1
|
Wood EK, Reid BM, Sheerar DS, Donzella B, Gunnar MR, Coe CL. Lingering Effects of Early Institutional Rearing and Cytomegalovirus Infection on the Natural Killer Cell Repertoire of Adopted Adolescents. Biomolecules 2024; 14:456. [PMID: 38672472 PMCID: PMC11047877 DOI: 10.3390/biom14040456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/26/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Adversity during infancy can affect neurobehavioral development and perturb the maturation of physiological systems. Dysregulated immune and inflammatory responses contribute to many of the later effects on health. Whether normalization can occur following a transition to more nurturing, benevolent conditions is unclear. To assess the potential for recovery, blood samples were obtained from 45 adolescents adopted by supportive families after impoverished infancies in institutional settings (post-institutionalized, PI). Their immune profiles were compared to 39 age-matched controls raised by their biological parents (non-adopted, NA). Leukocytes were immunophenotyped, and this analysis focuses on natural killer (NK) cell populations in circulation. Cytomegalovirus (CMV) seropositivity was evaluated to determine if early infection contributed to the impact of an atypical rearing. Associations with tumor necrosis factor-alpha (TNF-α) and interferon-gamma (IFN-γ), two cytokines released by activated NK cells, were examined. Compared to the NA controls, PI adolescents had a lower percent of CD56bright NK cells in circulation, higher TNF-α levels, and were more likely to be infected with CMV. PI adolescents who were latent carriers of CMV expressed NKG2C and CD57 surface markers on more NK cells, including CD56dim lineages. The NK cell repertoire revealed lingering immune effects of early rearing while still maintaining an overall integrity and resilience.
Collapse
Affiliation(s)
- Elizabeth K. Wood
- Department of Psychiatry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Brie M. Reid
- Department of Psychiatry and Human Behavior, Brown University, Providence, RI 02906, USA;
| | - Dagna S. Sheerar
- Wisconsin Institute of Medical Research, University of Wisconsin Comprehensive Carbone Cancer Center, Madison, WI 53706, USA;
| | - Bonny Donzella
- Institute of Child Development, University of Minnesota, Minneapolis, MN 55455, USA; (B.D.); (M.R.G.)
| | - Megan R. Gunnar
- Institute of Child Development, University of Minnesota, Minneapolis, MN 55455, USA; (B.D.); (M.R.G.)
| | - Christopher L. Coe
- Department of Psychology, University of Wisconsin-Madison, Madison, WI 54706, USA;
| |
Collapse
|
2
|
Afolabi LO, Bi J, Chen L, Yang X, Wan X. Suppression of protein quality control system by TRIM30a sensitises tumour cells to NK cell-mediated immune surveillance. Immunology 2024; 171:60-76. [PMID: 37753964 DOI: 10.1111/imm.13694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023] Open
Abstract
Tumorigenesis entails circumventing cell-intrinsic regulatory mechanisms while avoiding extrinsic immune surveillance and other host defence systems. Nevertheless, how tumour cells' ability to eliminate misfolded proteins affects immune surveillance remains poorly understood. In this study, we find that overexpression of murine tripartite motif-containing protein 30a (TRIM30a) sensitises tumour cells to natural killer (NK) cells-mediated cytolysis. TRIM30a has no effect on tumour cell proliferation or apoptosis in vitro. However, TRIM30a-overexpressing tumour cells grow substantially slower than control tumour cells in immune-competent mice but not in NK cell-depleted mice. [Correction added on 04 October 2023, after first online publication: 'NK-depleted' has been changed to 'NK cell-depleted' in the preceding sentence.] Mechanistically, TRIM30a overexpression impedes the clearance of misfolded proteins and increases the production of reactive oxygen species induced by proteotoxic stress, implying that TRIM30a impairs protein quality control (PQC) systems in tumour cells. Furthermore, TRIM30a reduces expression of genes encoding proteasome subunits and antioxidant proteins. Our study demonstrates that TRIM30a is a potential tumour suppressor and immune modulator that promotes tumour cytolysis by NK cells, and suggests that an enhanced PQC and antioxidant capacity is an integral part of the immune escape mechanism during tumorigenesis.
