1
|
Kinoshita-Terauchi N, Shiba K, Terauchi M, Noguchi H, Inaba K. Flagellar proteomic analysis of the brown alga Mutimo cylindricus revealed a novel calcium-binding protein abundantly localized in the anterior flagellum. Protist 2024; 175:126070. [PMID: 39499999 DOI: 10.1016/j.protis.2024.126070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/19/2024] [Accepted: 10/17/2024] [Indexed: 12/10/2024]
Abstract
Mutimo cylindricus gametes have two flagella with different structures : an anterior and a posterior flagellum. Their flagellar waveforms are regulated by calcium ions through various mechanisms, however the factors involved in this regulation remain largely unknown To elucidate the molecular basis underlying the difference between the two flagella, we performed a flagellar proteomic analysis of male M. cylindricus gametes. We identified 848 proteins shared with Ectocarpus siliculosus, including 28 calcium-binding proteins. Among the EF-hand proteins, a 111 kDa protein showed predominant localization along the anterior flagellum. Immunogold localization suggested that this protein is associated with outer doublet microtubules. This is the first report to show heterogeneous localization of a calcium-binding protein between two flagellar axonemes and suggests that calcium-binding proteins are involved in the specific regulation of the anterior flagellum.
Collapse
Affiliation(s)
- Nana Kinoshita-Terauchi
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka 415-0025, Japan.
| | - Kogiku Shiba
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka 415-0025, Japan
| | - Makoto Terauchi
- Center for Genome Informatics, Joint Support-Center for Data Science Research, Research Organization of Information and Systems (ROIS), 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Hideki Noguchi
- Center for Genome Informatics, Joint Support-Center for Data Science Research, Research Organization of Information and Systems (ROIS), 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Kazuo Inaba
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka 415-0025, Japan
| |
Collapse
|
2
|
Häder DP, Hemmersbach R. Euglena, a Gravitactic Flagellate of Multiple Usages. Life (Basel) 2022; 12:1522. [PMID: 36294957 PMCID: PMC9605500 DOI: 10.3390/life12101522] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/29/2022] Open
Abstract
Human exploration of space and other celestial bodies bears a multitude of challenges. The Earth-bound supply of material and food is restricted, and in situ resource utilisation (ISRU) is a prerequisite. Excellent candidates for delivering several services are unicellular algae, such as the space-approved flagellate Euglena gracilis. This review summarizes the main characteristics of this unicellular organism. Euglena has been exposed on various platforms that alter the impact of gravity to analyse its corresponding gravity-dependent physiological and molecular genetic responses. The sensory transduction chain of gravitaxis in E. gracilis has been identified. The molecular gravi-(mechano-)receptors are mechanosensory calcium channels (TRP channels). The inward gated calcium binds specifically to one of several calmodulins (CaM.2), which, in turn, activates an adenylyl cyclase. This enzyme uses ATP to produce cAMP, which induces protein kinase A, followed by the phosphorylation of a motor protein in the flagellum, initiating a course correction, and, finally, resulting in gravitaxis. During long space missions, a considerable amount of food, oxygen, and water has to be carried, and the exhaled carbon dioxide has to be removed. In this context, E. gracilis is an excellent candidate for biological life support systems, since it produces oxygen by photosynthesis, takes up carbon dioxide, and is even edible. Various species and mutants of Euglena are utilized as a producer of commercial food items, as well as a source of medicines, as it produces a number of vitamins, contains numerous trace elements, and synthesizes dietary proteins, lipids, and the reserve molecule paramylon. Euglena has anti-inflammatory, -oxidant, and -obesity properties.
Collapse
Affiliation(s)
- Donat-P. Häder
- Department of Botany, Emeritus from Friedrich-Alexander University, 91096 Erlangen, Germany
| | - Ruth Hemmersbach
- German Aerospace Center, Institute of Aerospace Medicine, Gravitational Biology, Linder Hoehe, 51147 Cologne, Germany
| |
Collapse
|
3
|
Wu Q, Gao K, Zheng S, Zhu X, Liang Y, Pan J. Calmodulin regulates a TRP channel (ADF1) and phospholipase C (PLC) to mediate elevation of cytosolic calcium during acidic stress that induces deflagellation in
Chlamydomonas. FASEB J 2018; 32:3689-3699. [DOI: 10.1096/fj.201701396rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Qiong Wu
- Ministry of Education (MOE) Key Laboratory of Protein SciencesTsinghua‐Peking Center for Life SciencesSchool of Life SciencesTsinghua UniversityBeijingChina
- Laboratory for Marine Biology and BiotechnologyQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
| | - Kang Gao
- Hebei Key Laboratory of Molecular and Cellular BiologyCollege of Life ScienceHebei Normal UniversityShijiazhuangChina
| | - Shuzhi Zheng
- Hebei Key Laboratory of Molecular and Cellular BiologyCollege of Life ScienceHebei Normal UniversityShijiazhuangChina
| | - Xin Zhu
- Ministry of Education (MOE) Key Laboratory of Protein SciencesTsinghua‐Peking Center for Life SciencesSchool of Life SciencesTsinghua UniversityBeijingChina
| | - Yinwen Liang
- Ministry of Education (MOE) Key Laboratory of Protein SciencesTsinghua‐Peking Center for Life SciencesSchool of Life SciencesTsinghua UniversityBeijingChina
| | - Junmin Pan
- Ministry of Education (MOE) Key Laboratory of Protein SciencesTsinghua‐Peking Center for Life SciencesSchool of Life SciencesTsinghua UniversityBeijingChina
- Laboratory for Marine Biology and BiotechnologyQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
| |
Collapse
|
4
|
Häder DP, Hemmersbach R. Gravitaxis in Euglena. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 979:237-266. [DOI: 10.1007/978-3-319-54910-1_12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
5
|
Galletta BJ, Guillen RX, Fagerstrom CJ, Brownlee CW, Lerit DA, Megraw TL, Rogers GC, Rusan NM. Drosophila pericentrin requires interaction with calmodulin for its function at centrosomes and neuronal basal bodies but not at sperm basal bodies. Mol Biol Cell 2014; 25:2682-94. [PMID: 25031429 PMCID: PMC4161505 DOI: 10.1091/mbc.e13-10-0617] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Pericentrin is a critical centrosomal protein required for organizing pericentriolar material (PCM) in mitosis. Mutations in pericentrin cause the human genetic disorder Majewski/microcephalic osteodysplastic primordial dwarfism type II, making a detailed understanding of its regulation extremely important. Germaine to pericentrin's function in organizing PCM is its ability to localize to the centrosome through the conserved C-terminal PACT domain. Here we use Drosophila pericentrin-like-protein (PLP) to understand how the PACT domain is regulated. We show that the interaction of PLP with calmodulin (CaM) at two highly conserved CaM-binding sites in the PACT domain controls the proper targeting of PLP to the centrosome. Disrupting the PLP-CaM interaction with single point mutations renders PLP inefficient in localizing to centrioles in cultured S2 cells and Drosophila neuroblasts. Although levels of PCM are unaffected, it is highly disorganized. We also demonstrate that basal body formation in the male testes and the production of functional sperm does not rely on the PLP-CaM interaction, whereas production of functional mechanosensory neurons does.
Collapse
Affiliation(s)
- Brian J Galletta
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Rodrigo X Guillen
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Carey J Fagerstrom
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Chris W Brownlee
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724
| | - Dorothy A Lerit
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Timothy L Megraw
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32304
| | - Gregory C Rogers
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724
| | - Nasser M Rusan
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
6
|
Pasquale SM, Goodenough UW. Calmodulin Sensitivity of the Flagellar Membrane Adenylate Cyclase and Signaling of Motile Responses by cAMP in Gametes ofChlamydomonas reinhardtii. ACTA ACUST UNITED AC 2014. [DOI: 10.1111/j.1438-8677.1988.tb00021.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
DiPetrillo CG, Smith EF. Methods for analysis of calcium/calmodulin signaling in cilia and flagella. Methods Enzymol 2013; 524:37-57. [PMID: 23498733 DOI: 10.1016/b978-0-12-397945-2.00003-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The axonemal microtubules of cilia/flagella act as a scaffold for assembly of the protein complexes that ultimately regulate dynein activity to control the size and shape of ciliary bends. Despite our general understanding of the contribution of microtubule sliding to ciliary and flagellar motility, many questions regarding the regulation of dynein remain unanswered. For example, we know that the second messenger calcium plays an important role in modulating dynein activity in response to extracellular cues, but it remains unclear how calcium-binding proteins anchored to the axoneme contribute to this regulation. Recent work has focused on determining the identity and specific functions of these axonemal calcium-binding proteins. Here, we review our current knowledge of calcium-mediated motility and highlight key experiments that have substantially aided our understanding of calcium signaling within the axoneme.
