1
|
Zheng Y, Feng J, Ling M, Yu Y, Tao Y, Wang X. A comprehensive review on targeting cluster of differentiation: An attractive strategy for inhibiting viruses through host proteins. Int J Biol Macromol 2024; 269:132200. [PMID: 38723834 DOI: 10.1016/j.ijbiomac.2024.132200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/20/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
Viral infections continue to pose a significant global public health threat. Targeting host proteins, such as cluster of differentiation (CD) macromolecules, may offer a promising alternative approach to developing antiviral treatments. CDs are cell-surface biological macromolecules mainly expressed on leukocytes that viruses can use to enter cells, thereby evading immune detection and promoting their replication. The manipulation of CDs by viruses may represent an effective and clever means of survival through the prolonged co-evolution of hosts and viruses. Targeting of CDs is anticipated to hinder the invasion of related viruses, modulate the body's immune system, and diminish the incidence of subsequent inflammation. They have become crucial for biomedical diagnosis, and some have been used as valuable tools for resisting viral infections. However, a summary of the structures and functions of CDs involved in viral infection is currently lacking. The development of drugs targeting these biological macromolecules is restricted both in terms of their availability and the number of compounds currently identified. This review provides a comprehensive analysis of the critical role of CD proteins in virus invasion and a list of relevant targeted antiviral agents, which will serve as a valuable reference for future research in this field.
Collapse
Affiliation(s)
- Youle Zheng
- National Reference Laboratory of Veterinary Drug Residues (HZAU), MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jin Feng
- National Reference Laboratory of Veterinary Drug Residues (HZAU), MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Min Ling
- National Reference Laboratory of Veterinary Drug Residues (HZAU), MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yixin Yu
- National Reference Laboratory of Veterinary Drug Residues (HZAU), MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yanfei Tao
- National Reference Laboratory of Veterinary Drug Residues (HZAU), MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU), MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
2
|
Guan W, Zhang N, Bains A, Martinez A, LiWang PJ. Sustained Delivery of the Antiviral Protein Griffithsin and Its Adhesion to a Biological Surface by a Silk Fibroin Scaffold. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5547. [PMID: 37629837 PMCID: PMC10456748 DOI: 10.3390/ma16165547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/02/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023]
Abstract
The protein Griffithsin (Grft) is a lectin that tightly binds to high-mannose glycosylation sites on viral surfaces. This property allows Grft to potently inhibit many viruses, including HIV-1. The major route of HIV infection is through sexual activity, so an important tool for reducing the risk of infection would be a film that could be inserted vaginally or rectally to inhibit transmission of the virus. We have previously shown that silk fibroin can encapsulate, stabilize, and release various antiviral proteins, including Grft. However, for broad utility as a prevention method, it would be useful for an insertable film to adhere to the mucosal surface so that it remains for several days or weeks to provide longer-term protection from infection. We show here that silk fibroin can be formulated with adhesive properties using the nontoxic polymer hydroxypropyl methylcellulose (HPMC) and glycerol, and that the resulting silk scaffold can both adhere to biological surfaces and release Grft over the course of at least one week. This work advances the possible use of silk fibroin as an anti-viral insertable device to prevent infection by sexually transmitted viruses, including HIV-1.
Collapse
Affiliation(s)
- Wenyan Guan
- Materials and Biomaterials Science and Engineering, University of California Merced, 5200 North Lake Rd., Merced, CA 95343, USA;
| | - Ning Zhang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China;
| | - Arjan Bains
- Chemistry and Biochemistry, University of California Merced, 5200 North Lake Rd., Merced, CA 95343, USA;
| | - Airam Martinez
- Department of Bioengineering, University of California Merced, 5200 North Lake Rd., Merced, CA 95343, USA;
| | - Patricia J. LiWang
- Molecular Cell Biology, Health Sciences Research Institute, University of California Merced, 5200 North Lake Rd., Merced, CA 95343, USA
| |
Collapse
|
3
|
Ugwu-Korie N, Quaye O, Wright E, Languon S, Agyapong O, Broni E, Gupta Y, Kempaiah P, Kwofie SK. Structure-Based Identification of Natural-Product-Derived Compounds with Potential to Inhibit HIV-1 Entry. Molecules 2023; 28:474. [PMID: 36677538 PMCID: PMC9865492 DOI: 10.3390/molecules28020474] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 12/15/2022] [Accepted: 12/24/2022] [Indexed: 01/06/2023] Open
Abstract
Broadly neutralizing antibodies (bNAbs) are potent in neutralizing a wide range of HIV strains. VRC01 is a CD4-binding-site (CD4-bs) class of bNAbs that binds to the conserved CD4-binding region of HIV-1 envelope (env) protein. Natural products that mimic VRC01 bNAbs by interacting with the conserved CD4-binding regions may serve as a new generation of HIV-1 entry inhibitors by being broadly reactive and potently neutralizing. This study aimed to identify compounds that mimic VRC01 by interacting with the CD4-bs of HIV-1 gp120 and thereby inhibiting viral entry into target cells. Libraries of purchasable natural products were virtually screened against clade A/E recombinant 93TH057 (PDB: 3NGB) and clade B (PDB ID: 3J70) HIV-1 env protein. Protein-ligand interaction profiling from molecular docking and dynamics simulations showed that the compounds had intermolecular hydrogen and hydrophobic interactions with conserved amino acid residues on the CD4-binding site of recombinant clade A/E and clade B HIV-1 gp120. Four potential lead compounds, NP-005114, NP-008297, NP-007422, and NP-007382, were used for cell-based antiviral infectivity inhibition assay using clade B (HXB2) env pseudotype virus (PV). The four compounds inhibited the entry of HIV HXB2 pseudotype viruses into target cells at 50% inhibitory concentrations (IC50) of 15.2 µM (9.7 µg/mL), 10.1 µM (7.5 µg/mL), 16.2 µM (12.7 µg/mL), and 21.6 µM (12.9 µg/mL), respectively. The interaction of these compounds with critical residues of the CD4-binding site of more than one clade of HIV gp120 and inhibition of HIV-1 entry into the target cell demonstrate the possibility of a new class of HIV entry inhibitors.
Collapse
Affiliation(s)
- Nneka Ugwu-Korie
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 54, Ghana
| | - Osbourne Quaye
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 54, Ghana
| | - Edward Wright
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - Sylvester Languon
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 54, Ghana
- Cellular and Molecular Biomedical Sciences Program, University of Vermont, Burlington, VT 05405, USA
| | - Odame Agyapong
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 77, Ghana
- Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, Legon, Accra P.O. Box LG 581, Ghana
| | - Emmanuel Broni
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 77, Ghana
- Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, Legon, Accra P.O. Box LG 581, Ghana
- Department of Medicine, Loyola University Medical Center, Maywood, IL 60153, USA
| | - Yash Gupta
- Infectious Diseases, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Samuel K. Kwofie
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 54, Ghana
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 77, Ghana
| |
Collapse
|
4
|
Wensel D, Williams S, Dixon DP, Ward P, McCormick P, Concha N, Stewart E, Hong X, Mazzucco C, Pal S, Ding B, Fellinger C, Krystal M. Novel Bent Conformation of CD4 Induced by HIV-1 Inhibitor Indirectly Prevents Productive Viral Attachment. J Mol Biol 2021; 434:167395. [PMID: 34896364 DOI: 10.1016/j.jmb.2021.167395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 10/19/2022]
Abstract
GSK3732394 is a multi-specific biologic inhibitor of HIV entry currently under clinical evaluation. A key component of this molecule is an adnectin (6940_B01) that binds to CD4 and inhibits downstream actions of gp160. Studies were performed to determine the binding site of the adnectin on CD4 and to understand the mechanism of inhibition. Using hydrogen-deuterium exchange with mass spectrometry (HDX), CD4 peptides showed differential rates of deuteration (either enhanced or slowed) in the presence of the adnectin that mapped predominantly to the interface of domains 2 and 3 (D2-D3). In addition, an X-ray crystal structure of an ibalizumab Fab/CD4(D1-D4)/adnectin complex revealed an extensive interface between the adnectin and residues on CD4 domains D2-D4 that stabilize a novel T-shaped CD4 conformation. A cryo-EM map of the gp140/CD4/GSK3732394 complex clearly shows the bent conformation for CD4 while bound to gp140. Mutagenic analyses on CD4 confirmed that amino acid F202 forms a key interaction with the adnectin. In addition, amino acid L151 was shown to be a critical indirect determinant of the specificity for binding to the human CD4 protein over related primate CD4 molecules, as it appears to modulate CD4's flexibility to adopt the adnectin-bound conformation. The significant conformational change of CD4 upon adnectin binding brings the D1 domain of CD4 in proximity to the host cell membrane surface, thereby re-orienting the gp120 binding site in a direction that is inaccessible to incoming virus due to a steric clash between gp160 trimers on the virus surface and the target cell membrane.
