1
|
Li M, Cao J, Wang Y, Zhao Z, Ai L, Zhang K. Predictive power of tertiary lymphoid structure for prognosis and neoadjuvant chemotherapy response in HER2-positive breast cancer. Medicine (Baltimore) 2025; 104:e42566. [PMID: 40489875 DOI: 10.1097/md.0000000000042566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/11/2025] Open
Abstract
This study evaluated the prognostic significance of tertiary lymphoid structures (TLS) in human epidermal growth factor receptor 2 (HER2)-positive breast cancer (BC), focusing on their associations with survival outcomes, response to neoadjuvant therapy, and potential as a biomarker for personalized treatment strategies. Data from patients with HER2-positive BC in the METABRIC and The Cancer Genome Atlas databases were analyzed. TLS expression scores were calculated using gene set variation analysis, and their associations with survival outcomes were assessed. Immune cell infiltration, immune checkpoint expression, tumor mutational burden, and pathway enrichment were also evaluated. Data from the I-SPY2 clinical trial and a clinicopathological cohort of 19 patients from Xiangya Hospital were used to assess the relationship between TLS expression and pathological complete response following neoadjuvant therapy. High TLS expression was associated with improved survival and increased infiltration of antitumor immune cells. TLS-high tumors were enriched in immune-related pathways, whereas TLS-low tumors showed activation of proliferation and metabolism pathways. Patients with high TLS expression had better responses to neoadjuvant therapy, while those with low TLS expression derived greater benefit from dual-targeted treatments. TLS represents a promising biomarker for predicting survival and response to neoadjuvant therapy in HER2-positive BC, with potential to support personalized treatment strategies.
Collapse
Affiliation(s)
- Mengxi Li
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Breast Cancer in Hunan Province, Changsha, Hunan, China
| | - Jing Cao
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Breast Cancer in Hunan Province, Changsha, Hunan, China
| | - Yueheng Wang
- Department of Clinical Medicine, Queen Marry School, Nanchang University, Nanchang, Jiangxi, China
| | - Ziru Zhao
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Breast Cancer in Hunan Province, Changsha, Hunan, China
| | - Liqiang Ai
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Kejing Zhang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Breast Cancer in Hunan Province, Changsha, Hunan, China
| |
Collapse
|
2
|
Kado S, Komine M. Recent Advances in Molecular Research and Treatment for Melanoma in Asian Populations. Int J Mol Sci 2025; 26:5370. [PMID: 40508177 PMCID: PMC12154924 DOI: 10.3390/ijms26115370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 05/29/2025] [Accepted: 05/30/2025] [Indexed: 06/16/2025] Open
Abstract
Melanoma treatment comprised a few treatment choices with insufficient efficacy before the emergence of molecularly targeted medication and immune checkpoint inhibitors, which dramatically improved patient outcomes. B-Rapidly Accelerated Fibrosarcoma (BRAF) and Mitogen-Activated Protein Kinase (MAPK) Kinase (MEK) inhibitors significantly improved survival in BRAF-mutant melanoma and immune checkpoint inhibitors, such as anti-programmed cell death 1 (PD-1) and Cytotoxic T-Lymphocyte Antigen 4 (CTLA-4) agents, established new standards of care. Challenges remain, however, including the existence of resistance mechanisms and the reduced efficacy of immune-based therapies in Asian populations, particularly for acral and mucosal subtypes. This review highlights historical and current therapeutic advancements, discusses regional considerations, and explores emerging strategies aiming at globally optimizing melanoma management.
Collapse
Affiliation(s)
- Soichiro Kado
- Department of Dermatology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke 329-0498, Tochigi, Japan;
| | - Mayumi Komine
- Department of Dermatology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke 329-0498, Tochigi, Japan;
- Department of Biochemistry, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke 329-0498, Tochigi, Japan
| |
Collapse
|
3
|
Yakubu I, Moinuddin I, Brown A, Sterling S, Sinhmar P, Kumar D. Costimulation blockade: the next generation. Curr Opin Organ Transplant 2025; 30:96-102. [PMID: 39882641 DOI: 10.1097/mot.0000000000001206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
PURPOSE OF REVIEW Calcineurin inhibitors (CNIs) are central to immunosuppression in kidney transplantation (KT), improving short-term outcomes but falling short in enhancing long-term outcomes due to cardiovascular, metabolic, and renal complications. Belatacept, an FDA-approved costimulation blocker, offers a less toxic alternative to CNIs but is limited by its intravenous administration and reduced efficacy in high-immunological-risk patients. RECENT FINDINGS Emerging therapies target more specific pathways to improve efficacy and accessibility. Abatacept, a first-generation cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) immunoglobulin, has shown favorable outcomes in small studies. VEL-101 and Lulizumab selectively block CD28 while preserving CTLA-4 signaling, showing promise in early trials. In the CD40/CD40L pathway, results have been mixed. Iscalimab (CD40 antibody) was inferior to tacrolimus in Phase 2 trials, and Bleselumab (CD40 antibody) showed variable rejection rates despite being noninferior to tacrolimus. CD40L-targeting agents such as TNX-1500, Tegoprubart, and Dazodalibep have demonstrated promising efficacy and safety in rejection prophylaxis. SUMMARY The focus in transplantation is shifting toward safer, long-term therapies with greater accessibility. Investigational agents with subcutaneous delivery methods could overcome logistical challenges, improve adherence, and redefine posttransplant care. These advancements in costimulation blockade may enhance long-term graft survival and transform the management of KT recipients.
Collapse
Affiliation(s)
- Idris Yakubu
- Department of Pharmacy, Virginia Commonwealth University Health System
| | - Irfan Moinuddin
- Division of Nephrology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Andrew Brown
- Department of Pharmacy, Virginia Commonwealth University Health System
| | - Sara Sterling
- Department of Pharmacy, Virginia Commonwealth University Health System
| | - Pawan Sinhmar
- Division of Nephrology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Dhiren Kumar
- Division of Nephrology, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
4
|
Lu Y, Man XY. Diversity and function of regulatory T cells in health and autoimmune diseases. J Autoimmun 2025; 151:103357. [PMID: 39805189 DOI: 10.1016/j.jaut.2025.103357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/31/2024] [Accepted: 01/04/2025] [Indexed: 01/16/2025]
Abstract
Regulatory T cell (Treg) play a pivotal role in immune regulation and maintaining host immune homeostasis. Treg heterogeneity, characterized by diverse gene expression profiles and functional states, is complex in both health and disease. Research reveals that Tregs are not a uniform population but exhibit diversity based on their origin, location, and functional status. This heterogeneity is crucial for understanding Treg roles in various pathological conditions. Dysfunctional Tregs are closely linked to the pathogenesis of autoimmune diseases, although the precise mechanisms remain unclear. The phenotypic and functional heterogeneity of Tregs is particularly significant in diseases such as systemic lupus erythematosus, multiple sclerosis, rheumatoid arthritis, inflammatory bowel disease, type 1 diabetes, psoriasis and autoimmune liver diseases. This review explores Treg origins, classifications, and heterogeneity in these conditions, aiming to provide new perspectives and strategies for diagnosis and treatment. Understanding Treg heterogeneity and plasticity promises to reveal novel therapeutic targets and advance precision immunotherapy development.
Collapse
Affiliation(s)
- Yi Lu
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Xiao-Yong Man
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China.
| |
Collapse
|
5
|
Yang H, Liu H, Zheng Y, Li B, Wang S, Zhang J, Wang J. Cornus Officinalis Total Glycosides Alleviate Granulomatous Lobular Mastitis via the B7-CD28/CTLA-4 Costimulatory Pathway. Chem Biodivers 2025; 22:e202401539. [PMID: 39344790 DOI: 10.1002/cbdv.202401539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/01/2024]
Abstract
Cornus officinalis total glycosides (COTG) derived from the traditional Chinese medicine Cornus officinalis, is a natural immunosuppressant and has been extensively studied in immunomodulation and immunosuppression. This study aimed to explore the effects of COTG on granulomatous lobular mastitis (GLM) and its associated mechanisms. Compared to the model group, COTG effectively ameliorated histopathological damage to breast tissue, reduced mammary gland suppuration, and enhanced the blood-milk barrier. Additionally, COTG treatment reduced the total number of T cells and B cells in GLM rats, significantly improving clinical indicators such as P-selectin, E-selectin, and intercellular cell adhesion molecule-1. We also observed downregulation of CD28 and B7 expression levels, an upregulation of cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) expression, and a significant decrease in inflammatory marker levels in the COTG group. COTG exerts an anti-inflammatory effect in GLM by stimulating CTLA-4, inhibiting the B7-CD28 signaling pathway affecting T cell activation, and promoting the blood-milk barrier. These findings suggest that COTG could be a promising therapeutic option for managing GLM, potentially improving patient outcomes by modulating immune responses and reinforcing the blood-milk barrier.
Collapse
Affiliation(s)
- Huafeng Yang
- Department of Breast Surgery, Punan Branch of Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hui Liu
- Department of Breast Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuan Zheng
- Department of Breast Surgery, Punan Branch of Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Bo Li
- Department of Breast Surgery, Punan Branch of Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shujing Wang
- Department of Breast Surgery, Punan Branch of Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jun Zhang
- Department of Breast Surgery, Punan Branch of Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiandong Wang
- Department of Breast Surgery, Punan Branch of Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Dhaouadi T, Riahi A, Ben Abdallah T, Gorgi Y, Sfar I. Association of four CTLA-4 gene polymorphisms with pemphigus risk: a systematic review, meta-analysis, and meta-regression. J Int Med Res 2024; 52:3000605241282116. [PMID: 39397428 PMCID: PMC11529675 DOI: 10.1177/03000605241282116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/22/2024] [Indexed: 10/15/2024] Open
Abstract
OBJECTIVES This review aimed to summarize the existing data on the contribution of four single nucleotide polymorphisms (SNPs) in the cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) genes to pemphigus susceptibility. METHODS An electronic literature search for eligible studies among those published prior to 30 April 2024 was conducted through the PubMed, EMBASE, Web of Science, and Scopus databases. To minimize publication bias, an additional search was performed via the Google Scholar and Semantic Scholar search engines. Meta-analyses, together with subgroup analyses and meta-regressions, were performed for the following four CTLA-4 SNPs: rs231775, rs5742909, rs3087243, and rs733618. RESULTS Combined analyses revealed a significant increase in pemphigus risk conferred by the CTLA-4 rs5742909*C and rs733618*C alleles. Conversely, there was no evidence of any significant association between the rs231775*G and rs3087243*G alleles and susceptibility to pemphigus. Subgroup analyses by ethnicity and pemphigus type (vulgaris or foliaceus) and meta-regressions did not reveal any significant difference. CONCLUSION This meta-analysis suggested that two of the four investigated CTLA-4 SNPs were significantly associated with increased pemphigus risk.Registration: This review has been registered on PROSPERO: CRD42024550668; available from: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42024550668.
Collapse
Affiliation(s)
- Tarak Dhaouadi
- Research Laboratory in Immunology of Renal Transplantation and Immunopathology (LR03SP01), Charles Nicolle Hospital, Tunis El Manar University, Tunisia
| | - Awatef Riahi
- Research Laboratory in Immunology of Renal Transplantation and Immunopathology (LR03SP01), Charles Nicolle Hospital, Tunis El Manar University, Tunisia
| | - Taïeb Ben Abdallah
- Research Laboratory in Immunology of Renal Transplantation and Immunopathology (LR03SP01), Charles Nicolle Hospital, Tunis El Manar University, Tunisia
| | - Yousr Gorgi
- Research Laboratory in Immunology of Renal Transplantation and Immunopathology (LR03SP01), Charles Nicolle Hospital, Tunis El Manar University, Tunisia
| | - Imen Sfar
- Research Laboratory in Immunology of Renal Transplantation and Immunopathology (LR03SP01), Charles Nicolle Hospital, Tunis El Manar University, Tunisia
| |
Collapse
|
7
|
Gu Q, Yin S, Tong X, Rui F, Zhu Y, Ma X, Huang R, Wu C, Li J. Current research insights into the role of CTLA-4 in hepatitis B virus (HBV) infection. J Viral Hepat 2024; 31:557-564. [PMID: 38771314 DOI: 10.1111/jvh.13958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/29/2024] [Accepted: 05/13/2024] [Indexed: 05/22/2024]
Abstract
Chronic hepatitis B virus (HBV) infection is a significant global public health concern, and the clearance of HBV is closely linked to the activity of HBV-specific T cells, which is regulated by various co-suppressor molecules. Cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) is among these co-suppressor molecules which induces T cell exhaustion by competitively inhibiting CD28 and dampening the function of HBV-specific T cells. CTLA-4 also plays a role in the regulation of T helper (Th) cell differentiation and influences cytokine release. In addition, CTLA-4 can impact glucose metabolism in hepatocellular carcinoma through its interaction with T regulatory (Treg) cells. This review aims to provide a comprehensive overview of the existing literature related to the role of CTLA-4 in HBV patients across different subsets of T cells. Additionally, we propose a discussion on the possible mechanisms through which CTLA-4 may contribute to HBV infection, as well as the development of HBV-induced cirrhosis and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Qi Gu
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Shengxia Yin
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, Jiangsu, China
| | - Xin Tong
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, Jiangsu, China
| | - Fajuan Rui
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yixuan Zhu
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoyan Ma
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Rui Huang
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, Jiangsu, China
| | - Chao Wu
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, Jiangsu, China
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jie Li
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
8
|
PRABOWO FA, PUNAGI AQ, ISLAM AA, HATTA M, PRIHANTONO P, SUARDANA W, AKIL MA, PIETER NA, PATELONGI I, BUKHARI A. Cancer immunoediting, PD-L1 expression, CTLA-4 and CD8+ tumor-infiltrating lymphocyte density, and chemoradiotherapy in nasopharyngeal carcinoma. Chirurgia (Bucur) 2024; 37. [DOI: 10.23736/s0394-9508.24.05682-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
9
|
Keam S, Turner N, Kugeratski FG, Rico R, Colunga-Minutti J, Poojary R, Alekseev S, Patel AB, Li YJ, Sheshadri A, Loghin ME, Woodman K, Aaroe AE, Hamidi S, Iyer PC, Palaskas NL, Wang Y, Nurieva R. Toxicity in the era of immune checkpoint inhibitor therapy. Front Immunol 2024; 15:1447021. [PMID: 39247203 PMCID: PMC11377343 DOI: 10.3389/fimmu.2024.1447021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/23/2024] [Indexed: 09/10/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) reinvigorate anti-tumor immune responses by disrupting co-inhibitory immune checkpoint molecules such as programmed cell death 1 (PD-1) and cytotoxic T lymphocyte antigen 4 (CTLA-4). Although ICIs have had unprecedented success and have become the standard of care for many cancers, they are often accompanied by off-target inflammation that can occur in any organ system. These immune related adverse events (irAEs) often require steroid use and/or cessation of ICI therapy, which can both lead to cancer progression. Although irAEs are common, the detailed molecular and immune mechanisms underlying their development are still elusive. To further our understanding of irAEs and develop effective treatment options, there is pressing need for preclinical models recapitulating the clinical settings. In this review, we describe current preclinical models and immune implications of ICI-induced skin toxicities, colitis, neurological and endocrine toxicities, pneumonitis, arthritis, and myocarditis along with their management.
