1
|
Rodríguez-Caparrós A, Tani-ichi S, Casal Á, López-Ros J, Suñé C, Ikuta K, Hernández-Munain C. Interleukin-7 receptor signaling is crucial for enhancer-dependent TCRδ germline transcription mediated through STAT5 recruitment. Front Immunol 2022; 13:943510. [PMID: 36059467 PMCID: PMC9437428 DOI: 10.3389/fimmu.2022.943510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/03/2022] [Indexed: 11/29/2022] Open
Abstract
γδ T cells play important roles in immune responses by rapidly producing large quantities of cytokines. Recently, γδ T cells have been found to be involved in tissue homeostatic regulation, playing roles in thermogenesis, bone regeneration and synaptic plasticity. Nonetheless, the mechanisms involved in γδ T-cell development, especially the regulation of TCRδ gene transcription, have not yet been clarified. Previous studies have established that NOTCH1 signaling plays an important role in the Tcrg and Tcrd germline transcriptional regulation induced by enhancer activation, which is mediated through the recruitment of RUNX1 and MYB. In addition, interleukin-7 signaling has been shown to be required for Tcrg germline transcription, VγJγ rearrangement and γδ T-lymphocyte generation as well as for promoting T-cell survival. In this study, we discovered that interleukin-7 is required for the activation of enhancer-dependent Tcrd germline transcription during thymocyte development. These results indicate that the activation of both Tcrg and Tcrd enhancers during γδ T-cell development in the thymus depends on the same NOTCH1- and interleukin-7-mediated signaling pathways. Understanding the regulation of the Tcrd enhancer during thymocyte development might lead to a better understanding of the enhancer-dependent mechanisms involved in the genomic instability and chromosomal translocations that cause leukemia.
Collapse
Affiliation(s)
- Alonso Rodríguez-Caparrós
- Institute of Parasitology and Biomedicine “López-Neyra”- Spanish Scientific Research Council (IPBLN-CSIC), Technological Park of Health Sciences (PTS), Granada, Spain
| | - Shizue Tani-ichi
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Áurea Casal
- Institute of Parasitology and Biomedicine “López-Neyra”- Spanish Scientific Research Council (IPBLN-CSIC), Technological Park of Health Sciences (PTS), Granada, Spain
| | - Jennifer López-Ros
- Institute of Parasitology and Biomedicine “López-Neyra”- Spanish Scientific Research Council (IPBLN-CSIC), Technological Park of Health Sciences (PTS), Granada, Spain
| | - Carlos Suñé
- Institute of Parasitology and Biomedicine “López-Neyra”- Spanish Scientific Research Council (IPBLN-CSIC), Technological Park of Health Sciences (PTS), Granada, Spain
| | - Koichi Ikuta
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Cristina Hernández-Munain
- Institute of Parasitology and Biomedicine “López-Neyra”- Spanish Scientific Research Council (IPBLN-CSIC), Technological Park of Health Sciences (PTS), Granada, Spain
- *Correspondence: Cristina Hernández-Munain,
| |
Collapse
|
2
|
Rodríguez-Caparrós A, Álvarez-Santiago J, del Valle-Pastor MJ, Suñé C, López-Ros J, Hernández-Munain C. Regulation of T-cell Receptor Gene Expression by Three-Dimensional Locus Conformation and Enhancer Function. Int J Mol Sci 2020; 21:E8478. [PMID: 33187197 PMCID: PMC7696796 DOI: 10.3390/ijms21228478] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/29/2020] [Accepted: 11/04/2020] [Indexed: 11/16/2022] Open
Abstract
The adaptive immune response in vertebrates depends on the expression of antigen-specific receptors in lymphocytes. T-cell receptor (TCR) gene expression is exquisitely regulated during thymocyte development to drive the generation of αβ and γδ T lymphocytes. The TCRα, TCRβ, TCRγ, and TCRδ genes exist in two different configurations, unrearranged and rearranged. A correctly rearranged configuration is required for expression of a functional TCR chain. TCRs can take the form of one of three possible heterodimers, pre-TCR, TCRαβ, or TCRγδ which drive thymocyte maturation into αβ or γδ T lymphocytes. To pass from an unrearranged to a rearranged configuration, global and local three dimensional (3D) chromatin changes must occur during thymocyte development to regulate gene segment accessibility for V(D)J recombination. During this process, enhancers play a critical role by modifying the chromatin conformation and triggering noncoding germline transcription that promotes the recruitment of the recombination machinery. The different signaling that thymocytes receive during their development controls enhancer activity. Here, we summarize the dynamics of long-distance interactions established through chromatin regulatory elements that drive transcription and V(D)J recombination and how different signaling pathways are orchestrated to regulate the activity of enhancers to precisely control TCR gene expression during T-cell maturation.