Collapse
Affiliation(s)
- David Wensel
- ViiV Healthcare, 36 East Industrial Road, Branford, CT 06405, USA.
| | - Shawn Williams
- GlaxoSmithKline, 1250 S Collegeville Road, Collegeville, PA 19426, USA.
| | - David P Dixon
- GlaxoSmithKline, Gunnels Wood Road, Stevenage SG1 2NY, UK.
| | - Paris Ward
- GlaxoSmithKline, 1250 S Collegeville Road, Collegeville, PA 19426, USA.
| | - Patti McCormick
- GlaxoSmithKline, 1250 S Collegeville Road, Collegeville, PA 19426, USA.
| | - Nestor Concha
- GlaxoSmithKline, 1250 S Collegeville Road, Collegeville, PA 19426, USA.
| | - Eugene Stewart
- GlaxoSmithKline, 1250 S Collegeville Road, Collegeville, PA 19426, USA.
| | - Xuan Hong
- GlaxoSmithKline, 1250 S Collegeville Road, Collegeville, PA 19426, USA.
| | - Charles Mazzucco
- ViiV Healthcare, 36 East Industrial Road, Branford, CT 06405, USA.
| | - Shreya Pal
- ViiV Healthcare, 36 East Industrial Road, Branford, CT 06405, USA.
| | - Bo Ding
- ViiV Healthcare, 36 East Industrial Road, Branford, CT 06405, USA.
| | | | - Mark Krystal
- ViiV Healthcare, 36 East Industrial Road, Branford, CT 06405, USA.
| |
Collapse
|
5
|
Mei H, Han J, White S, Graham DJ, Izawa K, Sato T, Fustero S, Meanwell NA, Soloshonok VA. Tailor-Made Amino Acids and Fluorinated Motifs as Prominent Traits in Modern Pharmaceuticals. Chemistry 2020; 26:11349-11390. [PMID: 32359086 DOI: 10.1002/chem.202000617] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/23/2020] [Indexed: 12/11/2022]
Abstract
Structural analysis of modern pharmaceutical practices allows for the identification of two rapidly growing trends: the introduction of tailor-made amino acids and the exploitation of fluorinated motifs. Curiously, the former represents one of the most ubiquitous classes of naturally occurring compounds, whereas the latter is the most xenobiotic and comprised virtually entirely of man-made derivatives. Herein, 39 selected compounds, featuring both of these traits in the same molecule, are profiled. The total synthesis, source of the corresponding amino acids and fluorinated residues, and medicinal chemistry aspects and biological properties of the molecules are discussed.
Collapse
Affiliation(s)
- Haibo Mei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, P.R. China
| | - Jianlin Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, P.R. China
| | - Sarah White
- Oakwood Chemical, Inc., 730 Columbia Hwy. N, Estill, SC, 29918, USA
| | - Daniel J Graham
- Oakwood Chemical, Inc., 730 Columbia Hwy. N, Estill, SC, 29918, USA
| | - Kunisuke Izawa
- Hamari Chemicals Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka, 533-0024, Japan
| | - Tatsunori Sato
- Hamari Chemicals Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka, 533-0024, Japan
| | - Santos Fustero
- Departamento de Química Orgánica, Universidad de Valencia, 46100, Burjassot, Valencia, Spain
| | - Nicholas A Meanwell
- Department of Small Molecule Drug Discovery, Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, NJ, 08543-4000, USA
| | - Vadim A Soloshonok
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018, San Sebastián, Spain.,IKERBASQUE, Basque Foundation for Science, María Díaz de Haro 3, Plaza Bizkaia, 48013, Bilbao, Spain
| |
Collapse
|
6
|
Mirani A, Kundaikar H, Velhal S, Patel V, Bandivdekar A, Degani M, Patravale V. Evaluation of Phytopolyphenols for their gp120-CD4 Binding Inhibitory Properties by In Silico Molecular Modelling & In Vitro Cell Line Studies. Curr HIV Res 2019; 17:102-113. [DOI: 10.2174/1570162x17666190611121627] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/22/2019] [Accepted: 05/27/2019] [Indexed: 12/31/2022]
Abstract
Background:Lack of effective early-stage HIV-1 inhibitor instigated the need for screening of novel gp120-CD4 binding inhibitor. Polyphenols, a secondary metabolite derived from natural sources are reported to have broad spectrum HIV-1 inhibitory activity. However, the gp120-CD4 binding inhibitory activity of polyphenols has not been analysed in silico yet.Objectives:To establish the usage of phytopolyphenols (Theaflavin, Epigallocatechin (EGCG), Ellagic acid and Gallic acid) as early stage HIV-1 inhibitor by investigating their binding mode in reported homology of gp120-CD4 receptor complex using in silico screening studies and in vitro cell line studies.Methods:The in silico molecular docking and molecular simulation studies were performed using Schrödinger 2013-2 suite installed on Fujitsu Celsius Workstation. The in vitro cell line studies were performed in the TZM-bl cell line using MTT assay and β-galactosidase assay.Results:The results of molecular docking indicated that Theaflavin and EGCG exhibited high XP dock score with binding pose exhibiting Van der Waals interaction and hydrophobic interaction at the deeper site in the Phe43 cavity with Asp368 and Trp427. Both Theaflavin and EGCG form a stable complex with the prepared HIV-1 receptor and their binding mode interaction is within the vicinity 4 Å. Further, in vitro cell line studies also confirmed that Theaflavin (SI = 252) and EGCG (SI = 138) exert better HIV-1 inhibitory activity as compared to Ellagic acid (SI = 30) and Gallic acid (SI = 34).Conclusions:The results elucidate a possible binding mode of phytopolyphenols, which pinpoints their plausible mechanism and directs their usage as early stage HIV-1 inhibitor.
Collapse
Affiliation(s)
- Amit Mirani
- Department of Pharmaceutical Science & Technology, Institute of Chemical Technology, Mumbai-400019, India
| | - Harish Kundaikar
- Department of Pharmaceutical Science & Technology, Institute of Chemical Technology, Mumbai-400019, India
| | - Shilpa Velhal
- Department of Biochemistry & Virology, National Institute for Research in Reproductive Health (ICMR), Mumbai- 400012, India
| | - Vainav Patel
- Department of Biochemistry & Virology, National Institute for Research in Reproductive Health (ICMR), Mumbai- 400012, India
| | - Atmaram Bandivdekar
- Department of Biochemistry & Virology, National Institute for Research in Reproductive Health (ICMR), Mumbai- 400012, India
| | - Mariam Degani
- Department of Pharmaceutical Science & Technology, Institute of Chemical Technology, Mumbai-400019, India
| | - Vandana Patravale
- Department of Pharmaceutical Science & Technology, Institute of Chemical Technology, Mumbai-400019, India
| |
Collapse
|
7
|
Andrianov AM, Nikolaev GI, Kornoushenko YV, Xu W, Jiang S, Tuzikov AV. In Silico Identification of Novel Aromatic Compounds as Potential HIV-1 Entry Inhibitors Mimicking Cellular Receptor CD4. Viruses 2019; 11:v11080746. [PMID: 31412617 PMCID: PMC6723994 DOI: 10.3390/v11080746] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 12/13/2022] Open
Abstract
Despite recent progress in the development of novel potent HIV-1 entry/fusion inhibitors, there are currently no licensed antiviral drugs based on inhibiting the critical interactions of the HIV-1 envelope gp120 protein with cellular receptor CD4. In this connection, studies on the design of new small-molecule compounds able to block the gp120-CD4 binding are still of great value. In this work, in silico design of drug-like compounds containing the moieties that make the ligand active towards gp120 was performed within the concept of click chemistry. Complexes of the designed molecules bound to gp120 were then generated by molecular docking and optimized using semiempirical quantum chemical method PM7. Finally, the binding affinity analysis of these ligand/gp120 complexes was performed by molecular dynamic simulations and binding free energy calculations. As a result, five top-ranking compounds that mimic the key interactions of CD4 with gp120 and show the high binding affinity were identified as the most promising CD4-mimemic candidates. Taken together, the data obtained suggest that these compounds may serve as promising scaffolds for the development of novel, highly potent and broad anti-HIV-1 therapeutics.
Collapse
Affiliation(s)
- Alexander M Andrianov
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, 220141 Minsk, Belarus.
| | - Grigory I Nikolaev
- United Institute of Informatics Problems, National Academy of Sciences of Belarus, 220012 Minsk, Belarus
| | - Yuri V Kornoushenko
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, 220141 Minsk, Belarus
| | - Wei Xu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, 131 Dong An Road, Fuxing Building, Shanghai 200032, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, 131 Dong An Road, Fuxing Building, Shanghai 200032, China.
| | - Alexander V Tuzikov
- United Institute of Informatics Problems, National Academy of Sciences of Belarus, 220012 Minsk, Belarus.
| |
Collapse
|
8
|
Bispecific chimeric antigen receptors targeting the CD4 binding site and high-mannose Glycans of gp120 optimized for anti-human immunodeficiency virus potency and breadth with minimal immunogenicity. Cytotherapy 2018; 20:407-419. [PMID: 29306566 DOI: 10.1016/j.jcyt.2017.11.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/16/2017] [Accepted: 11/07/2017] [Indexed: 11/23/2022]
Abstract
BACKGROUND AIMS Chimeric antigen receptors (CARs) offer great potential toward a functional cure of human immunodeficiency virus (HIV) infection. To achieve the necessary long-term virus suppression, we believe that CARs must be designed for optimal potency and anti-HIV specificity, and also for minimal probability of virus escape and CAR immunogenicity. CARs containing antibody-based motifs are problematic in the latter regard due to epitope mutation and anti-idiotypic immune responses against the variable regions. METHODS We designed bispecific CARs, each containing a segment of human CD4 linked to the carbohydrate recognition domain of a human C-type lectin. These CARs target two independent regions on HIV-1 gp120 that presumably must be conserved on clinically significant virus variants (i.e., the primary receptor binding site and the dense oligomannose patch). Functionality and specificity of these bispecific CARs were analyzed in assays of CAR-T cell activation and spreading HIV-1 suppression. RESULTS T cells expressing a CD4-dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DCSIGN) CAR displayed robust stimulation upon encounter with Env-expressing targets, but negligible activity against intercellular adhesion molecule (ICAM)-2 and ICAM-3, the natural dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin ligands. Moreover, the presence of the lectin moiety prevented the CD4 from acting as an entry receptor on CCR5-expressing cells, including CD8+ T cells. However, in HIV suppression assays, the CD4-DCSIGN CAR and the related CD4-liver/lymph node-specific intercellular adhesion molecule-3-grabbing non-integrin CAR displayed only minimally increased potency compared with the CD4 CAR against some HIV-1 isolates and reduced potency against others. By contrast, the CD4-langerin and CD4-mannose binding lectin (MBL) CARs uniformly displayed enhanced potency compared with the CD4 CAR against all the genetically diverse HIV-1 isolates examined. Further experimental data, coupled with known biological features, suggest particular advantages of the CD4-MBL CAR. DISCUSSION These studies highlight features of bispecific CD4-lectin CARs that achieve potency enhancement by targeting two distinct highly conserved Env determinants while lacking immunogenicity-prone antibody-based motifs.