Collapse
Affiliation(s)
- Synat Keam
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Naimah Turner
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Fernanda G Kugeratski
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Rene Rico
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jocelynn Colunga-Minutti
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- The University of Texas MD Anderson Cancer Center University of Texas Health (UTHealth) Houston Graduate School of Biomedical Sciences (GSBS), Houston, TX, United States
| | | | - Sayan Alekseev
- College of Sciences, The University of Texas at San Antonio, San Antonio, TX, United States
- The Cancer Prevention and Research Institute of Texas (CPRIT)-CURE Summer Undergraduate Program, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Anisha B Patel
- Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Yuanteng Jeff Li
- Department of General Internal Medicine, Section of Rheumatology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ajay Sheshadri
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Monica E Loghin
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Karin Woodman
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ashley E Aaroe
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Sarah Hamidi
- Department of Endocrine Neoplasia and HD, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Priyanka Chandrasekhar Iyer
- Department of Endocrine Neoplasia and HD, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Nicolas L Palaskas
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Yinghong Wang
- Department of Gastroenterology, Hepatology, and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Roza Nurieva
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- The University of Texas MD Anderson Cancer Center University of Texas Health (UTHealth) Houston Graduate School of Biomedical Sciences (GSBS), Houston, TX, United States
| |
Collapse
|
10
|
Pandey S, Anang V, Schumacher MM. Tumor microenvironment induced switch to mitochondrial metabolism promotes suppressive functions in immune cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 389:67-103. [PMID: 39396850 DOI: 10.1016/bs.ircmb.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Understanding the intricacies of the metabolic phenotype in immune cells and its plasticity within the tumor microenvironment is pivotal in understanding the pathology and prognosis of cancer. Unfavorable conditions and cellular stress in the tumor microenvironment (TME) exert a profound impact on cellular functions in immune cells, thereby influencing both tumor progression and immune responses. Elevated AMP:ATP ratio, a consequence of limited glucose levels, activate AMP-activated protein kinase (AMPK) while concurrently repressing the activity of mechanistic target of rapamycin (mTOR) and hypoxia-inducible factor 1-alpha (HIF-1α). The intricate balance between AMPK, mTOR, and HIF-1α activities defines the metabolic phenotype of immune cells in the TME. These Changes in metabolic phenotype are strongly associated with immune cell functions and play a crucial role in creating a milieu conducive to tumor progression. Insufficiency of nutrient and oxygen supply leads to a metabolic shift in immune cells characterized by a decrease in glycolysis and an increase in oxidative phosphorylation (OXPHOS) and fatty acid oxidation (FAO) rates. In most cases, this shift in metabolism is accompanied by a compromise in the effector functions of these immune cells. This metabolic adaptation prompts immune cells to turn down their effector functions, entering a quiescent or immunosuppressive state that may support tumor growth. This article discusses how tumor microenvironment alters the metabolism in immune cells leading to their tolerance and tumor progression, with emphasis on mitochondrial metabolism (OXPHOS and FAO).
Collapse
Affiliation(s)
- Sanjay Pandey
- Department of Radiation Oncology, Montefiorke Medical Center, Bronx, NY, United States.
| | - Vandana Anang
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States.
| | - Michelle M Schumacher
- Department of Radiation Oncology, Montefiorke Medical Center, Bronx, NY, United States; Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
11
|
De Velasco MA, Kura Y, Fujita K, Uemura H. Moving toward improved immune checkpoint immunotherapy for advanced prostate cancer. Int J Urol 2024; 31:307-324. [PMID: 38167824 DOI: 10.1111/iju.15378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/10/2023] [Indexed: 01/05/2024]
Abstract
Human prostate cancer is a heterogenous malignancy that responds poorly to immunotherapy targeting immune checkpoints. The immunosuppressive tumor microenvironment that is typical of human prostate cancer has been the main obstacle to these treatments. The effectiveness of these therapies is also hindered by acquired resistance, leading to slow progress in prostate cancer immunotherapy. Results from the highly anticipated late-stage clinical trials of PD-1/PD-L1 immune checkpoint blockade in patients with advanced prostate cancer have highlighted some of the obstacles to immunotherapy. Despite the setbacks, there is much that has been learned about the mechanisms that drive resistance, and new strategies are being developed and tested. Here, we review the status of immune checkpoint blockade and the immunosuppressive tumor microenvironment and discuss factors contributing to innate and adaptive resistance to immune checkpoint blockade within the context of prostate cancer. We then examine current strategies aiming to overcome these challenges as well as prospects.
Collapse
Affiliation(s)
- Marco A De Velasco
- Department of Genome Biology, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Yurie Kura
- Department of Genome Biology, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Kazutoshi Fujita
- Department of Urology, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Hirotsugu Uemura
- Department of Urology, Kindai University Faculty of Medicine, Osakasayama, Japan
| |
Collapse
|
12
|
Reid W, Romberg N. Inborn Errors of Immunity and Cytokine Storm Syndromes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:185-207. [PMID: 39117816 DOI: 10.1007/978-3-031-59815-9_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Inborn errors of immunity (IEI) are a diverse and growing category of more than 430 chronic disorders that share susceptibilities to infections. Whether the result of a genetic lesion that causes defective granule-dependent cytotoxicity, excessive lymphoproliferation, or an overwhelming infection represents a unique antigenic challenge, IEIs can display a proclivity for cytokine storm syndrome (CSS) development. This chapter provides an overview of CSS pathophysiology as it relates to IEIs. For each IEI, the immunologic defect and how it promotes or discourages CSS phenomena are reviewed. The IEI-associated molecular defects in pathways that are postulated to be critical to CSS physiology (i.e., toll-like receptors, T regulatory cells, the IL-12/IFNγ axis, IL-6) and, whenever possible, review strategies for treating CSS in IEI patients with molecularly directed therapies are highlighted.
Collapse
Affiliation(s)
- Whitney Reid
- Department of Pediatrics, Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Neil Romberg
- Department of Pediatrics, Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
13
|
Blanc-Durand F, Clemence Wei Xian L, Tan DSP. Targeting the immune microenvironment for ovarian cancer therapy. Front Immunol 2023; 14:1328651. [PMID: 38164130 PMCID: PMC10757966 DOI: 10.3389/fimmu.2023.1328651] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/05/2023] [Indexed: 01/03/2024] Open
Abstract
Ovarian cancer (OC) is an aggressive malignancy characterized by a complex immunosuppressive tumor microenvironment (TME). Immune checkpoint inhibitors have emerged as a breakthrough in cancer therapy by reactivating the antitumor immune response suppressed by tumor cells. However, in the case of OC, these inhibitors have failed to demonstrate significant improvements in patient outcomes, and existing biomarkers have not yet identified promising subgroups. Consequently, there remains a pressing need to understand the interplay between OC tumor cells and their surrounding microenvironment to develop effective immunotherapeutic approaches. This review aims to provide an overview of the OC TME and explore its potential as a therapeutic strategy. Tumor-infiltrating lymphocytes (TILs) are major actors in OC TME. Evidence has been accumulating regarding the spontaneous TILS response against OC antigens. Activated T-helpers secrete a wide range of inflammatory cytokines with a supportive action on cytotoxic T-cells. Simultaneously, mature B-cells are recruited and play a significant antitumor role through opsonization of target antigens and T-cell recruitment. Macrophages also form an important subset of innate immunity (M1-macrophages) while participating in the immune-stimulation context. Finally, OC has shown to engage a significant natural-killer-cells immune response, exerting direct cytotoxicity without prior sensitization. Despite this initial cytotoxicity, OC cells develop various strategies to induce an immune-tolerant state. To this end, multiple immunosuppressive molecules are secreted to impair cytotoxic cells, recruit regulatory cells, alter antigen presentation, and effectively evade immune response. Consequently, OC TME is predominantly infiltrated by immunosuppressive cells such as FOXP3+ regulatory T-cells, M2-polarized macrophages and myeloid-derived suppressor cells. Despite this strong immunosuppressive state, PD-1/PD-L1 inhibitors have failed to improve outcomes. Beyond PD-1/PD-L1, OC expresses multiple other immune checkpoints that contribute to immune evasion, and each representing potential immune targets. Novel immunotherapies are attempting to overcome the immunosuppressive state and induce specific immune responses using antibodies adoptive cell therapy or vaccines. Overall, the OC TME presents both opportunities and obstacles. Immunotherapeutic approaches continue to show promise, and next-generation inhibitors offer exciting opportunities. However, tailoring therapies to individual immune characteristics will be critical for the success of these treatments.
Collapse
Affiliation(s)
- Felix Blanc-Durand
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS), National University Hospital, Singapore, Singapore
- Yong Loo Lin School of Medicine and Cancer Science Institute (CSI), National University of Singapore (NUS), Singapore, Singapore
| | - Lai Clemence Wei Xian
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS), National University Hospital, Singapore, Singapore
- Yong Loo Lin School of Medicine and Cancer Science Institute (CSI), National University of Singapore (NUS), Singapore, Singapore
| | - David S. P. Tan
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS), National University Hospital, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University Centre for Cancer Research (N2CR) and Cancer Science Institute (CSI), National University of Singapore, Singapore, Singapore
| |
Collapse
|
14
|
Goutakoli P, Papadaki G, Repa A, Avgoustidis N, Kalogiannaki E, Flouri I, Bertsias A, Zoidakis J, Samiotaki M, Bertsias G, Semitekolou M, Verginis P, Sidiropoulos P. A Peripheral Blood Signature of Increased Th1 and Myeloid Cells Combined with Serum Inflammatory Mediators Is Associated with Response to Abatacept in Rheumatoid Arthritis Patients. Cells 2023; 12:2808. [PMID: 38132128 PMCID: PMC10741898 DOI: 10.3390/cells12242808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
Abatacept (CTLA4-Ig)-a monoclonal antibody which restricts T cell activation-is an effective treatment for rheumatoid arthritis (RA). Nevertheless, only 50% of RA patients attain clinical responses, while predictors of response are rather limited. Herein, we aimed to investigate for early biomarkers of response to abatacept, based on a detailed immunological profiling of peripheral blood (PB) cells and serum proteins. We applied flow cytometry and proteomics analysis on PB immune cells and serum respectively, of RA patients starting abatacept as the first biologic agent. After 6 months of treatment, 34.5% of patients attained response. At baseline, Th1 and FoxP3+ T cell populations were positively correlated with tender joint counts (p-value = 0.047 and p-value = 0.022, respectively). Upon treatment, CTLA4-Ig effectively reduced the percentages of Th1 and Th17 only in responders (p-value = 0.0277 and p-value = 0.0042, respectively). Notably, baseline levels of Th1 and myeloid cell populations were significantly increased in PB of responders compared to non-responders (p-value = 0.009 and p-value = 0.03, respectively). Proteomics analysis revealed that several inflammatory mediators were present in serum of responders before therapy initiation and strikingly 10 amongst 303 serum proteins were associated with clinical responses. Finally, a composite index based on selected baseline cellular and proteomics' analysis could predict response to abatacept with a high sensitivity (90%) and specificity (88.24%).