Collapse
Affiliation(s)
| | | | | | | | | | - Cristina Hernández-Munain
- Institute of Parasitology and Biomedicine “López-Neyra”—Spanish Scientific Research Council (IPBLN-CSIC), Parque Tecnológico de Ciencias de la Salud (PTS), 18016 Granada, Spain; (A.R.-C.); (J.Á.-S.); (M.J.d.V.-P.); (C.S.); (J.L.-R.)
| |
Collapse
|
3
|
Rodríguez-Caparrós A, García V, Casal Á, López-Ros J, García-Mariscal A, Tani-ichi S, Ikuta K, Hernández-Munain C. Notch Signaling Controls Transcription via the Recruitment of RUNX1 and MYB to Enhancers during T Cell Development. THE JOURNAL OF IMMUNOLOGY 2019; 202:2460-2472. [DOI: 10.4049/jimmunol.1801650] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 02/11/2019] [Indexed: 12/11/2022]
|
4
|
Voon DCC, Hor YT, Ito Y. The RUNX complex: reaching beyond haematopoiesis into immunity. Immunology 2015; 146:523-36. [PMID: 26399680 DOI: 10.1111/imm.12535] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 07/13/2015] [Accepted: 07/15/2015] [Indexed: 12/24/2022] Open
Abstract
Among their diverse roles as transcriptional regulators during development and cell fate specification, the RUNX transcription factors are best known for the parts they play in haematopoiesis. RUNX proteins are expressed throughout all haematopoietic lineages, being necessary for the emergence of the first haematopoietic stem cells to their terminal differentiation. Although much progress has been made since their discoveries almost two decades ago, current appreciation of RUNX in haematopoiesis is largely grounded in their lineage-specifying roles. In contrast, the importance of RUNX to immunity has been mostly obscured for historic, technical and conceptual reasons. However, this paradigm is likely to shift over time, as a primary purpose of haematopoiesis is to resource the immune system. Furthermore, recent evidence suggests a role for RUNX in the innate immunity of non-haematopoietic cells. This review takes a haematopoiesis-centric approach to collate what is known of RUNX's contribution to the overall mammalian immune system and discuss their growing prominence in areas such as autoimmunity, inflammatory diseases and mucosal immunity.
Collapse
Affiliation(s)
- Dominic Chih-Cheng Voon
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa, Japan.,Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa, Japan
| | | | - Yoshiaki Ito
- Cancer Biology Programme, Cancer Science Institute of Singapore, Singapore
| |
Collapse
|
5
|
Hernández-Munain C. Recent insights into the transcriptional control of the Tcra/Tcrd locus by distant enhancers during the development of T-lymphocytes. Transcription 2015; 6:65-73. [PMID: 26230488 DOI: 10.1080/21541264.2015.1078429] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Tcra/Tcrd includes 2 genes with distinct developmental programs controlled by 2 distant enhancers, Eα and Eδ. These enhancers work as a developmental switch during thymocyte development and they are essential for generation of αβ and γδ T-lymphocytes. Tcra and Tcrd transit from an unrearranged configuration to a rearranged configuration during T-cell development. Eα and Eδ are responsible for transcription of their respective unrearranged genes in thymocytes but are dispensable for such functions in the context of the rearranged genes in mature T-cells. Interestingly, Eα activates transcription of the rearranged Tcrd in γδ T-lymphocytes but it is inactive in αβ T-lymphocytes.