Collapse
Affiliation(s)
- Lukman O Afolabi
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiacheng Bi
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Liang Chen
- University of Chinese Academy of Sciences, Beijing, China
- Shenzhen Laboratory of Tumor Cell Biology, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiaolu Yang
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Xiaochun Wan
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Watkins-Schulz R, Batty CJ, Stiepel RT, Schmidt ME, Sandor AM, Chou WC, Ainslie KM, Bachelder EM, Ting JPY. Microparticle Delivery of a STING Agonist Enables Indirect Activation of NK Cells by Antigen-Presenting Cells. Mol Pharm 2022; 19:3125-3138. [PMID: 35913984 DOI: 10.1021/acs.molpharmaceut.2c00207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Natural killer (NK) cells are an important member of the innate immune system and can participate in direct tumor cell killing in response to immunotherapies. One class of immunotherapy is stimulator of interferon gene (STING) agonists, which result in a robust type I interferon (IFN-I) response. Most mechanistic studies involving STING have focused on macrophages and T cells. Nevertheless, NK cells are also activated by IFN-I, but the effect of STING activation on NK cells remains to be adequately investigated. We show that both direct treatment with soluble STING agonist cyclic di-guanosine monophosphate-adenosine monophosphate (cGAMP) and indirect treatment with cGAMP encapsulated in microparticles (MPs) result in NK cell activation in vitro, although the former requires 100× more cGAMP than the latter. Additionally, direct activation with cGAMP leads to NK cell death. Indirect activation with cGAMP MPs does not result in NK cell death but rather cell activation and cell killing in vitro. In vivo, treatment with soluble cGAMP and cGAMP MPs both cause short-term activation, whereas only cGAMP MP treatment produces long-term changes in NK cell activation markers. Thus, this work indicates that treatment with an encapsulated STING agonist activates NK cells more efficiently than that with soluble cGAMP. In both the in vitro and in vivo systems, the MP delivery system results in more robust effects at a greatly reduced dosage. These results have potential applications in aiding the improvement of cancer immunotherapies.
Collapse
Affiliation(s)
- Rebekah Watkins-Schulz
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Cole J Batty
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Rebeca T Stiepel
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Megan E Schmidt
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Adam M Sandor
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Wei-Chun Chou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Kristy M Ainslie
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Eric M Bachelder
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Jenny P-Y Ting
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Center for Translational Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
4
|
del Rio ML, Perez-Simon JA, Rodriguez-Barbosa JI. Differential Engraftment of Parental A20 PD-L1 WT and PD-L1 KO Leukemia Cells in Semiallogeneic Recipients in the Context of PD-L1/PD-1 Interaction and NK Cell-Mediated Hybrid Resistance. Front Immunol 2022; 13:887348. [PMID: 35795681 PMCID: PMC9251058 DOI: 10.3389/fimmu.2022.887348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/19/2022] [Indexed: 11/29/2022] Open
Abstract
The contribution of natural killer (NK) cells to tumor rejection in the context of programmed death-ligand 1/programmed death 1 (PD-L1/PD-1) blockade is a matter of intense debate. To elucidate the role of PD-L1 expression on tumor cells and the functional consequences of engaging PD-1 receptor on cytotoxic cells, PD-L1 expression was genetically inactivated and WT or PD-L1-deficient parental tumor cells were adoptively transferred intravenously into F1 recipients. The engraftment of PD-L1-deficient A20 tumor cells in the spleen and liver of F1 recipients was impaired compared with A20 PD-L1 WT tumor counterparts. To elucidate the mechanism responsible for this differential tumor engraftment and determine the relevance of the role of the PD-L1/PD-1 pathway in the interplay of tumor cells/NK cells, a short-term competitive tumor implantation assay in the peritoneal cavity of semiallogeneic F1 recipients was designed. The results presented herein showed that NK cells killed target tumor cells with similar efficiency regardless of PD-L1 expression, whereas PD-L1 expression on A20 tumor cells conferred significant tumor protection against rejection by CD8 T cells confirming the role of the co-inhibitory receptor PD-1 in the modulation of their cytotoxic activity. In summary, PD-L1 expression on A20 leukemia tumor cells modulates CD8 T-cell-mediated responses to tumor-specific antigens but does not contribute to inhibit NK cell-mediated hybrid resistance, which correlates with the inability to detect PD-1 expression on NK cells neither under steady-state conditions nor under inflammatory conditions.