Collapse
Affiliation(s)
- Panagiota Goutakoli
- Laboratory of Rheumatology, Autoimmunity and Inflammation, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Garyfalia Papadaki
- Laboratory of Rheumatology, Autoimmunity and Inflammation, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Argyro Repa
- Rheumatology and Clinical Immunology, University Hospital of Heraklion, 71003 Heraklion, Greece; (A.R.); (N.A.); (I.F.)
| | - Nestor Avgoustidis
- Rheumatology and Clinical Immunology, University Hospital of Heraklion, 71003 Heraklion, Greece; (A.R.); (N.A.); (I.F.)
| | - Eleni Kalogiannaki
- Rheumatology and Clinical Immunology, University Hospital of Heraklion, 71003 Heraklion, Greece; (A.R.); (N.A.); (I.F.)
| | - Irini Flouri
- Rheumatology and Clinical Immunology, University Hospital of Heraklion, 71003 Heraklion, Greece; (A.R.); (N.A.); (I.F.)
| | - Antonios Bertsias
- Rheumatology and Clinical Immunology, University Hospital of Heraklion, 71003 Heraklion, Greece; (A.R.); (N.A.); (I.F.)
| | - Jerome Zoidakis
- Department of Biotechnology, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece;
| | - Martina Samiotaki
- Protein Chemistry Facility, Biomedical Sciences Research Center “Alexander Fleming”, 16672 Athens, Greece;
| | - George Bertsias
- Laboratory of Rheumatology, Autoimmunity and Inflammation, Medical School, University of Crete, 71003 Heraklion, Greece
- Rheumatology and Clinical Immunology, University Hospital of Heraklion, 71003 Heraklion, Greece; (A.R.); (N.A.); (I.F.)
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas (FORTH), 70013 Heraklion, Greece
| | - Maria Semitekolou
- Laboratory of Rheumatology, Autoimmunity and Inflammation, Medical School, University of Crete, 71003 Heraklion, Greece
- Laboratory of Cellular Immunology Division of Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Panayotis Verginis
- Laboratory of Immune Regulation and Tolerance, Division of Basic Sciences, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Prodromos Sidiropoulos
- Laboratory of Rheumatology, Autoimmunity and Inflammation, Medical School, University of Crete, 71003 Heraklion, Greece
- Rheumatology and Clinical Immunology, University Hospital of Heraklion, 71003 Heraklion, Greece; (A.R.); (N.A.); (I.F.)
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas (FORTH), 70013 Heraklion, Greece
| |
Collapse
|
15
|
Nagler CR. Inhibition of Immunological Suppression. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1255-1256. [PMID: 37987807 DOI: 10.4049/jimmunol.2300296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
This Pillars of Immunology article is a commentary on “Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25+CD4+ regulatory cells that control intestinal inflammation,” a pivotal article written by S. Read, V. Malmström, and F. Powrie, and published in the Journal of Experimental Medicine, in 2000. https://doi.org/10.1084/jem.192.2.295.
Collapse
Affiliation(s)
- Cathryn R Nagler
- Pritzker School of Molecular Engineering and Biological Sciences Division, University of Chicago, Chicago, IL
| |
Collapse
|
16
|
Guan J, Li GM. DNA mismatch repair in cancer immunotherapy. NAR Cancer 2023; 5:zcad031. [PMID: 37325548 PMCID: PMC10262306 DOI: 10.1093/narcan/zcad031] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/08/2023] [Accepted: 06/07/2023] [Indexed: 06/17/2023] Open
Abstract
Tumors defective in DNA mismatch repair (dMMR) exhibit microsatellite instability (MSI). Currently, patients with dMMR tumors are benefitted from anti-PD-1/PDL1-based immune checkpoint inhibitor (ICI) therapy. Over the past several years, great progress has been made in understanding the mechanisms by which dMMR tumors respond to ICI, including the identification of mutator phenotype-generated neoantigens, cytosolic DNA-mediated activation of the cGAS-STING pathway, type-I interferon signaling and high tumor-infiltration of lymphocytes in dMMR tumors. Although ICI therapy shows great clinical benefits, ∼50% of dMMR tumors are eventually not responsive. Here we review the discovery, development and molecular basis of dMMR-mediated immunotherapy, as well as tumor resistant problems and potential therapeutic interventions to overcome the resistance.
Collapse
Affiliation(s)
- Junhong Guan
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, China
| | - Guo-Min Li
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
17
|
Pan H, Liu P, Kroemer G, Kepp O. Preconditioning with immunogenic cell death-inducing treatments for subsequent immunotherapy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 382:279-294. [PMID: 38225106 DOI: 10.1016/bs.ircmb.2023.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Since the dawn of anticancer immunotherapy, the clinical use of immune checkpoint inhibitors (ICI) has increased exponentially. Monoclonal antibodies targeting CTLA-4 and the PD-1/PD-L1 interaction were first introduced for the treatment of patients with unresectable melanoma. In melanoma, ICI lead to durable regression in a significant number of patients and have thus been clinically approved as a first-line treatment of advanced disease. Over the past years an increasing number of regulatory approvals have been granted for the use of ICI in patients affected by a large range of distinct carcinomas. In retrospect surprisingly, it has been discovered that particularly successful chemotherapeutic treatments are able to trigger anticancer immune responses because they induce immunogenic cell death (ICD), hence killing cancer cells in a way that they elicit an immune response against tumor-associated antigens. Logically, preclinical studies as well as clinical trials are currently exploring the possibility to combine ICD inducers with ICI to obtain optimal therapeutic effects. Here, we provide a broad overview of current strategies for the implementation of combinatorial approaches involving ICD induction followed by ICI in anticancer therapy.
Collapse
Affiliation(s)
- Hui Pan
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France; Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, France
| | - Peng Liu
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France; Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| | - Oliver Kepp
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.
| |
Collapse
|
18
|
Filippini F, Giacomelli M, Bazzani C, Fredi M, Semeraro P, Tomasi C, Franceschini F, Caruso A, Cavazzana I, Giagulli C. Efficacy of COVID-19 mRNA vaccination in patients with autoimmune disorders: humoral and cellular immune response. BMC Med 2023; 21:210. [PMID: 37316832 DOI: 10.1186/s12916-023-02868-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 04/17/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND The impact of immunosuppressive therapies on the efficacy of vaccines to SARS-CoV-2 is not completely clarified. We analyzed humoral and T cell-mediated response after COVID-19 mRNA vaccine in immunosuppressed patients and patients with common variable immunodeficiency disease (CVID). PATIENTS We enrolled 38 patients and 11 healthy sex- and age-matched controls (HC). Four patients were affected by CVID and 34 by chronic rheumatic diseases (RDs). All patients with RDs were treated by corticosteroid therapy and/or immunosuppressive treatment and/or biological drugs: 14 patients were treated with abatacept, 10 with rituximab, and 10 with tocilizumab. METHODS Total antibody titer to SARS-CoV-2 spike protein was assessed by electrochemiluminescence immunoassay, CD4 and CD4-CD8 T cell-mediated immune response was analyzed by interferon-γ (IFN-γ) release assay, the production of IFN-γ-inducible (CXCL9 and CXCL10) and innate-immunity chemokines (MCP-1, CXCL8, and CCL5) by cytometric bead array after stimulation with different spike peptides. The expression of CD40L, CD137, IL-2, IFN-γ, and IL-17 on CD4 and CD8 T cells, evaluating their activation status, after SARS-CoV-2 spike peptides stimulation, was analyzed by intracellular flow cytometry staining. Cluster analysis identified cluster 1, namely the "high immunosuppression" cluster, and cluster 2, namely the "low immunosuppression" cluster. RESULTS After the second dose of vaccine, only abatacept-treated patients, compared to HC, showed a reduced anti-spike antibody response (mean: 432 IU/ml ± 562 vs mean: 1479 IU/ml ± 1051: p = 0.0034), and an impaired T cell response, compared with HC. In particular, we found a significantly reduced release of IFN-γ from CD4 and CD4-CD8 stimulated T cells, compared with HC (p = 0.0016 and p = 0.0078, respectively), reduced production of CXCL10 and CXCL9 from stimulated CD4 (p = 0.0048 and p = 0.001) and CD4-CD8 T cells (p = 0.0079 and p = 0.0006). Multivariable General Linear Model analysis confirmed a relationship between abatacept exposure and impaired production of CXCL9, CXCL10, and IFN-γ from stimulated T cells. Cluster analysis confirms that cluster 1 (including abatacept and half of rituximab treated cases) showed a reduced IFN-γ response, as well as reduced monocyte-derived chemokines All groups of patients demonstrated the ability to generate specific CD4 T activated cells after spike proteins stimulation. After the third dose of vaccine, abatacept-treated patients acquired the ability to produce a strong antibody response, showing an anti-S titer significantly higher compared to that obtained after the second dose (p = 0.0047), and comparable with the anti-S titer of the other groups. CONCLUSIONS Patients treated with abatacept showed an impaired humoral immune response to two doses of COVID-19 vaccine. The third vaccine dose has been demonstrated to be useful to induce a more robust antibody response to balance an impaired T cell-mediated one. All patients, exposed to different immunosuppressive drugs, were able to produce specific CD4-activated T cells, after spike proteins stimulation. TRIAL REGISTRATION Local Ethical Committee NP4187.
Collapse
Affiliation(s)
- Federica Filippini
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123, Brescia, Italy
| | - Mauro Giacomelli
- Section of Microbiology, ASST Spedali Civili of Brescia, 25123, Brescia, Italy
| | - Chiara Bazzani
- Rheumatology and Clinical Immunology, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Micaela Fredi
- Rheumatology and Clinical Immunology, ASST Spedali Civili of Brescia and Department of Clinical and Experimental Sciences, University of Brescia, 25123, Brescia, Italy
| | - Paolo Semeraro
- Rheumatology and Clinical Immunology, ASST Spedali Civili of Brescia and Department of Clinical and Experimental Sciences, University of Brescia, 25123, Brescia, Italy
| | - Cesare Tomasi
- Rheumatology and Clinical Immunology, ASST Spedali Civili of Brescia and Department of Clinical and Experimental Sciences, University of Brescia, 25123, Brescia, Italy
| | - Franco Franceschini
- Rheumatology and Clinical Immunology, ASST Spedali Civili of Brescia and Department of Clinical and Experimental Sciences, University of Brescia, 25123, Brescia, Italy
| | - Arnaldo Caruso
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123, Brescia, Italy
| | - Ilaria Cavazzana
- Rheumatology and Clinical Immunology, ASST Spedali Civili of Brescia, Brescia, Italy.
| | - Cinzia Giagulli
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123, Brescia, Italy
| |
Collapse
|
19
|
Istomine R, Al-Aubodah TA, Alvarez F, Smith JA, Wagner C, Piccirillo CA. The eIF4EBP-eIF4E axis regulates CD4 + T cell differentiation through modulation of T cell activation and metabolism. iScience 2023; 26:106683. [PMID: 37187701 PMCID: PMC10176268 DOI: 10.1016/j.isci.2023.106683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 02/27/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
CD4+ T cells are critical for adaptive immunity, differentiating into distinct effector and regulatory subsets. Although the transcriptional programs underlying their differentiation are known, recent research has highlighted the importance of mRNA translation in determining protein abundance. We previously conducted genome-wide analysis of translation in CD4+ T cells revealing distinct translational signatures distinguishing these subsets, identifying eIF4E as a central differentially translated transcript. As eIF4E is vital for eukaryotic translation, we examined how altered eIF4E activity affected T cell function using mice lacking eIF4E-binding proteins (BP-/-). BP-/- effector T cells showed elevated Th1 responses ex vivo and upon viral challenge with enhanced Th1 differentiation observed in vitro. This was accompanied by increased TCR activation and elevated glycolytic activity. This study highlights how regulating T cell-intrinsic eIF4E activity can influence T cell activation and differentiation, suggesting the eIF4EBP-eIF4E axis as a potential therapeutic target for controlling aberrant T cell responses.