Collapse
Affiliation(s)
- Cristina Hernández-Munain
- a Department of Cellular Biology and Immunology ; Instituto de Parasitología y Biomedicina López-Neyra (IPBLN-CSIC); Parque Tecnológico de Ciencias de la Salud (PTS) ; Armilla , Granada , Spain
| |
Collapse
|
6
|
Carico Z, Krangel MS. Chromatin Dynamics and the Development of the TCRα and TCRδ Repertoires. Adv Immunol 2015; 128:307-61. [DOI: 10.1016/bs.ai.2015.07.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Fenstermaker RA, Ciesielski MJ. EGFR Intron Recombination in Human Gliomas: Inappropriate Diversion of V(D)J Recombination? Curr Genomics 2011; 8:163-70. [PMID: 18645600 DOI: 10.2174/138920207780833838] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Revised: 02/26/2007] [Accepted: 03/26/2007] [Indexed: 12/25/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) is a membrane-bound, 170 kDa, protein tyrosine kinase that plays an important role in tumorigenesis. The EGFR gene, which is composed of over 168 kb of sequence, including a 123-kb first intron, is frequently amplified and rearranged in malignant gliomas leading to the expression of oncogenic deletion (DM) and tandem duplication (TDM) mutants. The most common DM in gliomas is EGFRvIII, which arises from recombination between introns 1 and 7 with deletion of exons 2 through 7 and intervening introns. In addition, some human gliomas express 180- to 190-kDa TDM, which are constitutively active and highly oncogenic. Both DM and TDM arise by recombination of introns that contain sequences with homology to the recombination signal sequence (RSS) heptamers and nonamers present in the V(D)J region of the immunoglobin and T lymphocyte antigen receptor genes. V(D)J RSS have also been identified in certain proto-oncogenes like bcl-2 that are involved in translocations associated with the development of human lymphomas and in other genes such as hypoxanthine-guainine phosphoribosyl transferase (HPRT) in which deletion mutations and intron rearrangements are a common phenomenon. Together with the expression of recombination associated gene (RAG) and nonhomologous end-joining (NHEJ) proteins in gliomas, these observation suggest that aberrant activity of the V(D)J recombinase may be involved in the activation of proto-oncogenes in both liquid and solid tumors.
Collapse
Affiliation(s)
- Robert A Fenstermaker
- Department of Neurosurgery, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | | |
Collapse
|
8
|
Bakshi R, Hassan MQ, Pratap J, Lian JB, Montecino MA, van Wijnen AJ, Stein JL, Imbalzano AN, Stein GS. The human SWI/SNF complex associates with RUNX1 to control transcription of hematopoietic target genes. J Cell Physiol 2010; 225:569-76. [PMID: 20506188 DOI: 10.1002/jcp.22240] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The acute myeloid leukemia 1 (AML1, RUNX1) transcription factor is a key regulator of hematopoietic differentiation that forms multi-protein complexes with co-regulatory proteins. These complexes are assembled at target gene promoters in nuclear microenvironments to mediate phenotypic gene expression and chromatin-related epigenetic modifications. Here, immunofluorescence microscopy and biochemical assays are used to show that RUNX1 associates with the human ATP-dependent SWI/SNF chromatin remodeling complex. The SWI/SNF subunits BRG1 and INI1 bind in vivo to RUNX1 target gene promoters (e.g., GMCSF, IL3, MCSF-R, MIP, and p21). These interactions correlate with histone modifications characteristic of active chromatin, including acetylated H4 and dimethylated H3 lysine 4. Downregulation of RUNX1 by RNA interference diminishes the binding of BRG1 and INI1 at selected target genes. Taken together, our findings indicate that RUNX1 interacts with the human SWI/SNF complex to control hematopoietic-specific gene expression.
Collapse
Affiliation(s)
- Rachit Bakshi
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
del Blanco B, Roberts JL, Zamarreño N, Balmelle-Devaux N, Hernández-Munain C. Flexible Stereospecific Interactions and Composition within Nucleoprotein Complexes Assembled on the TCRα Gene Enhancer. THE JOURNAL OF IMMUNOLOGY 2009; 183:1871-83. [DOI: 10.4049/jimmunol.0803351] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Abstract
Mammals contend with a universe of evolving pathogens by generating an enormous diversity of antigen receptors during lymphocyte development. Precursor B and T cells assemble functional immunoglobulin (Ig) and T cell receptor (TCR) genes via recombination of numerous variable (V), diversity (D), and joining (J) gene segments. Although this combinatorial process generates significant diversity, genetic reorganization is inherently dangerous. Thus, V(D)J recombination must be tightly regulated to ensure proper lymphocyte development and avoid chromosomal translocations that cause lymphoid tumors. Each genomic rearrangement is mediated by a common V(D)J recombinase that recognizes sequences flanking all antigen receptor gene segments. The specificity of V(D)J recombination is due, in large part, to changes in the accessibility of chromatin at target gene segments, which either permits or restricts access to recombinase. The chromatin configuration of antigen receptor loci is governed by the concerted action of enhancers and promoters, which function as accessibility control elements (ACEs). In general, ACEs act as conduits for transcription factors, which in turn recruit enzymes that covalently modify or remodel nucleosomes. These ACE-mediated alterations are critical for activation of gene segment transcription and for opening chromatin associated with recombinase target sequences. In this chapter, we describe advances in understanding the mechanisms that control V(D)J recombination at the level of chromatin accessibility. The discussion will focus on cis-acting regulation by ACEs, the nuclear factors that control ACE function, and the epigenetic modifications that establish recombinase accessibility.