Collapse
|
9
|
Residues 28 to 39 of the Extracellular Loop 1 of Chicken Na +/H + Exchanger Type I Mediate Cell Binding and Entry of Subgroup J Avian Leukosis Virus. J Virol 2017; 92:JVI.01627-17. [PMID: 29070685 DOI: 10.1128/jvi.01627-17] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 10/17/2017] [Indexed: 12/14/2022] Open
Abstract
Chicken Na+/H+ exchanger type I (chNHE1), a multispan transmembrane protein, is a cellular receptor of the subgroup J avian leukosis virus (ALV-J). To identify the functional determinants of chNHE1 responsible for the ALV-J receptor activity, a series of chimeric receptors was created by exchanging the extracellular loops (ECL) of human NHE1 (huNHE1) and chNHE1 and by ECL replacement with a hemagglutinin (HA) tag. These chimeric receptors then were used in binding and entry assays to map the minimal ALV-J gp85-binding domain of chNHE1. We show that ECL1 of chNHE1 (chECL1) is the critical functional ECL that interacts directly with ALV-J gp85; ECL3 is also involved in ALV-J gp85 binding. Amino acid residues 28 to 39 of the N-terminal membrane-proximal region of chECL1 constitute the minimal domain required for chNHE1 binding of ALV-J gp85. These residues are sufficient to mediate viral entry into ALV-J nonpermissive cells. Point mutation analysis revealed that A30, V33, W38, and E39 of chECL1 are the key residues mediating the binding between chNHE1 and ALV-J gp85. Further, the replacement of residues 28 to 39 of huNHE1 with the corresponding chNHE1 residues converted the nonfunctional ALV-J receptor huNHE1 to a functional one. Importantly, soluble chECL1 and huECL1 harboring chNHE1 residues 28 to 39 both could effectively block ALV-J infection. Collectively, our findings indicate that residues 28 to 39 of chNHE1 constitute a domain that is critical for receptor function and mediate ALV-J entry.IMPORTANCE chNHE1 is a cellular receptor of ALV-J, a retrovirus that causes infections in chickens and serious economic losses in the poultry industry. Until now, the domains determining the chNHE1 receptor function remained unknown. We demonstrate that chECL1 is critical for receptor function, with residues 28 to 39 constituting the minimal functional domain responsible for chNHE1 binding of ALV-J gp85 and efficiently mediating ALV-J cell entry. These residues are located in the membrane-proximal region of the N terminus of chECL1, suggesting that the binding site of ALV-J gp85 on chNHE1 is probably located on the apex of the molecule; the receptor-binding mode might be different from that of retroviruses. We also found that soluble chECL1, as well as huECL1 harboring chNHE1 residues 28 to 39, effectively blocked ALV-J infection. These findings contribute to a better understanding of the ALV-J infection mechanism and also provide new insights into the control strategies for ALV-J infection.
Collapse
|
10
|
Discovery and Characterization of a Novel CD4-Binding Adnectin with Potent Anti-HIV Activity. Antimicrob Agents Chemother 2017; 61:AAC.00508-17. [PMID: 28584151 DOI: 10.1128/aac.00508-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 05/30/2017] [Indexed: 02/08/2023] Open
Abstract
A novel fibronectin-based protein (Adnectin) HIV-1 inhibitor was generated using in vitro selection. This inhibitor binds to human CD4 with a high affinity (3.9 nM) and inhibits viral entry at a step after CD4 engagement and preceding membrane fusion. The progenitor sequence of this novel inhibitor was selected from a library of trillions of Adnectin variants using mRNA display and then further optimized for improved antiviral and physical properties. The final optimized inhibitor exhibited full potency against a panel of 124 envelope (gp160) proteins spanning 11 subtypes, indicating broad-spectrum activity. Resistance profiling studies showed that this inhibitor required 30 passages (151 days) in culture to acquire sufficient resistance to result in viral titer breakthrough. Resistance mapped to the loss of multiple potential N-linked glycosylation sites in gp120, suggesting that inhibition is due to steric hindrance of CD4-binding-induced conformational changes.
Collapse
|
11
|
Qi Q, Wang Q, Chen W, Du L, Dimitrov DS, Lu L, Jiang S. HIV-1 gp41-targeting fusion inhibitory peptides enhance the gp120-targeting protein-mediated inactivation of HIV-1 virions. Emerg Microbes Infect 2017. [PMID: 28634358 PMCID: PMC5520319 DOI: 10.1038/emi.2017.46] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Protein- or peptide-based viral inactivators are being developed as novel antiviral drugs with improved efficacy, pharmacokinetics and toxicity profiles because they actively inactivate cell-free human immunodeficiency virus type 1 (HIV-1) virions before attachment to host cells. By contrast, most clinically used antiviral drugs must penetrate host cells to inhibit viral replication. In this study, we pre-treated HIV-1 particles with a gp120-targeting bispecific multivalent protein, 2Dm2m or 4Dm2m, in the presence or absence of the gp41-targeting HIV-1 fusion inhibitory peptides enfuvirtide (T20), T2635, or sifuvirtide (SFT). HIV-1 virions were separated from the inhibitors using PEG-6000, followed by testing of the residual infectivity of the HIV-1 virions. 2Dm2m and 4Dm2m exhibited significant inactivation activity against all HIV-1 strains tested with EC50 values at the low nanomolar level, whereas none of the gp41-targeting peptides showed inactivation activity at concentrations up to 250 nM. Notably, these three peptides significantly enhanced protein-mediated inactivation against cell-free HIV-1 virions, including HIV-1 laboratory-adapted and primary HIV-1 strains, as well as those resistant to T20 or T2635 and virions released from reactivated latently HIV-1-infected cells. These results indicate that the gp120-targeting bispecific multivalent proteins 2Dm2m and 4Dm2m have potential for further development as HIV-1 inactivator-based antiviral drugs for use in the clinic, either alone or in combination with a gp41-targeting HIV-1 fusion inhibitor such as T20, to treat patients with HIV-1 infection and AIDS.
Collapse
Affiliation(s)
- Qianqian Qi
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai Medical College and Shanghai Public Health Clinical Center, Fudan University, Shanghai 200032, China.,Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA
| | - Qian Wang
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai Medical College and Shanghai Public Health Clinical Center, Fudan University, Shanghai 200032, China
| | - Weizao Chen
- Protein Interactions Section, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Lanying Du
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA
| | - Dimiter S Dimitrov
- Protein Interactions Section, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai Medical College and Shanghai Public Health Clinical Center, Fudan University, Shanghai 200032, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai Medical College and Shanghai Public Health Clinical Center, Fudan University, Shanghai 200032, China.,Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA
| |
Collapse
|
12
|
Andrianov AM, Kashyn IA, Tuzikov AV. Computational identification of novel entry inhibitor scaffolds mimicking primary receptor CD4 of HIV-1 gp120. J Mol Model 2017; 23:18. [DOI: 10.1007/s00894-016-3189-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 12/15/2016] [Indexed: 11/24/2022]
|
13
|
Hua CK, Ackerman ME. Engineering broadly neutralizing antibodies for HIV prevention and therapy. Adv Drug Deliv Rev 2016; 103:157-173. [PMID: 26827912 DOI: 10.1016/j.addr.2016.01.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/19/2016] [Accepted: 01/20/2016] [Indexed: 01/15/2023]
Abstract
A combination of advances spanning from isolation to delivery of potent HIV-specific antibodies has begun to revolutionize understandings of antibody-mediated antiviral activity. As a result, the set of broadly neutralizing and highly protective antibodies has grown in number, diversity, potency, and breadth of viral recognition and neutralization. These antibodies are now being further enhanced by rational engineering of their anti-HIV activities and coupled to cutting edge gene delivery and strategies to optimize their pharmacokinetics and biodistribution. As a result, the prospects for clinical use of HIV-specific antibodies to treat, clear, and prevent HIV infection are gaining momentum. Here we discuss the diverse methods whereby antibodies are being optimized for neutralization potency and breadth, biodistribution, pharmacokinetics, and effector function with the aim of revolutionizing HIV treatment and prevention options.
Collapse
|
14
|
Protein/peptide-based entry/fusion inhibitors as anti-HIV therapies: challenges and future direction. Rev Med Virol 2015; 26:4-20. [DOI: 10.1002/rmv.1853] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 07/02/2015] [Accepted: 07/15/2015] [Indexed: 11/07/2022]
|
15
|
Gardner MR, Kattenhorn LM, Kondur HR, von Schaewen M, Dorfman T, Chiang JJ, Haworth KG, Decker JM, Alpert MD, Bailey CC, Neale ES, Fellinger CH, Joshi VR, Fuchs SP, Martinez-Navio JM, Quinlan BD, Yao AY, Mouquet H, Gorman J, Zhang B, Poignard P, Nussenzweig MC, Burton DR, Kwong PD, Piatak M, Lifson JD, Gao G, Desrosiers RC, Evans DT, Hahn BH, Ploss A, Cannon PM, Seaman MS, Farzan M. AAV-expressed eCD4-Ig provides durable protection from multiple SHIV challenges. Nature 2015; 519:87-91. [PMID: 25707797 PMCID: PMC4352131 DOI: 10.1038/nature14264] [Citation(s) in RCA: 239] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Accepted: 01/27/2015] [Indexed: 12/25/2022]
Abstract
Long-term in vivo expression of a broad and potent entry inhibitor could circumvent the need for a conventional vaccine for HIV-1. Adeno-associated virus (AAV) vectors can stably express HIV-1 broadly neutralizing antibodies (bNAbs). However, even the best bNAbs neutralize 10-50% of HIV-1 isolates inefficiently (80% inhibitory concentration (IC80) > 5 μg ml(-1)), suggesting that high concentrations of these antibodies would be necessary to achieve general protection. Here we show that eCD4-Ig, a fusion of CD4-Ig with a small CCR5-mimetic sulfopeptide, binds avidly and cooperatively to the HIV-1 envelope glycoprotein (Env) and is more potent than the best bNAbs (geometric mean half-maximum inhibitory concentration (IC50) < 0.05 μg ml(-1)). Because eCD4-Ig binds only conserved regions of Env, it is also much broader than any bNAb. For example, eCD4-Ig efficiently neutralized 100% of a diverse panel of neutralization-resistant HIV-1, HIV-2 and simian immunodeficiency virus isolates, including a comprehensive set of isolates resistant to the CD4-binding site bNAbs VRC01, NIH45-46 and 3BNC117. Rhesus macaques inoculated with an AAV vector stably expressed 17-77 μg ml(-1) of fully functional rhesus eCD4-Ig for more than 40 weeks, and these macaques were protected from several infectious challenges with SHIV-AD8. Rhesus eCD4-Ig was also markedly less immunogenic than rhesus forms of four well-characterized bNAbs. Our data suggest that AAV-delivered eCD4-Ig can function like an effective HIV-1 vaccine.
