla
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153
| | - Jordan R. Beach
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153
| | - Dorothy A. Lerit
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322
| |
Collapse
|
12
|
Atmakuru PS, Dhawan J. The cilium-centrosome axis in coupling cell cycle exit and cell fate. J Cell Sci 2023; 136:308872. [PMID: 37144419 DOI: 10.1242/jcs.260454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023] Open
Abstract
The centrosome is an evolutionarily conserved, ancient organelle whose role in cell division was first described over a century ago. The structure and function of the centrosome as a microtubule-organizing center, and of its extracellular extension - the primary cilium - as a sensory antenna, have since been extensively studied, but the role of the cilium-centrosome axis in cell fate is still emerging. In this Opinion piece, we view cellular quiescence and tissue homeostasis from the vantage point of the cilium-centrosome axis. We focus on a less explored role in the choice between distinct forms of mitotic arrest - reversible quiescence and terminal differentiation, which play distinct roles in tissue homeostasis. We outline evidence implicating the centrosome-basal body switch in stem cell function, including how the cilium-centrosome complex regulates reversible versus irreversible arrest in adult skeletal muscle progenitors. We then highlight exciting new findings in other quiescent cell types that suggest signal-dependent coupling of nuclear and cytoplasmic events to the centrosome-basal body switch. Finally, we propose a framework for involvement of this axis in mitotically inactive cells and identify future avenues for understanding how the cilium-centrosome axis impacts central decisions in tissue homeostasis.
Collapse
Affiliation(s)
- Priti S Atmakuru
- CSIR Centre for Cellular and Molecular Biology, Hyderabad 500 007, India
| | - Jyotsna Dhawan
- CSIR Centre for Cellular and Molecular Biology, Hyderabad 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
13
|
Lerit DA. Reflections on mentorship as an early career researcher. Mol Biol Cell 2022; 33:ae3. [PMID: 36399627 PMCID: PMC9727808 DOI: 10.1091/mbc.e22-08-0359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
It is my great honor to receive the 2022 Günter Blobel Early Career Award from the American Society for Cell Biology. Reflecting upon my research and career trajectory, I recognize the incredible support of my mentors and the hard work of everyone within my lab. I have always relied on a network of advisors and colleagues who supported me throughout my scientific journey. To better support my own trainees, I endeavor to pass on lessons learned while continuously developing and strengthening my own leadership potential. I am a relentless advocate for the success of my trainees, a legacy I pass on from my own mentors.
Collapse
Affiliation(s)
- Dorothy A. Lerit
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322,Winship Cancer Institute, Emory University, Atlanta, GA 30322,*Address correspondence to: Dorothy A. Lerit ()
| |
Collapse
|
14
|
Willekers S, Tessadori F, van der Vaart B, Henning HH, Stucchi R, Altelaar M, Roelen BAJ, Akhmanova A, Bakkers J. The centriolar satellite protein Cfap53 facilitates formation of the zygotic microtubule organizing center in the zebrafish embryo. Development 2022; 149:dev198762. [PMID: 35980365 PMCID: PMC9481976 DOI: 10.1242/dev.198762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 07/20/2022] [Indexed: 12/02/2023]
Abstract
In embryos of most animal species, the zygotic centrosome is assembled by the centriole derived from the sperm cell and pericentriolar proteins present in the oocyte. This zygotic centrosome acts as a microtubule organizing center (MTOC) to assemble the sperm aster and mitotic spindle. As MTOC formation has been studied mainly in adult cells, very little is known about the formation of the zygotic MTOC. Here, we show that zebrafish (Danio rerio) embryos lacking either maternal or paternal Cfap53, a centriolar satellite protein, arrest during the first cell cycle. Although Cfap53 is dispensable for sperm aster function, it aids proper formation of the mitotic spindle. During cell division, Cfap53 colocalizes with γ-tubulin and with other centrosomal and centriolar satellite proteins at the MTOC. Furthermore, we find that γ-tubulin localization at the MTOC is impaired in the absence of Cfap53. Based on these results, we propose a model in which Cfap53 deposited in the oocyte and the sperm participates in the organization of the zygotic MTOC to allow mitotic spindle formation.
Collapse
Affiliation(s)
- Sven Willekers
- Hubrecht Institute-KNAW, Utrecht 3584 CT, The Netherlands
| | | | - Babet van der Vaart
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Heiko H. Henning
- Equine Sciences, Department Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht 3584 CM, The Netherlands
| | - Riccardo Stucchi
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht 3584 CH, The Netherlands
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Bernard A. J. Roelen
- Embryology, Anatomy and Physiology, Department Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht 3584 CT, The Netherlands
| | - Anna Akhmanova
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Jeroen Bakkers
- Hubrecht Institute-KNAW, Utrecht 3584 CT, The Netherlands
- Department of Pediatric Cardiology, Division of Pediatrics, University Medical Center Utrecht, Utrecht 3584 EA, The Netherlands
| |
Collapse
|
15
|
Fang J, Lerit DA. Orb-dependent polyadenylation contributes to PLP expression and centrosome scaffold assembly. Development 2022; 149:dev200426. [PMID: 35661190 PMCID: PMC9340551 DOI: 10.1242/dev.200426] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 05/25/2022] [Indexed: 12/17/2024]
Abstract
As the microtubule-organizing centers of most cells, centrosomes engineer the bipolar mitotic spindle required for error-free mitosis. Drosophila Pericentrin-like protein (PLP) directs formation of a pericentriolar material (PCM) scaffold required for PCM organization and microtubule-organizing center function. Here, we investigate the post-transcriptional regulation of Plp mRNA. We identify conserved binding sites for cytoplasmic polyadenylation element binding (CPEB) proteins within the Plp 3'-untranslated region and examine the role of the CPEB ortholog Oo18 RNA-binding protein (Orb) in Plp mRNA regulation. Our data show that Orb interacts biochemically with Plp mRNA to promote polyadenylation and PLP protein expression. Loss of orb, but not orb2, diminishes PLP levels in embryonic extracts. Consequently, PLP localization to centrosomes and its function in PCM scaffolding are compromised in orb mutant embryos, resulting in genomic instability and embryonic lethality. Moreover, we find that PLP overexpression restores centrosome scaffolding and rescues the cell division defects caused by orb depletion. Our data suggest that Orb modulates PLP expression at the level of Plp mRNA polyadenylation and demonstrates that the post-transcriptional regulation of core, conserved centrosomal mRNAs is crucial for centrosome function.
Collapse
Affiliation(s)
| | - Dorothy A. Lerit
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
16
|
McCurdy BL, Jewett CE, Stemm-Wolf AJ, Duc HN, Joshi M, Espinosa JM, Prekeris R, Pearson CG. Trisomy 21 increases microtubules and disrupts centriolar satellite localization. Mol Biol Cell 2022; 33:br11. [PMID: 35476505 PMCID: PMC9635274 DOI: 10.1091/mbc.e21-10-0517-t] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 11/11/2022] Open
Abstract
Trisomy 21, the source of Down syndrome, causes a 0.5-fold protein increase of the chromosome 21-resident gene Pericentrin (PCNT) and reduces primary cilia formation and signaling. We investigate how PCNT imbalances disrupt cilia. Using isogenic RPE-1 cells with increased chromosome 21 dosage, we find PCNT accumulates around the centrosome as a cluster of enlarged cytoplasmic puncta that localize along microtubules (MTs) and at MT ends. Cytoplasmic PCNT puncta impact the density, stability, and localization of the MT trafficking network required for primary cilia. The PCNT puncta appear to sequester cargo peripheral to centrosomes in what we call pericentrosomal crowding. The centriolar satellite proteins PCM1, CEP131, and CEP290, important for ciliogenesis, accumulate at enlarged PCNT puncta in trisomy 21 cells. Reducing PCNT when chromosome 21 ploidy is elevated is sufficient to decrease PCNT puncta and pericentrosomal crowding, reestablish a normal density of MTs around the centrosome, and restore ciliogenesis to wild-type levels. A transient reduction in MTs also decreases pericentrosomal crowding and partially rescues ciliogenesis in trisomy 21 cells, indicating that increased PCNT leads to defects in the MT network deleterious to normal centriolar satellite distribution. We propose that chromosome 21 aneuploidy disrupts MT-dependent intracellular trafficking required for primary cilia.