Collapse
Affiliation(s)
- Christen G DiPetrillo
- Division of Infectious Diseases, Boston Children's Hospital, Boston, Massachusetts, USA
| | | |
Collapse
|
8
|
Heuser T, Dymek EE, Lin J, Smith EF, Nicastro D. The CSC connects three major axonemal complexes involved in dynein regulation. Mol Biol Cell 2012; 23:3143-55. [PMID: 22740634 PMCID: PMC3418309 DOI: 10.1091/mbc.e12-05-0357] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
This study reveals the 3D structure of the CSC and its connections to three major axonemal complexes involved in dynein regulation, including the distal radial spoke and the nexin-DRC. The findings corroborate radial spoke heterogeneity and suggest a unique role for the distal spoke in calcium-mediated signal transduction and flagellar motility. Motile cilia and flagella are highly conserved organelles that play important roles in human health and development. We recently discovered a calmodulin- and spoke-associated complex (CSC) that is required for wild-type motility and for the stable assembly of a subset of radial spokes. Using cryo–electron tomography, we present the first structure-based localization model of the CSC. Chlamydomonas flagella have two full-length radial spokes, RS1 and RS2, and a shorter RS3 homologue, the RS3 stand-in (RS3S). Using newly developed techniques for analyzing samples with structural heterogeneity, we demonstrate that the CSC connects three major axonemal complexes involved in dynein regulation: RS2, the nexin–dynein regulatory complex (N-DRC), and RS3S. These results provide insights into how signals from the radial spokes may be transmitted to the N-DRC and ultimately to the dynein motors. Our results also indicate that although structurally very similar, RS1 and RS2 likely serve different functions in regulating flagellar motility.
Collapse
Affiliation(s)
- Thomas Heuser
- Biology Department, Rosenstiel Center, Brandeis University, Waltham, MA 02454, USA
| | | | | | | | | |
Collapse
|
9
|
Daiker V, Lebert M, Richter P, Häder DP. Molecular characterization of a calmodulin involved in the signal transduction chain of gravitaxis in Euglena gracilis. PLANTA 2010; 231:1229-1236. [PMID: 20213123 DOI: 10.1007/s00425-010-1126-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 02/10/2010] [Indexed: 05/28/2023]
Abstract
The unicellular flagellate Euglena gracilis shows a negative gravitactic behavior. This is based on physiological mechanisms which in the past have been indirectly assessed. Meanwhile, it was possible to isolate genes involved in the signal transduction chain of gravitaxis. The DNA sequences of five calmodulins were found in Euglena, one of which was only known in its protein structure (CaM.1); the other four are new. The biosynthesis of the corresponding proteins of CaM.1-CaM.5 was inhibited by means of RNA interference to determine their involvement in the gravitactic signal transduction chain. RNAi of CaM.1 inhibits free swimming of the cells and pronounced cell-form aberrations. The division of cells was also hampered. After recovery from RNAi the cell showed precise negative gravitaxis again. Blockage of CaM.3 to CaM. 5 did not impair gravitaxis. In contrast, the blockage of CaM.2 has only a transient and not pronounced influence on motility and cell form, but leads to a total loss of gravitactic orientation for more than 30 days. This indicates that CaM.2 is an element in the signal transduction chain of gravitaxis in E. gracilis. The results are discussed with regard to the current working model of gravitaxis in E. gracilis.
Collapse
Affiliation(s)
- Viktor Daiker
- Department of Biology, Plant Ecophysiology, Friedrich-Alexander University, Erlangen, Germany
| | | | | | | |
Collapse
|
10
|
DiPetrillo C, Smith E. Calcium regulation of ciliary motility analysis of axonemal calcium-binding proteins. Methods Cell Biol 2009; 92:163-80. [PMID: 20409805 DOI: 10.1016/s0091-679x(08)92011-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Substantial data have contributed to a model in which the axonemal microtubules act as a scaffold for the assembly of molecules that form a signal transduction pathway that ultimately regulates dynein. We have also known for some time that for virtually all motile cilia and flagella, the second messenger, calcium, impacts upon these signaling pathways to modulate beating in response to extracellular cues. Yet we are only beginning to identify the axonemal proteins that bind this second messenger and determine their role in regulating dynein-driven microtubule sliding to alter the size and shape of ciliary bends. Here, we review our current understanding of calcium regulation of motility, emphasizing recent advances in the detection and characterization of calcium-binding proteins anchored to the axoneme.
Collapse
Affiliation(s)
- Christen DiPetrillo
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | | |
Collapse
|
11
|
Beltrán C, Galindo BE, Rodríguez-Miranda E, Sánchez D. Signal transduction mechanisms regulating ion fluxes in the sea urchin sperm. ACTA ACUST UNITED AC 2007. [DOI: 10.1002/sita.200600129] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Ueno H, Iwataki Y, Numata O. Homologues of Radial Spoke Head Proteins Interact with Ca2+/Calmodulin in Tetrahymena Cilia. ACTA ACUST UNITED AC 2006; 140:525-33. [PMID: 16936294 DOI: 10.1093/jb/mvj182] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Calmodulin (CaM) is an axonemal component. To examine the pathway of Ca(2+)/CaM signaling in cilia, using Ca(2+)/CaM-affinity column, we identified seven Ca(2+)/CaM-associated proteins from a crude dynein fraction and isolated 62 kDa (p62) and 66 kDa (p66) Ca(2+)/CaM-associated proteins in Tetrahymena cilia. The amino acid sequences deduced from the p62 and p66 cDNA sequences suggested that these proteins were similar to Chlamydomonas radial spoke proteins 4 and 6 (RSP4 and RSP6), components of the radial spoke head, and sea urchin sperm p63, which is a homologue of RSP4/6, and isolated as a key component that affect flagellar bending patterns. Although p62 and p66 do not have a conventional CaM-binding site, those have consecutive sequences which showed high normalized scores (>or= 5) from a CaM target database. These consecutive sequences were also found in RSP4, RSP6, and p63. These radial spoke heads proteins have a high similarity region composed of 15 amino acids between the five proteins. Immunoelectron microscopy using anti-CaM antibody showed that CaM was localized along the outer edge of the curved central pair microtubules in axoneme. Therefore, it is possible that the interaction between Ca(2+)/CaM and radial spoke head control axonemal curvature in the ciliary and flagellar waveform.
Collapse
Affiliation(s)
- Hironori Ueno
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572
| | | | | |
Collapse
|
13
|
Dymek EE, Goduti D, Kramer T, Smith EF. A kinesin-like calmodulin-binding protein in Chlamydomonas: evidence for a role in cell division and flagellar functions. J Cell Sci 2006; 119:3107-16. [PMID: 16835274 DOI: 10.1242/jcs.03028] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Kinesin-like calmodulin-binding protein, KCBP, is a novel member of the C-kinesin superfamily first discovered in flowering plants. This minus-end-directed kinesin exhibits Ca(2+)-calmodulin-sensitive motor activity in vitro and has been implicated in trichome morphogenesis and cell division. A homologue of KCBP is also found in the unicellular, biflagellate green alga Chlamydomonas reinhardtii (CrKCBP). Unlike plant cells, Chlamydomonas cells do not form trichomes and do not assemble a phragmoplast before cell division. To test whether CrKCBP is involved in additional microtubule-based processes not observed in plants, we generated antibodies against the putative calmodulin-binding domain and used these antibodies in biochemical and localization studies. In interphase cells CrKCBP primarily localizes near the base of the flagella, although surprisingly, a small fraction also localizes along the length of the flagella. CrKCBP is bound to isolated axonemes in an ATP-dependent fashion and is not a component of the dynein arms, radial spokes or central apparatus. During mitosis, CrKCBP appears concentrated at the centrosomes during prophase and metaphase. However, during telophase and cytokinesis CrKCBP co-localizes with the microtubules associated with the phycoplast. These studies implicate CrKCBP in flagellar functions as well as cell division.