Collapse
Affiliation(s)
- Maria-Luisa del Rio
- Transplantation Immunobiology and Immunotherapy Section, Institute of Molecular Biology, University of Leon, Leon, Spain
- CIBERONC Consortium, Accion Estrategica en Salud, Spain
| | - Jose-Antonio Perez-Simon
- CIBERONC Consortium, Accion Estrategica en Salud, Spain
- Department of Hematology, University Hospital Virgen del Rocio/Institute of Biomedicine [Instituto de Biomedicina de Sevilla (IBIS)/Centro Superior de Investigaciones Científicas (CSIC)/Centro de Investigación Biomédica en Red Cáncer (CIBERONC)], Seville, Spain
| | - Jose-Ignacio Rodriguez-Barbosa
- Transplantation Immunobiology and Immunotherapy Section, Institute of Molecular Biology, University of Leon, Leon, Spain
- CIBERONC Consortium, Accion Estrategica en Salud, Spain
| |
Collapse
|
5
|
Pathania AS, Prathipati P, Olwenyi OA, Chava S, Smith OV, Gupta SC, Chaturvedi NK, Byrareddy SN, Coulter DW, Challagundla KB. miR-15a and miR-15b modulate natural killer and CD8 +T-cell activation and anti-tumor immune response by targeting PD-L1 in neuroblastoma. Mol Ther Oncolytics 2022; 25:308-329. [PMID: 35663229 PMCID: PMC9133764 DOI: 10.1016/j.omto.2022.03.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/27/2022] [Indexed: 11/12/2022] Open
Abstract
Neuroblastoma (NB) is an enigmatic and deadliest pediatric cancer to treat. The major obstacles to the effective immunotherapy treatments in NB are defective immune cells and the immune evasion tactics deployed by the tumor cells and the stromal microenvironment. Nervous system development during embryonic and pediatric stages is critically mediated by non-coding RNAs such as micro RNAs (miR). Hence, we explored the role of miRs in anti-tumor immune response via a range of data-driven workflows and in vitro & in vivo experiments. Using the TARGET, NB patient dataset (n=249), we applied the robust bioinformatic workflows incorporating differential expression, co-expression, survival, heatmaps, and box plots. We initially demonstrated the role of miR-15a-5p (miR-15a) and miR-15b-5p (miR-15b) as tumor suppressors, followed by their negative association with stromal cell percentages and a statistically significant negative regulation of T and natural killer (NK) cell signature genes, especially CD274 (PD-L1) in stromal-low patient subsets. The NB phase-specific expression of the miR-15a/miR-15b-PD-L1 axis was further corroborated using the PDX (n=24) dataset. We demonstrated miR-15a/miR-15b mediated degradation of PD-L1 mRNA through its interaction with the 3'-untranslated region and the RNA-induced silencing complex using sequence-specific luciferase activity and Ago2 RNA immunoprecipitation assays. In addition, we established miR-15a/miR-15b induced CD8+T and NK cell activation and cytotoxicity against NB in vitro. Moreover, injection of murine cells expressing miR-15a reduced tumor size, tumor vasculature and enhanced the activation and infiltration of CD8+T and NK cells into the tumors in vivo. We further established that blocking the surface PD-L1 using an anti-PD-L1 antibody rescued miR-15a/miR-15b induced CD8+T and NK cell-mediated anti-tumor responses. These findings demonstrate that miR-15a and miR-15b induce an anti-tumor immune response by targeting PD-L1 in NB.