Collapse
Affiliation(s)
- Matthew R. Gardner
- Department of Infectious Diseases, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Lisa M. Kattenhorn
- Department of Microbiology and Immunobiology, Harvard Medical School, New England Primate Research Center, Southborough, MA 01772, USA
| | - Hema R. Kondur
- Department of Infectious Diseases, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Markus von Schaewen
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Tatyana Dorfman
- Department of Infectious Diseases, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Jessica J. Chiang
- Department of Microbiology and Immunobiology, Harvard Medical School, New England Primate Research Center, Southborough, MA 01772, USA
| | - Kevin G. Haworth
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
| | - Julie M. Decker
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael D. Alpert
- Department of Microbiology and Immunobiology, Harvard Medical School, New England Primate Research Center, Southborough, MA 01772, USA
- Immunathon Inc., Cambridge, MA 02141, USA
| | - Charles C. Bailey
- Department of Infectious Diseases, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Ernest S. Neale
- Department of Microbiology and Immunobiology, Harvard Medical School, New England Primate Research Center, Southborough, MA 01772, USA
| | - Christoph H. Fellinger
- Department of Infectious Diseases, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Vinita R. Joshi
- Department of Infectious Diseases, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Sebastian P. Fuchs
- Department of Pathology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Jose M. Martinez-Navio
- Department of Pathology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Brian D. Quinlan
- Department of Infectious Diseases, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Annie Y. Yao
- Department of Microbiology and Immunobiology, Harvard Medical School, New England Primate Research Center, Southborough, MA 01772, USA
| | - Hugo Mouquet
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
- Department of Immunology, Institut Pasteur, Paris, 75015, France
| | - Jason Gorman
- Vaccine Research Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Pascal Poignard
- Department of Immunology and Microbial Science, IAVI Neutralizing Antibody Center, and Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Michel C. Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute, New York, NY 10065, USA
| | - Dennis R. Burton
- Department of Immunology and Microbial Science, IAVI Neutralizing Antibody Center, and Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Peter D. Kwong
- Vaccine Research Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael Piatak
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Incorporated, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Incorporated, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Guangping Gao
- Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Ronald C. Desrosiers
- Department of Microbiology and Immunobiology, Harvard Medical School, New England Primate Research Center, Southborough, MA 01772, USA
- Department of Pathology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - David T. Evans
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI 53711, USA
| | - Beatrice H. Hahn
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alexander Ploss
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Paula M. Cannon
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
| | | | - Michael Farzan
- Department of Infectious Diseases, The Scripps Research Institute, Jupiter, FL 33458, USA
| |
Collapse
|
16
|
Fluorescent CD4 probe for potential HIV-1 gp120 protein detection. Bioorg Med Chem Lett 2015; 25:1182-5. [DOI: 10.1016/j.bmcl.2015.01.071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 01/28/2015] [Accepted: 01/30/2015] [Indexed: 02/02/2023]
|
17
|
Courter JR, Madani N, Sodroski J, Schön A, Freire E, Kwong PD, Hendrickson WA, Chaiken IM, LaLonde JM, Smith AB. Structure-based design, synthesis and validation of CD4-mimetic small molecule inhibitors of HIV-1 entry: conversion of a viral entry agonist to an antagonist. Acc Chem Res 2014; 47:1228-37. [PMID: 24502450 PMCID: PMC3993944 DOI: 10.1021/ar4002735] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
This
Account provides an overview of a multidisciplinary consortium focused
on structure-based strategies to devise small molecule antagonists
of HIV-1 entry into human T-cells, which if successful would hold
considerable promise for the development of prophylactic modalities
to prevent HIV transmission and thereby alter the course of the AIDS
pandemic. Entry of the human immunodeficiency virus (HIV) into
target T-cells entails an interaction between CD4 on the host T-cell
and gp120, a component of the trimeric envelope glycoprotein spike
on the virion surface. The resultant interaction initiates a series
of conformational changes within the envelope spike that permits binding
to a chemokine receptor, formation of the gp41 fusion complex, and
cell entry. A hydrophobic cavity at the CD4–gp120 interface,
defined by X-ray crystallography, provided an initial site for small
molecule antagonist design. This site however has evolved to facilitate
viral entry. As such, the binding of prospective small molecule inhibitors
within this gp120 cavity can inadvertently trigger an allosteric entry
signal. Structural characterization of the CD4–gp120
interface, which provided the foundation for small molecule structure-based
inhibitor design, will be presented first. An integrated approach
combining biochemical, virological, structural, computational, and
synthetic studies, along with a detailed analysis of ligand binding
energetics, revealed that modestly active small molecule inhibitors
of HIV entry can also promote viral entry into cells lacking the CD4
receptor protein; these competitive inhibitors were termed small molecule
CD4 mimetics. Related congeners were subsequently identified with
both improved binding affinity and more potent viral entry inhibition.
Further assessment of the affinity-enhanced small molecule CD4 mimetics
demonstrated
that premature initiation of conformational change within the viral envelope spike, prior to cell encounter, can lead to irreversible
deactivation of viral entry machinery. Related congeners, which bind the same gp120 site, possess different propensities to elicit the
allosteric response that underlies the undesired enhancement of CD4-independent viral entry. Subsequently, key hotspots in the CD4–gp120 interface were categorized using mutagenesis and isothermal titration calorimetry according to the capacity to increase binding affinity without triggering the allosteric signal. This analysis, combined with cocrystal structures of small molecule viral entry agonists with gp120, led to the development of fully functional antagonists of HIV-1 entry. Additional structure-based design exploiting two hotspots followed by synthesis has now yielded low micromolar inhibitors of viral entry.
Collapse
Affiliation(s)
- Joel R. Courter
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Navid Madani
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, Massachusetts 02115, United States
| | - Joseph Sodroski
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, Massachusetts 02115, United States
- Department
of Microbiology and Immunology, Harvard Medical School, Department of Immunology and Infectious Diseases, Harvard School of Public Health, Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts 02115, United States
| | - Arne Schön
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Ernesto Freire
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Wayne A. Hendrickson
- Department of Biochemistry and Molecular Biophysics and Department of Physiology and Cellular Biophysics, Columbia University, New York, New York 10032, United States
| | - Irwin M. Chaiken
- Department of Biochemistry and Molecular
Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Judith M. LaLonde
- Department of Chemistry, Bryn Mawr College, Bryn Mawr, Pennsylvania 19010, United States
| | - Amos B. Smith
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
18
|
Zhao N, Pei SN, Parekh P, Salazar E, Zu Y. Blocking interaction of viral gp120 and CD4-expressing T cells by single-stranded DNA aptamers. Int J Biochem Cell Biol 2014; 51:10-8. [PMID: 24661998 DOI: 10.1016/j.biocel.2014.03.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 02/26/2014] [Accepted: 03/13/2014] [Indexed: 01/29/2023]
Abstract
To investigate the potential clinical application of aptamers to prevention of HIV infection, single-stranded DNA (ssDNA) aptamers specific for CD4 were developed using the systematic evolution of ligands by exponential enrichment approach and next generation sequencing. In contrast to RNA-based aptamers, the developed ssDNA aptamers were stable in human serum up to 12h. Cell binding assays revealed that the aptamers specifically targeted CD4-expressing cells with high binding affinity (Kd=1.59nM), a concentration within the range required for therapeutic application. Importantly, the aptamers selectively bound CD4 on human cells and disrupted the interaction of viral gp120 to CD4 receptors, which is a prerequisite step of HIV-1 infection. Functional studies showed that the aptamer polymers significantly blocked binding of viral gp120 to CD4-expressing cells by up to 70% inhibition. These findings provide a new approach to prevent HIV-1 transmission using oligonucleotide aptamers.