Collapse
Affiliation(s)
- Roman Istomine
- Department of Microbiology and Immunology, McGill University, Montréal, QC H3A 2B4, Canada
- Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada
- Centre of Excellence in Translational Immunology (CETI), Montréal, QC H4A 3J1, Canada
| | - Tho-Alfakar Al-Aubodah
- Department of Microbiology and Immunology, McGill University, Montréal, QC H3A 2B4, Canada
- Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada
- Centre of Excellence in Translational Immunology (CETI), Montréal, QC H4A 3J1, Canada
| | - Fernando Alvarez
- Department of Microbiology and Immunology, McGill University, Montréal, QC H3A 2B4, Canada
- Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada
- Centre of Excellence in Translational Immunology (CETI), Montréal, QC H4A 3J1, Canada
| | - Jacob A. Smith
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Carston Wagner
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ciriaco A. Piccirillo
- Department of Microbiology and Immunology, McGill University, Montréal, QC H3A 2B4, Canada
- Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada
- Centre of Excellence in Translational Immunology (CETI), Montréal, QC H4A 3J1, Canada
- Corresponding author
| |
Collapse
|
20
|
Klein S, Mischke J, Beruldsen F, Prinz I, Antunes DA, Cornberg M, Kraft ARM. Individual Epitope-Specific CD8 + T Cell Immune Responses Are Shaped Differently during Chronic Viral Infection. Pathogens 2023; 12:pathogens12050716. [PMID: 37242386 DOI: 10.3390/pathogens12050716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
A hallmark in chronic viral infections are exhausted antigen-specific CD8+ T cell responses and the inability of the immune system to eliminate the virus. Currently, there is limited information on the variability of epitope-specific T cell exhaustion within one immune response and the relevance to the T cell receptor (TCR) repertoire. The aim of this study was a comprehensive analysis and comparison of three lymphocytic choriomeningitis virus (LCMV) epitope-specific CD8+ T cell responses (NP396, GP33 and NP205) in a chronic setting with immune intervention, e.g., immune checkpoint inhibitor (ICI) therapy, in regard to the TCR repertoire. These responses, though measured within the same mice, were individual and independent from each other. The massively exhausted NP396-specific CD8+ T cells revealed a significantly reduced TCR repertoire diversity, whereas less-exhausted GP33-specific CD8+ T cell responses were rather unaffected by chronicity in regard to their TCR repertoire diversity. NP205-specific CD8+ T cell responses showed a very special TCR repertoire with a prominent public motif of TCR clonotypes that was present in all NP205-specific responses, which separated this from NP396- and GP33-specific responses. Additionally, we showed that TCR repertoire shifts induced by ICI therapy are heterogeneous on the epitope level, by revealing profound effects in NP396-, less severe and opposed effects in NP205-, and minor effects in GP33-specific responses. Overall, our data revealed individual epitope-specific responses within one viral response that are differently affected by exhaustion and ICI therapy. These individual shapings of epitope-specific T cell responses and their TCR repertoires in an LCMV mouse model indicates important implications for focusing on epitope-specific responses in future evaluations for therapeutic approaches, e.g., for chronic hepatitis virus infections in humans.
Collapse
Affiliation(s)
- Sebastian Klein
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany
- Twincore Centre for Experimental and Clinical Infection Medicine, 30625 Hannover, Germany
| | - Jasmin Mischke
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany
- Twincore Centre for Experimental and Clinical Infection Medicine, 30625 Hannover, Germany
| | - Finn Beruldsen
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Immo Prinz
- Institute of Systems Immunology, University Medical Center Eppendorf, 20251 Hamburg, Germany
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Dinler A Antunes
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Markus Cornberg
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany
- Twincore Centre for Experimental and Clinical Infection Medicine, 30625 Hannover, Germany
- German Centre for Infection Research (DZIF), 30625 Hannover, Germany
- Centre for Individualised Infection Medicine (CIIM), c/o CRC Hannover, 30625 Hannover, Germany
| | - Anke R M Kraft
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany
- Twincore Centre for Experimental and Clinical Infection Medicine, 30625 Hannover, Germany
- German Centre for Infection Research (DZIF), 30625 Hannover, Germany
- Centre for Individualised Infection Medicine (CIIM), c/o CRC Hannover, 30625 Hannover, Germany
| |
Collapse
|
21
|
Bouqdayr M, Abbad A, Baba H, Saih A, Wakrim L, Kettani A. Computational analysis of structural and functional evaluation of the deleterious missense variants in the human CTLA4 gene. J Biomol Struct Dyn 2023; 41:14179-14196. [PMID: 36764830 DOI: 10.1080/07391102.2023.2178509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/04/2023] [Indexed: 02/12/2023]
Abstract
CTLA-4 is an immune checkpoint receptor that negatively regulates the T-cell function expressed after T-cell activation to break the immune response. The current study predicted the genomic analysis to explore the functional variations of missense SNPs in the human CTLA4 gene using PolyPhen2, SIFT, PANTHER, PROVEAN, Fathmm, Mutation Assessor, PhD-SNP, SNPs&GO, SNAP2, and MutPred2. Phylogenetic conservation protein was predicted by ConSurf. Protein structural analysis was carried out by I-Mutant3, MUpro, iStable2, PremPS, and ERIS servers. Molecular dynamics trajectory analysis (RMSD, RMSF, Rg, SASA, H-bonds, and PCA) was performed to analyze the dynamic behavior of native and mutant CTLA-4 at the atomic level. Our in-silico analysis suggested that C58S, G118R, P137Q, P137R, P137L, P138T, and G146L variants were predicted to be the most deleterious missense variants and highly conserved residues. Moreover, the molecular dynamics analysis proposed a decrease in the protein stability and compactness with the P137R and P138T highlighting the impact of these variants on the function of the CTLA-4 protein.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Meryem Bouqdayr
- Laboratory of Biology and Health, Faculty of Sciences Ben M'sick, Hassan II University of Casablanca, Casablanca, Morocco
- Virology Unit, Immunovirology Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Anass Abbad
- Medical Virology and BSL-3 Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Hanâ Baba
- Laboratory of Biology and Health, Faculty of Sciences Ben M'sick, Hassan II University of Casablanca, Casablanca, Morocco
- Virology Unit, Immunovirology Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Asmae Saih
- Laboratory of Biology and Health, Faculty of Sciences Ben M'sick, Hassan II University of Casablanca, Casablanca, Morocco
- Virology Unit, Immunovirology Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Lahcen Wakrim
- Virology Unit, Immunovirology Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Anass Kettani
- Laboratory of Biology and Health, Faculty of Sciences Ben M'sick, Hassan II University of Casablanca, Casablanca, Morocco
| |
Collapse
|
22
|
Knight A, Karapetyan L, Kirkwood JM. Immunotherapy in Melanoma: Recent Advances and Future Directions. Cancers (Basel) 2023; 15:1106. [PMID: 36831449 PMCID: PMC9954703 DOI: 10.3390/cancers15041106] [Citation(s) in RCA: 114] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
The use of immunotherapy in the treatment of advanced and high-risk melanoma has led to a striking improvement in outcomes. Although the incidence of melanoma has continued to rise, median survival has improved from approximately 6 months to nearly 6 years for patients with advanced inoperable stage IV disease. Recent understanding of the tumor microenvironment and its interplay with the immune system has led to the explosive development of novel immunotherapy treatments. Since the approval of the therapeutic cytokines interleukin-2 and interferon alfa-2 in the 1990s, the development of novel immune checkpoint inhibitors (ICIs), oncolytic virus therapy, and modulators of the tumor microenvironment have given way to a new era in melanoma treatment. Monoclonal antibodies directed at programmed cell death protein 1 receptor (PD-1) and its ligand (PDL-1), cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), and lymphocyte-activation gene 3 (LAG-3) have provided robust activation of the adaptive immune system, restoring immune surveillance leading to host tumor recognition and destruction. Multiple other immunomodulatory therapeutics are under investigation to overcome resistance to ICI therapy, including the toll-like receptor-9 (TLR-9) and 7/8 (TLR-7/8) agonists, stimulator of interferon genes (STING) agonists, and fecal microbiota transplantation. In this review, we focus on the recent advances in immunotherapy for the treatment of melanoma and provide an update on novel therapies currently under investigation.
Collapse
Affiliation(s)
- Andrew Knight
- Department of Medicine, Division of General Internal Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Lilit Karapetyan
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - John M. Kirkwood
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| |
Collapse
|
23
|
Goh KY, Cheng TYD, Tham SC, Lim DWT. Circulating Biomarkers for Prediction of Immunotherapy Response in NSCLC. Biomedicines 2023; 11:508. [PMID: 36831044 PMCID: PMC9953588 DOI: 10.3390/biomedicines11020508] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) constitutes the majority of the lung cancer population and the prognosis is poor. In recent years, immunotherapy has become the standard of care for advanced NSCLC patients as numerous trials demonstrated that immune checkpoint inhibitors (ICI) are more efficacious than conventional chemotherapy. However, only a minority of NSCLC patients benefit from this treatment. Therefore, there is an unmet need for biomarkers that could accurately predict response to immunotherapy. Liquid biopsy allows repeated sampling of blood-based biomarkers in a non-invasive manner for the dynamic monitoring of treatment response. In this review, we summarize the efforts and progress made in the identification of circulating biomarkers that predict immunotherapy benefit for NSCLC patients. We also discuss the challenges with future implementation of circulating biomarkers into clinical practice.
Collapse
Affiliation(s)
- Kah Yee Goh
- Division of Medical Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
| | - Terence You De Cheng
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Proteos, Singapore 138673, Singapore
| | - Su Chin Tham
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Proteos, Singapore 138673, Singapore
| | - Darren Wan-Teck Lim
- Division of Medical Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Proteos, Singapore 138673, Singapore
- Office of Academic and Clinical Development, Duke-NUS Medical School, Singapore 169857, Singapore
| |
Collapse
|
24
|
Habib JG, Liu D, Crepeau RM, Wagener ME, Ford ML. Selective CD28 blockade impacts T cell differentiation during homeostatic reconstitution following lymphodepletion. Front Immunol 2023; 13:1081163. [PMID: 36761170 PMCID: PMC9904166 DOI: 10.3389/fimmu.2022.1081163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/28/2022] [Indexed: 01/26/2023] Open
Abstract
Introduction Costimulation blockade targeting the CD28 pathway provides improved long-term renal allograft survival compared to calcineurin inhibitors but may be limited as CTLA-4-Ig (abatacept, belatacept) blocks both CD28 costimulation and CTLA-4 coinhibition. Directly targeting CD28 while leaving CTLA-4 intact may provide a mechanistic advantage. Fc-silent non-crosslinking CD28 antagonizing domain antibodies (dAb) are currently in clinical trials for renal transplantation. Given the current standard of care in renal transplantation at most US centers, it is likely that lymphodepletion via thymoglobulin induction therapy could be used in patients treated with CD28 antagonists. Thus, we investigated the impact of T cell depletion (TCD) on T cell phenotype following homeostatic reconstitution in a murine model of skin transplantation treated with anti-CD28dAb. Methods Skin from BALB/cJ donors was grafted onto C56BL/6 recipients which were treated with or without 0.2mg anti-CD4 and 10μg anti-CD8 one day prior to transplant and with or without 100μg anti-CD28dAb on days 0, 2, 4, 6, and weekly thereafter. Mice were euthanized six weeks post-transplant and lymphoid cells were analyzed by flow cytometry. Results Anti-CD28dAb reversed lymphopenia-induced differentiation of memory CD4+ T cells in the spleen and lymph node compared to TCD alone. Mice treated with TCD+anti-CD28dAb exhibited significantly improved skin graft survival compared to anti-CD28dAb alone, which was also improved compared to no treatment. In addition, the expression of CD69 was reduced on CD4+ and CD8+ T cells in the spleen and lymph node from mice that received TCD+anti-CD28dAb compared to TCD alone. While a reduced frequency of CD4+FoxP3+ T cells was observed in anti-CD28dAb treated mice relative to untreated controls, this was balanced by an increased frequency of CD8+Foxp3+ T cells that was observed in the blood and kidney of mice given TCD+anti-CD28dAb compared to TCD alone. Discussion These data demonstrate that CD28 signaling impacts the differentiation of both CD4+ and CD8+ T cells during homeostatic reconstitution following lymphodepletion, resulting in a shift towards fewer activated memory T cells and more CD8+FoxP3+ T cells, a profile that may underpin the observed prolongation in allograft survival.
Collapse
|
25
|
Li X, Peng W, Wu J, Yeung SCJ, Yang R. Advances in immune checkpoint inhibitors induced-cardiotoxicity. Front Immunol 2023; 14:1130438. [PMID: 36911712 PMCID: PMC9995967 DOI: 10.3389/fimmu.2023.1130438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) are approved as the first-line drug for treating many cancers and has shown significant survival benefits; however, it also causes immune-related adverse events (irAEs) while activating the immune system, involving multiple organs. Among them, cardiovascular immune-related adverse events (CV-irAE) are rare, but common causes of death in ICIs treated cancer patients, which manifest as myocardial, pericardial, vascular and other cardiovascular toxicities. Therefore, it is important that irAEs, especially CV-irAE should be carefully recognized and monitored during the whole ICIs treatment because early detection and treatment of CV-irAE can significantly reduce the mortality of such patients. Consequently, it is urgent to fully understand the mechanism and management strategies of CV-irAE. The effects of ICIs are multifaceted and the exact mechanism of CV-irAE is still elusive. Generally, T cells identify tumor cell antigens as well as antigen in cardiomyocytes that are the same as or homologous to those on tumor cells, thus causing myocardial damage. In addition, ICIs promote formation of cardiac troponin I (cTnI) that induces cardiac dysfunction and myocardial dilatation; moreover, ICIs also increase the production of cytokines, which promote infiltration of inflammation-linked molecules into off-target tissues. Currently, the management and treatment of cardiovascular toxicity are largely dependent on glucocorticoids, more strategies for prevention and treatment of CV-irAE, such as predictive markers are being explored. This review discusses risk factors, potential pathophysiological mechanisms, clinical manifestations, and management and treatment of CV-irAE, guiding the development of more effective prevention, treatment and management strategies in the future.