Collapse
Affiliation(s)
- Anup S. Pathania
- Department of Biochemistry and Molecular Biology & The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Philip Prathipati
- Laboratory of Bioinformatics, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki City, Osaka 567-0085, Japan
| | - Omalla A. Olwenyi
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Srinivas Chava
- Department of Biochemistry and Molecular Biology & The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Oghenetejiri V. Smith
- Department of Biochemistry and Molecular Biology & The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Subash C. Gupta
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Nagendra K. Chaturvedi
- Department of Pediatrics, Division of Hematology/Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Siddappa N. Byrareddy
- Department of Biochemistry and Molecular Biology & The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Don W. Coulter
- Department of Pediatrics, Division of Hematology/Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kishore B. Challagundla
- Department of Biochemistry and Molecular Biology & The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
- The Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
6
|
Mengelkoch S, Gassen J, Prokosch ML, Boehm GW, Hill SE. More than just a pretty face? The relationship between immune function and perceived facial attractiveness. Proc Biol Sci 2022; 289:20212476. [PMID: 35168398 PMCID: PMC8848230 DOI: 10.1098/rspb.2021.2476] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
It has long been hypothesized that attractiveness provides a cue to a target's health and immunocompetence. However, much of the research testing this hypothesis has relied on a small number of indirect proxies of immune function, and the results of this research have been mixed. Here, we build on this past research, examining the relationship between target attractiveness and (i) self-reported health, (ii) in vivo measures of inflammation and white blood cell count/composition, and (iii) in vitro tests of targets' immune function, including (c1) leucocyte proliferation in response to immunological stimulants, (c2) phagocytosis of Escherichia coli bioparticles, (c3) NK cell-mediated lysis of target tumour cells, and (c4) Staphylococcus aureus growth in isolated plasma. Results revealed multiple, sometimes sex-differentiated, relationships between targets' immune function and others' perceptions of their attractiveness. Together, this work suggests complex, often sex-differentiated relationships between immune function, health, and attractiveness.
Collapse
Affiliation(s)
| | - Jeff Gassen
- Texas Christian University, Fort Worth, TX, USA
| | | | | | | |
Collapse
|
7
|
Reina-Ortiz C, Giraldos D, Azaceta G, Palomera L, Marzo I, Naval J, Villalba M, Anel A. Harnessing the Potential of NK Cell-Based Immunotherapies against Multiple Myeloma. Cells 2022; 11:cells11030392. [PMID: 35159200 PMCID: PMC8834301 DOI: 10.3390/cells11030392] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 12/14/2022] Open
Abstract
Natural killer (NK) cell-based therapies have emerged as promising anticancer treatments due to their potency as cytolytic effectors and synergy with concurrent treatments. Multiple myeloma (MM) is an aggressive B-cell malignancy that, despite development of novel therapeutic agents, remains incurable with a high rate of relapse. In MM, the inhospitable tumor microenvironment prevents host NK cells from exerting their cytolytic function. The development of NK cell immunotherapy works to overcome this altered immune landscape and can be classified in two major groups based on the origin of the cell: autologous or allogeneic. In this review, we compare the treatments in each group, such as autologous chimeric antigen receptor (CAR) NKs and allogeneic off-the-shelf NK cell infusions, and their combinatorial effect with existing MM therapies including monoclonal antibodies and proteasome inhibitors. We also discuss their placement in clinical treatment regimens based on the immune profile of each patient. Through this examination, we would like to discover precisely when each NK cell-based treatment will produce the maximum benefit to the MM patient.
Collapse
Affiliation(s)
- Chantal Reina-Ortiz
- Apoptosis, Immunity & Cancer Group, Department Biochemistry and Molecular and Cell Biology, Faculty of Sciences, University of Zaragoza and Aragón Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; (D.G.); (I.M.); (J.N.)