Collapse
Affiliation(s)
- Bailey L. McCurdy
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045-2537
| | - Cayla E. Jewett
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045-2537
- Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, CO 80045-2537
| | - Alexander J. Stemm-Wolf
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045-2537
| | - Huy Nguyen Duc
- Functional Genomics Facility, University of Colorado School of Medicine, Aurora, CO 80045-2537
| | - Molishree Joshi
- Functional Genomics Facility, University of Colorado School of Medicine, Aurora, CO 80045-2537
| | - Joaquin M. Espinosa
- Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, CO 80045-2537
- Functional Genomics Facility, University of Colorado School of Medicine, Aurora, CO 80045-2537
- Department of Pharmacology, University of Colorado School of Medicine, University of Colorado School of Medicine, Aurora, CO 80045-2537
| | - Rytis Prekeris
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045-2537
| | - Chad G. Pearson
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045-2537
- Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, CO 80045-2537
| |
Collapse
|
17
|
Abstract
Protein localization is intrinsic to cellular function and specialized activities, such as migration or proliferation. Many localized proteins enrich at defined organelles, forming subdomains of functional activity further specified by interacting protein assemblies. One well-studied organelle showing dynamic, functional changes in protein composition is the centrosome. Centrosomes are microtubule-organizing centers with diverse cellular functions largely defined by the composition of the pericentriolar material, an ordered matrix of proteins organized around a central pair of centrioles. Also localizing to the pericentriolar material are mRNAs. Although RNA was identified at centrosomes decades ago, the characterization of specific RNA transcripts and their functional contributions to centrosome biology remained largely unstudied. While the identification of RNA localized to centrosomes accelerated with the development of high-throughput screening methods, this discovery still outpaces functional characterization. Recent work indicates RNA localized to centrosomes is biologically significant and further implicates centrosomes as sites for local protein synthesis. Distinct RNA localization and translational activities likely contribute to the diversity of centrosome functions within cells.
Collapse
Affiliation(s)
- Dorothy A Lerit
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322
| |
Collapse
|
18
|
Tischer T, Yang J, Barford D. The APC/C targets the Cep152-Cep63 complex at the centrosome to regulate mitotic spindle assembly. J Cell Sci 2022; 135:jcs259273. [PMID: 34878135 PMCID: PMC8917351 DOI: 10.1242/jcs.259273] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/25/2021] [Indexed: 11/20/2022] Open
Abstract
The control of protein abundance is a fundamental regulatory mechanism during mitosis. The anaphase-promoting complex/cyclosome (APC/C) is the main protein ubiquitin ligase responsible for the temporal regulation of mitotic progression. It has been proposed that the APC/C might fulfil other functions, including assembly of the mitotic spindle. Here, we show that the APC/C localizes to centrosomes, the organizers of the eukaryotic microtubule cytoskeleton, specifically during mitosis. Recruitment of the APC/C to spindle poles requires the centrosomal protein Cep152, and we identified Cep152 as both an APC/C interaction partner and an APC/C substrate. Previous studies have shown that Cep152 forms a complex with Cep57 and Cep63. The APC/C-mediated ubiquitylation of Cep152 at the centrosome releases Cep57 from this inhibitory complex and enables its interaction with pericentrin, a critical step in promoting microtubule nucleation. Thus, our study extends the function of the APC/C from being a regulator of mitosis to also acting as a positive governor of spindle assembly. The APC/C thereby integrates control of these two important processes in a temporal manner.
Collapse
Affiliation(s)
- Thomas Tischer
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | | | - David Barford
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| |
Collapse
|
19
|
Schweizer N, Haren L, Dutto I, Viais R, Lacasa C, Merdes A, Lüders J. Sub-centrosomal mapping identifies augmin-γTuRC as part of a centriole-stabilizing scaffold. Nat Commun 2021; 12:6042. [PMID: 34654813 PMCID: PMC8519919 DOI: 10.1038/s41467-021-26252-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 09/22/2021] [Indexed: 11/08/2022] Open
Abstract
Centriole biogenesis and maintenance are crucial for cells to generate cilia and assemble centrosomes that function as microtubule organizing centers (MTOCs). Centriole biogenesis and MTOC function both require the microtubule nucleator γ-tubulin ring complex (γTuRC). It is widely accepted that γTuRC nucleates microtubules from the pericentriolar material that is associated with the proximal part of centrioles. However, γTuRC also localizes more distally and in the centriole lumen, but the significance of these findings is unclear. Here we identify spatially and functionally distinct subpopulations of centrosomal γTuRC. Luminal localization is mediated by augmin, which is linked to the centriole inner scaffold through POC5. Disruption of luminal localization impairs centriole integrity and interferes with cilium assembly. Defective ciliogenesis is also observed in γTuRC mutant fibroblasts from a patient suffering from microcephaly with chorioretinopathy. These results identify a non-canonical role of augmin-γTuRC in the centriole lumen that is linked to human disease.
Collapse
Affiliation(s)
- Nina Schweizer
- Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain
| | - Laurence Haren
- Molecular, Cellular and Developmental Biology, Centre de Biologie Intégrative, CNRS-Université Toulouse III, 31062, Toulouse, France
| | - Ilaria Dutto
- Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain
| | - Ricardo Viais
- Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain
| | - Cristina Lacasa
- Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain
| | - Andreas Merdes
- Molecular, Cellular and Developmental Biology, Centre de Biologie Intégrative, CNRS-Université Toulouse III, 31062, Toulouse, France
| | - Jens Lüders
- Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain.
| |
Collapse
|
20
|
Abstract
Centrioles are microtubule-based cylindrical structures that assemble the centrosome and template the formation of cilia. The proximal part of centrioles is associated with the pericentriolar material, a protein scaffold from which microtubules are nucleated. This activity is mediated by the γ-tubulin ring complex (γTuRC) whose central role in centrosomal microtubule organization has been recognized for decades. However, accumulating evidence suggests that γTuRC activity at this organelle is neither restricted to the pericentriolar material nor limited to microtubule nucleation. Instead, γTuRC is found along the entire centriole cylinder, at subdistal appendages, and inside the centriole lumen, where its canonical function as a microtubule nucleator might be supplemented or replaced by a function in microtubule anchoring and centriole stabilization, respectively. In this Opinion, we discuss recent insights into the expanded repertoire of γTuRC activities at centrioles and how distinct subpopulations of γTuRC might act in concert to ensure centrosome and cilia biogenesis and function, ultimately supporting cell proliferation, differentiation and homeostasis. We propose that the classical view of centrosomal γTuRC as a pericentriolar material-associated microtubule nucleator needs to be revised.