Collapse
Affiliation(s)
- Erin E Dymek
- Dartmouth College, Department of Biological Sciences, 301 Gilman, Hanover, NH 03755, USA
| | | | | | | |
Collapse
|
14
|
Ignotz GG, Suarez SS. Calcium/Calmodulin and Calmodulin Kinase II Stimulate Hyperactivation in Demembranated Bovine Sperm1. Biol Reprod 2005; 73:519-26. [PMID: 15878888 DOI: 10.1095/biolreprod.105.040733] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Hyperactivated motility is observed among sperm in the mammalian oviduct near the time of ovulation. It is characterized by high-amplitude, asymmetrical flagellar beating and assists sperm in penetrating the cumulus oophorus and zona pellucida. Elevated intracellular Ca2+ is required for the initiation of hyperactivated motility, suggesting that calmodulin (CALM) and Ca2+/CALM-stimulated pathways are involved. A demembranated sperm model was used to investigate the role of CALM in promoting hyperactivation. Ejaculated bovine sperm were demembranated and immobilized by brief exposure to Triton X-100. Motility was restored by addition of reactivation medium containing MgATP and Ca2+, and hyperactivation was observed as free Ca2+ was increased from 50 nM to 1 microM. However, when 2.5 mM Ca2+ was added to the demembranation medium to extract flagellar CALM, motility was not reactivated unless exogenous CALM was readded. The inclusion of anti-CALM IgG in the reactivation medium reduced the proportion hyperactivated in 1 microM Ca2+ to 5%. Neither control IgG, the CALM antagonist W-7, nor a peptide directed against the CALM-binding domain of myosin light chain kinase (MYLK2) inhibited hyperactivation. However, when sperm were reactivated in the presence of CALM kinase II (CAMK2) inhibiting peptides, hyperactivation was reduced by 75%. Furthermore, an inhibitor of CAMK2, KN-93, inhibited hyperactivation without impairing normal motility of intact sperm. CALM and CAMK2 were immunolocalized to the acrosomal region and flagellum. These results indicate that hyperactivation is stimulated by a Ca2+/CALM pathway involving CAMK2.
Collapse
Affiliation(s)
- George G Ignotz
- Department of Biomedical Sciences, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
15
|
Reed W, Lebduska S, Satir P. Effects of trifluoperazine upon the calcium-dependent ciliary arrest response of freshwater mussel gill lateral cells. ACTA ACUST UNITED AC 2005. [DOI: 10.1002/cm.970020502] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
16
|
Patel-King RS, Gorbatyuk O, Takebe S, King SM. Flagellar radial spokes contain a Ca2+-stimulated nucleoside diphosphate kinase. Mol Biol Cell 2004; 15:3891-902. [PMID: 15194815 PMCID: PMC491844 DOI: 10.1091/mbc.e04-04-0352] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The radial spokes are required for Ca(2+)-initiated intraflagellar signaling, resulting in modulation of inner and outer arm dynein activity. However, the mechanochemical properties of this signaling pathway remain unknown. Here, we describe a novel nucleoside diphosphate kinase (NDK) from the Chlamydomonas flagellum. This protein (termed p61 or RSP23) consists of an N-terminal catalytic NDK domain followed by a repetitive region that includes three IQ motifs and a highly acidic C-terminal segment. We find that p61 is missing in axonemes derived from the mutants pf14 (lacks radial spokes) and pf24 (lacks the spoke head and several stalk components) but not in those from pf17 (lacking only the spoke head). The p61 protein can be extracted from oda1 (lacks outer dynein arms) and pf17 axonemes with 0.5 M KI, and copurifies with radial spokes in sucrose density gradients. Furthermore, p61 contains two classes of calmodulin binding site: IQ1 interacts with calmodulin-Sepharose beads in a Ca(2+)-independent manner, whereas IQ2 and IQ3 show Ca(2+)-sensitive associations. Wild-type axonemes exhibit two distinct NDKase activities, at least one of which is stimulated by Ca(2+). This Ca(2+)-responsive enzyme, which accounts for approximately 45% of total axonemal NDKase, is missing from pf14 axonemes. We found that purified radial spokes also exhibit NDKase activity. Thus, we conclude that p61 is an integral component of the radial spoke stalk that binds calmodulin and exhibits Ca(2+)-controlled NDKase activity. These observations suggest that nucleotides other than ATP may play an important role in the signal transduction pathway that underlies the regulatory mechanism defined by the radial spokes.
Collapse
Affiliation(s)
- Ramila S Patel-King
- Department of Molecular, Microbial and Structural Biology, University of Connecticut Health Center, Farmington, Connecticut 06030-3305, USA
| | | | | | | |
Collapse
|
17
|
Abstract
Chlamydomonas has long been a favourite organism for genetic and biochemical studies of flagellar motility and assembly, photosynthesis, and organelle genomes. With the recent development of procedures for the efficient transformation of its nuclear genome, Chlamydomonas has become accessible to a wide range of molecular genetic approaches, including gene tagging by insertional mutagenesis and cloning by complementation. The availability of these powerful techniques is stimulating interest in Chlamydomonas as a model system for research in areas where it previously has not been widely exploited. One such area that holds particular promise is phototransduction and the behavioural response to light.
Collapse
Affiliation(s)
- G B Witman
- Worcester Foundation for Experimental Biology, 222 Maple Ave, Shrewsbury, MA 01545, USA
| |
Collapse
|
18
|
Casey DM, Yagi T, Kamiya R, Witman GB. DC3, the smallest subunit of the Chlamydomonas flagellar outer dynein arm-docking complex, is a redox-sensitive calcium-binding protein. J Biol Chem 2003; 278:42652-9. [PMID: 12920131 DOI: 10.1074/jbc.m303064200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The outer dynein arm-docking complex (ODA-DC) targets the outer dynein arm to its correct binding site on the flagellar axoneme. The Chlamydomonas ODA-DC contains three proteins; loss of any one prevents normal assembly of the outer arm, leading to a slow, jerky swimming phenotype. We showed previously that the smallest ODA-DC subunit, DC3, has four EF-hands (Casey, D. M., Inaba, K., Pazour, G. J., Takada, S., Wakabayashi, K., Wilkerson, C. G., Kamiya, R., and Witman, G. B. (2003) Mol. Biol. Cell 14, 3650-3663). Two of the EF-hands fit the consensus pattern for calcium binding, and one of these contains two cysteine residues within its binding loop. To determine whether the predicted EF-hands are functional, we purified bacterially expressed wild-type DC3 and analyzed its calcium-binding potential in the presence and absence of dithiothreitol and Mg2+. The protein bound one calcium ion with an affinity (Kd) of approximately 1 x 10-5 m. Calcium binding was observed only in the presence of dithiothreitol and thus is redox-sensitive. DC3 also bound Mg2+ at physiological concentrations but with a much lower affinity. Changing the essential glutamate to glutamine in both EF-hands eliminated the calcium binding activity of the bacterially expressed protein. To investigate the role of the EF-hands in vivo, we transformed the modified DC3 gene into a Chlamydomonas insertional mutant lacking DC3. The transformed strain swam normally, assembled a normal number of outer arms, and had a normal photoshock response, indicating that the Glu to Gln mutations did not affect ODA-DC assembly, outer arm assembly, or Ca2+-mediated outer arm activity. Thus, DC3 is a true calcium-binding protein, but the function of this activity remains unknown.