Collapse
Affiliation(s)
- Nianxi Zhao
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, and Cancer Pathology Laboratory, Houston Methodist Research Institute, 6565 Fannin Street, Houston, TX 77030, USA
| | - Sung-nan Pei
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, and Cancer Pathology Laboratory, Houston Methodist Research Institute, 6565 Fannin Street, Houston, TX 77030, USA
| | - Parag Parekh
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, and Cancer Pathology Laboratory, Houston Methodist Research Institute, 6565 Fannin Street, Houston, TX 77030, USA
| | - Eric Salazar
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, and Cancer Pathology Laboratory, Houston Methodist Research Institute, 6565 Fannin Street, Houston, TX 77030, USA
| | - Youli Zu
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, and Cancer Pathology Laboratory, Houston Methodist Research Institute, 6565 Fannin Street, Houston, TX 77030, USA.
| |
Collapse
|
19
|
Design and expression of a short peptide as an HIV detection probe. Biochem Biophys Res Commun 2014; 443:308-12. [DOI: 10.1016/j.bbrc.2013.11.095] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 11/24/2013] [Indexed: 11/18/2022]
|
20
|
Gadhe CG, Kothandan G, Cho SJ. Characterization of Binding Mode of the Heterobiaryl gp120 Inhibitor in HIV-1 Entry: A Molecular Docking and Dynamics Simulation Study. B KOREAN CHEM SOC 2013. [DOI: 10.5012/bkcs.2013.34.8.2466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
LaLonde JM, Le-Khac M, Jones DM, Courter JR, Park J, Schön A, Princiotto AM, Wu X, Mascola JR, Freire E, Sodroski J, Madani N, Hendrickson WA, Smith AB. Structure-Based Design and Synthesis of an HIV-1 Entry Inhibitor Exploiting X-Ray and Thermodynamic Characterization. ACS Med Chem Lett 2013; 4:338-343. [PMID: 23667716 DOI: 10.1021/ml300407y] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The design, synthesis, thermodynamic and crystallographic characterization of a potent, broad spectrum, second-generation HIV-1 entry inhibitor that engages conserved carbonyl hydrogen bonds within gp120 has been achieved. The optimized antagonist exhibits a sub-micromolar binding affinity (110 nM) and inhibits viral entry of clade B and C viruses (IC50 geometric mean titer of 1.7 and 14.0 μM, respectively), without promoting CD4-independent viral entry. thermodynamic signatures indicate a binding preference for the (R,R)-over the (S,S)-enantiomer. The crystal structure of the small molecule-gp120 complex reveals the displacement of crystallographic water and the formation of a hydrogen bond with a backbone carbonyl of the bridging sheet. Thus, structure-based design and synthesis targeting the highly conserved and structurally characterized CD4:gp120 interface is an effective tactic to enhance the neutralization potency of small molecule HIV-1 entry inhibitors.
Collapse
Affiliation(s)
- Judith M. LaLonde
- Department of Chemistry, Bryn Mawr College, Bryn Mawr, Pennsylvania 19010, United
States
| | | | - David M. Jones
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania
19104, United States
| | - Joel R. Courter
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania
19104, United States
| | - Jongwoo Park
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania
19104, United States
| | - Arne Schön
- Department
of Biology, The Johns Hopkins University, Baltimore, Maryland 21218,
United States
| | - Amy M. Princiotto
- Department of Cancer
Immunology and
AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Xueling Wu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda,
Maryland 20892, United States
| | - John R. Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda,
Maryland 20892, United States
| | - Ernesto Freire
- Department
of Biology, The Johns Hopkins University, Baltimore, Maryland 21218,
United States
| | - Joseph Sodroski
- Department of Cancer
Immunology and
AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Microbiology and
Immunobiology, Harvard Medical School; Department of Immunology and
Infectious Diseases, Harvard School of Public Health; Ragon Institute
of MGH, MIT, and Harvard, Boston, Massachusetts 02115, United States
| | - Navid Madani
- Department of Cancer
Immunology and
AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Wayne A. Hendrickson
- Department of Physiology and
Cellular Biophysics, Columbia University, New York, New York 10032, United States
| | - Amos B. Smith
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania
19104, United States
| |
Collapse
|
22
|
HIV-1 resistance to maraviroc conferred by a CD4 binding site mutation in the envelope glycoprotein gp120. J Virol 2012; 87:923-34. [PMID: 23135713 DOI: 10.1128/jvi.01863-12] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Maraviroc (MVC) is a CCR5 antagonist that inhibits HIV-1 entry by binding to the coreceptor and inducing structural alterations in the extracellular loops. In this study, we isolated MVC-resistant variants from an HIV-1 primary isolate that arose after 21 weeks of tissue culture passage in the presence of inhibitor. gp120 sequences from passage control and MVC-resistant cultures were cloned into NL4-3 via yeast-based recombination followed by sequencing and drug susceptibility testing. Using 140 clones, three mutations were linked to MVC resistance, but none appeared in the V3 loop as was the case with previous HIV-1 strains resistant to CCR5 antagonists. Rather, resistance was dependent upon a single mutation in the C4 region of gp120. Chimeric clones bearing this N425K mutation replicated at high MVC concentrations and displayed significant shifts in 50% inhibitory concentrations (IC(50)s), characteristic of resistance to all other antiretroviral drugs but not typical of MVC resistance. Previous reports on MVC resistance describe an ability to use a drug-bound form of the receptor, leading to reduction in maximal drug inhibition. In contrast, our structural models on K425 gp120 suggest that this resistant mutation impacts CD4 interactions and highlights a novel pathway for MVC resistance.
Collapse
|
23
|
Meier J, Kassler K, Sticht H, Eichler J. Peptides presenting the binding site of human CD4 for the HIV-1 envelope glycoprotein gp120. Beilstein J Org Chem 2012; 8:1858-66. [PMID: 23209523 PMCID: PMC3511023 DOI: 10.3762/bjoc.8.214] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Accepted: 09/24/2012] [Indexed: 01/31/2023] Open
Abstract
Based on the structure of the HIV-1 glycoprotein gp120 in complex with its cellular receptor CD4, we have designed and synthesized peptides that mimic the binding site of CD4 for gp120. The ability of these peptides to bind to gp120 can be strongly enhanced by increasing their conformational stability through cyclization, as evidenced by binding assays, as well as through molecular-dynamics simulations of peptide–gp120 complexes. The specificity of the peptide–gp120 interaction was demonstrated by using peptide variants, in which key residues for the interaction with gp120 were replaced by alanine or D-amino acids.
Collapse
Affiliation(s)
- Julia Meier
- Department of Chemistry and Pharmacy, Universität Erlangen-Nürnberg, Schuhstrasse 19, 91052 Erlangen, Germany
| | | | | | | |
Collapse
|
24
|
Enhanced recognition and neutralization of HIV-1 by antibody-derived CCR5-mimetic peptide variants. J Virol 2012; 86:12417-21. [PMID: 22933279 DOI: 10.1128/jvi.00967-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A tyrosine-sulfated CCR5-mimetic peptide, CCR5mim1, inhibits HIV-1 infection more efficiently than sulfopeptides based on the CCR5 amino terminus. Here we characterized sulfopeptide chimeras of CCR5mim1 and the heavy-chain CDR3 of the antibody PG16. Two chimeras bound a range of envelope glycoproteins and neutralized HIV-1 more efficiently than CCR5mim1. An immunoadhesin form of one of these, CCR5mim2-Ig, synergized with CD4-Ig to neutralize HIV-1. These sulfopeptides are among the broadest and most potent CCR5-mimetic peptides described to date.
Collapse
|
25
|
LaLonde JM, Kwon YD, Jones DM, Sun AW, Courter JR, Soeta T, Kobayashi T, Princiotto AM, Wu X, Schön A, Freire E, Kwong PD, Mascola JR, Sodroski J, Madani N, Smith AB. Structure-based design, synthesis, and characterization of dual hotspot small-molecule HIV-1 entry inhibitors. J Med Chem 2012; 55:4382-96. [PMID: 22497421 PMCID: PMC3376652 DOI: 10.1021/jm300265j] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cellular infection by HIV-1 is initiated with a binding event between the viral envelope glycoprotein gp120 and the cellular receptor protein CD4. The CD4-gp120 interface is dominated by two hotspots: a hydrophobic gp120 cavity capped by Phe43(CD4) and an electrostatic interaction between residues Arg59(CD4) and Asp368(gp120). The CD4 mimetic small-molecule NBD-556 (1) binds within the gp120 cavity; however, 1 and related congeners demonstrate limited viral neutralization breadth. Herein, we report the design, synthesis, characterization, and X-ray structures of gp120 in complex with small molecules that simultaneously engage both binding hotspots. The compounds specifically inhibit viral infection of 42 tier 2 clades B and C viruses and are shown to be antagonists of entry into CD4-negative cells. Dual hotspot design thus provides both a means to enhance neutralization potency of HIV-1 entry inhibitors and a novel structural paradigm for inhibiting the CD4-gp120 protein-protein interaction.
Collapse
Affiliation(s)
- Judith M. LaLonde
- Department of Chemistry, Bryn Mawr College, Bryn Mawr, Pennsylvania 19010
| | - Young Do Kwon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda MD 20892
| | - David M. Jones
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104
| | - Alexander W. Sun
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104
| | - Joel R. Courter
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104
| | - Takahiro Soeta
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104
| | - Toyoharu Kobayashi
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104
| | - Amy M. Princiotto
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave., Boston, MA 02115
| | - Xueling Wu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda MD 20892
| | - Arne Schön
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218
| | - Ernesto Freire
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda MD 20892
| | - John R. Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda MD 20892
| | - Joseph Sodroski
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave., Boston, MA 02115
- Department of Microbiology and Immunology, Harvard Medical School; Department of Immunology and Infectious Diseases, Harvard School of Public Health; Ragon Institute of MGH, MIT and Harvard, Boston, MA 02115
| | - Navid Madani
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave., Boston, MA 02115
| | - Amos B. Smith
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
26
|
Structural Basis for Species Selectivity in the HIV-1 gp120-CD4 Interaction: Restoring Affinity to gp120 in Murine CD4 Mimetic Peptides. Adv Bioinformatics 2012; 2011:736593. [PMID: 22312332 PMCID: PMC3270550 DOI: 10.1155/2011/736593] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 11/07/2011] [Accepted: 11/23/2011] [Indexed: 11/18/2022] Open
Abstract
The first step of HIV-1 infection involves interaction between the viral glycoprotein gp120 and the human cellular receptor CD4. Inhibition of the gp120-CD4 interaction represents an attractive strategy to block HIV-1 infection. In an attempt to explore the known lack of affinity of murine CD4 to gp120, we have investigated peptides presenting the putative gp120-binding site of murine CD4 (mCD4). Molecular modeling indicates that mCD4 protein cannot bind gp120 due to steric clashes, while the larger conformational flexibility of mCD4 peptides allows an interaction. This finding is confirmed by experimental binding assays, which also evidenced specificity of the peptide-gp120 interaction. Molecular dynamics simulations indicate that the mCD4-peptide stably interacts with gp120 via an intermolecular β-sheet, while an important salt-bridge formed by a C-terminal lysine is lost. Fixation of the C-terminus by introducing a disulfide bridge between the N- and C-termini of the peptide significantly enhanced the affinity to gp120.