Collapse
Affiliation(s)
- Robin Milley Cobb
- Department of Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | | | | | | |
Collapse
|
11
|
Growney JD, Shigematsu H, Li Z, Lee BH, Adelsperger J, Rowan R, Curley DP, Kutok JL, Akashi K, Williams IR, Speck NA, Gilliland DG. Loss of Runx1 perturbs adult hematopoiesis and is associated with a myeloproliferative phenotype. Blood 2005; 106:494-504. [PMID: 15784726 PMCID: PMC1895175 DOI: 10.1182/blood-2004-08-3280] [Citation(s) in RCA: 363] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Homozygous loss of function of Runx1 (Runt-related transcription factor 1 gene) during murine development results in an embryonic lethal phenotype characterized by a complete lack of definitive hematopoiesis. In light of recent reports of disparate requirements for hematopoietic transcription factors during development as opposed to adult hematopoiesis, we used a conditional gene-targeting strategy to effect the loss of Runx1 function in adult mice. In contrast with the critical role of Runx1 during development, Runx1 was not essential for hematopoiesis in the adult hematopoietic compartment, though a number of significant hematopoietic abnormalities were observed. Runx1 excision had lineage-specific effects on B- and T-cell maturation and pronounced inhibition of common lymphocyte progenitor production. Runx1 excision also resulted in inefficient platelet production. Of note, Runx1-deficient mice developed a mild myeloproliferative phenotype characterized by an increase in peripheral blood neutrophils, an increase in myeloid progenitor populations, and extramedullary hematopoiesis composed of maturing myeloid and erythroid elements. These findings indicate that Runx1 deficiency has markedly different consequences during development compared with adult hematopoiesis, and they provide insight into the phenotypic manifestations of Runx1 deficiency in hematopoietic malignancies.
Collapse
Affiliation(s)
- Joseph D Growney
- Division of Hematology and Department of Pathology, Brigham and Women's Hospital, 1 Blackfan Circle, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Balmelle N, Zamarreño N, Krangel MS, Hernández-Munain C. Developmental Activation of the TCR α Enhancer Requires Functional Collaboration among Proteins Bound Inside and Outside the Core Enhancer. THE JOURNAL OF IMMUNOLOGY 2004; 173:5054-63. [PMID: 15470049 DOI: 10.4049/jimmunol.173.8.5054] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The TCR delta enhancer (Edelta) and TCR alpha enhancer (Ealpha) play critical roles in the temporal and lineage-specific control of V(D)J recombination and transcription at the TCR alphadelta locus, working as a developmental switch controlling a transition from TCR delta to TCR alpha activity during thymocyte development. Previous experiments using a transgenic reporter substrate revealed that substitution of the 116-bp minimal Ealpha, denoted Talpha1-Talpha2, for the entire 1.4-kb Ealpha led to a premature activation of V(D)J recombination. This suggested that binding sites outside of Talpha1-Talpha2 are critical for the strict developmental regulation of TCR alpha rearrangement. We have further analyzed Ealpha to better understand the mechanisms responsible for appropriate developmental regulation in vivo. We found that a 275-bp Ealpha fragment, denoted Talpha1-Talpha4, contains all binding sites required for proper developmental regulation in vivo. This suggests that developmentally appropriate enhancer activation results from a functional interaction between factors bound to Talpha1-Talpha2 and Talpha3-Talpha4. In support of this, EMSAs reveal the formation of a large enhanceosome complex that reflects the cooperative assembly of proteins bound to both Talpha1-Talpha2 and Talpha3-Talpha4. Our data suggest that enhanceosome assembly is critical for developmentally appropriate activation of Ealpha in vivo, and that transcription factors, Sp1 and pCREB, may play unique roles in this process.
Collapse
Affiliation(s)
- Nadège Balmelle
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Spain
| | | | | | | |
Collapse
|
13
|
Abstract
Core binding factors are heterodimeric transcription factors containing a DNA binding Runx1, Runx2, or Runx3 subunit, along with a non DNA binding CBF beta subunit. All four subunits are required at one or more stages of hematopoiesis. This review describes the role of Runx1 and CBF beta in the initiation of hematopoiesis in the embryo, and in the emergence of hematopoietic stem cells. We also discuss the later stages of hematopoiesis for which members of the core binding factor family are required, as well as the recently described roles for these proteins in autoimmunity.