Collapse
Affiliation(s)
- Diane M Casey
- Department of Cell Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | | | | | | |
Collapse
|
19
|
Patel-King RS, Benashski SE, King SM. A bipartite Ca2+-regulated nucleoside-diphosphate kinase system within the Chlamydomonas flagellum. The regulatory subunit p72. J Biol Chem 2002; 277:34271-9. [PMID: 12095989 DOI: 10.1074/jbc.m204137200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Regulation of flagellar activity in Chlamydomonas involves both Ca(2+) and cAMP-mediated signaling pathways. However, Chlamydomonas and sea urchin sperm flagella also exhibit nucleoside-diphosphate kinase (NDK) activity, suggesting a requirement for GTP within this highly conserved organelle. In sea urchin sperm, the NDK catalytic subunit is an integral component of the outer dynein arm. Here we describe a modular protein (p72) from the Chlamydomonas flagellum that consists of three domains closely related to the presumptive regulatory segment of rat NDK-7 followed by two EF-hands that are predicted to bind Ca(2+). There are close homologues of p72 in both mammalian and insect genomes. The p72 protein is tightly associated with the flagellar axoneme and is located along the entire length except at the transition zone. Cross-linking experiments suggest that p72 interacts with two or three additional axonemal polypeptides. The sensitivity of p72 to tryptic digestion differed considerably in the presence and the absence of Ca(2+), suggesting that it indeed binds this ligand. These studies indicate that the flagellar NDK system is bipartite with the regulatory and catalytic components residing on different polypeptides. We propose that Ca(2+) regulation of flagellar motility in Chlamydomonas may be achieved in part through a downstream GTP-mediated signaling pathway.
Collapse
Affiliation(s)
- Ramila S Patel-King
- Department of Biochemistry, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030-3305, USA
| | | | | |
Collapse
|
20
|
Smith EF. Regulation of flagellar dynein by calcium and a role for an axonemal calmodulin and calmodulin-dependent kinase. Mol Biol Cell 2002; 13:3303-13. [PMID: 12221134 PMCID: PMC124160 DOI: 10.1091/mbc.e02-04-0185] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2002] [Revised: 06/01/2002] [Accepted: 06/21/2002] [Indexed: 11/11/2022] Open
Abstract
Ciliary and flagellar motility is regulated by changes in intraflagellar calcium. However, the molecular mechanism by which calcium controls motility is unknown. We tested the hypothesis that calcium regulates motility by controlling dynein-driven microtubule sliding and that the central pair and radial spokes are involved in this regulation. We isolated axonemes from Chlamydomonas mutants and measured microtubule sliding velocity in buffers containing 1 mM ATP and various concentrations of calcium. In buffers with pCa > 8, microtubule sliding velocity in axonemes lacking the central apparatus (pf18 and pf15) was reduced compared with that of wild-type axonemes. In contrast, at pCa4, dynein activity in pf18 and pf15 axonemes was restored to wild-type level. The calcium-induced increase in dynein activity in pf18 axonemes was inhibited by antagonists of calmodulin and calmodulin-dependent kinase II. Axonemes lacking the C1 central tubule (pf16) or lacking radial spoke components (pf14 and pf17) do not exhibit calcium-induced increase in dynein activity in pCa4 buffer. We conclude that calcium regulation of flagellar motility involves regulation of dynein-driven microtubule sliding, that calmodulin and calmodulin-dependent kinase II may mediate the calcium signal, and that the central apparatus and radial spokes are key components of the calcium signaling pathway.
Collapse
Affiliation(s)
- Elizabeth F Smith
- Dartmouth College, Department of Biological Sciences, Hanover, New Hampshire 03755, USA.
| |
Collapse
|
21
|
Tam LW, Lefebvre PA. The Chlamydomonas MBO2 locus encodes a conserved coiled-coil protein important for flagellar waveform conversion. CELL MOTILITY AND THE CYTOSKELETON 2002; 51:197-212. [PMID: 11977094 DOI: 10.1002/cm.10023] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Chlamydomonas flagella can undergo a calcium-dependent conversion between an asymmetric ciliary waveform and a symmetric flagellar waveform. Mutations at three MBO loci abolish the predominant ciliary waveform and result in cells that move backward only with the flagellar waveform. We have cloned and characterized the MBO2 gene. It encodes a novel protein with extensive alpha-helical coiled-coils and two leucine zippers. Sequences highly similar to MBO2p were found in a variety of organisms with cilia and flagella, suggesting that the MBO2 gene function may be conserved in many diverse taxa. Antibodies to MBO2p recognized an axonemal protein of 110 kDa, which appeared to be tightly associated with doublet microtubules. The protein was present in flagella of a variety of paralyzed flagellar mutants that lacked different axonemal structures, indicating that MBO2p is a component of a previously uncharacterized flagellar protein complex. In contrast to the earlier suggestion that the MBO2 gene may encode a component of an intramicrotubular beak-like structure present only proximally in flagella, we localized an epitope-tagged MBO2p along the entire length of the flagella. Moreover, the insertion of a hemagglutinin (HA) epitope in the conserved C-terminal domain of MBO2p reduced the swimming velocity of cells transformed with the epitope-tagged gene. These results indicate that MBO2p may play a role both in the assembly of the beak-like structure and the regulation of the force-generation machinery during the ciliary beat.
Collapse
Affiliation(s)
- Lai-Wa Tam
- Department of Genetics, Cell Biology and Development, University of Minnesota, St. Paul 55108, USA
| | | |
Collapse
|
22
|
Yang P, Diener DR, Rosenbaum JL, Sale WS. Localization of calmodulin and dynein light chain LC8 in flagellar radial spokes. J Cell Biol 2001; 153:1315-26. [PMID: 11402073 PMCID: PMC2192029 DOI: 10.1083/jcb.153.6.1315] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Genetic and in vitro analyses have revealed that radial spokes play a crucial role in regulation of ciliary and flagellar motility, including control of waveform. However, the mechanisms of regulation are not understood. Here, we developed a novel procedure to isolate intact radial spokes as a step toward understanding the mechanism by which these complexes regulate dynein activity. The isolated radial spokes sediment as 20S complexes that are the size and shape of radial spokes. Extracted radial spokes rescue radial spoke structure when reconstituted with isolated axonemes derived from the radial spoke mutant pf14. Isolated radial spokes are composed of the 17 previously defined spoke proteins as well as at least five additional proteins including calmodulin and the ubiquitous dynein light chain LC8. Analyses of flagellar mutants and chemical cross-linking studies demonstrated calmodulin and LC8 form a complex located in the radial spoke stalk. We postulate that calmodulin, located in the radial spoke stalk, plays a role in calcium control of flagellar bending.
Collapse
Affiliation(s)
- Pinfen Yang
- Department of Cell Biology, Emory University, School of Medicine, Atlanta, Georgia 30322
| | - Dennis R. Diener
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520
| | - Joel L. Rosenbaum
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520
| | - Winfield S. Sale
- Department of Cell Biology, Emory University, School of Medicine, Atlanta, Georgia 30322
| |
Collapse
|
23
|
Abstract
The length of eukaryotic cilia and flagella depends on the cell cycle-regulated assembly and disassembly of at least 9 doublet and 2 central microtubules, their associated proteins, and the surrounding membrane. In light-synchronized Chlamydomonas cells, flagella assembled to 10-14 microm in length near the beginning of the light period and they disassembled prior to cell division, during the dark period. Flagella on light-synchronized pf18 Chlamydomonas mutants grew to 10-12 microm near the beginning of the light period but shortened by 50% or more by the end of the light period. Flagellar length was cell-cycle regulated: when flagella were amputated at various times during the light period, new flagella regenerated to the lengths of control cells at that time of the light cycle. The later in the cycle pf18 cells were deflagellated, the shorter were the regenerated flagella. Flagellar shortening was not affected, in either pf18 or wild-type (wt) cells, by inhibitors of protein synthesis or of microtubule assembly, so flagellar length cannot depend on protein turnover. Shortening in pf18 was attenuated by Li+, which stimulated flagellar growth in wt cells, by red light, by protein kinase inhibitors, and by the Ca2+ channel blockers La3+ and Cd2+. Shortening was increased by cAMP, Na+, K+, and EGTA. Ca2+-CAM blockers did not affect pf18 shortening but they increased shortening in wt and fa1 cells. We propose that flagellar length is regulated by a signal transduction pathway that is sensitive to Ca2+ levels and red light.