- Correspondence: (C.R.-O.); (A.A.)
| | - David Giraldos
- Apoptosis, Immunity & Cancer Group, Department Biochemistry and Molecular and Cell Biology, Faculty of Sciences, University of Zaragoza and Aragón Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; (D.G.); (I.M.); (J.N.)
| | - Gemma Azaceta
- Hematology Department, Lozano Blesa Hospital, 50009 Zaragoza, Spain; (G.A.); (L.P.)
| | - Luis Palomera
- Hematology Department, Lozano Blesa Hospital, 50009 Zaragoza, Spain; (G.A.); (L.P.)
| | - Isabel Marzo
- Apoptosis, Immunity & Cancer Group, Department Biochemistry and Molecular and Cell Biology, Faculty of Sciences, University of Zaragoza and Aragón Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; (D.G.); (I.M.); (J.N.)
| | - Javier Naval
- Apoptosis, Immunity & Cancer Group, Department Biochemistry and Molecular and Cell Biology, Faculty of Sciences, University of Zaragoza and Aragón Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; (D.G.); (I.M.); (J.N.)
| | - Martín Villalba
- Institut of Regenerative Medicine and Biotherapy, University of Montpellier, INSERM, CNRS, University Hospital Center Montpellier, 34000 Montpellier, France;
- Institut Sainte-Catherine, 84918 Avignon, France
| | - Alberto Anel
- Apoptosis, Immunity & Cancer Group, Department Biochemistry and Molecular and Cell Biology, Faculty of Sciences, University of Zaragoza and Aragón Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; (D.G.); (I.M.); (J.N.)
- Correspondence: (C.R.-O.); (A.A.)
| |
Collapse
|
8
|
Del Rio ML, Nguyen TH, Tesson L, Heslan JM, Gutierrez-Adan A, Fernandez-Gonzalez R, Gutierrez-Arroyo J, Buhler L, Pérez-Simón JA, Anegon I, Rodriguez-Barbosa JI. The impact of CD160 deficiency on alloreactive CD8 T cell responses and allograft rejection. Transl Res 2022; 239:103-123. [PMID: 34461306 DOI: 10.1016/j.trsl.2021.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/28/2021] [Accepted: 08/21/2021] [Indexed: 12/12/2022]
Abstract
CD160 is a member of the immunoglobulin superfamily with a pattern of expression mainly restricted to cytotoxic cells. To assess the functional relevance of the HVEM/CD160 signaling pathway in allogeneic cytotoxic responses, exon 2 of the CD160 gene was targeted by CRISPR/Cas9 to generate CD160 deficient mice. Next, we evaluated the impact of CD160 deficiency in the course of an alloreactive response. To that aim, parental donor WT (wild-type) or CD160 KO (knock-out) T cells were adoptively transferred into non-irradiated semiallogeneic F1 recipients, in which donor alloreactive CD160 KO CD4 T cells and CD8 T cells clonally expanded less vigorously than in WT T cell counterparts. This differential proliferative response rate at the early phase of T cell expansion influenced the course of CD8 T cell differentiation and the composition of the effector T cell pool that led to a significant decreased of the memory precursor effector cells (MPECs) / short-lived effector cells (SLECs) ratio in CD160 KO CD8 T cells compared to WT CD8 T cells. Despite these differences in T cell proliferation and differentiation, allogeneic MHC class I mismatched (bm1) skin allograft survival in CD160 KO recipients was comparable to that of WT recipients. However, the administration of CTLA-4.Ig showed an enhanced survival trend of bm1 skin allografts in CD160 KO with respect to WT recipients. Finally, CD160 deficient NK cells were as proficient as CD160 WT NK cells in rejecting allogeneic cellular allografts or MHC class I deficient tumor cells. CD160 may represent a CD28 alternative costimulatory molecule for the modulation of allogeneic CD8 T cell responses either in combination with costimulation blockade or by direct targeting of alloreactive CD8 T cells that upregulate CD160 expression in response to alloantigen stimulation.