Collapse
Affiliation(s)
- Marella F T R de Bruijn
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | | |
Collapse
|
14
|
Uenishi H, Hiraiwa H, Yamamoto R, Yasue H, Takagaki Y, Shiina T, Kikkawa E, Inoko H, Awata T. Genomic structure around joining segments and constant regions of swine T-cell receptor alpha/delta (TRA/TRD) locus. Immunology 2003; 109:515-26. [PMID: 12871218 PMCID: PMC1783003 DOI: 10.1046/j.1365-2567.2003.01695.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2002] [Revised: 04/10/2003] [Accepted: 05/15/2003] [Indexed: 11/20/2022] Open
Abstract
A complete genomic region of 131.2 kb including the swine T-cell receptor alpha/delta constant region (TRAC/TRDC) and joining segments (TRAJ/TRDJ) was sequenced. The structure of this region was strikingly conserved in comparison to that of human or mouse. All of the 61 TRAJ segments detected in the human genomic sequence were detected in the swine sequence and the sequence of the protein binding site of T early alpha, the sequence of the alpha enhancer element and the conserved sequence block between TRAJ3 and TRAJ4 are highly conserved. Insertion of the repetitive sequences that interspersed after the differentiation of the species in mammals such as short interspersed nucleotide elements is markedly suppressed in comparison to other genomic regions, while the composition of the mammalian-wide interspersed sequences is relatively conserved in human and swine. This observation indicates the existence of a highly selective pressure to conserve this genomic region around TRAJ throughout the evolution of mammals.
Collapse
Affiliation(s)
- Hirohide Uenishi
- Genome Research Department, National Institute of Agrobiological Sciences, Ibaraki, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Hernández-Munain C, Krangel MS. Distinct roles for c-Myb and core binding factor/polyoma enhancer-binding protein 2 in the assembly and function of a multiprotein complex on the TCR delta enhancer in vivo. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:4362-9. [PMID: 12370369 DOI: 10.4049/jimmunol.169.8.4362] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Enhancers and promoters within TCR loci functionally collaborate to modify chromatin structure and to confer accessibility to the transcription and V(D)J recombination machineries during T cell development in the thymus. Two enhancers at the TCRalphadelta locus, the TCR alpha enhancer and the TCR delta enhancer (Edelta), are responsible for orchestrating the distinct developmental programs for V(D)J recombination and transcription of the TCR alpha and delta genes, respectively. Edelta function depends critically on transcription factors core binding factor (CBF)/polyoma enhancer-binding protein 2 (PEBP2) and c-Myb as measured by transcriptional activation of transiently transfected substrates in Jurkat cells, and by activation of V(D)J recombination within chromatin-integrated substrates in transgenic mice. To understand the molecular mechanisms for synergy between these transcription factors in the context of chromatin, we used in vivo footprinting to study the requirements for protein binding to Edelta within wild-type and mutant versions of a human TCR delta minilocus in stably transfected Jurkat cells. Our data indicate that CBF/PEBP2 plays primarily a structural role as it induces a conformational change in the enhanceosome that is associated with augmented binding of c-Myb. In contrast, c-Myb has no apparent affect on CBF/PEBP2 binding, but is critical for transcriptional activation. Thus, our data reveal distinct functions for c-Myb and CBF/PEBP2 in the assembly and function of an Edelta enhanceosome in the context of chromatin in vivo.