Collapse
Affiliation(s)
- J Tuxhorn
- Department of Biochemistry, Cell, and Molecular Biology, University of Kansas, Lawrence 66045, USA
| | | | | |
Collapse
|
24
|
Finst RJ, Kim PJ, Griffis ER, Quarmby LM. Fa1p is a 171 kDa protein essential for axonemal microtubule severing in Chlamydomonas. J Cell Sci 2000; 113 ( Pt 11):1963-71. [PMID: 10806107 DOI: 10.1242/jcs.113.11.1963] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A key event in deflagellation or deciliation is the severing of the nine outer-doublet axonemal microtubules at a specific site in the flagellar transition zone. Previous genetic analysis revealed three genes that are essential for deflagellation in Chlamydomonas. We have now identified the first of these products, Fa1p, a protein required for Ca(2+)-dependent, axonemal microtubule severing. Genetic mapping and the availability of a tagged allele allowed us to physically map the gene to the centromere-proximal domain of the mating-type locus. We identified clones of Chlamydomonas genomic DNA that rescued the Ca(2+)-dependent axonemal microtubule severing defect of fa1 mutants. The FA1 cDNA, obtained by RT-PCR, encodes a novel protein of 171 kDa, which is predicted to contain an amino-terminal coiled-coil domain and three Ca(2+)/calmodulin binding domains. By western analysis and subcellular fractionation, the FA1 product is enriched in flagellar-basal body complexes. Based on these observations and previous studies, we hypothesize that a Ca(2+)-activated, Ca(2+)-binding protein binds Fa1p leading ultimately to the activation of axonemal microtubule severing.
Collapse
Affiliation(s)
- R J Finst
- Department of Cell Biology and Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | |
Collapse
|
25
|
Bannai H, Yoshimura M, Takahashi K, Shingyoji C. Calcium regulation of microtubule sliding in reactivated sea urchin sperm flagella. J Cell Sci 2000; 113 ( Pt 5):831-9. [PMID: 10671372 DOI: 10.1242/jcs.113.5.831] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The changes in the bending pattern of flagella induced by an increased intracellular Ca(2+) concentration are caused by changes in the pattern and velocity of microtubule sliding. However, the mechanism by which Ca(2+) regulates microtubule sliding in flagella has been unclear. To elucidate it, we studied the effects of Ca(2+) on microtubule sliding in reactivated sea urchin sperm flagella that were beating under imposed head vibration. We found that the maximum microtubule sliding velocity obtainable by imposed vibration, which was about 170–180 rad/second in the presence of 250 microM MgATP and <10(−9) M Ca(2+), was decreased by 10(−6)-10(−5) M Ca(2+) by about 15–20%. Similar decrease of the sliding velocity was observed at 54 and 27 microM MgATP. The Ca(2+)-induced decrease of the sliding velocity was due mainly to a decrease in the reverse bend angle. When the plane of beat was artificially rotated by rotating the plane of vibration of the pipette that held the sperm head, the asymmetric bending pattern also rotated at 10(−5) M Ca(2+) as well as at <10(−9) M Ca(2+). The rotation of the bending pattern was observed at MgATP higher than 54 microM (approximately 100 microM ATP). These results indicate that the Ca(2+)-induced decrease of the sliding velocity is mediated by a rotatable component or components (probably the central pair) at high MgATP, but is not due to specific dynein arms on particular doublets. We further investigated the effects of a mild trypsin treatment and of trifluoperazine on the Ca(2+)-induced decrease in sliding velocity. Axonemes treated for 3 minutes with a low concentration (0.1 microgram/ml) of trypsin beat with a more symmetrical waveform than before the treatment. Also, their microtubule sliding velocity and reverse bend angle were not affected by high Ca(2+) concentrations. Trifluoperazine (25-50 microM) had no effect on the decrease of the sliding velocity in beating flagella at 10(−5) M Ca(2+). However, the flagella that had been ‘quiescent’ at 10(−4) M Ca(2+) resumed asymmetrical beating following an application of 10–50 microM trifluoperazine. In such beating flagella, both the sliding velocity and the reverse bend angle were close to their respective values at 10(−5) M Ca(2+). Trypsin treatment induced a similar recovery of beating in quiescent flagella at 10(-)(4) M Ca(2+), albeit with a more symmetrical waveform. These results provide first evidence that, at least at ATP concentrations higher than approximately 100 microM, 10(−6)-10(−5) M Ca(2+) decreases the maximum sliding velocity of microtubules in beating flagella through a trypsin-sensitive regulatory mechanism which possibly involves the central pair apparatus. They also suggest that calmodulin may be associated with the mechanism underlying flagellar quiescence induced by 10(−4) M Ca(2+).
Collapse
Affiliation(s)
- H Bannai
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Tokyo 113-0033, Japan
| | | | | | | |
Collapse
|
26
|
Harrison A, Olds-Clarke P, King SM. Identification of the t complex-encoded cytoplasmic dynein light chain tctex1 in inner arm I1 supports the involvement of flagellar dyneins in meiotic drive. J Cell Biol 1998; 140:1137-47. [PMID: 9490726 PMCID: PMC2132707 DOI: 10.1083/jcb.140.5.1137] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/1997] [Revised: 01/06/1998] [Indexed: 02/06/2023] Open
Abstract
The cytoplasmic dynein light chain Tctex1 is a candidate for one of the distorter products involved in the non-Mendelian transmission of mouse t haplotypes. It has been unclear, however, how the t-specific mutations in this protein, which is found associated with cytoplasmic dynein in many tissues, could result in a male germ cell-specific phenotype. Here, we demonstrate that Tctex1 is not only a cytoplasmic dynein component, but is also present both in mouse sperm and Chlamydomonas flagella. Genetic and biochemical dissection of the Chlamydomonas flagellum reveal that Tctex1 is a previously undescribed component of inner dynein arm I1. Combined with the recent identification of another putative t complex distorter, Tctex2, within the outer dynein arm, these results support the hypothesis that transmission ratio distortion (meiotic drive) of mouse t haplotypes involves dysfunction of both flagellar inner and outer dynein arms but does not require the cytoplasmic isozyme.
Collapse
Affiliation(s)
- A Harrison
- Department of Biochemistry, University of Connecticut Health Center, Farmington, Connecticut 06032-3305, USA
| | | | | |
Collapse
|
27
|
Abstract
Experimental investigation has provided a wealth of structural, biochemical, and physiological information regarding the motile mechanism of eukaryotic flagella/cilia. This chapter surveys the available literature, selectively focusing on three major objectives. First, it attempts to identify those conserved structural components essential to providing motile function in eukaryotic axonemes. Second, it examines the relationship between these structural elements to determine the interactions that are vital to the mechanism of flagellar/ciliary beating. Third, the vital principles of these interactions are incorporated into a tractable theoretical model, referred to as the Geometric Clutch, and this hypothetical scheme is examined to assess its compatibility with experimental observations.
Collapse
Affiliation(s)
- C B Lindemann
- Department of Biological Sciences, Oakland University, Rochester, Michigan 48309, USA
| | | |
Collapse
|
28
|
Im CS, Matters GL, Beale SI. Calcium and calmodulin are involved in blue light induction of the gsa gene for an early chlorophyll biosynthetic step in Chlamydomonas. THE PLANT CELL 1996; 8:2245-53. [PMID: 8989881 PMCID: PMC161349 DOI: 10.1105/tpc.8.12.2245] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The Chlamydomonas reinhardtii nuclear gene gsa, which encodes the early chlorophyll biosynthetic enzyme glutamate 1-semialdehyde aminotransferase (GSAT), is specifically induced by blue light in cells synchronized in a 12-hr-light and 12-hr-dark regime. Light induction required the presence of a nitrogen source in the incubation medium. Maximal induction also required acetate. However, in the absence of acetate, partial induction occurred when Ca2+ was present in the medium at concentrations of > or = 1 microM. The Ca2+ channel-blocking agents Nd3+ and nifedipine partially inhibited the external Ca(2+)-supported induction of GSAT mRNA but did not inhibit acetate-supported induction. The calmodulin antagonists trifluoperazine and N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide inhibited both external Ca(2+)-supported and acetate-supported induction. The Ca2+ ionophore A23187 caused a transient induction in the dark. These results suggest that Ca2+ and calmodulin are involved in the signal transduction pathway linking blue light perception to the induction of GSAT mRNA. The electron transport uncoupler carbonyl cyanide m-chlorophenylhydrazone inhibited acetate-supported induction of GSAT mRNA but did not inhibit external Ca(2+)-supported induction. It is proposed that in the presence of acetate, an internal pool of Ca2+ can be mobilized as a second message, whereas in the absence of acetate, internal Ca2+ is not available but the requirement for Ca2+ can be partially met by an external Ca2+ source. The mobilization of internal Ca2+ may require energy derived from metabolism of acetate.