Collapse
Affiliation(s)
- Xiang Li
- Department of the Second Medical Oncology, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Wenying Peng
- Department of the Second Medical Oncology, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Jiao Wu
- Department of the Second Medical Oncology, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Sai-Ching Jim Yeung
- Department of Emergency Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, TX, United States
| | - Runxiang Yang
- Department of the Second Medical Oncology, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
26
|
Abdeladhim M, Karnell JL, Rieder SA. In or out of control: Modulating regulatory T cell homeostasis and function with immune checkpoint pathways. Front Immunol 2022; 13:1033705. [PMID: 36591244 PMCID: PMC9799097 DOI: 10.3389/fimmu.2022.1033705] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/16/2022] [Indexed: 12/16/2022] Open
Abstract
Regulatory T cells (Tregs) are the master regulators of immunity and they have been implicated in different disease states such as infection, autoimmunity and cancer. Since their discovery, many studies have focused on understanding Treg development, differentiation, and function. While there are many players in the generation and function of truly suppressive Tregs, the role of checkpoint pathways in these processes have been studied extensively. In this paper, we systematically review the role of different checkpoint pathways in Treg homeostasis and function. We describe how co-stimulatory and co-inhibitory pathways modulate Treg homeostasis and function and highlight data from mouse and human studies. Multiple checkpoint pathways are being targeted in cancer and autoimmunity; therefore, we share insights from the clinic and discuss the effect of experimental and approved therapeutics on Treg biology.
Collapse
|
27
|
Simeni Njonnou SR, Aspeslagh S, Ntsama Essomba MJ, Racu ML, Kemta Lekpa F, Vandergheynst F. Isolated adrenocorticotropic hormone deficiency and sialadenitis associated with nivolumab: a case report. J Med Case Rep 2022; 16:456. [PMID: 36482425 PMCID: PMC9733009 DOI: 10.1186/s13256-022-03663-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 10/31/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Immune checkpoint inhibition with anti-PD(L)1 and anti-CTLA4 antibodies has significantly changed cancer treatment during the last 10 years. Nevertheless, boosting the immune system with immune checkpoint inhibition can result in immune-related adverse events, affecting different organ systems, among which the endocrine system is the most affected. However, there are few descriptions of the association of immune-related adverse events, and the pathophysiology of some is still lacking. Here, we report a 70-year-old Caucasian patient treated with nivolumab (anti-PD1 monoclonal antibody) after resection of a unique relapse of melanoma in the neck region who presented with sicca syndrome, extreme fatigue, and weight loss 6 months after the start of anti-PD1 therapy. Blood tests revealed hypoglycemia and secondary hypocortisolism due to isolated adrenocorticotrophic hormone deficiency. Interestingly, brain methionine positron emission tomography/magnetic resonance revealed physiological metabolism of the pituitary gland, which was not increased in size, and no hypophyseal metastasis was detected. The sicca syndrome investigation revealed the absence of anti-SSA/SSB antibodies, while the labial salivary gland biopsy showed lymphoplasmatocytic infiltrates with a focus score of 1. To provide new insights into the physiopathology of the anti-PD1-related sialadenitis, we investigated the distribution of aquaporins 5 by immunostaining on the labial salivary gland acini, and compared this distribution with the one expressed in the primary Sjögren's syndrome. Contrary to patients with primary Sjögren's syndrome (in whom aquaporins 5 is mainly expressed at the basolateral side), but similar to the patients with no sialadenitis, we observed expression of aquaporins 5 at the apical pole. This new finding deserves to be confirmed in other patients with anti-PD1-related sialadenitis. Owing to these immune-related adverse events, anti-PD1 was stopped; nevertheless, the patient developed a new relapse 1 year later (March 2020) in the neck region, which was treated by radiotherapy. Since then, no relapse of melanoma was seen (1.5 years after radiotherapy), but the patient still requires hypophyseal replacement therapy. The sialoadenitis resolved partially. CONCLUSION We report a combination of sialoadenitis and hypophysitis explaining extreme fatigue in a patient who was treated in the adjuvant setting with anti-PD1 for a melanoma relapse.
Collapse
Affiliation(s)
- Sylvain Raoul Simeni Njonnou
- grid.8201.b0000 0001 0657 2358Department of Internal Medicine and Specialties, Faculty of Medicine and Pharmaceutical Sciences, University of Dschang, Dschang 96, Cameroon ,grid.412157.40000 0000 8571 829XDepartment of Internal Medicine, Erasmus Hospital, Université Libre de Bruxelles, Route de Lennik 880, 1070 Brussels, Belgium ,Dschang District Hospital, Dschang, Cameroon
| | - Sandrine Aspeslagh
- grid.412157.40000 0000 8571 829XDepartment of Medical Oncology, Erasmus Hospital, Université Libre de Bruxelles, Route de Lennik 880, 1070 Brussels, Belgium
| | - Marie-Josiane Ntsama Essomba
- grid.412661.60000 0001 2173 8504Department of Internal Medicine and Specialties, Faculty of Medicine and Biomedical Sciences, University of Yaounde I, Yaounde, Cameroon
| | - Marie-Lucie Racu
- grid.412157.40000 0000 8571 829XDepartment of Pathology, Erasmus Hospital, Université Libre de Bruxelles, Route de Lennik 880, 1070 Brussels, Belgium
| | - Fernando Kemta Lekpa
- grid.8201.b0000 0001 0657 2358Department of Internal Medicine and Specialties, Faculty of Medicine and Pharmaceutical Sciences, University of Dschang, Dschang 96, Cameroon
| | - Frédéric Vandergheynst
- grid.412157.40000 0000 8571 829XDepartment of Internal Medicine, Erasmus Hospital, Université Libre de Bruxelles, Route de Lennik 880, 1070 Brussels, Belgium
| |
Collapse
|
28
|
Hunia J, Gawalski K, Szredzka A, Suskiewicz MJ, Nowis D. The potential of PARP inhibitors in targeted cancer therapy and immunotherapy. Front Mol Biosci 2022; 9:1073797. [PMID: 36533080 PMCID: PMC9751342 DOI: 10.3389/fmolb.2022.1073797] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/15/2022] [Indexed: 07/29/2023] Open
Abstract
DNA damage response (DDR) deficiencies result in genome instability, which is one of the hallmarks of cancer. Poly (ADP-ribose) polymerase (PARP) enzymes take part in various DDR pathways, determining cell fate in the wake of DNA damage. PARPs are readily druggable and PARP inhibitors (PARPi) against the main DDR-associated PARPs, PARP1 and PARP2, are currently approved for the treatment of a range of tumor types. Inhibition of efficient PARP1/2-dependent DDR is fatal for tumor cells with homologous recombination deficiencies (HRD), especially defects in breast cancer type 1 susceptibility protein 1 or 2 (BRCA1/2)-dependent pathway, while allowing healthy cells to survive. Moreover, PARPi indirectly influence the tumor microenvironment by increasing genomic instability, immune pathway activation and PD-L1 expression on cancer cells. For this reason, PARPi might enhance sensitivity to immune checkpoint inhibitors (ICIs), such as anti-PD-(L)1 or anti-CTLA4, providing a rationale for PARPi-ICI combination therapies. In this review, we discuss the complex background of the different roles of PARP1/2 in the cell and summarize the basics of how PARPi work from bench to bedside. Furthermore, we detail the early data of ongoing clinical trials indicating the synergistic effect of PARPi and ICIs. We also introduce the diagnostic tools for therapy development and discuss the future perspectives and limitations of this approach.
Collapse
Affiliation(s)
- Jaromir Hunia
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Karol Gawalski
- Doctoral School, Medical University of Warsaw, Warsaw, Poland
- Laboratory of Experimental Medicine, Medical University of Warsaw, Warsaw, Poland
| | | | | | - Dominika Nowis
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
- Laboratory of Experimental Medicine, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
29
|
Fathi M, Razavi SM, Sojoodi M, Ahmadi A, Ebrahimi F, Namdar A, Hojjat-Farsangi M, Gholamin S, Jadidi-Niaragh F. Targeting the CTLA-4/B7 axes in glioblastoma: preclinical evidence and clinical interventions. Expert Opin Ther Targets 2022; 26:949-961. [PMID: 36527817 DOI: 10.1080/14728222.2022.2160703] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Glioblastoma Multiforme (GBM) is one of the fatal cancers of the Central Nervous System (CNS). A variety of reasons exist for why previous immunotherapy strategies, especially Immune Checkpoint Blockers (ICBs), did not work in treating GBM patients. The cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) is a key immune checkpoint receptor. Its overexpression in cancer and immune cells causes tumor cell progression. CTLA-4 suppresses anti-tumor responses inside the GBM tumor-immune microenvironment. AREAS COVERED It has been attempted to explain the immunobiology of CTLA-4 as well as its interaction with different immune cells and cancer cells that lead to GBM progression. Additionally, CTLA-4 targeting studies have been reviewed and CTLA-4 combination therapy, as a promising therapeutic target and strategy for GBM immunotherapy, is recommended. EXPERT OPINION CTLA-4 could be a possible supplement for future cancer immunotherapies of GBM. However, many challenges remain such as the high toxicity of CTLA-4 blockers, and the unresponsiveness of most patients to immunotherapy. For the future clinical success of CTLA-4 blocker therapy, combination approaches with other targeted treatments would be a potentially effective strategy. Going forward, predictive biomarkers can be used to reduce trial timelines and increase the chance of success.
Collapse
Affiliation(s)
- Mehrdad Fathi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed-Mostafa Razavi
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Mozhdeh Sojoodi
- Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Armin Ahmadi
- Department of Chemical and Materials Engineering, The University of Alabama in Huntsville, AL, USA
| | - Farbod Ebrahimi
- Nanoparticle Process Technology, Faculty of Engineering, University of Duisburg-Essen, Duisburg, Germany
| | - Afshin Namdar
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | | | - Sharareh Gholamin
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA, USA
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
30
|
Miura Y, Isogai S, Maeda S, Kanazawa S. CTLA-4-Ig internalizes CD80 in fibroblast-like synoviocytes from chronic inflammatory arthritis mouse model. Sci Rep 2022; 12:16363. [PMID: 36180526 PMCID: PMC9525600 DOI: 10.1038/s41598-022-20694-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 09/16/2022] [Indexed: 11/09/2022] Open
Abstract
CD80 interact with CD28 and CTLA-4 on antigen-presenting cells, and function in the co-stimulatory signaling that regulates T cell activity. CTLA-4-Ig is used to treat RA by blocking co-stimulatory signaling. Chronic inflammatory arthritis was induced in D1BC mice using low-dose arthritogenic antigens and treated with CTLA-4-Ig. We performed histopathology of the joints and lymph nodes, serological examination for rheumatoid factors, and flow cytometric analysis of isolated synovial cells, including CD45- FLSs and CD45+ synovial macrophages. CTLA-4-Ig treatment ameliorated the chronic inflammatory polyarthritis. There was a decrease in the number of infiltrating lymphoid cells in the joints as well as in the levels of RF-IgG associated with a decrease in the number of B cells in the lymph nodes; more than 15% of CD45- FLSs expressed CD80, and a small number of them expressed PD-L1, indicating the presence of PD-L1/CD80 cis-heterodimers in these cells. CTLA-4-Ig internalized CD80, but not PD-L1, in isolated synovial cells. Gene ontology analysis revealed that CTLA-4-Ig internalization did not significantly alter the expression of inflammation-related genes. The therapeutic effect of CTLA-4-Ig appears to extend beyond the lymph nodes into the inflamed synovial compartment through the synergistic inactivation of T cells by the CD80 and PD-L1 axes.
Collapse
Affiliation(s)
- Yoko Miura
- Department of Neurodevelopmental Disorder Genetics, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Shyuntaro Isogai
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Shinji Maeda
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Satoshi Kanazawa
- Department of Neurodevelopmental Disorder Genetics, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan.
| |
Collapse
|
31
|
Xiang F, Zeng Z, Wang L, Yang YP, Zhang QX. Polymorphisms and AR: A Systematic Review and Meta-Analyses. Front Genet 2022; 13:899923. [PMID: 35846137 PMCID: PMC9284009 DOI: 10.3389/fgene.2022.899923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 06/08/2022] [Indexed: 11/21/2022] Open
Abstract
Background: Allergic rhinitis (AR) is an especially common disorder associated with both environmental and genetic factors, and a lot of researchers have attempted to find polymorphisms which predisposed to the disease. We conducted a meta-analysis of the most frequently researched polymorphisms to find those genes which may be susceptible to AR and then may be of value in diagnosis. Methods: Pubmed and China National Knowledge Infrastructure (CNKI) databases were searched to screen out eligible studies focusing on the correlation between polymorphisms and AR susceptibility, and then polymorphisms cited in at least 3 studies were selected. Results: The 142 papers originally selected cited 78 genes. Twelve genes (coinciding with 23 polymorphisms) were reported in more than three papers. Twenty-three polymorphisms were involved in the meta-analysis. Among the 23 polymorphisms, only 4 were found to be related to the risk of AR: IL-13 rs20541, CTLA-4 rs11571302, IL-4R RS1801275 and ACE (I/D). The remaining 19 of the 23 polymorphisms were not associated with AR. Conclusion: We found polymorphisms that could be used for AR diagnosing and those that were unrelated to AR. This may be the first step in detecting polymorphic combinations susceptible to AR (IL-13 RS20541, CTLA-4 RS11571302, IL-4R RS1801275 and ACE (I/D). In addition, our results may improve AR diagnosis and contribute to the intensive study of AR.