Collapse
MESH Headings
- Base Sequence
- Binding Sites/genetics
- Binding Sites/immunology
- Core Binding Factor Alpha 1 Subunit
- Core Binding Factor beta Subunit
- Core Binding Factors
- DNA Footprinting
- DNA-Binding Proteins/metabolism
- DNA-Binding Proteins/physiology
- Enhancer Elements, Genetic/immunology
- Humans
- Jurkat Cells
- Molecular Sequence Data
- Neoplasm Proteins
- Protein Conformation
- Proto-Oncogene Proteins c-myb/metabolism
- Proto-Oncogene Proteins c-myb/physiology
- Receptors, Antigen, T-Cell, gamma-delta/analysis
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Transcription Factor AP-2
- Transcription Factors/metabolism
- Transcription Factors/physiology
- Transcriptional Activation/immunology
- Transfection
- Tumor Cells, Cultured
Collapse
|
16
|
Matte C, Lacaille J, Zijenah L, Ward B, Roger M. HLA-G exhibits low level of polymorphism in indigenous East Africans. Hum Immunol 2002; 63:495-501. [PMID: 12039526 DOI: 10.1016/s0198-8859(02)00391-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Human leukocyte antigen G (HLA-G) is a nonclassical HLA class I antigen that is predominantly expressed on invasive cytotrophoblastic cells, and is postulated to be a mediator of maternal-fetal tolerance. Almost all studies in Caucasian and Asian populations have consistently reported that HLA-G exhibits low levels of allelic polymorphism unlike the classical class I genes. However, the concept that HLA-G is nonpolymorphic has recently been challenged in a single study of African-American subjects. We have examined the DNA sequences of the first seven HLA-G exons by single-strand conformational polymorphism (SSCP) and DNA direct sequencing procedures in 45 healthy individuals from an indigenous African population. Overall, we detected 14 sequence variations: 3 in the signal peptide (exon 1); 2 in the alpha-1 domain (exon 2); 5 in the alpha-2 domain (exon 3); 2 in alpha-3 domain (exon 4); 2 in transmembrane domain (exon 5); and none in the cytoplasmic tail (exons 6 and 7). Of these variants, only three result in amino acid substitutions at the protein level. Of particular interest, we identified a novel nucleotide substitution (C727T), 56 bp before the HLA-G gene transcription start site, located in the putative binding site for polyomavirus enhancer-binding protein 2 (PEBP2) transcriptor factor. These data confirm previous reports describing HLA-G exhibiting limited allelic polymorphism. Further studies are needed to determine the impact of the C727T polymorphism on the level or developmental regulation of HLA-G expression.
Collapse
Affiliation(s)
- Claudine Matte
- Laboratoire d'Immunogénétique, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Canada
| | | | | | | | | |
Collapse
|
17
|
Affiliation(s)
- D G Hesslein
- Department of Cell Biology and Section of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06520-8011, USA.
| | | |
Collapse
|
18
|
Krangel MS, McMurry MT, Hernandez-Munain C, Zhong XP, Carabana J. Accessibility control of T cell receptor gene rearrangement in developing thymocytes. The TCR alpha/delta locus. Immunol Res 2001; 22:127-35. [PMID: 11339350 DOI: 10.1385/ir:22:2-3:127] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The joining of T cell receptor (TCR) and immunoglobulin (Ig) gene segments through the process of V(D)J recombination occurs in a lineage-specific and developmental-stage-specific way during the early stages of lymphocyte development. Such developmental regulation is thought to be mediated through the control of gene segment accessibility to the recombinase. We have studied the regulation of V(D)J recombination at the TCR alpha/delta locus, because this locus provides a fascinating model in which distinct sets of gene segments are activated at different stages of T cell development. The transcriptional enhancers Edelta and Ealpha have been implicated as critical regulators that, in conjunction with other cis-acting elements, confer region-specific and developmental-stage-specific changes in gene segment accessibility within TCR alpha/delta locus chromatin. Current work suggests that they may do so by functioning as regional modulators of histone acetylation.
Collapse
Affiliation(s)
- M S Krangel
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | |
Collapse
|
19
|
Bendall HH, Sikes ML, Oltz EM. Transcription factor NF-kappa B regulates Ig lambda light chain gene rearrangement. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:264-9. [PMID: 11418658 DOI: 10.4049/jimmunol.167.1.264] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The tissue- and stage-specific assembly of Ig and TCR genes is mediated by a common V(D)J recombinase complex in precursor lymphocytes. Directed alterations in the accessibility of V, D, and J gene segments target the recombinase to specific Ag receptor loci. Accessibility within a given locus is regulated by the functional interaction of transcription factors with cognate enhancer elements and correlates with the transcriptional activity of unrearranged gene segments. As demonstrated in our prior studies, rearrangement of the Igkappa locus is regulated by the inducible transcription factor NF-kappaB. In contrast to the Igkappa locus, known transcriptional control elements in the Iglambda locus lack functional NF-kappaB binding sites. Consistent with this observation, the expression of assembled Iglambda genes in mature B cells has been shown to be NF-kappaB independent. Nonetheless, we now show that specific repression of NF-kappaB inhibits germline transcription and recombination of Iglambda gene segments in precursor B cells. Molecular analyses indicate that the block in NF-kappaB impairs Iglambda rearrangement at the level of recombinase accessibility. In contrast, the activities of known Iglambda promoter and enhancer elements are unaffected in the same cellular background. These findings expand the range of NF-kappaB action in precursor B cells beyond Igkappa to include the control of recombinational accessibility at both L chain loci. Moreover, our results strongly suggest the existence of a novel Iglambda regulatory element that is either directly or indirectly activated by NF-kappaB during the early stages of B cell development.