Collapse
Affiliation(s)
- C S Im
- Division of Biology and Medicine, Brown University, Providence, Rhode Island 02912, USA
| | | | | |
Collapse
|
29
|
Thaler CD, Haimo LT. Microtubules and microtubule motors: mechanisms of regulation. INTERNATIONAL REVIEW OF CYTOLOGY 1996; 164:269-327. [PMID: 8575892 DOI: 10.1016/s0074-7696(08)62388-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Microtubule-based motility is precisely regulated, and the targets of regulation may be the motor proteins, the microtubules, or both components of this intricately controlled system. Regulation of microtubule behavior can be mediated by cell cycle-dependent changes in centrosomal microtubule nucleating ability and by cell-specific, microtubule-associated proteins (MAPs). Changes in microtubule organization and dynamics have been correlated with changes in phosphorylation. Regulation of motor proteins may be required both to initiate movement and to dictate its direction. Axonemal and cytoplasmic dyneins as well as kinesin can be phosphorylated and this modification may affect the motor activities of these enzymes or their ability to interact with organelles. A more complete understanding of how motors can be modulated by phosphorylation, either of the motor proteins or of other associated substrates, will be necessary in order to understand how bidirectional transport is regulated.
Collapse
Affiliation(s)
- C D Thaler
- Department of Biology, University of California, Riverside, USA
| | | |
Collapse
|
30
|
Pazour GJ, Sineshchekov OA, Witman GB. Mutational analysis of the phototransduction pathway of Chlamydomonas reinhardtii. J Biophys Biochem Cytol 1995; 131:427-40. [PMID: 7593169 PMCID: PMC2199980 DOI: 10.1083/jcb.131.2.427] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Chlamydomonas has two photobehavioral responses, phototaxis and photoshock. Rhodopsin is the photoreceptor for these responses and the signal transduction process involves transmembrane Ca2+ fluxes. This causes transient changes in flagellar beating, ultimately resulting in phototaxis or photoshock. To identify components that make up this signal transduction pathway, we generated nonphototactic strains by insertional mutagenesis. Seven new phototaxis genes were identified (ptx2-ptx8); alleles of six of these are tagged by the transforming DNA and therefore should be easily cloned. To order the mutants in the pathway, we characterized them electrophysiologically, behaviorally, and structurally, ptx5, ptx6, and ptx7 have normal light-induced photoreceptor currents (PRC) and flagellar currents (FC) but their pattern of swimming does not change in the normal manner when the intraflagellar Ca2+ concentration is decreased, suggesting that they have defects in the ability of their axonemes to respond to changes in Ca2+ concentration. ptx2 and ptx8 lack the FC but have normal PRCs, suggesting that they are defective in the flagellar Ca2+ channel or some factor that regulates it. ptx4 mutants have multiple eye-spots. ptx3 mutants are defective in a component essential for phototaxis but bypassed during photoshock; this component appears to be located downstream of the PRC but upstream of the axoneme.
Collapse
Affiliation(s)
- G J Pazour
- Worcester Foundation for Biomedical Research, Shrewsbury, Massachusetts 01545, USA
| | | | | |
Collapse
|
31
|
Wu Y, Deford J, Benjamin R, Lee MG, Ruben L. The gene family of EF-hand calcium-binding proteins from the flagellum of Trypanosoma brucei. Biochem J 1994; 304 ( Pt 3):833-41. [PMID: 7818488 PMCID: PMC1137409 DOI: 10.1042/bj3040833] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The flagellum of Trypanosoma brucei contains calmodulin, and a separate family of antigenically related EF-hand calcium-binding proteins which we call calflagins. The following study evaluates the structure and genomic organization of the calflagin family. Genomic Southern blots indicated that multiple copies of calflagin genes occurred in T. brucei, and that all of these copies were contained in a single 23 kb XhoI-XhoI fragment on chromosomes 15 and 16 mRNAs of 1.2 and 1.6 kb were identified in bloodstream and procyclic life-cycle stages. Genomic fragments of 2.5 and 1.7 kb were cloned that encoded calflagin sequences. The calflagin genes were arranged tandemly along the genomic fragments. Three new members of the calflagin family were sequenced from a cDNA clone and the two genomic clones. Two unrelated families of 3' flanking sequences were downstream from the calflagin genes. An open reading frame that was unrelated to any calflagin sequence was at the 5' end of the 2.5 kb genomic fragment. The deduced amino acid sequences of the genomic clones (called Tb-24 and Tb-1.7g) were similar to the previously described Tb-17. Each encoded an approximately 24 kDa protein which contained three EF-hand calcium-binding motifs and one degenerate EF-hand motif. The cDNA encoded a protein (called Tb-44A) which was approximately twice as large as the other calflagins. The large size resulted from a nearly direct repeat of 186 amino acids. In general, variability among the T. brucei calflagins was greater than observed for related proteins from Trypanosoma cruzi. We demonstrate that this variability resulted from amino acid substitutions at the N-terminus, C-terminal extensions, and duplication of internal segments.
Collapse
Affiliation(s)
- Y Wu
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75235
| | | | | | | | | |
Collapse
|
32
|
Quarmby LM. Signal transduction in the sexual life of Chlamydomonas. PLANT MOLECULAR BIOLOGY 1994; 26:1271-1287. [PMID: 7858190 DOI: 10.1007/bf00016474] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Several signal transduction pathways play important roles in the sexual life cycle of Chlamydomonas. Nitrogen deprivation, perhaps sensed as a drop in intracellular [NH4+], triggers a signal transduction pathway that results in altered gene expression and the induction of the gametogenic pathway. Blue light triggers a second signalling cascade which also culminates in gene induction and completion of gametogenesis. New screens have uncovered several mutants in these pathways, but so far we know little about the biochemical events that transduce the environmental signals of nitrogen deprivation and blue light into the changes in gene transcription that produce gametes. Cell-cell contact of mature, complementary gametes elicits a number of responses that prepare the cells for fusion. Contact is sensed by the agglutinin-mediated cross-linking of flagellar membrane proteins. An increase in [cAMP] couples protein cross-linking to the mating responses. In C. reinhardtii the cAMP signal appears to be generated by the sequential stimulation of as many as 3 distinct adenylyl cyclase activities. Although the molecular mechanisms of adenylyl cyclase activations are poorly understood, Ca2+ may play a role. Most of the mating responses appear to be triggered by a cAMP-dependent protein kinase, but here too, Ca2+ may play a role. Numerous mutants are facilitating studies of the signalling pathways that trigger the mating responses. Cell fusion triggers another series of events that culminate in the expression of zygote specific genes. The mature zygote is sensitive to a light signal which stimulates the expression of genes whose products are essential for germination. The signal transduction pathways that trigger zygospore formation and germination are ripe for investigation in this experimentally powerful system.
Collapse
Affiliation(s)
- L M Quarmby
- Department of Anatomy & Cell Biology, Emory University School of Medicine, Atlanta, GA 30322
| |
Collapse
|
33
|
Die Orientierung freibeweglicher Organismen zum Licht, dargestellt am Beispiel des FlagellatenChlamydomonas reinhardtii. Naturwissenschaften 1994. [DOI: 10.1007/bf01134535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
|
35
|
Saito T, Small L, Goodenough UW. Activation of adenylyl cyclase in Chlamydomonas reinhardtii by adhesion and by heat. J Biophys Biochem Cytol 1993; 122:137-47. [PMID: 8390999 PMCID: PMC2119601 DOI: 10.1083/jcb.122.1.137] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Adhesion between Chlamydomonas reinhardtii gametes generates a rapid rise in cAMP levels which stimulates mating responses and zygotic cell fusion (Pasquale and Goodenough, 1987). We show here that sexual adhesion in vivo results in a twofold stimulation of flagellar adenylyl cyclase activity when the enzyme is subsequently assayed in vitro, a stimulation that is specifically blocked by Cd2+. A twofold stimulation is also elicited by the in vitro presentation of soluble cross-linking reagents (antisera and concanavalin A). In contrast, the 10-30-fold stimulation of the flagellar cyclase by in vitro exposure to 40 degrees C, first described by Zhang et al. (1991), is insensitive to Cd2+ but sensitive to such drugs as trifluoperizine and dibucaine. The capacity for twofold stimulation is displayed by the vegetative and gametic enzymes but is lost when gametes fuse to form zygotes; in contrast, the 10-fold stimulation is displayed by the gametic and zygotic enzymes but not the vegetative enzyme. The signal-defective mutant imp-3 fails to generate the normal mating-triggered cAMP production and can be rescued by exogenous dibutyryl cAMP. It displays normal basal rates of flagellar cyclase activity and a normal twofold stimulation by sexual adhesion and by soluble cross-linkers, but it is defective in 40 degrees C activation. The gametic cell-body adenylyl cyclase is stimulated when wild-type flagella, but not imp-3 flagella, undergo adhesive interactions in vivo, and it can be directly stimulated in vitro by cAMP presentation. We propose that the two levels of flagellar cyclase stimulation reflect either sequential steps in the activation of a single cyclase enzyme, with imp-3 blocked in the second step, or else the sequential activation of two different flagellar enzymes, with imp-3 defective in the second enzyme. We further propose that the cell-body enzyme is activated by the cAMP that is generated when flagellar cyclase activity is fully stimulated.