Collapse
Affiliation(s)
- Nina Schweizer
- Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Jens Lüders
- Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain
| |
Collapse
|
21
|
Watanabe S, Meitinger F, Shiau AK, Oegema K, Desai A. Centriole-independent mitotic spindle assembly relies on the PCNT-CDK5RAP2 pericentriolar matrix. J Cell Biol 2020; 219:e202006010. [PMID: 33170211 PMCID: PMC7658699 DOI: 10.1083/jcb.202006010] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/27/2020] [Accepted: 10/06/2020] [Indexed: 01/04/2023] Open
Abstract
Centrosomes, composed of centrioles that recruit a pericentriolar material (PCM) matrix assembled from PCNT and CDK5RAP2, catalyze mitotic spindle assembly. Here, we inhibit centriole formation and/or remove PCNT-CDK5RAP2 in RPE1 cells to address their relative contributions to spindle formation. While CDK5RAP2 and PCNT are normally dispensable for spindle formation, they become essential when centrioles are absent. Acentriolar spindle assembly is accompanied by the formation of foci containing PCNT and CDK5RAP2 via a microtubule and Polo-like kinase 1-dependent process. Foci formation and spindle assembly require PCNT-CDK5RAP2-dependent matrix assembly and the ability of CDK5RAP2 to recruit γ-tubulin complexes. Thus, the PCM matrix can self-organize independently of centrioles to generate microtubules for spindle assembly; conversely, an alternative centriole-anchored mechanism supports spindle assembly when the PCM matrix is absent. Extension to three cancer cell lines revealed similar results in HeLa cells, whereas DLD1 and U2OS cells could assemble spindles in the absence of centrioles and PCNT-CDK5RAP2, suggesting cell type variation in spindle assembly mechanisms.
Collapse
Affiliation(s)
- Sadanori Watanabe
- Ludwig Institute for Cancer Research, La Jolla, CA
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Franz Meitinger
- Ludwig Institute for Cancer Research, La Jolla, CA
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA
| | - Andrew K. Shiau
- Ludwig Institute for Cancer Research, La Jolla, CA
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA
- Small Molecule Discovery Program, Ludwig Institute for Cancer Research, La Jolla, CA
| | - Karen Oegema
- Ludwig Institute for Cancer Research, La Jolla, CA
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA
| | - Arshad Desai
- Ludwig Institute for Cancer Research, La Jolla, CA
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA
| |
Collapse
|
22
|
Woodruff JB. The material state of centrosomes: lattice, liquid, or gel? Curr Opin Struct Biol 2020; 66:139-147. [PMID: 33248427 DOI: 10.1016/j.sbi.2020.10.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/24/2020] [Accepted: 10/01/2020] [Indexed: 12/25/2022]
Abstract
Centrosomes are micron-scale structures that nucleate microtubule arrays for chromosome segregation and mitotic spindle positioning. For these jobs, centrosomes must be dynamic enough to grow, yet stable enough to resist microtubule-mediated forces. How do centrosomes achieve such seemingly contradictory features? While much is understood about the molecular parts of centrosomes, very little is known about their functional material properties. Two prevalent hypotheses pose that the centrosome is either a liquid droplet or a solid lattice. However, many material states exist between a pure Newtonian liquid and a crystalline solid, and it is not clear where centrosomes lie along this spectrum. Furthermore, broad terms like "liquid" or "solid" do not reveal functional properties like strength, ductility, elasticity, and toughness, which are more relevant to understand how centrosomes resist forces. This review covers recent findings and new rheology techniques that reveal the material characteristics of centrosomes and how they are regulated.
Collapse
Affiliation(s)
- Jeffrey B Woodruff
- Department of Cell Biology, Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
23
|
Duroy PO, Bosshard S, Schmid-Siegert E, Neuenschwander S, Arib G, Lemercier P, Masternak J, Roesch L, Buron F, Girod PA, Xenarios I, Mermod N. Characterization and mutagenesis of Chinese hamster ovary cells endogenous retroviruses to inactivate viral particle release. Biotechnol Bioeng 2019; 117:466-485. [PMID: 31631325 PMCID: PMC7003738 DOI: 10.1002/bit.27200] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/10/2019] [Accepted: 10/15/2019] [Indexed: 12/26/2022]
Abstract
The Chinese hamster ovary (CHO) cells used to produce biopharmaceutical proteins are known to contain type‐C endogenous retrovirus (ERV) sequences in their genome and to release retroviral‐like particles. Although evidence for their infectivity is missing, this has raised safety concerns. As the genomic origin of these particles remained unclear, we characterized type‐C ERV elements at the genome, transcriptome, and viral particle RNA levels. We identified 173 type‐C ERV sequences clustering into three functionally conserved groups. Transcripts from one type‐C ERV group were full‐length, with intact open reading frames, and cognate viral genome RNA was loaded into retroviral‐like particles, suggesting that this ERV group may produce functional viruses. CRISPR‐Cas9 genome editing was used to disrupt the gag gene of the expressed type‐C ERV group. Comparison of CRISPR‐derived mutations at the DNA and RNA level led to the identification of a single ERV as the main source of the release of RNA‐loaded viral particles. Clones bearing a Gag loss‐of‐function mutation in this ERV showed a reduction of RNA‐containing viral particle release down to detection limits, without compromising cell growth or therapeutic protein production. Overall, our study provides a strategy to mitigate potential viral particle contaminations resulting from ERVs during biopharmaceutical manufacturing.
Collapse
Affiliation(s)
- Pierre-Olivier Duroy
- Institute of Biotechnology and Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland.,Present address: Selexis SA, Plan-les-Ouates, Switzerland
| | - Sandra Bosshard
- Institute of Biotechnology and Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland.,Present address: Lonza AG, Visp, Switzerland
| | | | | | | | - Philippe Lemercier
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Jacqueline Masternak
- Institute of Biotechnology and Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Lucien Roesch
- Institute of Biotechnology and Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Flavien Buron
- Institute of Biotechnology and Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | | | - Ioannis Xenarios
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland.,Present address: Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Nicolas Mermod
- Institute of Biotechnology and Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
24
|
Joukov V, De Nicolo A. The Centrosome and the Primary Cilium: The Yin and Yang of a Hybrid Organelle. Cells 2019; 8:E701. [PMID: 31295970 PMCID: PMC6678760 DOI: 10.3390/cells8070701] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/04/2019] [Accepted: 07/06/2019] [Indexed: 12/27/2022] Open
Abstract
Centrosomes and primary cilia are usually considered as distinct organelles, although both are assembled with the same evolutionary conserved, microtubule-based templates, the centrioles. Centrosomes serve as major microtubule- and actin cytoskeleton-organizing centers and are involved in a variety of intracellular processes, whereas primary cilia receive and transduce environmental signals to elicit cellular and organismal responses. Understanding the functional relationship between centrosomes and primary cilia is important because defects in both structures have been implicated in various diseases, including cancer. Here, we discuss evidence that the animal centrosome evolved, with the transition to complex multicellularity, as a hybrid organelle comprised of the two distinct, but intertwined, structural-functional modules: the centriole/primary cilium module and the pericentriolar material/centrosome module. The evolution of the former module may have been caused by the expanding cellular diversification and intercommunication, whereas that of the latter module may have been driven by the increasing complexity of mitosis and the requirement for maintaining cell polarity, individuation, and adhesion. Through its unique ability to serve both as a plasma membrane-associated primary cilium organizer and a juxtanuclear microtubule-organizing center, the animal centrosome has become an ideal integrator of extracellular and intracellular signals with the cytoskeleton and a switch between the non-cell autonomous and the cell-autonomous signaling modes. In light of this hypothesis, we discuss centrosome dynamics during cell proliferation, migration, and differentiation and propose a model of centrosome-driven microtubule assembly in mitotic and interphase cells. In addition, we outline the evolutionary benefits of the animal centrosome and highlight the hierarchy and modularity of the centrosome biogenesis networks.