Collapse
|
27
|
Zhang C, Lai L. Automatch: Target-binding protein design and enzyme design by automatic pinpointing potential active sites in available protein scaffolds. Proteins 2012; 80:1078-94. [DOI: 10.1002/prot.24009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 11/17/2011] [Accepted: 11/18/2011] [Indexed: 11/10/2022]
|
28
|
Nimmanpipug P, Khampa C, Lee VS, Nangola S, Tayapiwatana C. Identification of amino acid residues of a designed ankyrin repeat protein potentially involved in intermolecular interactions with CD4: Analysis by molecular dynamics simulations. J Mol Graph Model 2011; 31:65-75. [DOI: 10.1016/j.jmgm.2011.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 08/30/2011] [Accepted: 09/01/2011] [Indexed: 11/16/2022]
|
29
|
Identification and characterization of an immunogenic hybrid epitope formed by both HIV gp120 and human CD4 proteins. J Virol 2011; 85:13097-104. [PMID: 21994452 DOI: 10.1128/jvi.05072-11] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Certain antibodies from HIV-infected humans bind conserved transition state (CD4 induced [CD4i]) domains on the HIV envelope glycoprotein, gp120, and demonstrate extreme dependence on the formation of a gp120-human CD4 receptor complex. The epitopes recognized by these antibodies remain undefined although recent crystallographic studies of the anti-CD4i monoclonal antibody (MAb) 21c suggest that contacts with CD4 as well as gp120 might occur. Here, we explore the possibility of hybrid epitopes that demand the collaboration of both gp120 and CD4 residues to enable antibody reactivity. Analyses with a panel of human anti-CD4i MAbs and gp120-CD4 antigens with specific mutations in predicted binding domains revealed one putative hybrid epitope, defined by the human anti-CD4i MAb 19e. In virological and immunological tests, MAb 19e did not bind native or constrained gp120 except in the presence of CD4. This contrasted with other anti-CD4i MAbs, including MAb 21c, which bound unliganded, full-length gp120 held in a constrained conformation. Conversely, MAb 19e exhibited no specific reactivity with free human CD4. Computational modeling of MAb 19e interactions with gp120-CD4 complexes suggested a distinct binding profile involving antibody heavy chain interactions with CD4 and light chain interactions with gp120. In accordance, targeted mutations in CD4 based on this model specifically reduced MAb 19e interactions with stable gp120-CD4 complexes that retained reactivity with other anti-CD4i MAbs. These data represent a rare instance of an antibody response that is specific to a pathogen-host cell protein interaction and underscore the diversity of immunogenic CD4i epitope structures that exist during natural infection.
Collapse
|
30
|
Abstract
HIV cell entry and infection are driven by binding events to the CD4 and chemokine receptors with associated conformational change of the viral glycoprotein, gp120. Scyllatoxin miniprotein CD4 mimetics and a small molecule inhibitor of CD4 binding, NBD-556, also effectively induce gp120 conformational change. In this study we examine the fluctuation profile of gp120 in context of CD4, a miniprotein mimetic, and NBD-556 with the aim of understanding the effect of ligand binding on gp120 conformational dynamics. Analysis of molecular dynamics trajectories indicate that NBD-556 binding in the Phe 43 cavity enhances the overall mobility of gp120, especially in the outer domain in comparison to CD4 or miniprotein bound complex. Interactions with the more flexible bridging sheet strengthen upon NBD-556 binding and may contribute to gp120 restructuring. The enhanced mobility of D368, E370, and I371 with NBD-556 bound in the Phe 43 cavity suggests that interactions with α3-helix in the outer domain are not optimal, providing further insights into gp120--small molecule interactions that may impact small molecule designs.
Collapse
Affiliation(s)
- Indira Shrivastava
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh 3083 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh PA 15213
| | - Judith M. LaLonde
- Chemistry Department, Bryn Mawr College, 101 N. Merion Avenue, Bryn Mawr, PA 19010
| |
Collapse
|
31
|
Shrivastava I, LaLonde JM. Fluctuation dynamics analysis of gp120 envelope protein reveals a topologically based communication network. Proteins 2011; 78:2935-49. [PMID: 20718047 DOI: 10.1002/prot.22816] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Human Immunodeficiency Virus (HIV) infection is initiated by binding of the viral glycoprotein gp120, to the cellular receptor CD4. On CD4 binding, gp120 undergoes conformational change, permitting binding to the chemokine receptor. Crystal structures of gp120 ternary complex reveal the CD4 bound conformation of gp120. We report here the application of the Gaussian network model (GNM) to the crystal structures of gp120 bound to CD4 or CD4 mimic and 17b, to study the collective motions of the gp120 core and determine the communication propensities of the residue network. The GNM fluctuation profiles identify residues in the inner domain and outer domain that may facilitate conformational change or stability, respectively. Communication propensities delineate a residue network that is topologically suited for signal propagation from the Phe43 cavity throughout the gp120 outer domain. These results provide a new context for interpreting gp120 core envelope structure-function relationships.
Collapse
Affiliation(s)
- Indira Shrivastava
- Department of Computational Biology, School of Medicine, University of Pittsburgh, 3083 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15213, USA.
| | | |
Collapse
|
32
|
Lalonde JM, Elban MA, Courter JR, Sugawara A, Soeta T, Madani N, Princiotto AM, Kwon YD, Kwong PD, Schön A, Freire E, Sodroski J, Smith AB. Design, synthesis and biological evaluation of small molecule inhibitors of CD4-gp120 binding based on virtual screening. Bioorg Med Chem 2011; 19:91-101. [PMID: 21169023 PMCID: PMC3049263 DOI: 10.1016/j.bmc.2010.11.049] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 11/19/2010] [Accepted: 11/22/2010] [Indexed: 11/23/2022]
Abstract
The low-molecular-weight compound JRC-II-191 inhibits infection of HIV-1 by blocking the binding of the HIV-1 envelope glycoprotein gp120 to the CD4 receptor and is therefore an important lead in the development of a potent viral entry inhibitor. Reported here is the use of two orthogonal screening methods, gold docking and ROCS shape-based similarity searching, to identify amine-building blocks that, when conjugated to the core scaffold, yield novel analogs that maintain similar affinity for gp120. Use of this computational approach to expand SAR produced analogs of equal inhibitory activity but with diverse capacity to enhance viral infection. The novel analogs provide additional lead scaffolds for the development of HIV-1 entry inhibitors that employ protein-ligand interactions in the vestibule of gp120 Phe 43 cavity.
Collapse
Affiliation(s)
- Judith M Lalonde
- Department of Chemistry, Bryn Mawr College, Bryn Mawr, PA 19010, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Chong Teoh T, Heidelberg T, Rizman-Idid M. Systematic protein-protein docking and molecular dynamics studies of HIV-1 gp120 and CD4: insights for new drug development. Daru 2011; 19:469-75. [PMID: 23008694 PMCID: PMC3436085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 11/16/2011] [Accepted: 12/27/2011] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND AND THE PURPOSE OF THE STUDY The interactions between HIV-1 gp120 and mutated CD4 proteins were investigated in order to identify a lead structure for therapy based on competitive blocking of the HIV binding receptor for human T-cells. Crystal structures of HIV gp120-CD4 complexes reveal a close interaction of the virus receptor with CD4 Phe43, which is embedded in a pocket of the virus protein. METHODS This study applies computer simulations to determine the best binding of amino acid 43 CD4 mutants to HIV gp120. Besides natural CD4, three mutants carrying alternate aromatic residues His, Trp and Tyr at position 43 were investigated. Several docking programs were applied on isolated proteins based on selected crystal structures of gp120-CD4 complexes, as well as a 5 ns molecular dynamics study on the protein complexes. The initial structures were minimized in Gromacs to avoid crystal packing effects, and then subjected to docking experiments using AutoDock4, FireDock, ClusPro and ZDock. In molecular dynamics, the Gibbs free binding energy was calculated for the gp120-CD4 complexes. The docking outputs were analyzed on energy within the respective docking software. RESULTS AND CONCLUSION Visualization and hydrogen bonding analysis were performed using the Swiss-PdbViewer. Strong binding to HIV gp120 can be achieved with an extended aromatic group (Trp). However, the sterical demand of the interaction affects the binding kinetics. In conclusion, a ligand for an efficient blocking of HIV gp120 should involve an extended but conformational flexible aromatic group, i.e. a biphenyl. A docking study on biphenylalanine-43 confirms this expectation.
Collapse
Affiliation(s)
| | - T. Heidelberg
- Department of Chemistry, Science Faculty, University of Malaya, Kuala Lumpur, Malaysia
| | | |
Collapse
|
34
|
Affiliation(s)
- Dario A A Vignali
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA.
| |
Collapse
|
35
|
Hurevich M, Swed A, Joubran S, Cohen S, Freeman NS, Britan-Rosich E, Briant-Longuet L, Bardy M, Devaux C, Kotler M, Hoffman A, Gilon C. Rational conversion of noncontinuous active region in proteins into a small orally bioavailable macrocyclic drug-like molecule: the HIV-1 CD4:gp120 paradigm. Bioorg Med Chem 2010; 18:5754-61. [PMID: 20619663 DOI: 10.1016/j.bmc.2010.04.053] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 04/16/2010] [Accepted: 04/17/2010] [Indexed: 11/19/2022]
Abstract
Rational conversion of noncontinuous active regions of proteins into a small orally bioavailable molecule is crucial for the discovery of new drugs based on inhibition of protein-protein interactions. We developed a method that utilizes backbone cyclization as an intermediate step for conversion of the CD4 noncontinuous active region into small macrocyclic molecules. We demonstrate that this method is feasible by preparing small inhibitor for human immunodeficiency virus infection. The lead compound, CG-1, proved orally available in the rat model.