Collapse
Affiliation(s)
- T Saito
- Biology Department, Washington University, St. Louis, Missouri 63130
| | | | | |
Collapse
|
36
|
Horst CJ, Witman GB. ptx1, a nonphototactic mutant of Chlamydomonas, lacks control of flagellar dominance. J Cell Biol 1993; 120:733-41. [PMID: 8425899 PMCID: PMC2119553 DOI: 10.1083/jcb.120.3.733] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
A new mutant strain of Chlamydomonas, ptx1, has been identified which is defective in phototaxis. This strain swims with a rate and straightness of path comparable with that of wild-type cells, and retains the photoshock response. Thus, the mutation does not cause any gross defects in swimming ability or photoreception, and appears to be specific for phototaxis. Calcium is required for phototaxis in wild-type cells, and causes a concentration-dependent shift in flagellar dominance in reactivated, demembranated cell models. ptx1-reactivated models are defective in this calcium-dependent shift in flagellar dominance. This indicates that the mutation affects one or more components of the calcium-dependent axonemal regulatory system, and that this system mediates phototaxis. The reduction or absence of two 75-kD axonemal proteins correlates with the nonphototactic phenotype. Axonemal fractionation studies, and analysis of axonemes from mutant strains with known structural defects, failed to reveal the structural localization of the 75-kD proteins within the axoneme. The proteins are not components of the outer dynein arms, two of the three types of inner dynein arms, the radial spokes, or the central pair complex. Because changes in flagellar motility ultimately require the regulation of dynein activity, cell models from mutant strains defective in specific dynein arms were reactivated at various calcium concentrations. Mutants lacking the outer arms, or the I1 or I2 inner dynein arms, retain the wild-type calcium-dependent shift in flagellar dominance. Therefore, none of these arms are the sole mediators of phototaxis.
Collapse
Affiliation(s)
- C J Horst
- Cell Biology Group, Worcester Foundation for Experimental Biology, Shrewsbury, Massachusetts 01545
| | | |
Collapse
|
37
|
Goodenough UW. Tipping of flagellar agglutinins by gametes of Chlamydomonas reinhardtii. CELL MOTILITY AND THE CYTOSKELETON 1993; 25:179-89. [PMID: 7686823 DOI: 10.1002/cm.970250207] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The migration of cross-linked agglutinins to the gametic flagellar tips (tipping) is a hallmark of the Chlamydomonas mating reaction. In this study, an assay was developed to analyze the kinetics and biological requirements for the tipping response: isolated flagella from mt- gametes of C. reinhardtii were allowed to agglutinate to the immotile flagella of pf-18 mt+ gametes, and their migration to the tips was monitored by phase microscopy. The tipping process is shown to require both adhesion and elevated levels of cAMP. The cAMP may activate tipping motors directly. In addition, cAMP stimulates the recruitment of agglutinins to the flagellar surface to replace those inactivated by adhesion. These results are compared with previous studies on the tipping of flagellar surface proteins cross-linked by soluble ligands, and an integrated model is presented.
Collapse
Affiliation(s)
- U W Goodenough
- Department of Biology, Washington University, St. Louis, MO 63130
| |
Collapse
|
38
|
Scheibel LW. Role of calcium/calmodulin-mediated processes in protozoa. INTERNATIONAL REVIEW OF CYTOLOGY 1992; 134:165-242. [PMID: 1582773 DOI: 10.1016/s0074-7696(08)62029-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- L W Scheibel
- Department of Preventive Medicine, Uniformed Services University of the Health Sciences School of Medicine, Bethesda, Maryland 20814
| |
Collapse
|
39
|
|
40
|
|
41
|
Hegemann P, Neumeier K, Hegemann U, Kuehnle E. The role of calcium in Chlamydomonas photomovement responses as analysed by calcium channel inhibitors. Photochem Photobiol 1990; 52:575-83. [PMID: 2284349 DOI: 10.1111/j.1751-1097.1990.tb01802.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Phototaxis and light-induced stop responses in Chlamydomonas are known to be calcium dependent. We show that phototaxis is stereoselectively inhibited by dihyropyridines, verapamil, diltiazem, omega-conotoxin and pimozide, all inhibitors of slow L-type calcium channels. In contrast, the stop response in Chlamydomonas can be specifically reduced only by omega-conotoxin and pimozide. The light-regulated calcium uptake as detected by 45calcium can be completely suppressed by verapamil and omega-conotoxin but not by diltiazem or any of the dihyropyridine-type calcium channel inhibitors. We conclude that phototaxis and stop response in Chlamydomonas are regulated by three distinguishable drug receptor sites. One of them controls phototaxis and is sensitive to verapamil. The second site controls stop response and phototaxis and shows a high sensitivity to omega-conotoxin and pimozide. These two drug receptors seem to be localized in the plasma membrane and function as ion channels. In addition, calcium influences internal signal transduction from the photoreceptor to the flagella. This internal role of calcium is inhibited by the dihydropyridine binding to a dihydropyridine receptor protein. The arylazide-1,4-dihydropyridine[3H]azidopine binds with a Kd = 35 nM to a 50 kDa protein located in one of the internal cell membranes. Azidopine binding is fully reversible and can be partially inhibited by nimodipine and PN-200110. This protein is the first identified dihyropyridine receptor in an unicellular plant cell. It might serve as an internal calcium regulating channel in Chlamydomonas.
Collapse
Affiliation(s)
- P Hegemann
- Max-Planck-Institut für Biochemie, Martinsried, W. Germany
| | | | | | | |
Collapse
|
42
|
Evans TC, Nelson DL. The cilia of Paramecium tetraurelia contain both Ca2+-dependent and Ca2+-inhibitable calmodulin-binding proteins. Biochem J 1989; 259:385-96. [PMID: 2719655 PMCID: PMC1138522 DOI: 10.1042/bj2590385] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
To identify protein targets for calmodulin (CaM) in the cilia of Paramecium tetraurelia, we employed a 125I-CaM blot assay after resolution of ciliary proteins on SDS/polyacrylamide gels. Two distinct types of CaM-binding proteins were detected. One group bound 125I-CaM at free Ca2+ concentrations above 0.5-1 microM and included a major binding activity of 63 kDa (C63) and activities of 126 kDa (C126), 96 kDa (C96), and 36 kDa (C36). CaM bound these proteins with high (nanomolar) affinity and specificity relative to related Ca2+ receptors. The second type of protein bound 125I-CaM only when the free Ca2+ concentration was below 1-2 microM and included polypeptides of 95 kDa (E95) and 105 kDa (E105). E105 may also contain Ca2+-dependent binding sites for CaM. Both E95 and E105 exhibited strong specificity for Paramecium CaM over bovine CaM. Ciliary subfractionation experiments suggested that C63, C126, C96, E95, and E105 are bound to the axoneme, whereas C36 is a soluble and/or membrane-associated protein. Additional Ca2+-dependent CaM-binding proteins of 63, 70, and 120 kDa were found associated with ciliary membrane vesicles. In support of these results, filtration binding assays also indicated high-affinity binding sites for CaM on isolated intact axonemes and suggested the presence of both Ca2+-dependent and Ca2+-inhibitable targets. Like E95 and E105, the Ca2+-inhibitable CaM-binding sites showed strong preference for Paramecium CaM over vertebrate CaM and troponin C. Together, these results suggest that CaM has multiple targets in the cilium and hence may regulate ciliary motility in a complex and pleiotropic fashion.