Collapse
Affiliation(s)
- Vladimir Joukov
- N.N. Petrov National Medical Research Center of Oncology, 197758 Saint-Petersburg, Russia.
| | | |
Collapse
|
25
|
Raff JW. Phase Separation and the Centrosome: A Fait Accompli? Trends Cell Biol 2019; 29:612-622. [PMID: 31076235 DOI: 10.1016/j.tcb.2019.04.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/08/2019] [Accepted: 04/08/2019] [Indexed: 12/28/2022]
Abstract
There is currently intense interest in the idea that many membraneless organelles might assemble through phase separation of their constituent molecules into biomolecular 'condensates' that have liquid-like properties. This idea is intuitively appealing, especially for complex organelles such as centrosomes, where a liquid-like structure would allow the many constituent molecules to diffuse and interact with one another efficiently. I discuss here recent studies that either support the concept of a liquid-like centrosome or suggest that centrosomes are assembled upon a more solid, stable scaffold. I suggest that it may be difficult to distinguish between these possibilities. I argue that the concept of biomolecular condensates is an important advance in cell biology, with potentially wide-ranging implications, but it seems premature to conclude that centrosomes, and perhaps other membraneless organelles, are necessarily best described as liquid-like phase-separated condensates.
Collapse
Affiliation(s)
- Jordan W Raff
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| |
Collapse
|
26
|
Assembly of Mitotic Structures through Phase Separation. J Mol Biol 2018; 430:4762-4772. [DOI: 10.1016/j.jmb.2018.04.041] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/21/2018] [Accepted: 04/30/2018] [Indexed: 01/01/2023]
|
27
|
Sepulveda G, Antkowiak M, Brust-Mascher I, Mahe K, Ou T, Castro NM, Christensen LN, Cheung L, Jiang X, Yoon D, Huang B, Jao LE. Co-translational protein targeting facilitates centrosomal recruitment of PCNT during centrosome maturation in vertebrates. eLife 2018; 7:34959. [PMID: 29708497 PMCID: PMC5976437 DOI: 10.7554/elife.34959] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/30/2018] [Indexed: 12/16/2022] Open
Abstract
As microtubule-organizing centers of animal cells, centrosomes guide the formation of the bipolar spindle that segregates chromosomes during mitosis. At mitosis onset, centrosomes maximize microtubule-organizing activity by rapidly expanding the pericentriolar material (PCM). This process is in part driven by the large PCM protein pericentrin (PCNT), as its level increases at the PCM and helps recruit additional PCM components. However, the mechanism underlying the timely centrosomal enrichment of PCNT remains unclear. Here, we show that PCNT is delivered co-translationally to centrosomes during early mitosis by cytoplasmic dynein, as evidenced by centrosomal enrichment of PCNT mRNA, its translation near centrosomes, and requirement of intact polysomes for PCNT mRNA localization. Additionally, the microtubule minus-end regulator, ASPM, is also targeted co-translationally to mitotic spindle poles. Together, these findings suggest that co-translational targeting of cytoplasmic proteins to specific subcellular destinations may be a generalized protein targeting mechanism. Before a cell divides, it creates a copy of its genetic material (DNA) and evenly distributes it between the new ‘daughter’ cells with the help of a complex called the mitotic spindle. This complex is made of long cable-like protein chains called microtubules. To ensure that each daughter cell receives an equal amount of DNA, structures known as centrosomes organize the microtubules during the division process. Centrosomes have two rigid cores, called centrioles, which are surrounded by a matrix of proteins called the pericentriolar material. It is from this material that the microtubules are organized. The pericentriolar material is a dynamic structure and changes its size by assembling and disassembling its protein components. The larger the pericentriolar material, the more microtubules can form. Before a cell divides, it rapidly expands in a process called centrosome maturation. A protein called pericentrin initiates the maturation by helping to recruit other proteins to the centrosome. Pericentrin molecules are large, and it takes the cell between 10 and 20 minutes to make each one. Nevertheless, the cell can produce and deliver large quantities of pericentrin to the centrosome in a matter of minutes. We do not yet know how this happens. To investigate this further, Sepulveda, Antkowiak, Brust-Mascher et al. used advanced microscopy to study zebrafish embryos and human cells grown in the laboratory. The results showed that cells build and transport pericentrin at the same time. Cells use messenger RNA molecules as templates to build proteins. These feed into protein factories called ribosomes, which assemble the building blocks in the correct order. Rather than waiting for the pericentrin production to finish, the cell moves the active factories to the centrosome with the help of a molecular motor called dynein. By the time the pericentrin molecules are completely made by ribosomes, they are already at the centrosome, ready to help with the recruitment of other proteins during centrosome maturation. These findings improve our understanding of centrosome maturation. The next step is to find out how the cell coordinates this process with the recruitment of other proteins to the centrosome. It is also possible that the cell uses similar processes to deliver other proteins to different parts of the cell.
Collapse
Affiliation(s)
- Guadalupe Sepulveda
- Department of Cell Biology and Human Anatomy, University of California, Davis School of Medicine, Davis, United States
| | - Mark Antkowiak
- Department of Cell Biology and Human Anatomy, University of California, Davis School of Medicine, Davis, United States
| | - Ingrid Brust-Mascher
- Department of Anatomy, Physiology and Cell Biology, University of California, Davis School of Veterinary Medicine, Davis, United States
| | - Karan Mahe
- Department of Cell Biology and Human Anatomy, University of California, Davis School of Medicine, Davis, United States
| | - Tingyoung Ou
- Department of Cell Biology and Human Anatomy, University of California, Davis School of Medicine, Davis, United States
| | - Noemi M Castro
- Department of Cell Biology and Human Anatomy, University of California, Davis School of Medicine, Davis, United States
| | - Lana N Christensen
- Department of Cell Biology and Human Anatomy, University of California, Davis School of Medicine, Davis, United States
| | - Lee Cheung
- Department of Cell Biology and Human Anatomy, University of California, Davis School of Medicine, Davis, United States
| | - Xueer Jiang
- Department of Cell Biology and Human Anatomy, University of California, Davis School of Medicine, Davis, United States
| | - Daniel Yoon
- Department of Cell Biology and Human Anatomy, University of California, Davis School of Medicine, Davis, United States
| | - Bo Huang
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States.,Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States.,Chan Zuckerberg Biohub, San Francisco, United States
| | - Li-En Jao
- Department of Cell Biology and Human Anatomy, University of California, Davis School of Medicine, Davis, United States
| |
Collapse
|
28
|
Over-elongation of centrioles in cancer promotes centriole amplification and chromosome missegregation. Nat Commun 2018; 9:1258. [PMID: 29593297 PMCID: PMC5871873 DOI: 10.1038/s41467-018-03641-x] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 03/02/2018] [Indexed: 12/16/2022] Open
Abstract
Centrosomes are the major microtubule organising centres of animal cells. Deregulation in their number occurs in cancer and was shown to trigger tumorigenesis in mice. However, the incidence, consequence and origins of this abnormality are poorly understood. Here, we screened the NCI-60 panel of human cancer cell lines to systematically analyse centriole number and structure. Our screen shows that centriole amplification is widespread in cancer cell lines and highly prevalent in aggressive breast carcinomas. Moreover, we identify another recurrent feature of cancer cells: centriole size deregulation. Further experiments demonstrate that severe centriole over-elongation can promote amplification through both centriole fragmentation and ectopic procentriole formation. Furthermore, we show that overly long centrioles form over-active centrosomes that nucleate more microtubules, a known cause of invasiveness, and perturb chromosome segregation. Our screen establishes centriole amplification and size deregulation as recurrent features of cancer cells and identifies novel causes and consequences of those abnormalities. Cancer cells are characterised by abnormalities in the number of centrosomes and this phenotype is linked with tumorigenesis. Here the authors report centriole length deregulation in a subset of cancer cell lines and suggest a link with subsequent alterations in centriole numbers and chromosomal instability.