Collapse
MESH Headings
- 4-1BB Ligand/metabolism
- Allografts
- Animals
- Antigens, CD/genetics
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Antigens, Differentiation, T-Lymphocyte/metabolism
- CD8-Positive T-Lymphocytes/immunology
- CRISPR-Cas Systems
- Cell Differentiation
- Female
- GPI-Linked Proteins/genetics
- GPI-Linked Proteins/immunology
- GPI-Linked Proteins/metabolism
- Gene Expression Regulation
- Genes, MHC Class I
- Graft Rejection/etiology
- Graft Rejection/immunology
- Killer Cells, Natural/immunology
- Lectins, C-Type/metabolism
- Mice, Inbred Strains
- Mice, Knockout
- Receptors, Immunologic/genetics
- Receptors, Immunologic/immunology
- Receptors, Immunologic/metabolism
- Receptors, Tumor Necrosis Factor, Member 14/metabolism
- Skin Transplantation
- Thymocytes/immunology
- Mice
Collapse
Affiliation(s)
- Maria-Luisa Del Rio
- Transplantation Immunobiology and Immunotherapy Section. Institute of Molecular Biology, Genomics and Proteomics, University of Leon, Leon, Spain; CIBERONC Consortium, Accion Estrategica en Salud, Grant # CB16/12/00480.
| | - Tuan H Nguyen
- INSERM UMR 1064, Center for Research in Transplantation and Immunology, Nantes, France; SFR Bonamy, GenoCellEdit Platform, CNRS UMS3556, Nantes, France
| | - Laurent Tesson
- INSERM UMR 1064, Center for Research in Transplantation and Immunology, Nantes, France; SFR Bonamy, GenoCellEdit Platform, CNRS UMS3556, Nantes, France
| | - Jean-Marie Heslan
- INSERM UMR 1064, Center for Research in Transplantation and Immunology, Nantes, France; SFR Bonamy, GenoCellEdit Platform, CNRS UMS3556, Nantes, France
| | - Alfonso Gutierrez-Adan
- Department of Animal Reproduction, National Institute of Agricultural Research (INIA), Madrid, Spain
| | - Raul Fernandez-Gonzalez
- Department of Animal Reproduction, National Institute of Agricultural Research (INIA), Madrid, Spain
| | - Julia Gutierrez-Arroyo
- Department of Animal Reproduction, National Institute of Agricultural Research (INIA), Madrid, Spain
| | - Leo Buhler
- Section of Medicine, University of Fribourg, Fribourg, Switzerland
| | - José-Antonio Pérez-Simón
- Department of Hematology, University Hospital Virgen del Rocio / Institute of Biomedicine (IBIS / CSIC / CIBERONC), Sevilla, Spain; CIBERONC Consortium, Accion Estrategica en Salud, Grant # CB16/12/00480
| | - Ignacio Anegon
- INSERM UMR 1064, Center for Research in Transplantation and Immunology, Nantes, France; SFR Bonamy, GenoCellEdit Platform, CNRS UMS3556, Nantes, France
| | - Jose-Ignacio Rodriguez-Barbosa
- Transplantation Immunobiology and Immunotherapy Section. Institute of Molecular Biology, Genomics and Proteomics, University of Leon, Leon, Spain; CIBERONC Consortium, Accion Estrategica en Salud, Grant # CB16/12/00480.