Collapse
Affiliation(s)
- T C Evans
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin-Madison 53706
| | | |
Collapse
|
43
|
Tash JS. Protein phosphorylation: the second messenger signal transducer of flagellar motility. CELL MOTILITY AND THE CYTOSKELETON 1989; 14:332-9. [PMID: 2555066 DOI: 10.1002/cm.970140303] [Citation(s) in RCA: 99] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- J S Tash
- Department of Cell Biology, Baylor College of Medicine, Houston
| |
Collapse
|
44
|
Okuno M, Morisawa M. Effects of calcium on motility of rainbow trout sperm flagella demembranated with triton X-100. ACTA ACUST UNITED AC 1989. [DOI: 10.1002/cm.970140206] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
45
|
Zimmer WE, Schloss JA, Silflow CD, Youngblom J, Watterson DM. Structural organization, DNA sequence, and expression of the calmodulin gene. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(19)77643-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
46
|
Bloodgood RA. Gliding motility and the dynamics of flagellar membrane glycoproteins in Chlamydomonas reinhardtii. THE JOURNAL OF PROTOZOOLOGY 1988; 35:552-8. [PMID: 3058950 DOI: 10.1111/j.1550-7408.1988.tb04151.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- R A Bloodgood
- Department of Anatomy and Cell Biology, University of Virginia School of Medicine, Charlottesville 22908
| |
Collapse
|
47
|
Travis SM, Nelson DL. Regulation of axonemal Mg2+-ATPase from Paramecium cilia: effects of Ca2+ and cyclic nucleotides. BIOCHIMICA ET BIOPHYSICA ACTA 1988; 966:84-93. [PMID: 2968817 DOI: 10.1016/0304-4165(88)90131-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Ciliary activity is regulated by Ca2+ and cyclic nucleotides, but the molecular mechanisms of the regulation are unknown. We have tested the ability of Ca2+ and cyclic nucleotides to alter ciliary Mg2+-ATPase or to stimulate phosphorylation of axonemal dynein. Mg2+-ATPase activity in cilia and axonemes from Paramecium was stimulated 2-fold by micromolar Ca2+, but this Ca2+ sensitivity was lost upon solubilization of the dyneins from the axoneme. The Ca2+-sensitive component of ciliary Mg2+-ATPase activity was inhibited by the dynein inhibitors vanadate and Zn2+, but was insensitive to the calmodulin antagonists calmidazolium and melittin. Dynein activity in the high-salt extract from axonemes was also insensitive to calmidazolium. Calmodulin did not sediment with 22 S or 12 S dyneins on sucrose gradients containing Ca2+, but it did sediment in the region from 19 S to 14 S. Mg2+-ATPase activity in ciliary fractions was unaltered in the presence of cAMP or cGMP. However, polypeptides associated with the 22 S and 12 S dyneins, as well as proteins of 19 S, 15 S, and 8 S, were substrates for endogenous ciliary kinases. High molecular weight polypeptides that sedimented at 22 S and 19 S were phosphorylated in a cyclic nucleotide-stimulated manner.
Collapse
Affiliation(s)
- S M Travis
- Department of Biochemistry, College of Agriculture and Life Sciences, University of Wisconsin-Madison 53706
| | | |
Collapse
|
48
|
Huang B, Watterson DM, Lee VD, Schibler MJ. Purification and characterization of a basal body-associated Ca2+-binding protein. J Cell Biol 1988; 107:121-31. [PMID: 3292538 PMCID: PMC2115177 DOI: 10.1083/jcb.107.1.121] [Citation(s) in RCA: 98] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Isolated basal body complexes from the unicellular alga, Chlamydomonas reinhardtii were found to contain a low molecular mass acidic polypeptide, distinct from calmodulin, but with biochemical features in common with members of the calmodulin family of calcium-binding proteins. These common characteristics included a relative low molecular mass of 20 kD, an experimentally determined acidic pI of 5.3, an altered electrophoretic mobility in SDS-polyacrylamide gels in the presence of added calcium, and a calcium-dependent binding to the hydrophobic ligand phenyl-Sepharose which allowed its purification by affinity chromatography. The relatedness of the basal body-associated 20-kD calcium-binding protein (CaBP) to calmodulin was confirmed by amino acid compositional analysis and partial peptide sequencing of the isolated protein. A rabbit antibody specific for the 20-kD CaBP was raised and used to determine by indirect immunofluorescence the cellular localization of the protein in Chlamydomonas cells. In interphase cells the antibody stained intensely the region between the paired basal bodies, two fibers extending between the basal bodies and the underlying nucleus, and an array of longitudinal filaments surrounding the nucleus. The two basal body-nuclear connecting fibers were identified in thin-section electron micrographs to be narrow striated fiber roots. In mitotic cells the 20-kD CaBP was specifically associated with the poles of the mitotic spindle at the sites of the duplicated basal body complexes.
Collapse
Affiliation(s)
- B Huang
- Department of Molecular Biology, Research Institute of Scripps Clinic, La Jolla, California 92037
| | | | | | | |
Collapse
|
49
|
Tash JS, Krinks M, Patel J, Means RL, Klee CB, Means AR. Identification, characterization, and functional correlation of calmodulin-dependent protein phosphatase in sperm. J Cell Biol 1988; 106:1625-33. [PMID: 2836436 PMCID: PMC2115048 DOI: 10.1083/jcb.106.5.1625] [Citation(s) in RCA: 142] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Preliminary data demonstrated that the inhibition of reactivated sperm motility by calcium was correlated with inhibited protein phosphorylation. The inhibition of phosphorylation by Ca2+ was found to be catalyzed by the calmodulin-dependent protein phosphatase (calcineurin). Sperm from dog, pig, and sea urchin contain both the Ca2+-binding B subunit of the enzyme (Mr 15,000) and the calmodulin-binding A subunit with an Mr of 63,000. The sperm A subunit is slightly higher in Mr than reported for other tissues. Inhibition of endogenous calmodulin-dependent protein phosphatase activity with a monospecific antibody revealed the presence of 14 phosphoprotein substrates in sperm for this enzyme. The enzyme was localized to both the flagellum and the postacrosomal region of the sperm head. The flagellar phosphatase activity was quantitatively extracted with 0.6 M KCl from isolated flagella from dog, pig, and sea urchin sperm. All salt-extractable phosphatase activity was inhibited with antibodies against the authentic enzyme. Preincubation of sperm models with the purified phosphatase stimulated curvolinear velocity and lateral head amplitude (important components of hyperactivated swimming patterns) and inhibited beat cross frequency suggesting a role for this enzyme in axonemal function. Our results suggest that calmodulin-dependent protein phosphatase plays a major role in the calcium-dependent regulation of flagellar motility.
Collapse
Affiliation(s)
- J S Tash
- Department of Cell Biology, Baylor College of Medicine, Houston, Texas 77030
| | | | | | | | | | | |
Collapse
|
50
|
Moss AG, Tamm SL. A calcium regenerative potential controlling ciliary reversal is propagated along the length of ctenophore comb plates. Proc Natl Acad Sci U S A 1987; 84:6476-80. [PMID: 2442759 PMCID: PMC299100 DOI: 10.1073/pnas.84.18.6476] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We have used the giant ciliary comb plates of ctenophores to record electrical activity directly from cilia. A compound action potential was recorded extracellularly over most of the length of the comb plate cilia in response to electrical stimulation of the ectodermal nerve net. The ciliary action potential was correlated with intracellularly recorded action potentials, selectively blocked by Ca2+-channel antagonists, and correlated with ciliary reorientation and reversed beating. Dual-electrode recording from different sites on the same comb plate showed that, unlike protistan cilia, the approximately 1-mm-long cilia of comb plates are not isopotential. Rather, action potentials are generated 150-200 microns from the base and propagate to the tip of the cilia. These results indicate that voltage-dependent channels that mediate increases in intraciliary Ca2+ concentration are distributed over most of the length of the cilia. Consequently, the Ca2+-sensitive machinery controlling ciliary motor responses is also likely to be located along the length of the axoneme.
Collapse
|