Collapse
|
29
|
Microtubule-Organizing Centers: Towards a Minimal Parts List. Trends Cell Biol 2017; 28:176-187. [PMID: 29173799 DOI: 10.1016/j.tcb.2017.10.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/20/2017] [Accepted: 10/23/2017] [Indexed: 12/17/2022]
Abstract
Despite decades of molecular analysis of the centrosome, an important microtubule-organizing center (MTOC) of animal cells, the molecular basis of microtubule organization remains obscure. A major challenge is the sheer complexity of the interplay of the hundreds of proteins that constitute the centrosome. However, this complexity owes not only to the centrosome's role as a MTOC but also to the requirements of its duplication cycle and to various other functions such as the formation of cilia, the integration of various signaling pathways, and the organization of actin filaments. Thus, rather than using the parts lists to reconstruct the centrosome, we propose to identify the subset of proteins minimally needed to assemble a MTOC and to study this process at non-centrosomal sites.
Collapse
|
30
|
Fry AM, Sampson J, Shak C, Shackleton S. Recent advances in pericentriolar material organization: ordered layers and scaffolding gels. F1000Res 2017; 6:1622. [PMID: 29026530 PMCID: PMC5583744 DOI: 10.12688/f1000research.11652.1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/01/2017] [Indexed: 12/11/2022] Open
Abstract
The centrosome is an unusual organelle that lacks a surrounding membrane, raising the question of what limits its size and shape. Moreover, while electron microscopy (EM) has provided a detailed view of centriole architecture, there has been limited understanding of how the second major component of centrosomes, the pericentriolar material (PCM), is organized. Here, we summarize exciting recent findings from super-resolution fluorescence imaging, structural biology, and biochemical reconstitution that together reveal the presence of ordered layers and complex gel-like scaffolds in the PCM. Moreover, we discuss how this is leading to a better understanding of the process of microtubule nucleation, how alterations in PCM size are regulated in cycling and differentiated cells, and why mutations in PCM components lead to specific human pathologies.
Collapse
Affiliation(s)
- Andrew M Fry
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Josephina Sampson
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Caroline Shak
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Sue Shackleton
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| |
Collapse
|
31
|
Lee I, Kim GS, Bae JS, Kim J, Rhee K, Hwang DS. The DNA replication protein Cdc6 inhibits the microtubule-organizing activity of the centrosome. J Biol Chem 2017; 292:16267-16276. [PMID: 28827311 DOI: 10.1074/jbc.m116.763680] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 08/14/2017] [Indexed: 11/06/2022] Open
Abstract
The centrosome serves as a major microtubule-organizing center (MTOC). The Cdc6 protein is a component of the pre-replicative complex and a licensing factor for the initiation of chromosome replication and localizes to centrosomes during the S and G2 phases of the cfell cycle of human cells. This cell cycle-dependent localization of Cdc6 to the centrosome motivated us to investigate whether Cdc6 negatively regulates MTOC activity and to determine the integral proteins that comprise the pericentriolar material (PCM). Time-lapse live-cell imaging of microtubule regrowth revealed that Cdc6 depletion increased microtubule nucleation at the centrosomes and that expression of Cdc6 in Cdc6-depleted cells reversed this effect. This increase and decrease in microtubule nucleation correlated with the centrosomal intensities of PCM proteins such as γ-tubulin, pericentrin, CDK5 regulatory subunit-associated protein 2 (CDK5RAP2), and centrosomal protein 192 (Cep192). The regulation of microtubule nucleation and the recruitment of PCM proteins to the centrosome required Cdc6 ATPase activity, as well as a centrosomal localization of Cdc6. These results suggest a novel function for Cdc6 in coordinating centrosome assembly and function.
Collapse
Affiliation(s)
- Inyoung Lee
- From the Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Gwang Su Kim
- From the Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Jun Sung Bae
- From the Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Jaeyoun Kim
- From the Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Kunsoo Rhee
- From the Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Deog Su Hwang
- From the Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
32
|
Shakhov AS, Alieva IB. The Centrosome as the Main Integrator of Endothelial Cell Functional Activity. BIOCHEMISTRY (MOSCOW) 2017; 82:663-677. [PMID: 28601076 DOI: 10.1134/s0006297917060037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The centrosome is an intracellular structure of the animal cell responsible for organization of cytoplasmic microtubules. According to modern concepts, the centrosome is a very important integral element of the living cell whose functions are not limited to its ability to polymerize microtubules. The centrosome localization in the geometric center of the interphase cell, the high concentration of various regulatory proteins in this area, the centrosome-organized radial system of microtubules for intracellular transport by motor proteins, the centrosome involvement in the perception of external signals and their transmission - all these features make this cellular structure a unique regulation and distribution center managing dynamic morphology of the animal cell. In conjunction with the tissue-specific features of the centrosome structure, this suggests the direct involvement of the centrosome in execution of cell functions. This review discusses the involvement of the centrosome in the vital activity of endothelial cells, as well as its possible participation in the implementation of barrier function, the major function of endothelium.
Collapse
Affiliation(s)
- A S Shakhov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | | |
Collapse
|
33
|
INPP5E Preserves Genomic Stability through Regulation of Mitosis. Mol Cell Biol 2017; 37:MCB.00500-16. [PMID: 28031327 PMCID: PMC5335510 DOI: 10.1128/mcb.00500-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 12/17/2016] [Indexed: 12/13/2022] Open
Abstract
The partially understood phosphoinositide signaling cascade regulates multiple aspects of cellular metabolism. Previous studies revealed that INPP5E, the inositol polyphosphate-5-phosphatase that is mutated in the developmental disorders Joubert and MORM syndromes, is essential for the function of the primary cilium and maintenance of phosphoinositide balance in nondividing cells. Here, we report that INPP5E further contributes to cellular homeostasis by regulating cell division. We found that silencing or genetic knockout of INPP5E in human and murine cells impairs the spindle assembly checkpoint, centrosome and spindle function, and maintenance of chromosomal integrity. Consistent with a cell cycle regulatory role, we found that INPP5E expression is cell cycle dependent, peaking at mitotic entry. INPP5E localizes to centrosomes, chromosomes, and kinetochores in early mitosis and shuttles to the midzone spindle at mitotic exit. Our findings identify the previously unknown, essential role of INPP5E in mitosis and prevention of aneuploidy, providing a new perspective on the function of this phosphoinositide phosphatase in health and development.
Collapse
|
34
|
Kapoor TM. Metaphase Spindle Assembly. BIOLOGY 2017; 6:biology6010008. [PMID: 28165376 PMCID: PMC5372001 DOI: 10.3390/biology6010008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 01/17/2017] [Accepted: 01/19/2017] [Indexed: 01/31/2023]
Abstract
A microtubule-based bipolar spindle is required for error-free chromosome segregation during cell division. In this review I discuss the molecular mechanisms required for the assembly of this dynamic micrometer-scale structure in animal cells.