Collapse
Affiliation(s)
- Feng Xiang
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhen Zeng
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lu Wang
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ye Peng Yang
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qin Xiu Zhang
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Qin Xiu Zhang,
| |
Collapse
|
32
|
Wang J, Zhang X, Geng X, Shi J, Jia X, Dang S, Wang W. Risk of hepatitis B virus reactivation following treatment with abatacept: A retrospective study of international pharmacovigilance databases. EClinicalMedicine 2022; 48:101425. [PMID: 35706497 PMCID: PMC9092962 DOI: 10.1016/j.eclinm.2022.101425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/04/2022] [Accepted: 04/11/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Abatacept is a selective T-cell costimulation modulator approved for the treatment of rheumatoid arthritis, juvenile idiopathic arthritis, and psoriatic arthritis. Reports were recently published on hepatitis B virus reactivation (HBVr) in patients who were treated with abatacept. However, the literature is limited to case reports and series, and no study has investigated the relationship between HBVr and abatacept using extensive population-based databases. METHODS Using the United States Food and Drug Administration Adverse Event Reporting System (FAERS) database, we collected all cases of HBVr between Jan 1, 2006 and June 30, 2021, for abatacept and other drugs. Disproportionality was analysed using the reporting odds ratio (ROR), which was considered significant when the lower limit of the 95% CI was >1. We also conducted a confirmatory analysis in the European pharmacovigilance database, EudraVigilance. FINDINGS During the study period, 77,669 adverse cases were reported for abatacept use. There were 2889 reports of HBVr with any drug during this period, of which 55 were reported with abatacept. The ROR for HBVr with abatacept was significantly elevated at 4·80 (95% CI 3·68-6·27). All 55 cases of HBVr with abatacept were reported as serious adverse events. Of them, six individuals were hospitalised and four died. Among 832 reports of HBVr with any drug in EudraVigilance, 43 were reported with abatacept; the ROR was 8·99 (95% CI 6·61-12·23). INTERPRETATION We identified a positive signal between abatacept exposure and HBVr. Future prospective studies should further confirm the relationship and provide evidence to develop strategies involving pre-treatment screening, monitoring, and utilisation of antiviral prophylaxis when using abatacept in patients with rheumatic diseases. FUNDING This work was supported by the Fundamental Research Funds for Central Universities (xjh012019063).
Collapse
Affiliation(s)
- Jingjing Wang
- Department of Pediatrics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xin Zhang
- Department of Infectious Diseases, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaozhen Geng
- Department of Infectious Diseases, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Juanjuan Shi
- Department of Infectious Diseases, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaoli Jia
- Department of Infectious Diseases, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shuangsuo Dang
- Department of Infectious Diseases, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wenjun Wang
- Department of Infectious Diseases, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
33
|
Cascone T, Fradette J, Pradhan M, Gibbons DL. Tumor Immunology and Immunotherapy of Non-Small-Cell Lung Cancer. Cold Spring Harb Perspect Med 2022; 12:a037895. [PMID: 34580079 PMCID: PMC8957639 DOI: 10.1101/cshperspect.a037895] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Historically, non-small-cell lung cancer (NSCLC) has been regarded as a nonimmunogenic tumor; however, recent studies have shown that NSCLCs are among the most responsive cancers to monoclonal antibody immune checkpoint inhibitors (ICIs). ICIs have dramatically improved clinical outcomes for a subset of patients (∼20%) with locally advanced and metastatic NSCLC, and they have also demonstrated promise as neoadjuvant therapy for early-stage resectable disease. Nevertheless, the majority of patients with NSCLC are refractory to ICIs for reasons that are poorly understood. Thus, major questions are: how do we initially identify the patients most likely to derive significant clinical benefit from these therapies; how can we increase the number of patients benefiting; what are the mechanisms of primary and acquired resistance to immune-based therapies; are there additional immune checkpoints besides PD-1/PD-L1 and CTLA-4 that can be targeted to provide greater clinical benefit to patients; and how do we best combine ICI therapy with surgery, radiotherapy, chemotherapy, and targeted therapy? To answer these questions, we need to deploy the latest technologies to study tumors and their microenvironment and how they interact with components of the innate and adaptive immune systems. There is also a need for new preclinical model systems to investigate the molecular mechanisms of resistance to treatment and identify novel therapeutic targets. Recent advances in technology are beginning to shed new light on the immune landscape of NSCLC that may uncover biomarkers of response and maximize the clinical benefit of immune-based therapies. Identification of the mechanisms of resistance should lead to the identification of novel targets and the generation of new therapeutic strategies that improve outcomes for a greater number of patients. In the sections below, we discuss the results of studies examining the immune microenvironment in NSCLC, summarize the clinical experience with immunotherapy for NSCLC, and review candidate biomarkers of response to these agents in NSCLC.
Collapse
Affiliation(s)
- Tina Cascone
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Jared Fradette
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Monika Pradhan
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Don L Gibbons
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
34
|
Gao S, Sugimura R. The Single-Cell Level Perspective of the Tumor Microenvironment and Its Remodeling by CAR-T Cells. Cancer Treat Res 2022; 183:275-285. [PMID: 35551664 DOI: 10.1007/978-3-030-96376-7_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The tumor microenvironment (TME) is a complex milieu consisting of lymphoid cells, myeloid cells, fibroblasts, and multiple molecules, which play a key role in tumor progression and immunotherapy. TME is characterized by immune-suppressive features, which release anti-inflammatory cytokines such as IL-4 and TGFβ to skew the T cells to a Th2 state as well to polarize tumor-associated macrophages (TAMs) to an anti-inflammatory phenotype to curb the immunotherapy. Considering the heterogeneity of the TME and its role in determining response to chimeric antigen receptor (CAR)-T cells, delineating TME at a single-cell level will provide useful information for cancer treatment. First, we discuss cellular and molecular features that curb the response to CAR-T cells, for example, high expression of immune checkpoint molecules (PD-1, LAG3) and anti-inflammatory cytokines (IL-4, TGFb) that block CAR-T cell function. Then, we summarize how newly invented single-cell technologies such as spatial multi-omics would benefit the understanding of cancer immunotherapy. Finally, we will further describe recent attempts of CAR-T to remodel TME by arming the CAR-T with anti-PD-1 single-chain variants or Th1 triggering cytokines (such as IL-7, IL-12) to remodel TME into a pro-inflammatory state. Herein, we review the single-cell-level signatures of TME and the strategies of CAR-T to remodel TME.
Collapse
Affiliation(s)
- Sanxing Gao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Ryohichi Sugimura
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong.
| |
Collapse
|
35
|
Teng W, Jeng WJ, Chen WT, Lin CC, Lin CY, Lin SM, Sheen IS. Soluble form of CTLA-4 is a good predictor for tumor recurrence after radiofrequency ablation in hepatocellular carcinoma patients. Cancer Med 2022; 11:3786-3795. [PMID: 35435327 PMCID: PMC9582685 DOI: 10.1002/cam4.4760] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND A soluble form of cytotoxic-T-lymphocyte-antigen-4 (sCTLA-4) is a prognostic biomarker for several cancers but remains unclear in HCC patients. The aim of study is to evaluate the predictive role of serum sCTLA-4 levels for tumor recurrence of chronic hepatis C (CHC)-HCC patients receiving radiofrequency ablation (RFA). MATERIAL AND METHOD A prospective study recruiting 88 CHC-HCC patients was done between 2013 and 2019. Cox regression analysis was used to determine the predictors of early recurrence. All tests were two-tailed, and the level of statistical significance was set as p < 0.05. RESULTS During a median follow-up of 44.4 months, 53 of the 88 (60.2%) CHC-HCC patients encountered early recurrence within 2 years. The predictability of sCTLA-4 for local recurrence (LR) and intrahepatic metastasis (IHM) by 2-years using AUROC curve analysis were 0.740 and 0.715, respectively. Patients with high sCTLA-4 levels (>9 ng/ml) encountered shorter recurrence-free survival (RFS) for LR (log-rank p = 0.017) but paradoxically longer RFS for IHM (log-rank p = 0.007) compared to those with low levels (≤9 ng/ml). By multivariate Cox regression analysis, sCTLA-4 levels and antiviral therapy were independent prognostic factor of early recurrence both in LR and IHM. A combination of baseline sCTLA-4 and AFP level could improve the predictability of early LR and IHM with specificity of 80.0% and 79.7% and positive predictive value of 63.3% and 67.3%, respectively. CONCLUSIONS sCTLA-4 level is a good predictor for early HCC recurrence with higher levels indicating susceptibility to early LR, but protecting from early IHM.
Collapse
Affiliation(s)
- Wei Teng
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou Medical Center, TaoYuan, Taiwan.,Institute of Clinical Medicine, National Yang-Ming Chiao-Tung University, Taipei, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wen-Juei Jeng
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou Medical Center, TaoYuan, Taiwan.,Institute of Clinical Medicine, National Yang-Ming Chiao-Tung University, Taipei, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wei-Ting Chen
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou Medical Center, TaoYuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chen-Chun Lin
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou Medical Center, TaoYuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chun-Yen Lin
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou Medical Center, TaoYuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shi-Ming Lin
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou Medical Center, TaoYuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - I-Shyan Sheen
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou Medical Center, TaoYuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
36
|
Gudi RR, Perez N, Karumuthil-Melethil S, Li G, Vasu C. Activation of T cell checkpoint pathways during β-cell antigen presentation by engineered dendritic cells promotes protection from type 1 diabetes. Immunology 2022; 166:341-356. [PMID: 35404483 DOI: 10.1111/imm.13476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/27/2021] [Accepted: 03/28/2022] [Indexed: 11/29/2022] Open
Abstract
Defective immune regulation has been recognized in type 1 diabetes (T1D). Immune regulatory T cell check-point receptors, which are generally upregulated on activated T cells, have been the molecules of attention as therapeutic targets for enhancing immune response in tumor therapy. Here, we show that pancreatic β-cell antigen (BcAg) presentation by engineered tolerogenic dendritic cells (tDCs) that express CTLA4 selective ligand (B7.1wa) or a combination of CTLA4, PD1 and BTLA selective ligands (B7.1wa, PD-L1, and HVEM-CRD1 respectively; multiligand-DCs) causes an increase in regulatory cytokine and T cell (Treg) responses and suppression of the effector T cell function as compared to engineered control-DCs. Non-obese diabetic (NOD) mice treated with BcAg-pulsed CTLA4-ligand-DCs and multiligand-DCs at pre-diabetic and early-hyperglycemic stages showed significantly lower degree of insulitis, higher frequencies of insulin-positive islets, profound delay in, and reversal of, hyperglycemia for a significant duration. Immune cells from the tDC treated mice not only produced lower amounts of IFNγ and higher amounts of IL10 and TGFβ1 upon BcAg challenge, but also failed to induce hyperglycemia upon adoptive transfer. While both CTLA4-ligand-DCs and multiligand-DCs were effective in inducing tolerance, multiligand-DC treatment produced an overall higher suppressive effect on effector T cell function and disease outcome. These studies show that enhanced engagement of T cell checkpoint receptors during BcAg presentation can modulate T cell function and suppress autoimmunity and progression of the disease in T1D.
Collapse
Affiliation(s)
- Radhika R Gudi
- Department of Microbiology and Immunology, College of Medicine, Medical University of South Carolina, Charleston
| | - Nicolas Perez
- Department of Surgery, College of Medicine, University of Illinois, Chicago, IL
| | | | - Gongbo Li
- Department of Surgery, College of Medicine, University of Illinois, Chicago, IL
| | - Chenthamarakshan Vasu
- Department of Microbiology and Immunology, College of Medicine, Medical University of South Carolina, Charleston.,Department of Surgery, College of Medicine, University of Illinois, Chicago, IL
| |
Collapse
|
37
|
Naimi A, Mohammed RN, Raji A, Chupradit S, Yumashev AV, Suksatan W, Shalaby MN, Thangavelu L, Kamrava S, Shomali N, Sohrabi AD, Adili A, Noroozi-Aghideh A, Razeghian E. Tumor immunotherapies by immune checkpoint inhibitors (ICIs); the pros and cons. Cell Commun Signal 2022; 20:44. [PMID: 35392976 PMCID: PMC8991803 DOI: 10.1186/s12964-022-00854-y] [Citation(s) in RCA: 252] [Impact Index Per Article: 84.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/02/2022] [Indexed: 02/07/2023] Open
Abstract
The main breakthrough in tumor immunotherapy was the discovery of immune checkpoint (IC) proteins, which act as a potent suppressor of the immune system by a myriad of mechanisms. After that, scientists focused on the immune checkpoint molecules mainly. Thereby, much effort was spent to progress novel strategies for suppressing these inhibitory axes, resulting in the evolution of immune checkpoint inhibitors (ICIs). Then, ICIs have become a promising approach and shaped a paradigm shift in tumor immunotherapies. CTLA-4 plays an influential role in attenuation of the induction of naïve and memory T cells by engagement with its responding ligands like B7-1 (CD80) and B7-2 (CD86). Besides, PD-1 is predominantly implicated in adjusting T cell function in peripheral tissues through its interaction with programmed death-ligand 1 (PD-L1) and PD-L2. Given their suppressive effects on anti-tumor immunity, it has firmly been documented that ICIs based therapies can be practical and rational therapeutic approaches to treat cancer patients. Nonetheless, tumor inherent or acquired resistance to ICI and some treatment-related toxicities restrict their application in the clinic. The current review will deliver a comprehensive overview of the ICI application to treat human tumors alone or in combination with other modalities to support more desired outcomes and lower toxicities in cancer patients. Video Abstract.