Collapse
Affiliation(s)
- Mattan Hurevich
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond Safra Campus, Givat Ram Campus, The Hebrew University, Jerusalem 91904, Israel
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Burastero SE, Figini M, Frigerio B, Lusso P, Mollica L, Lopalco L. Protective versus pathogenic anti-CD4 immunity: insights from the study of natural resistance to HIV infection. J Transl Med 2009; 7:101. [PMID: 19943950 PMCID: PMC2789051 DOI: 10.1186/1479-5876-7-101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 11/28/2009] [Indexed: 12/11/2022] Open
Abstract
HIV-1 exposure causes several dramatic unbalances in the immune system homeostasis. Here, we will focus on the paradox whereby CD4 specific autoimmune responses, which are expected to contribute to the catastrophic loss of most part of the T helper lymphocyte subset in infected patients, may display the characteristics of an unconventional protective immunity in individuals naturally resistant to HIV-1 infection. Reference to differences in fine epitope mapping of these two oppositely polarized outcomes will be presented, with particular reference to partially or totally CD4-gp120 complex-specific antibodies. The fine tuning of the anti-self immune response to the HIV-1 receptor may determine whether viral exposure will result in infection or, alternatively, protective immunity. Along this line, an efficacious anti-HIV strategy can rely on the active (i.e., through immunization) or passive targeting of cryptic epitopes of the CD4-gp120 complex, including those harboured within the CD4 molecule. Such epitopes are expected to be safe from genetic drift and thus allow for broad spectrum of efficacy. Moreover, since these epitopes are not routinely exposed in uninfected individuals, they are expected to become targets of neutralizing antibodies or other specifically designed molecules only after viral exposure, with a predictable low impact in terms of potentially harmful anti-CD4 self-reactivity. The experimentum naturae of naturally resistant individuals indicates a strategy to design innovative strategies to neutralize HIV-1 by acting on the sharp edge between harmful and protective self-reactivity.
Collapse
Affiliation(s)
- Samuele E Burastero
- Unit of Clinical and Molecular Allergy, Division of Immunology, Infectious Diseases and Transplants, San Raffaele Scientific Institute, Milan, 20132, Italy.
| | | | | | | | | | | |
Collapse
|
37
|
Da LT, Quan JM, Wu YD. Understanding of the Bridging Sheet Formation of HIV-1 Glycoprotein gp120. J Phys Chem B 2009; 113:14536-43. [DOI: 10.1021/jp9081239] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lin-Tai Da
- Laboratory of Chemical Genomics, Shenzhen Graduate School of Peking University, Shenzhen 518055, China, and Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jun-Min Quan
- Laboratory of Chemical Genomics, Shenzhen Graduate School of Peking University, Shenzhen 518055, China, and Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yun-Dong Wu
- Laboratory of Chemical Genomics, Shenzhen Graduate School of Peking University, Shenzhen 518055, China, and Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
38
|
Hvilsom C, Carlsen F, Siegismund HR, Corbet S, Nerrienet E, Fomsgaard A. Genetic subspecies diversity of the chimpanzee CD4 virus-receptor gene. Genomics 2008; 92:322-8. [PMID: 18718520 DOI: 10.1016/j.ygeno.2008.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Revised: 07/11/2008] [Accepted: 07/13/2008] [Indexed: 11/25/2022]
Abstract
Chimpanzees are naturally and asymptomatically infected by simian immunodeficiency virus (SIV). Pathogenic properties of SIV/HIV vary and differences in susceptibility and pathogenicity of SIV/HIV depend in part on host-specific factors such as virus-receptor/co-receptor interactions. Since CD4 plays a primary role in virus binding and since SIVcpz have been found only in two African chimpanzee subspecies, we characterized the genetic diversity of CD4 receptors in all four recognized subspecies of chimpanzees. We found noticeable variation in the first variable region V1 of CD4 and in intron six among the subspecies of chimpanzees. We found the CD4 receptor to be conserved in individuals belonging to the P. t. verus subspecies and divergent from the other three subspecies, which harbored highly variable CD4 receptors. The CD4 receptor of chimpanzees differed from that of humans. We question whether the observed diversity can explain the species-specific differences in susceptibility to and pathogenicity of SIV/HIV.
Collapse
|
39
|
Abstract
The great variability and high glycosylation of gp120 poses a great challenge for the design of a functional immune therapy. The binding region of the CD4 receptor to gp120, however, is well conserved and may constitute a target to limit viral entry and infectivity. Our strategy consists in using a preexisting pool of natural antibodies directed toward the gal(alpha1,3)gal disaccharide and to redirect it to HIV. We here show that using CD4-derived, gp120-binding, synthetic peptides chemically linked to gal(alpha1,3)gal can redirect these natural antibodies and improve the HIV-1 neutralizing activity of the CD4-derived peptides in vitro. Importantly, the binding of the CD4-gal(alpha1,3)gal peptides to HIV-1-infected cells conferred antibody-dependent cellular cytotoxicity after the addition of human sera. Thus, the temporary redirection of naturally occurring antibodies and their biological activities to a new antigen represents a completely new way of targeting a human disease.
Collapse
|
40
|
am Busch MS, Lopes A, Amara N, Bathelt C, Simonson T. Testing the Coulomb/Accessible Surface Area solvent model for protein stability, ligand binding, and protein design. BMC Bioinformatics 2008; 9:148. [PMID: 18366628 PMCID: PMC2292695 DOI: 10.1186/1471-2105-9-148] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Accepted: 03/13/2008] [Indexed: 11/10/2022] Open
Abstract
Background Protein structure prediction and computational protein design require efficient yet sufficiently accurate descriptions of aqueous solvent. We continue to evaluate the performance of the Coulomb/Accessible Surface Area (CASA) implicit solvent model, in combination with the Charmm19 molecular mechanics force field. We test a set of model parameters optimized earlier, and we also carry out a new optimization in this work, using as a target a set of experimental stability changes for single point mutations of various proteins and peptides. The optimization procedure is general, and could be used with other force fields. The computation of stability changes requires a model for the unfolded state of the protein. In our approach, this state is represented by tripeptide structures of the sequence Ala-X-Ala for each amino acid type X. We followed an iterative optimization scheme which, at each cycle, optimizes the solvation parameters and a set of tripeptide structures for the unfolded state. This protocol uses a set of 140 experimental stability mutations and a large set of tripeptide conformations to find the best tripeptide structures and solvation parameters. Results Using the optimized parameters, we obtain a mean unsigned error of 2.28 kcal/mol for the stability mutations. The performance of the CASA model is assessed by two further applications: (i) calculation of protein-ligand binding affinities and (ii) computational protein design. For these two applications, the previous parameters and the ones optimized here give a similar performance. For ligand binding, we obtain reasonable agreement with a set of 55 experimental mutation data, with a mean unsigned error of 1.76 kcal/mol with the new parameters and 1.47 kcal/mol with the earlier ones. We show that the optimized CASA model is not inferior to the Generalized Born/Surface Area (GB/SA) model for the prediction of these binding affinities. Likewise, the new parameters perform well for the design of 8 SH3 domain proteins where an average of 32.8% sequence identity relative to the native sequences was achieved. Further, it was shown that the computed sequences have the character of naturally-occuring homologues of the native sequences. Conclusion Overall, the two CASA variants explored here perform very well for a wide variety of applications. Both variants provide an efficient solvent treatment for the computational engineering of ligands and proteins.
Collapse
Affiliation(s)
- Marcel Schmidt am Busch
- Laboratoire de Biochimie (UMR CNRS 7654), Department of Biology, Ecole Polytechnique, 91128, Palaiseau, France.
| | | | | | | | | |
Collapse
|
41
|
Juncadella IJ, Garg R, Bates TC, Olivera ER, Anguita J. The Ixodes scapularis salivary protein, salp15, prevents the association of HIV-1 gp120 and CD4. Biochem Biophys Res Commun 2008; 367:41-6. [PMID: 18162176 PMCID: PMC2238774 DOI: 10.1016/j.bbrc.2007.12.104] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Accepted: 12/11/2007] [Indexed: 10/22/2022]
Abstract
Ixodes scapularis salivary protein, Salp15, inhibits CD4(+) T cell activation by binding to the most-extracellular domains of the CD4 molecule, potentially overlapping with the gp120-binding region. We now show that Salp15 inhibits the interaction of gp120 and CD4. Furthermore, Salp15 prevents syncytia formation between HL2/3 (a stable HeLa cell line expressing the envelope protein) and CD4-expressing cells. Salp15 prevented gp120-CD4 interaction at least partially through its direct interaction with the envelope glycoprotein. A phage display library screen provided the interacting residues in the C1 domain of gp120. These results provide a potential basis to define exposed gp120 epitopes for the generation of neutralizing vaccines.
Collapse
Affiliation(s)
- Ignacio J. Juncadella
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA 01003
| | - Renu Garg
- Department of Biology, University of North Carolina at Charlotte, Charlotte, NC 28223
| | - Tonya C. Bates
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA 01003
| | - Elias R. Olivera
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA 01003
| | - Juan Anguita
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA 01003
- Department of Biology, University of North Carolina at Charlotte, Charlotte, NC 28223
| |
Collapse
|
42
|
Mapping of equine lentivirus receptor 1 residues critical for equine infectious anemia virus envelope binding. J Virol 2007; 82:1204-13. [PMID: 18032504 DOI: 10.1128/jvi.01393-07] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The equine lentivirus receptor 1 (ELR1), a member of the tumor necrosis factor receptor (TNFR) protein family, has been identified as a functional receptor for equine infectious anemia virus (EIAV). Toward defining the functional interactions between the EIAV SU protein (gp90) and its ELR1 receptor, we mapped the gp90 binding domain of ELR1 by a combination of binding and functional assays using the EIAV SU gp90 protein and various chimeric receptor proteins derived from exchanges between the functional ELR1 and the nonbinding homolog, mouse herpesvirus entry mediator (murine HveA). Complementary exchanges of the respective cysteine-rich domains (CRD) between the ELR1 and murine HveA proteins revealed CRD1 as the predominant determinant of functional gp90 binding to ELR1 and also to a chimeric murine HveA protein expressed on the surface of transfected Cf2Th cells. Mutations of individual amino acids in the CRD1 segment of ELR1 and murine HveA indicated the Leu70 in CRD1 as essential for functional binding of EIAV gp90 and for virus infection of transduced Cf2Th cells. The specificity of the EIAV SU binding domain identified for the ELR1 receptor is fundamentally identical to that reported previously for functional binding of feline immunodeficiency virus SU to its coreceptor CD134, another TNFR protein. These results indicate unexpected common features of the specific mechanisms by which diverse lentiviruses can employ TNFR proteins as functional receptors.