Collapse
Affiliation(s)
- Tarun M Kapoor
- Laboratory of Chemistry and Cell Biology, the Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
35
|
Fernández-Álvarez A, Bez C, O'Toole ET, Morphew M, Cooper JP. Mitotic Nuclear Envelope Breakdown and Spindle Nucleation Are Controlled by Interphase Contacts between Centromeres and the Nuclear Envelope. Dev Cell 2016; 39:544-559. [PMID: 27889481 DOI: 10.1016/j.devcel.2016.10.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 09/02/2016] [Accepted: 10/26/2016] [Indexed: 10/20/2022]
Abstract
Faithful genome propagation requires coordination between nuclear envelope (NE) breakdown, spindle formation, and chromosomal events. The conserved linker of nucleoskeleton and cytoskeleton (LINC) complex connects fission yeast centromeres and the centrosome, across the NE, during interphase. During meiosis, LINC connects the centrosome with telomeres rather than centromeres. We previously showed that loss of telomere-LINC contacts compromises meiotic spindle formation. Here, we define the precise events regulated by telomere-LINC contacts and address the analogous possibility that centromeres regulate mitotic spindle formation. We develop conditionally inactivated LINC complexes in which the conserved SUN-domain protein Sad1 remains stable but severs interphase centromere-LINC contacts. Strikingly, the loss of such contacts abolishes spindle formation. We pinpoint the defect to a failure in the partial NE breakdown required for centrosome insertion into the NE, a step analogous to mammalian NE breakdown. Thus, interphase chromosome-LINC contacts constitute a cell-cycle control device linking nucleoplasmic and cytoplasmic events.
Collapse
Affiliation(s)
- Alfonso Fernández-Álvarez
- Telomere Biology Section, LBMB, National Cancer Institute, NIH, 9000 Rockville Pike, Bethesda, MD 20892, USA; Telomere Biology Laboratory, Cancer Research UK, London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK.
| | - Cécile Bez
- Telomere Biology Laboratory, Cancer Research UK, London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Eileen T O'Toole
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Mary Morphew
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Julia Promisel Cooper
- Telomere Biology Section, LBMB, National Cancer Institute, NIH, 9000 Rockville Pike, Bethesda, MD 20892, USA; Telomere Biology Laboratory, Cancer Research UK, London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK.
| |
Collapse
|
36
|
Jao LE, Akef A, Wente SR. A role for Gle1, a regulator of DEAD-box RNA helicases, at centrosomes and basal bodies. Mol Biol Cell 2016; 28:120-127. [PMID: 28035044 PMCID: PMC5221616 DOI: 10.1091/mbc.e16-09-0675] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 10/31/2016] [Accepted: 11/02/2016] [Indexed: 01/11/2023] Open
Abstract
Control of organellar assembly and function is critical to eukaryotic homeostasis and survival. Gle1 is a highly conserved regulator of RNA-dependent DEAD-box ATPase proteins, with critical roles in both mRNA export and translation. In addition to its well-defined interaction with nuclear pore complexes, here we find that Gle1 is enriched at the centrosome and basal body. Gle1 assembles into the toroid-shaped pericentriolar material around the mother centriole. Reduced Gle1 levels are correlated with decreased pericentrin localization at the centrosome and microtubule organization defects. Of importance, these alterations in centrosome integrity do not result from loss of mRNA export. Examination of the Kupffer's vesicle in Gle1-depleted zebrafish revealed compromised ciliary beating and developmental defects. We propose that Gle1 assembly into the pericentriolar material positions the DEAD-box protein regulator to function in localized mRNA metabolism required for proper centrosome function.
Collapse
Affiliation(s)
- Li-En Jao
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| | - Abdalla Akef
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| | - Susan R Wente
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| |
Collapse
|
37
|
Sanchez AD, Feldman JL. Microtubule-organizing centers: from the centrosome to non-centrosomal sites. Curr Opin Cell Biol 2016; 44:93-101. [PMID: 27666167 DOI: 10.1016/j.ceb.2016.09.003] [Citation(s) in RCA: 177] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 08/19/2016] [Accepted: 09/08/2016] [Indexed: 11/25/2022]
Abstract
The process of cellular differentiation requires the distinct spatial organization of the microtubule cytoskeleton, the arrangement of which is specific to cell type. Microtubule patterning does not occur randomly, but is imparted by distinct subcellular sites called microtubule-organizing centers (MTOCs). Since the discovery of MTOCs fifty years ago, their study has largely focused on the centrosome. All animal cells use centrosomes as MTOCs during mitosis. However in many differentiated cells, MTOC function is reassigned to non-centrosomal sites to generate non-radial microtubule organization better suited for new cell functions, such as mechanical support or intracellular transport. Here, we review the current understanding of non-centrosomal MTOCs (ncMTOCs) and the mechanisms by which they form in differentiating animal cells.
Collapse
Affiliation(s)
- Ariana D Sanchez
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA 94305, USA
| | - Jessica L Feldman
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA 94305, USA.
| |
Collapse
|
38
|
Johnson CA, Collis SJ. Ciliogenesis and the DNA damage response: a stressful relationship. Cilia 2016; 5:19. [PMID: 27335639 PMCID: PMC4916530 DOI: 10.1186/s13630-016-0040-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 03/22/2016] [Indexed: 01/27/2023] Open
Abstract
Both inherited and sporadic mutations can give rise to a plethora of human diseases. Through myriad diverse cellular processes, sporadic mutations can arise through a failure to accurately replicate the genetic code or by inaccurate separation of duplicated chromosomes into daughter cells. The human genome has therefore evolved to encode a large number of proteins that work together with regulators of the cell cycle to ensure that it remains error-free. This is collectively known as the DNA damage response (DDR), and genome stability mechanisms involve a complex network of signalling and processing factors that ensure redundancy and adaptability of these systems. The importance of genome stability mechanisms is best illustrated by the dramatic increased risk of cancer in individuals with underlying disruption to genome maintenance mechanisms. Cilia are microtubule-based sensory organelles present on most vertebrate cells, where they facilitate transduction of external signals into the cell. When not embedded within the specialised ciliary membrane, components of the primary cilium's basal body help form the microtubule organising centre that controls cellular trafficking and the mitotic segregation of chromosomes. Ciliopathies are a collection of diseases associated with functional disruption to cilia function through a variety of different mechanisms. Ciliopathy phenotypes can vary widely, and although some cellular overgrowth phenotypes are prevalent in a subset of ciliopathies, an increased risk of cancer is not noted as a clinical feature. However, recent studies have identified surprising genetic and functional links between cilia-associated proteins and genome maintenance factors. The purpose of this mini-review is to therefore highlight some of these discoveries and discuss their implications with regards to functional crosstalk between the DDR and ciliogenesis pathways, and how this may impact on the development of human disease.
Collapse
Affiliation(s)
- Colin A. Johnson
- />Section of Ophthalmology and Neurosciences, Wellcome Trust Brenner Building, Leeds Institute of Molecular Medicine, St. James’s University Hospital, Leeds, LS9 7TF UK
| | - Spencer J. Collis
- />Genome Stability Group, Department of Oncology and Metabolism, Academic Unit of Molecular Oncology, Medical School, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX UK
| |
Collapse
|
39
|
Abstract
The basal body is a highly organized structure essential for the formation of cilia. Basal bodies dock to a cellular membrane through their distal appendages (also known as transition fibers) and provide the foundation on which the microtubules of the ciliary axoneme are built. Consequently, basal body position and orientation dictates the position and orientation of its cilium. The heart of the basal body is the mother centriole, the older of the two centrioles inherited during mitosis and which is comprised of nine triplet microtubules arranged in a cylinder. Like all ciliated organisms, mice possess basal bodies, and studies of mouse basal body structure have made diverse important contributions to the understanding of how basal body structure impacts the function of cilia. The appendages and associated structures of mouse basal bodies can differ in their architecture from those of other organisms, and even between murine cell types. For example, basal bodies of immotile primary cilia are connected to daughter centrioles, whereas those of motile multiciliated cells are not. The last few years have seen the identification of many components of the basal body, and the mouse will continue to be an extremely valuable system for genetically defining their functions.