Collapse
Affiliation(s)
- Adel Naimi
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Rebar N. Mohammed
- Medical Laboratory Analysis Department, Cihan University Sulaimaniya, Sulaymaniyah, 46001 Kurdistan Region Iraq
- College of Veterinary Medicine, University of Sulaimani, Suleimanyah, Iraq
| | - Ahmed Raji
- College of Medicine, University of Babylon, Department of Pathology, Babylon, Iraq
| | - Supat Chupradit
- Department of Occupational Therapy, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200 Thailand
| | | | - Wanich Suksatan
- Faculty of Nursing, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, 10210 Thailand
| | - Mohammed Nader Shalaby
- Associate Professor of Biological Sciences and Sports Health Department, Faculty of Physical Education, Suez Canal University, Ismailia, Egypt
| | - Lakshmi Thangavelu
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, India
| | - Siavash Kamrava
- Department of Surgery, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Navid Shomali
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Armin D. Sohrabi
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Adili
- Department of Oncology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Noroozi-Aghideh
- Department of Hematology, Faculty of Paramedicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ehsan Razeghian
- Human Genetics Division, Medical Biotechnology Department, National Institute of Genetics Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
38
|
Hong MMY, Maleki Vareki S. Addressing the Elephant in the Immunotherapy Room: Effector T-Cell Priming versus Depletion of Regulatory T-Cells by Anti-CTLA-4 Therapy. Cancers (Basel) 2022; 14:1580. [PMID: 35326731 PMCID: PMC8946681 DOI: 10.3390/cancers14061580] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 02/04/2023] Open
Abstract
Cytotoxic T-lymphocyte Associated Protein 4 (CTLA-4) is an immune checkpoint molecule highly expressed on regulatory T-cells (Tregs) that can inhibit the activation of effector T-cells. Anti-CTLA-4 therapy can confer long-lasting clinical benefits in cancer patients as a single agent or in combination with other immunotherapy agents. However, patient response rates to anti-CTLA-4 are relatively low, and a high percentage of patients experience severe immune-related adverse events. Clinical use of anti-CTLA-4 has regained interest in recent years; however, the mechanism(s) of anti-CTLA-4 is not well understood. Although activating T-cells is regarded as the primary anti-tumor mechanism of anti-CTLA-4 therapies, mounting evidence in the literature suggests targeting intra-tumoral Tregs as the primary mechanism of action of these agents. Tregs in the tumor microenvironment can suppress the host anti-tumor immune responses through several cell contact-dependent and -independent mechanisms. Anti-CTLA-4 therapy can enhance the priming of T-cells by blockading CD80/86-CTLA-4 interactions or depleting Tregs through antibody-dependent cellular cytotoxicity and phagocytosis. This review will discuss proposed fundamental mechanisms of anti-CTLA-4 therapy, novel uses of anti-CTLA-4 in cancer treatment and approaches to improve the therapeutic efficacy of anti-CTLA-4.
Collapse
Affiliation(s)
- Megan M Y Hong
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, ON N6A 3K7, Canada;
| | - Saman Maleki Vareki
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, ON N6A 3K7, Canada;
- London Regional Cancer Program, Lawson Health Research Institute, London, ON N6A 5W9, Canada
- Department of Oncology, University of Western Ontario, London, ON N6A 3K7, Canada
- Department of Medical Biophysics, University of Western Ontario, London, ON N6A 3K7, Canada
| |
Collapse
|
39
|
Mutlu L, Harold J, Tymon-Rosario J, Santin AD. Immune checkpoint inhibitors for recurrent endometrial cancer. Expert Rev Anticancer Ther 2022; 22:249-258. [PMID: 35176955 DOI: 10.1080/14737140.2022.2044311] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Endometrial cancer (EC) is the most common gynecologic malignancy. Outcomes for patients with advanced and/or recurrent disease have been modest with the use of chemotherapy. The approval of immune checkpoint inhibitors targeting PD-1 have recently revolutionized human cancer treatment. Recent trials with immune checkpoint inhibitors used alone or in combination with other agents, have demonstrated remarkable efficacy in the treatment of the all-comers EC patient population. AREAS COVERED In this article, we review major clinical trials on PD-1/PD-L1 inhibitors in advanced and recurrent EC and discuss the response rates to these agents in the context of their genomic background. EXPERT OPINION Immune checkpoint inhibitors have significantly changed our approach to the treatment of advanced/recurrent EC. Single agent anti-PD-1 regimens are highly effective in MMRd/MSI-H patients, but their clinical efficacy remains modest in MMR proficient/TMB low EC patients. Combination regimens that can decrease the tumor microenvironments immunosuppression and increase tumor immunogenicity represent a viable treatment option to broaden the activity of immune checkpoint inhibitors in advanced/recurrent EC patients. An increased understanding of the biomarkers of response and the molecular mechanisms of resistance to immune checkpoint inhibitors remains key for the next advancement of the field.
Collapse
Affiliation(s)
- Levent Mutlu
- Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Gynecologic Oncology, Smilow Cancer Hospital, Yale University, School of Medicine
| | - Justin Harold
- Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Gynecologic Oncology, Smilow Cancer Hospital, Yale University, School of Medicine
| | - Joan Tymon-Rosario
- Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Gynecologic Oncology, Smilow Cancer Hospital, Yale University, School of Medicine
| | - Alessandro D Santin
- Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Gynecologic Oncology, Smilow Cancer Hospital, Yale University, School of Medicine
| |
Collapse
|
40
|
Role of CTLA Inhibition in Management of Non-Small Cell Lung Cancer. Curr Oncol Rep 2022; 24:113-123. [DOI: 10.1007/s11912-021-01164-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2021] [Indexed: 12/25/2022]
|
41
|
Vafaei S, Zekiy AO, Khanamir RA, Zaman BA, Ghayourvahdat A, Azimizonuzi H, Zamani M. Combination therapy with immune checkpoint inhibitors (ICIs); a new frontier. Cancer Cell Int 2022; 22:2. [PMID: 34980128 PMCID: PMC8725311 DOI: 10.1186/s12935-021-02407-8] [Citation(s) in RCA: 144] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 12/10/2021] [Indexed: 12/15/2022] Open
Abstract
Recently, immune checkpoint inhibitors (ICIs) therapy has become a promising therapeutic strategy with encouraging therapeutic outcomes due to their durable anti-tumor effects. Though, tumor inherent or acquired resistance to ICIs accompanied with treatment-related toxicities hamper their clinical utility. Overall, about 60-70% of patients (e.g., melanoma and lung cancer) who received ICIs show no objective response to intervention. The resistance to ICIs mainly caused by alterations in the tumor microenvironment (TME), which in turn, supports angiogenesis and also blocks immune cell antitumor activities, facilitating tumor cells' evasion from host immunosurveillance. Thereby, it has been supposed and also validated that combination therapy with ICIs and other therapeutic means, ranging from chemoradiotherapy to targeted therapies as well as cancer vaccines, can capably compromise tumor resistance to immune checkpoint blocked therapy. Herein, we have focused on the therapeutic benefits of ICIs as a groundbreaking approach in the context of tumor immunotherapy and also deliver an overview concerning the therapeutic influences of the addition of ICIs to other modalities to circumvent tumor resistance to ICIs.
Collapse
Affiliation(s)
- Somayeh Vafaei
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Angelina O. Zekiy
- Department of Prosthetic Dentistry, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Ramadhan Ado Khanamir
- Internal Medicine and Surgery Department, College of Veterinary Medicine, University of Duhok, Kurdistan Region, Iraq
| | - Burhan Abdullah Zaman
- Basic Sciences Department, College of Pharmacy, University of Duhok, Kurdistan Region, Iraq
| | | | | | - Majid Zamani
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|
42
|
Pulmonary Toxicities of Immunotherapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1342:357-375. [PMID: 34972974 DOI: 10.1007/978-3-030-79308-1_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Immune checkpoint inhibitors are a form of immunotherapy that are increasingly being used in a wide variety of cancers. Immune-related adverse events (irAEs) pose a major challenge in the treatment of cancer patients. Pneumonitis, the most common lung irAE, can cause significant disruptions in the treatment of cancer and may be life-threatening. The goal of this chapter is to instruct readers on the incidence and clinical manifestations of pneumonitis and to offer guidance in the evaluation and treatment of patients with pneumonitis.
Collapse
|
43
|
Wu Y, Yang D, Chen GY. The role of the Siglec-G ITIM domain during bacterial infection. Cell Mol Biol (Noisy-le-grand) 2022; 67:163-169. [PMID: 35809291 PMCID: PMC11397909 DOI: 10.14715/cmb/2021.67.4.18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Indexed: 01/16/2023]
Abstract
Siglecs, membrane-bound lectins of the sialic acid-binding immunoglobulin superfamily, inhibit immune responses by recruiting tyrosine phosphatases (e.g., SHP-1 and SHP-2) through their cytoplasmic immunoreceptor tyrosine-based inhibition motif (ITIM) domain. The role of Siglecs in infection has been extensively studied, but downstream signaling through the ITIM domain remains unclear. Here, we used a GST pull-down assay to identify additional proteins associated with the ITIM domain during bacterial infection. Gdi2 bound to ITIM under normal homeostasis, but Rab1a was recruited to ITIM during bacterial infection. Western blot analysis confirmed the presence of SHP-1 and SHP-2 in eluted ITIM-associated proteins under normal homeostasis. We confirmed the association of ITIM with Gdi2 or Rab1a by transfection of corresponding expression vectors in 293T cells followed by immunoprecipitation-western blot assay. Thus, ITIM's role in the inhibition of the immune response during bacterial infection may be regulated by interaction with Gdi2 and Rab1a in addition to SHP-1 and SHP-2.
Collapse
Affiliation(s)
- Yin Wu
- Children's Foundation Research Institute at Le Bonheur Children's Hospital, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38103, United States.
| | - Darong Yang
- Children's Foundation Research Institute at Le Bonheur Children's Hospital, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38103, United States.
| | - Guo-Yun Chen
- Children's Foundation Research Institute at Le Bonheur Children's Hospital, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38103, United States.
| |
Collapse
|
44
|
Khan AA, Liu ZK, Xu X. Recent advances in immunotherapy for hepatocellular carcinoma. Hepatobiliary Pancreat Dis Int 2021; 20:511-520. [PMID: 34344612 DOI: 10.1016/j.hbpd.2021.06.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 06/22/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Treatment of hepatocellular carcinoma (HCC) is challenging as most patients are diagnosed at advanced stage with underlying chronic liver conditions. Conventional systemic chemotherapy has failed in HCC, and the clinical efficacy of FDA-approved molecular targeted agents such as sorafenib and lenvatinib remains unsatisfactory. DATA SOURCES Literature search was conducted in PubMed for relevant articles published before January 2021. The search aimed to identify recent developments in immune-based treatment approaches for HCC. Information of clinical trials was obtained from https://clinicaltrials.gov/. RESULTS Two immune checkpoint inhibitors (ICIs), nivolumab and pembrolizumab were approved as monotherapies, which has revolutionized HCC treatment. Besides, combination ICIs have also got accelerated FDA approval recently. Immune-based therapies have challenged targeted drugs owing to their safety, tolerability, and survival benefits. In addition to the significant success in ICIs, other immunotherapeutic strategies such as cancer vaccine, chimeric antigen receptor T-cells, natural killer cells, cytokines, and combination therapy, have also shown promising outcomes in clinical trials. Various diagnostic and prognostic biomarkers have been identified which can help in clinical decision making when starting treatment with ICIs. CONCLUSIONS Immunotherapy has emerged as one of the mainstream treatment modalities for advanced HCC in recent years. However, challenges such as low response rate and acquired resistance in previously respondent patients still exist. Further research is needed to understand the unique resistance mechanism to immunotherapy and to discover more predictive biomarkers to guide clinical decision making.
Collapse
Affiliation(s)
- Abid Ali Khan
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Key Lab of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Ministry of Public Health, Hangzhou 310003, China
| | - Zhi-Kun Liu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Key Lab of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Ministry of Public Health, Hangzhou 310003, China
| | - Xiao Xu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Key Lab of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Ministry of Public Health, Hangzhou 310003, China; Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| |
Collapse
|
45
|
Sun H, Hartigan CR, Chen CW, Sun Y, Tariq M, Robertson JM, Krummey SM, Mehta AK, Ford ML. TIGIT regulates apoptosis of risky memory T cell subsets implicated in belatacept-resistant rejection. Am J Transplant 2021; 21:3256-3267. [PMID: 33756063 PMCID: PMC8458514 DOI: 10.1111/ajt.16571] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 02/03/2021] [Accepted: 03/01/2021] [Indexed: 01/25/2023]
Abstract
Belatacept confers increased patient and graft survival in renal transplant recipients relative to calcineurin inhibitors, but is associated with an increased rate of acute rejection. Recent immunophenotypic studies comparing pretransplant T cell phenotypes of patients who reject versus those who remain stable on belatacept identified three potential "risky" memory T cell subsets that potentially underlie belatacept-resistant rejection: CD4+ CD28+ TEM , CD8+ CD28null , and CD4+ CD57+ PD1- subsets. Here, we compared key phenotypic and functional aspects of these human memory T cell subsets, with the goal of identifying additional potential targets to modulate them. Results demonstrate that TIGIT, an increasingly well-appreciated immune checkpoint receptor, was expressed on all three risky memory T cell subsets in vitro and in vivo in the presence of belatacept. Coculture of human memory CD4+ and CD8+ T cells with an agonistic anti-TIGIT mAb significantly increased apoptotic cell death of all three risky memory T cell subsets. Mechanistically, TIGIT-mediated apoptosis of risky memory T cells was dependent on FOXP3+ Treg, suggesting that agonism of the TIGIT pathway increases FOXP3+ Treg suppression of human memory T cell populations. Overall, these data suggest that TIGIT agonism could represent a new therapeutic target to inhibit belatacept-resistant rejection during transplantation.