Collapse
Affiliation(s)
- H H Bendall
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | |
Collapse
|
20
|
Abstract
VDJ recombination is developmentally regulated in vivo by enhancer-dependent changes in the accessibility of chromosomal recombination signal sequences to the recombinase, but the molecular nature of these changes is unknown. Here histone H3 acetylation was measured along versions of a transgenic VDJ recombination reporter and the endogenous T cell receptor alpha/delta locus. Enhancer activity was shown to impart long-range, developmentally regulated changes in H3 acetylation, and H3 acetylation status was tightly linked to VDJ recombination. H3 hyperacetylation is proposed as a molecular mechanism coupling enhancer activity to accessibility for VDJ recombination.
Collapse
Affiliation(s)
- M T McMurry
- Department of Immunology, Post Office Box 3010, Duke University Medical Center, Durham NC 27710, USA
| | | |
Collapse
|
21
|
Affiliation(s)
- S Desiderio
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
22
|
Zhong XP, Carabaña J, Krangel MS. Flanking nuclear matrix attachment regions synergize with the T cell receptor delta enhancer to promote V(D)J recombination. Proc Natl Acad Sci U S A 1999; 96:11970-5. [PMID: 10518560 PMCID: PMC18396 DOI: 10.1073/pnas.96.21.11970] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Previous studies have identified nuclear matrix attachment regions (MARs) that are closely associated with transcriptional enhancers in the IgH, Igkappa, and T cell receptor (TCR) beta loci, but have yielded conflicting information regarding their functional significance. In this report, a combination of in vitro and in situ mapping approaches was used to localize three MARs associated with the human TCR delta gene. Two of these are located within the Jdelta3-Cdelta intron, flanking the core TCR delta enhancer (Edelta) both 5' and 3' in a fashion reminiscent of the Ig heavy chain intronic enhancer-associated MARs. The third is located about 20 kb upstream, tightly linked to Ddelta1 and Ddelta2. We have previously used a transgenic minilocus V(D)J recombination reporter to establish that Edelta functions as a developmental regulator of V(D)J recombination, and that it does so by modulating substrate accessibility to the V(D)J recombinase. We show here that the Edelta-associated MARs function synergistically with the core Edelta to promote V(D)J recombination in this system, as they are required for enhancer-dependent transgene rearrangement in single-copy transgene integrants.
Collapse
Affiliation(s)
- X P Zhong
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
23
|
Abstract
The plasticity of the immune system relies on stochastic, i.e. random, decisions as well as on controlled events. V(D)J rearrangement of antigen receptors on B and T cells are mediated through the action of compound elements containing enhancer sequences. These elements function in a developmentally stage-specific and a cell-type-specific manner to attract machineries that demethylate DNA, remodel chromatin structure, and induce V(D)J recombination on one allele preferentially.
Collapse
Affiliation(s)
- Y Bergman
- Hubert H. Humphrey Center for Experimental Medicine and Cancer Research, The Hebrew University, Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
24
|
Hernández-Munain C, Sleckman BP, Krangel MS. A developmental switch from TCR delta enhancer to TCR alpha enhancer function during thymocyte maturation. Immunity 1999; 10:723-33. [PMID: 10403647 DOI: 10.1016/s1074-7613(00)80071-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
V(D)J recombination and transcription within the TCR alpha/delta locus are regulated by three characterized cis-acting elements: the TCR delta enhancer (Edelta), TCR alpha enhancer (Ealpha), and T early alpha (TEA) promoter. Analysis of enhancer and promoter occupancy and function in developing thymocytes in vivo indicates Edelta and Ealpha to be developmental-stage-specific enhancers, with Edelta "on" and Ealpha "off" in double-negative III thymocytes and Edelta "off" and Ealpha "on" in double-positive thymocytes. Edelta downregulation reflects a loss of occupancy. Surprisingly, Ealpha and TEA are extensively occupied even prior to activation. TCR delta downregulation in double-positive thymocytes depends on two events, Edelta inactivation and removal of TCR delta from the influence of Ealpha by chromosomal excision.