Collapse
|
43
|
|
44
|
Sharma D, Balamurali MM, Chakraborty K, Kumaran S, Jeganathan S, Rashid U, Ingallinella P, Varadarajan R. Protein minimization of the gp120 binding region of human CD4. Biochemistry 2006; 44:16192-202. [PMID: 16331979 DOI: 10.1021/bi051120s] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
CD4 is an important component of the immune system and is also the cellular receptor for HIV-1. CD4 consists of a cytoplasmic tail, one transmembrane region, and four extracellular domains, D1-D4. Constructs consisting of all four extracellular domains of human CD4 as well as the first two domains (CD4D12) have previously been expressed and characterized. All of the gp120-binding residues are located within the first N-terminal domain (D1) of CD4. To date, it has not been possible to obtain domain D1 alone in a soluble and active form. Most residues in CD4 that interact with gp120 lie within the region 21-64 of domain D1 of CD4. On the basis of these observations and analysis of the crystal structure of CD4D12, a mutational strategy was designed to express CD4D1 and region 21-64 of CD4 (CD4PEP1) in Escherichia coli. K(D) values for the binding of CD4 analogues described above to gp120 were measured using a Biacore-based solution-phase competition binding assay. Measured K(D) values were 15 nM, 40 nM, and 26 microM for CD4D12, CD4D1, and CD4PEP1, respectively. All of the proteins interact with gp120 and are able to expose the 17b-binding epitope of gp120. Structural content was determined using CD and proteolysis. Both CD4D1 and CD4PEP1 were partially structured and showed an enhanced structure in the presence of the osmolyte sarcosine. The aggregation behavior of all of the proteins was characterized. While CD4D1 and CD4PEP1 did not aggregate, CD4D12 formed amyloid fibrils at neutral pH within a week at 278 K. These CD4 derivatives should be useful tools in HIV vaccine design and entry inhibition studies.
Collapse
Affiliation(s)
- Deepak Sharma
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Kong R, Tan JJ, Ma XH, Chen WZ, Wang CX. Prediction of the binding mode between BMS-378806 and HIV-1 gp120 by docking and molecular dynamics simulation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2006; 1764:766-72. [PMID: 16455315 DOI: 10.1016/j.bbapap.2005.12.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2005] [Revised: 12/07/2005] [Accepted: 12/08/2005] [Indexed: 11/20/2022]
Abstract
BMS-378806 is a newly discovered small molecule that effectively blocks the binding of CD4 with gp120. The binding mode of this kind of inhibitor remains unknown. In this paper, AutoDock 3.0 in conjunction with molecular dynamics simulation, accommodating the receptor's flexibility, was used to explore the binding mode between BMS-378806 and gp120. Two structures, Mode I and Mode II, with the lowest docking energy were selected as different representative binding modes. The analysis of the results from the molecular dynamics simulation indicated that the binding of BMS-348806 in Mode II is more stable. The average structure of Mode II was analyzed and compared with the experimental data. The conclusion was that BMS-378806 inserts the azaindole ring deeply into the PHE43 cavity and makes contact with a number of residues in the cavity, on the cavity and near the cavity. This study benefits the understanding of the mechanism of this kind of inhibitor and may provide useful information for rational drug design.
Collapse
Affiliation(s)
- Ren Kong
- College of Life Sciences and Bioengineering, Beijing University of Technology, Beijing 100022, China
| | | | | | | | | |
Collapse
|
46
|
Vermeire K, Schols D. Anti-HIV agents targeting the interaction of gp120 with the cellular CD4 receptor. Expert Opin Investig Drugs 2005; 14:1199-212. [PMID: 16185162 DOI: 10.1517/13543784.14.10.1199] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Perhaps one of the most effective approaches to prevent and inhibit viral infections is to block host cell receptors that are used by viruses to gain cell entry. Major advances have been made over the past decade in the understanding of the molecular mechanism of HIV entry into target cells. A crucial step in this entry process is the interaction of the external HIV envelope glycoprotein, gp120, with the cellular CD4 receptor molecule. This binding step represents a potential target for new antiviral agents, and current efforts to develop safe and effective HIV entry inhibitors are focused on natural ligands and/or monoclonal antibodies that interfere with gp120/CD4 interaction. Also, small synthetic compounds obtained either by high-throughput screening of large compound libraries or by structure-guided rational design have recently entered the antiretroviral arena. In this review, the anti-HIV activity of novel entry inhibitors targeting gp120/CD4 interaction is outlined, and special attention is given to the cyclotriazadisulfonamide compounds, which are the most specific CD4-targeted antiviral drugs described so far.
Collapse
Affiliation(s)
- Kurt Vermeire
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium.
| | | |
Collapse
|
47
|
Huang CC, Stricher F, Martin L, Decker JM, Majeed S, Barthe P, Hendrickson WA, Robinson J, Roumestand C, Sodroski J, Wyatt R, Shaw GM, Vita C, Kwong PD. Scorpion-toxin mimics of CD4 in complex with human immunodeficiency virus gp120 crystal structures, molecular mimicry, and neutralization breadth. Structure 2005; 13:755-68. [PMID: 15893666 DOI: 10.1016/j.str.2005.03.006] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Revised: 03/12/2005] [Accepted: 03/14/2005] [Indexed: 11/22/2022]
Abstract
The binding surface on CD4 for the HIV-1 gp120 envelope glycoprotein has been transplanted previously onto a scorpion-toxin scaffold. Here, we use X-ray crystallography to characterize atomic-level details of gp120 with this transplant, CD4M33. Despite known envelope flexibility, the conformation of gp120 induced by CD4M33 was so similar to that induced by CD4 that localized measures were required to distinguish ligand-induced differences from lattice variation. To investigate relationships between structure, function, and mimicry, an F23 analog of CD4M33 was devised. Structural and thermodynamic analyses showed F23 to be a better molecular mimic of CD4 than CD4M33. F23 also showed increased neutralization breadth, against diverse isolates of HIV-1, HIV-2, and SIVcpz. Our results lend insight into the stability of the CD4 bound conformation of gp120, define measures that quantify molecular mimicry as a function of evolutionary distance, and suggest how such evaluations might be useful in developing mimetic antagonists with increased neutralization breadth.
Collapse
Affiliation(s)
- Chih-chin Huang
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Bombasaro J, Rodríguez A, Enriz R. Comprehensive conformational analysis of N-acetyl-l-tryptophane-N-methylamide. An ab initio and DFT study. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/j.theochem.2004.11.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
49
|
Klasse PJ, Moore JP. Is there enough gp120 in the body fluids of HIV-1-infected individuals to have biologically significant effects? Virology 2004; 323:1-8. [PMID: 15165814 DOI: 10.1016/j.virol.2004.03.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2004] [Revised: 02/17/2004] [Accepted: 03/02/2004] [Indexed: 02/04/2023]
Affiliation(s)
- P J Klasse
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York 10021, USA
| | | |
Collapse
|
50
|
Silvestri MA, Nagarajan M, De Clercq E, Pannecouque C, Cushman M. Design, Synthesis, Anti-HIV Activities, and Metabolic Stabilities of Alkenyldiarylmethane (ADAM) Non-nucleoside Reverse Transcriptase Inhibitors. J Med Chem 2004; 47:3149-62. [PMID: 15163195 DOI: 10.1021/jm049916x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The alkenyldiarylmethane (ADAM) HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs) are effective anti-HIV agents in cell culture. However, the potential clinical utility of the ADAMs is expected to be limited by the presence of methyl ester moieties that are likely to be metabolized by nonspecific esterases in blood plasma to biologically inactive carboxylic acid derivatives. The present investigation was therefore undertaken to investigate the anti-HIV activities of the ADAMs versus HIV-1(IIIB) and HIV-2(ROD) in MT-4 cells and the stabilities of the biologically active ADAMs in rat plasma. The ADAMs displayed a wide range of metabolic stabilities in rat plasma, with half-lives ranging from 0.9 to 76.6 min. A wide assortment of structural modifications was tolerated, with 18 of the 32 compounds tested displaying EC(50) values between 0.3 and 3.7 microM versus HIV-1(IIIB) in MT-4 cells, 3 compounds in the EC(50) = 13.2-35.4 microM range, and the remaining compounds inactive. Consistent with the mechanism of action of the ADAMs as NNRTIs, they were inactive or displayed comparatively low activity versus HIV-2(ROD). The replacement of the two aromatic methyl ester substituents in one of the most active ADAMs (EC(50) = 0.6 microM) with two methyl thioester groups resulted in an increase in plasma half-life from 5.8 to 55.3 min, while maintaining the antiviral potency at the EC(50) = 1.8 microM level. At the same time, the bis(thioester) modification was less cytotoxic to uninfected MT-4 cells, with a CC(50) of >224 microM versus 160 microM for the parent compound.
Collapse
Affiliation(s)
- Maximilian A Silvestri
- Department of Medicinal Chemistry and Molecular Pharmacology, School of Pharmacy and Pharmacal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | |
Collapse
|