Collapse
Affiliation(s)
- He Sun
- Emory Transplant Center, Department of Surgery, Emory University School of Medicine, Atlanta, Georgia,Department of Transplant and Hepatobiliary Surgery, The First Hospital of China Medical University, China Medical University, Shenyang, China
| | - Christina R. Hartigan
- Emory Transplant Center, Department of Surgery, Emory University School of Medicine, Atlanta, Georgia
| | - Ching-wen Chen
- Emory Transplant Center, Department of Surgery, Emory University School of Medicine, Atlanta, Georgia
| | - Yini Sun
- Emory Transplant Center, Department of Surgery, Emory University School of Medicine, Atlanta, Georgia,Department of Transplant and Hepatobiliary Surgery, The First Hospital of China Medical University, China Medical University, Shenyang, China
| | - Marvi Tariq
- Emory Transplant Center, Department of Surgery, Emory University School of Medicine, Atlanta, Georgia
| | - Jennifer M. Robertson
- Emory Transplant Center, Department of Surgery, Emory University School of Medicine, Atlanta, Georgia
| | - Scott M. Krummey
- Emory Transplant Center, Department of Surgery, Emory University School of Medicine, Atlanta, Georgia
| | - Aneesh K. Mehta
- Emory Transplant Center, Department of Surgery, Emory University School of Medicine, Atlanta, Georgia
| | - Mandy L. Ford
- Emory Transplant Center, Department of Surgery, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
46
|
Gao C, Gardner D, Theobalds MC, Hitchcock S, Deutsch H, Amuzie C, Cesaroni M, Sargsyan D, Rao TS, Malaviya R. Cytotoxic T lymphocyte antigen-4 regulates development of xenogenic graft versus host disease in mice via modulation of host immune responses induced by changes in human T cell engraftment and gene expression. Clin Exp Immunol 2021; 206:422-438. [PMID: 34487545 DOI: 10.1111/cei.13659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 12/31/2022] Open
Abstract
Graft versus host disease (GvHD) is a major clinical problem with a significant unmet medical need. We examined the role of cytotoxic T lymphocyte antigen-4 (CTLA-4) in a xenogenic GvHD (xeno-GvHD) model induced by injection of human peripheral mononuclear cells (hPBMC) into irradiated non-obese diabetic (NOD) SCID gamma (NSG) mice. Targeting the CTLA-4 pathway by treatment with CTLA-4 immunoglobulin (Ig) prevented xeno-GvHD, while anti-CTLA-4 antibody treatment exacerbated the lethality and morbidity associated with GvHD. Xeno-GvHD is associated with infiltration of hPBMCs into the lungs, spleen, stomach, liver and colon and an increase in human proinflammatory cytokines, including interferon (IFN)-γ, tumor necrosis factor (TNF)-α and interleukin (IL)-5. Infiltration of donor cells and increases in cytokines were attenuated by treatment with CTLA-4 Ig, but remained either unaffected or enhanced by anti-CTLA-4 antibody. Further, splenic human T cell phenotyping showed that CTLA-4 Ig treatment prevented the engraftment of human CD45+ cells, while anti-CTLA-4 antibody enhanced donor T cell expansion, particularly CD4+ (CD45RO+ ) subsets, including T box transcription factor TBX21 (Tbet)+ CXCR3+ and CD25+ forkhead box protein 3 (FoxP3) cells. Comprehensive analysis of transcriptional profiling of human cells isolated from mouse spleen identified a set of 417 differentially expressed genes (DEGs) by CTLA-4 Ig treatment and 13 DEGs by anti-CTLA-4 antibody treatment. The CTLA-4 Ig regulated DEGs mapped to down-regulated apoptosis, inflammasome, T helper type 17 (Th17) and regulatory T cell (Treg ) pathways and enhanced Toll-like receptor (TLR) receptor signaling, TNF family signaling, complement system and epigenetic and transcriptional regulation, whereas anti-CTLA-4 antibody produced minimal to no impact on these gene pathways. Our results show an important role of co-inhibitory CTLA-4 signaling in xeno-GvHD and suggest the therapeutic utility of other immune checkpoint co-inhibitory pathways in the treatment of immune-mediated diseases driven by hyperactive T cells.
Collapse
Affiliation(s)
- Chunxu Gao
- Immunology Discovery, Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania, USA
| | - Debra Gardner
- Immunology Discovery, Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania, USA
| | - Marie-Clare Theobalds
- Immunology Discovery, Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania, USA
| | - Shannon Hitchcock
- Immunology Discovery, Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania, USA
| | - Heather Deutsch
- Immunology Discovery, Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania, USA
| | - Chidozie Amuzie
- Global Pathology-Nonclinical Safety, Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania, USA
| | - Matteo Cesaroni
- World Without Disease, Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania, USA
| | - Davit Sargsyan
- Translational Medicine and Early Development Statistics and Data Sciences, Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania, USA
| | - Tadimeti S Rao
- Immunology Discovery, Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania, USA
| | - Ravi Malaviya
- Immunology Discovery, Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania, USA
| |
Collapse
|
47
|
Iyalomhe O, Farwell MD. Immune PET Imaging. Radiol Clin North Am 2021; 59:875-886. [PMID: 34392924 PMCID: PMC8371717 DOI: 10.1016/j.rcl.2021.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Fluorodeoxyglucose (FDG) PET/CT is sensitive to metabolic, immune-related, and structural changes that can occur in tumors in cancer immunotherapy. Unique mechanisms of immune checkpoint inhibitors (ICIs) occasionally make response evaluation challenging, because tumors and inflammatory changes are both FDG avid. These response patterns and sequelae of ICI immunotherapy, such as immune-related adverse events, are discussed. Immune-specific PET imaging probes at preclinical stage or in early clinical trials, which may help guide clinical management of cancer patients treated with immunotherapy and likely have applications outside of oncology for other diseases in which the immune system plays a role, are reviewed.
Collapse
Affiliation(s)
- Osigbemhe Iyalomhe
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael D. Farwell
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
48
|
Xue ZX, Gao YS, Wu XL. Suppression of the CD28/B7 pathway reduces the occurrence and development of myasthenia gravis and cytokine levels. Int J Neurosci 2021; 131:854-863. [PMID: 32419569 DOI: 10.1080/00207454.2020.1759587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 12/23/2019] [Accepted: 04/01/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Myasthenia gravis (MG) is an antibody-mediated, autoimmune neuromuscular disease. Reports have indicated that the CD28/B7 ligand interactions play a crucial role during primary immune responses. Hence, the aim of the present study was to investigate the possible effects of the CD28/B7 pathway on the occurrence and development of MG and its associated cytokine factors. METHODS An experimental autoimmune myasthenia gravis (EAMG) was initially established by immunization of Lewis rats with acetylcholine receptor (AChR) α97-116 peptide. Then the rats were treated with dexamethasone and CTLA4-Ig (used for inhibiting the CD28/B7 pathway). Serum levels of AChR IgG and AChR IgG2b were then detected using ELISA. The clinical features, muscle contraction function, AChR content, expression of CD28, CTLA4, B7.1 and B7.2 in mononuclear cells of peripheral blood and the secretion of cytokines (INF-γ, IL-2, IL-10 and IL-12) in serum of rats were measured. Finally, lymphocyte proliferation upon CTLA4 IgG treatment was examined in vitro. RESULTS Inhibition of the CD28/B7 pathway and dexamethasone were found to significantly improve clinical symptoms of EAMG rats, reduce serum levels of AChR IgG, AChR IgG2b, INF-γ, IL-2, IL-10 and IL-12, the expression of CD28, CTLA4, B7.1 and B7.2 in mononuclear cells of peripheral blood, and enhance muscle contraction function and AChR content in the muscle in vivo. Meanwhile, CTLA4 IgG could abolish the increased lymphocyte proliferation following AChR stimulation in vitro. CONCLUSION Overall, the suppression of the CD28/B7 pathway by CTLA4-Ig can have the potential to retard the occurrence and development of MG.
Collapse
Affiliation(s)
- Zhan-Xia Xue
- Hebei Key Laboratory of Neuropharmacology, Department of Pharmacology, Hebei North University, Zhangjiakou, P. R. China
| | - Yong-Shan Gao
- Department of Thoracic-Cardiac Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, P. R. China
| | - Xue-Liang Wu
- Department of Vascular Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, P. R. China
| |
Collapse
|
49
|
An Z, Hu Y, Bai Y, Zhang C, Xu C, Kang X, Yang S, Li W, Zhong X. Antitumor activity of the third generation EphA2 CAR-T cells against glioblastoma is associated with interferon gamma induced PD-L1. Oncoimmunology 2021; 10:1960728. [PMID: 34408922 PMCID: PMC8366541 DOI: 10.1080/2162402x.2021.1960728] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive brain malignancy in adults and is currently incurable with conventional therapies. The use of chimeric antigen receptor (CAR) modified T cells has been successful in clinical treatment of blood cancers, except solid tumors such as GBM. This study generated two third-generation CARs targeting different epitopes of ephrin type-A receptor 2 (EphA2) and examined their anti-GBM efficacy in vitro and in tumor-bearing mice. We observed that these two types of T cells expressing CAR (CAR-T) targeting EphA2 could be activated and expanded by EphA2 positive tumor cells in vitro. The survival of tumor-bearing mice after EphA2 CAR-T cell treatment was significantly improved. T cells transduced with one of the two EphA2 CARs exhibited better anti-tumor activity, which is related to the upregulation of CXCR-1/2 and appropriate interferon-γ (IFN-γ) production. CAR-T cells expressed excessively high level of IFN-γ exhibited poor anti-tumor activity resulting from inducing the upregulation of PD-L1 in GBM cells. The combination of CAR-T cells with poor anti-tumor activity and PD1 blockade improved the efficacy in tumor-bearing mice. In conclusion, both types of EphA2 CAR-T cells eliminated 20%-50% of GBM in xenograft mouse models. The appropriate combination of IFN-γ and CXCR-1/2 levels is a key factor for evaluating the antitumor efficiency of CAR-T cells.
Collapse
Affiliation(s)
- Zhijing An
- The Clinical Center of Gene and Cell Engineering, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Yi Hu
- The Clinical Center of Gene and Cell Engineering, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Yue Bai
- The Clinical Center of Gene and Cell Engineering, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Can Zhang
- The Clinical Center of Gene and Cell Engineering, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Chang Xu
- The Clinical Center of Gene and Cell Engineering, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xun Kang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shoubo Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wenbin Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaosong Zhong
- The Clinical Center of Gene and Cell Engineering, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
50
|
Peng Y, Tao H, Gao Y, Yang Y, Chen Z. Review and Prospect of Tissue-agnostic Targeted Strategies in Anticancer Therapies. Curr Top Med Chem 2021; 21:404-425. [PMID: 32543358 DOI: 10.2174/1568026620666200616143247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/04/2020] [Accepted: 05/08/2020] [Indexed: 11/22/2022]
Abstract
Due to the increasing prevalence of cancer year by year, and the complexity and refractory nature of the disease itself, it is required to constantly innovate the development of new cancer treatment schemes. At the same time, the understanding of cancers has deepened, from the use of chemotherapy regimens with high toxicity and side effects, to the popularity of targeted drugs with specific targets, to precise treatments based on tumor characteristics rather than traditional anatomical location classification. In precision medicine, in the view of the specific cancer diseases and their biological characteristics, there is a great potential to develop tissue-agnostic targeted therapy with broad-spectrum anticancer significance. The present review has discussed tissue-agnostic targeted therapy based on the biological and genetic characteristics of cancers, expounded its theoretical basis and strategies for drug development. In addition, the feasible drug targets, FDA-approved drugs, as well as drug candidates in clinical trials have also been summarized. In conclusion, the "tissue-agnostic targeted therapy" is a breakthrough in anticancer therapies.
Collapse
Affiliation(s)
- Yu Peng
- Jiangsu Provincial Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Hongxun Tao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Yuanqing Gao
- Jiangsu Provincial Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yuanyuan Yang
- Xi'an Institute for Food and Drug Control, Xi'an Shaanxi 710054, China
| | - Zhiyong Chen
- Shaanxi Academy of Traditional Chinese Medicine, Xi'an Shaanxi 710003, China
| |
Collapse
|