Collapse
Affiliation(s)
- C Hernández-Munain
- Department of Immunology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
25
|
Krangel MS, Hernandez-Munain C, Lauzurica P, McMurry M, Roberts JL, Zhong XP. Developmental regulation of V(D)J recombination at the TCR alpha/delta locus. Immunol Rev 1998; 165:131-47. [PMID: 9850858 DOI: 10.1111/j.1600-065x.1998.tb01236.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The T-cell receptor (TCR) alpha/delta locus includes a large number of V, D, J and C gene segments that are used to produce functional TCR delta and TCR alpha chains expressed by distinct subsets of T lymphocytes. V(D)J recombination events within the locus are regulated as a function of developmental stage and cell lineage during T-lymphocyte differentiation in the thymus. The process of V(D)J recombination is regulated by cis-acting elements that modulate the accessibility of chromosomal substrates to the recombinase. Here we evaluate how the assembly of transcription factor complexes onto enhancers, promoters and other regulatory elements within the TCR alpha/delta locus imparts developmental control to VDJ delta and VJ alpha rearrangement events. Furthermore, we develop the notion that within a complex locus such as the TCR alpha/delta locus, highly localized and region-specific control is likely to require an interplay between positive regulatory elements and blocking or boundary elements that restrict the influence of the positive elements to defined regions of the locus.
Collapse
MESH Headings
- Animals
- Cell Differentiation
- Cell Lineage
- Gene Expression Regulation, Developmental
- Gene Rearrangement, T-Lymphocyte
- Genes, Immunoglobulin
- Humans
- Immunoglobulin Joining Region/genetics
- Immunoglobulin Variable Region/genetics
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Recombination, Genetic
- Regulatory Sequences, Nucleic Acid
- T-Lymphocytes/cytology
Collapse
Affiliation(s)
- M S Krangel
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Hempel WM, Leduc I, Mathieu N, Tripathi RK, Ferrier P. Accessibility control of V(D)J recombination: lessons from gene targeting. Adv Immunol 1998; 69:309-52. [PMID: 9646847 DOI: 10.1016/s0065-2776(08)60610-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- W M Hempel
- Centre d'Immunologie INSERM-CNRS de Marseille-Luminy, France
| | | | | | | | | |
Collapse
|
27
|
Abstract
During the past few years, the essential role of distinct transcription factors in specifying cell-fate decisions in a stepwise fashion during T-cell differentiation has been revealed. One striking feature is that a single factor can act at several sites throughout T-cell development, possibly through interactions with different partners. The challenge is now to understand how these interactions can account for the co-ordination of complex extracellular signals and gene expression programs, such as those involved in T-cell receptor gene recombination and expression.
Collapse
Affiliation(s)
- H Clevers
- Department of Immunology, University Hospital, Utrecht, The Netherlands.
| | | |
Collapse
|
28
|
McMurry MT, Hernandez-Munain C, Lauzurica P, Krangel MS. Enhancer control of local accessibility to V(D)J recombinase. Mol Cell Biol 1997; 17:4553-61. [PMID: 9234713 PMCID: PMC232309 DOI: 10.1128/mcb.17.8.4553] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We have studied the role of transcriptional enhancers in providing recombination signal sequence (RSS) accessibility to V(D)J recombinase by examining mice carrying a transgenic human T-cell receptor (TCR) delta gene minilocus. This transgene is composed of unrearranged variable (Vdelta and Vdelta2), diversity (Ddelta3), joining (Jdelta1 and Jdelta3), and constant (Cdelta) gene segments. Previous data indicated that with the TCR delta enhancer (Edelta) present in the Jdelta3-Cdelta intron, V(D)J recombination proceeds stepwise, first V to D and then VD to J. With the enhancer deleted or mutated, V-to-D rearrangement is intact, but VD-to-J rearrangement is inhibited. We proposed that Edelta is necessary for J segment but not D segment accessibility and that J segment inaccessibility in the enhancerless minilocus resulted in the observed V(D)J recombination phenotype. In this study, we tested this notion by using ligation-mediated PCR to assess the formation of recombination-activating gene (RAG)-dependent double-strand breaks (DSBs) at RSSs 3' of Ddelta3 and 5' of Jdelta1. In five lines of mice carrying multicopy integrants of constructs that either lacked Edelta or carried an inactivated Edelta, the frequency of DSBs 5' of Jdelta1 was dramatically reduced relative to that in the wild type, whereas the frequency of DSBs 3' of Ddelta3 was unaffected. We interpret these results to indicate that Edelta is required for Jdelta1 but not Ddelta3 accessibility within the minilocus, and we conclude that enhancers regulate V(D)J recombination by providing local accessibility to the recombinase. cis-acting elements other than Edelta must maintain Ddelta3 in an accessible state in the absence of Edelta. The analysis of DSB formation in a single-copy minilocus integrant indicates that efficient DSB formation at the accessible RSS 3' of Ddelta3 requires an accessible partner RSS, arguing that RSS synapsis is required for DSB formation in chromosomal substrates in vivo.
Collapse
Affiliation(s)
- M T McMurry
- Department of Immunology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|