Collapse
Affiliation(s)
- Galo Garcia
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158 USA
| | - Jeremy F Reiter
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158 USA
| |
Collapse
|
40
|
Lerit DA, Jordan HA, Poulton JS, Fagerstrom CJ, Galletta BJ, Peifer M, Rusan NM. Interphase centrosome organization by the PLP-Cnn scaffold is required for centrosome function. J Cell Biol 2015; 210:79-97. [PMID: 26150390 PMCID: PMC4494003 DOI: 10.1083/jcb.201503117] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cnn and PLP directly interact at two defined sites to coordinate the cell cycle–dependent rearrangement and scaffolding activity of the centrosome to permit normal centrosome organization, cell division, and embryonic viability. Pericentriolar material (PCM) mediates the microtubule (MT) nucleation and anchoring activity of centrosomes. A scaffold organized by Centrosomin (Cnn) serves to ensure proper PCM architecture and functional changes in centrosome activity with each cell cycle. Here, we investigate the mechanisms that spatially restrict and temporally coordinate centrosome scaffold formation. Focusing on the mitotic-to-interphase transition in Drosophila melanogaster embryos, we show that the elaboration of the interphase Cnn scaffold defines a major structural rearrangement of the centrosome. We identify an unprecedented role for Pericentrin-like protein (PLP), which localizes to the tips of extended Cnn flares, to maintain robust interphase centrosome activity and promote the formation of interphase MT asters required for normal nuclear spacing, centrosome segregation, and compartmentalization of the syncytial embryo. Our data reveal that Cnn and PLP directly interact at two defined sites to coordinate the cell cycle–dependent rearrangement and scaffolding activity of the centrosome to permit normal centrosome organization, cell division, and embryonic viability.
Collapse
Affiliation(s)
- Dorothy A Lerit
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Holly A Jordan
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - John S Poulton
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Carey J Fagerstrom
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Brian J Galletta
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Mark Peifer
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Nasser M Rusan
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
41
|
Sluder G. One to only two: a short history of the centrosome and its duplication. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0455. [PMID: 25047609 DOI: 10.1098/rstb.2013.0455] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
This review discusses some of the history of the fundamental, but not fully solved problem of how the centrosome duplicates from one to only two as the cell prepares for mitosis. We start with some of the early descriptions of the centrosome and the remarkably prescient but then controversial inferences drawn concerning its function in the cell. For more than 100 years, one of the most difficult issues for the concept of the centrosome has been to integrate observations that centrosomes appear to be important for spindle assembly in animal cells yet are not evident in higher plant cells and some animal cells. This stirred debate over the existence of centrosomes and their importance. A parallel debate concerned the role of the centrioles in organizing centrosomes. The relatively recent elucidation of bipolar spindle assembly around chromatin allows a re-examination of the role of centrioles in controlling centrosome duplication in animal cells. The problem of how centrosomes precisely double in preparation for mitosis in animal cells has now moved to the mystery of how only one procentriole is assembled at each mother centriole.
Collapse
Affiliation(s)
- Greenfield Sluder
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| |
Collapse
|
42
|
Woodruff JB, Wueseke O, Hyman AA. Pericentriolar material structure and dynamics. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0459. [PMID: 25047613 PMCID: PMC4113103 DOI: 10.1098/rstb.2013.0459] [Citation(s) in RCA: 205] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A centrosome consists of two barrel-shaped centrioles embedded in a matrix of proteins known as the pericentriolar material (PCM). The PCM serves as a platform for protein complexes that regulate organelle trafficking, protein degradation and spindle assembly. Perhaps most important for cell division, the PCM concentrates tubulin and serves as the primary organizing centre for microtubules in metazoan somatic cells. Thus, similar to other well-described organelles, such as the nucleus and mitochondria, the cell has compartmentalized a multitude of vital biochemical reactions in the PCM. However, unlike these other organelles, the PCM is not membrane bound, but rather a dynamic collection of protein complexes and nucleic acids that constitute the organelle's interior and determine its boundary. How is the complex biochemical machinery necessary for the myriad centrosome functions concentrated and maintained in the PCM? Recent advances in proteomics and RNAi screening have unveiled most of the key PCM components and hinted at their molecular interactions (
table 1). Now we must understand how the interactions between these molecules contribute to the mesoscale organization and the assembly of the centrosome. Among outstanding questions are the intrinsic mechanisms that determine PCM shape and size, and how it functions as a biochemical reaction hub.
Collapse
Affiliation(s)
- Jeffrey B Woodruff
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden 01307, Germany
| | - Oliver Wueseke
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden 01307, Germany
| | - Anthony A Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden 01307, Germany
| |
Collapse
|
43
|
Landmann F, Foster JM, Michalski ML, Slatko BE, Sullivan W. Co-evolution between an endosymbiont and its nematode host: Wolbachia asymmetric posterior localization and AP polarity establishment. PLoS Negl Trop Dis 2014; 8:e3096. [PMID: 25165813 PMCID: PMC4148215 DOI: 10.1371/journal.pntd.0003096] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 07/03/2014] [Indexed: 01/07/2023] Open
Abstract
While bacterial symbionts influence a variety of host cellular responses throughout development, there are no documented instances in which symbionts influence early embryogenesis. Here we demonstrate that Wolbachia, an obligate endosymbiont of the parasitic filarial nematodes, is required for proper anterior-posterior polarity establishment in the filarial nematode B. malayi. Characterization of pre- and post-fertilization events in B. malayi reveals that, unlike C. elegans, the centrosomes are maternally derived and produce a cortical-based microtubule organizing center prior to fertilization. We establish that Wolbachia rely on these cortical microtubules and dynein to concentrate at the posterior cortex. Wolbachia also rely on PAR-1 and PAR-3 polarity cues for normal concentration at the posterior cortex. Finally, we demonstrate that Wolbachia depletion results in distinct anterior-posterior polarity defects. These results provide a striking example of endosymbiont-host co-evolution operating on the core initial developmental event of axis determination. Filarial nematodes are responsible for a number of neglected tropical diseases. The vast majority of these human parasites harbor the bacterial endosymbiont Wolbachia. Wolbachia are essential for filarial nematode survival and reproduction, and thus are a promising anti-filarial drug target. Understanding the molecular and cellular basis of Wolbachia-nematode interactions will facilitate the development of a new class of drugs that specifically disrupt these interactions. Here we focus on Wolbachia segregation patterns and interactions with the host cytoskeleton during early embryogenesis. Our studies indicate that centrosomes are maternally inherited in filarial nematodes resulting in a posterior microtubule-organizing center of maternal origin, unique to filarial nematodes. This microtubule-organizing center facilitates the concentration of Wolbachia at the posterior pole. We find that the microtubule motor dynein is required for the proper posterior Wolbachia localization. In addition, we demonstrate that Wolbachia rely on polarity signals in the egg for their preferential localization at the posterior pole. Conversely, Wolbachia are required for normal embryonic axis determination and Wolbachia removal leads to distinct anterior-posterior embryonic polarity defects. To our knowledge, this is the first example of a bacterial endosymbiont required for normal host embryogenesis.
Collapse
Affiliation(s)
- Frederic Landmann
- Department of Molecular, Cell and Developmental Biology, Sinsheimer Labs, University of California, Santa Cruz, California, United States of America
- Centre de Recherche de Biochimie Macromoléculaire, CNRS, Montpellier, France
- * E-mail:
| | - Jeremy M. Foster
- Molecular Parasitology, New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Michelle L. Michalski
- Department of Biology and Microbiology, University of Wisconsin Oshkosh, Oshkosh, Wisconsin, United States of America
| | - Barton E. Slatko
- Molecular Parasitology, New England Biolabs, Ipswich, Massachusetts, United States of America
| | - William Sullivan
- Department of Molecular, Cell and Developmental Biology, Sinsheimer Labs, University of California, Santa Cruz, California, United States of America
| |
Collapse
|
44
|
Centrosomes and the Art of Mitotic Spindle Maintenance. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 313:179-217. [DOI: 10.1016/b978-0-12-800177-6.00006-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
45
|
Amorphous no more: subdiffraction view of the pericentriolar material architecture. Trends Cell Biol 2013; 24:188-97. [PMID: 24268653 DOI: 10.1016/j.tcb.2013.10.001] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 09/30/2013] [Accepted: 10/03/2013] [Indexed: 12/12/2022]
Abstract
The centrosome influences the shape, orientation and activity of the microtubule cytoskeleton. The pericentriolar material (PCM), determines this functionality by providing a dynamic platform for nucleating microtubules and acts as a nexus for molecular signaling. Although great strides have been made in understanding PCM activity, its diffraction-limited size and amorphous appearance on electron microscopy (EM) have limited analysis of its high-order organization. Here, we outline current knowledge of PCM architecture and assembly, emphasizing recent super-resolution imaging studies that revealed the PCM has a layered structure made of fibers and matrices conserved from flies to humans. Notably, these studies debunk the long-standing view of an amorphous PCM and provide a paradigm to dissect the supramolecular organization of organelles in cells.
Collapse
|
46
|
Pihan GA. Centrosome dysfunction contributes to chromosome instability, chromoanagenesis, and genome reprograming in cancer. Front Oncol 2013; 3:277. [PMID: 24282781 PMCID: PMC3824400 DOI: 10.3389/fonc.2013.00277] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 10/28/2013] [Indexed: 12/19/2022] Open
Abstract
The unique ability of centrosomes to nucleate and organize microtubules makes them unrivaled conductors of important interphase processes, such as intracellular payload traffic, cell polarity, cell locomotion, and organization of the immunologic synapse. But it is in mitosis that centrosomes loom large, for they orchestrate, with clockmaker's precision, the assembly and functioning of the mitotic spindle, ensuring the equal partitioning of the replicated genome into daughter cells. Centrosome dysfunction is inextricably linked to aneuploidy and chromosome instability, both hallmarks of cancer cells. Several aspects of centrosome function in normal and cancer cells have been molecularly characterized during the last two decades, greatly enhancing our mechanistic understanding of this tiny organelle. Whether centrosome defects alone can cause cancer, remains unanswered. Until recently, the aggregate of the evidence had suggested that centrosome dysfunction, by deregulating the fidelity of chromosome segregation, promotes and accelerates the characteristic Darwinian evolution of the cancer genome enabled by increased mutational load and/or decreased DNA repair. Very recent experimental work has shown that missegregated chromosomes resulting from centrosome dysfunction may experience extensive DNA damage, suggesting additional dimensions to the role of centrosomes in cancer. Centrosome dysfunction is particularly prevalent in tumors in which the genome has undergone extensive structural rearrangements and chromosome domain reshuffling. Ongoing gene reshuffling reprograms the genome for continuous growth, survival, and evasion of the immune system. Manipulation of molecular networks controlling centrosome function may soon become a viable target for specific therapeutic intervention in cancer, particularly since normal cells, which lack centrosome alterations, may be spared the toxicity of such therapies.
Collapse
Affiliation(s)
- German A Pihan
- Department of Pathology and Laboratory Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA , USA
| |
Collapse
|
47
|
Burakov AV, Nadezhdina ES. Association of nucleus and centrosome: magnet or velcro? Cell Biol Int 2013; 37:95-104. [DOI: 10.1002/cbin.10016] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 11/12/2012] [Indexed: 12/20/2022]
Affiliation(s)
- Anton V. Burakov
- A.N.Belozersky Institute of Physico-Chemical Biology of Lomonosov Moscow State University; Vorobjevy Gory, 1/40, Moscow 119992 Russia
| | - Elena S. Nadezhdina
- A.N.Belozersky Institute of Physico-Chemical Biology of Lomonosov Moscow State University; Vorobjevy Gory, 1/40, Moscow 119992 Russia
- Institute of Protein Research of Russian Academy of Science; Vavilova ul., 34, Moscow 119333 Russia
| |
Collapse
|
48
|
Staples CJ, Myers KN, Beveridge RDD, Patil AA, Lee AJX, Swanton C, Howell M, Boulton SJ, Collis SJ. The centriolar satellite protein Cep131 is important for genome stability. J Cell Sci 2012; 125:4770-9. [PMID: 22797915 DOI: 10.1242/jcs.104059] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The centrosome acts as a centre for microtubule organisation and plays crucial roles in cell polarity, migration, growth and division. Cep131 has recently been described as a basal body component essential for cilium formation, but its function in non-ciliogenic cells is unknown. We identified human Cep131 (also known as AZI1) in a screen for regulators of genome stability. We show that centrosomal localisation of Cep131 is cell-cycle-regulated and requires both an intact microtubule network and a functional dynein-dynactin transport system. Cep131 is recruited to centriolar satellites by PCM1, and localised to the centriolar core region by both pericentrin and Cep290. Depletion of Cep131 results in a reduction in proliferation rate, centriole amplification, an increased frequency of multipolar mitosis, chromosomal instability and an increase in post-mitotic DNA damage. These data therefore highlight the importance of human Cep131 for maintaining genomic integrity.
Collapse
Affiliation(s)
- Christopher J Staples
- Genome Stability Group, CR-UK/YCR Sheffield Cancer Research Centre, YCR Institute for Cancer Studies, Department of Oncology, University of Sheffield Medical School, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Anderhub SJ, Krämer A, Maier B. Centrosome amplification in tumorigenesis. Cancer Lett 2012; 322:8-17. [PMID: 22342684 DOI: 10.1016/j.canlet.2012.02.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 02/06/2012] [Accepted: 02/07/2012] [Indexed: 01/11/2023]
Affiliation(s)
- Simon J Anderhub
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center, University of Heidelberg, Germany
| | | | | |
Collapse
|
50
|
Centrosomes in the zebrafish (Danio rerio): a review including the related basal body. Cilia 2012; 1:9. [PMID: 23351173 PMCID: PMC3555702 DOI: 10.1186/2046-2530-1-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 06/07/2012] [Indexed: 12/15/2022] Open
Abstract
Ever since Edouard Van Beneden and Theodor Boveri first formally described the centrosome in the late 1800s, it has captivated cell biologists. The name clearly indicated its central importance to cell functioning, even to these early investigators. We now know of its role as a major microtubule-organizing center (MTOC) and of its dynamic roles in cell division, vesicle trafficking and for its relative, the basal body, ciliogenesis. While centrosomes are found in most animal cells, notably it is absent in most oocytes and higher plant cells. Nevertheless, it appears that critical components of the centrosome act as MTOCs in these cells as well. The zebrafish has emerged as an exciting and promising new model organism, primarily due to the pioneering efforts of George Streisinger to use zebrafish in genetic studies and due to Christiane Nusslein-Volhard, Wolfgang Driever and their teams of collaborators, who applied forward genetics to elicit a large number of mutant lines. The transparency and rapid external development of the embryo allow for experiments not easily done in other vertebrates. The ease of producing transgenic lines, often with the use of fluorescent reporters, and gene knockdowns with antisense morpholinos further contributes to the appeal of the model as an experimental system. The added advantage of high-throughput screening of small-molecule libraries, as well as the ease of mass rearing together with low cost, makes the zebrafish a true frontrunner as a model vertebrate organism. The zebrafish has a body plan shared by all vertebrates, including humans. This conservation of body plan provides added significance to the existing lines of zebrafish as human disease models and adds an impetus to the ongoing efforts to develop new models. In this review, the current state of knowledge about the centrosome in the zebrafish model is explored. Also, studies on the related basal body in zebrafish and their relationship to ciliogenesis are reviewed.
Collapse
|