| |
Collapse
|
9
|
Afolabi LO, Bi J, Li X, Adeshakin AO, Adeshakin FO, Wu H, Yan D, Chen L, Wan X. Synergistic Tumor Cytolysis by NK Cells in Combination With a Pan-HDAC Inhibitor, Panobinostat. Front Immunol 2021; 12:701671. [PMID: 34531855 PMCID: PMC8438531 DOI: 10.3389/fimmu.2021.701671] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/17/2021] [Indexed: 01/18/2023] Open
Abstract
Histone deacetylases (HDAC) are frequently overexpressed in tumors, and their inhibition has shown promising anti-tumor effects. However, the synergistic effects of HDAC inhibition with immune cell therapy have not been fully explored. Natural killer (NK) cells are cytotoxic lymphocytes for anti-tumor immune surveillance, with immunotherapy potential. We showed that a pan-HDAC inhibitor, panobinostat, alone demonstrated anti-tumor and anti-proliferative activities on all tested tumors in vitro. Additionally, panobinostat co-treatment or pretreatment synergized with NK cells to mediate tumor cell cytolysis. Mechanistically, panobinostat treatment increased the expression of cell adhesion and tight junction-related genes, promoted conjugation formation between NK and tumor cells, and modulates NK cell-activating receptors and ligands on tumor cells, contributing to the increased tumor cytolysis. Finally, panobinostat therapy led to better tumor control and synergized with anti-PD-L1 therapy. Our data highlights the anti-tumor potential of HDAC inhibition through tumor-intrinsic toxicity and enhancement of NK -based immunotherapy.
Collapse
Affiliation(s)
- Lukman O. Afolabi
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiacheng Bi
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xuguang Li
- Department of Stomatology, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen, China
| | - Adeleye O. Adeshakin
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Funmilayo O. Adeshakin
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haisi Wu
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dehong Yan
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Liang Chen
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaochun Wan
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
10
|
Zhang M, Acklin S, Gillenwater J, Du W, Patra M, Yu H, Xu B, Yu J, Xia F. SIRT2 promotes murine melanoma progression through natural killer cell inhibition. Sci Rep 2021; 11:12988. [PMID: 34155309 PMCID: PMC8217567 DOI: 10.1038/s41598-021-92445-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 06/10/2021] [Indexed: 02/07/2023] Open
Abstract
SIRT2, an NAD+-dependent histone deacetylase, has been shown to play a pivotal role in various physiological processes, however, its role in cancer is currently controversial. In recent years, SIRT2 has been described as both a tumor suppressor and oncogene with divergent expression and function in various malignancies. Using murine allograft melanoma models, our results suggest increased systemic expression of SIRT2 promotes tumor progression. In this study, SIRT2-overexpressing mice exhibited enhanced tumor growth and larger tumor volumes compared to their wild-type littermates. Mechanistically, systemic overexpression of SIRT2 reduces the number of tumor-infiltrating natural killer (NK) cells and suppresses NK cell function and proliferation within the tumor microenvironment (TME). Furthermore, despite the enhancing effect of NK cell depletion on tumor volume and growth rate in wild-type littermate mice, this effect was diminished in SIRT2-overexpressing mice. Lastly, pharmacological inhibition of SIRT2 increases NK cell tumor infiltration and suppresses allograft melanoma tumor growth. The findings of this study identify a dynamic functional interaction between systemic SIRT2 and NK cell activity, which controls melanoma tumor progression. Given the recent renewed interest in NK-cell-mediated immunotherapy response, SIRT2 could present a new opportunity to mediate immunotherapy response and resistance.
Collapse
Affiliation(s)
- Manchao Zhang
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Scarlett Acklin
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - John Gillenwater
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Wuying Du
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Mousumi Patra
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Hao Yu
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Bo Xu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Fen Xia
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA.
| |
Collapse
|
11
|
Charap AJ, Enokida T, Brody R, Sfakianos J, Miles B, Bhardwaj N, Horowitz A. Landscape of natural killer cell activity in head and neck squamous cell carcinoma. J Immunother Cancer 2020; 8:jitc-2020-001523. [PMID: 33428584 PMCID: PMC7754625 DOI: 10.1136/jitc-2020-001523] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2020] [Indexed: 12/13/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) encompasses a set of cancers arising from the epithelia of the upper aerodigestive tract, accounting for a significant burden of disease worldwide due to the disease’s mortality, morbidity, and predilection for recurrence. Prognosis of HNSCC in the recurrent and/or metastatic (R/M-HNSCC) setting is especially poor and effective treatment options increasingly rely on modulating T-cell antitumor responses. Still, immunotherapy response rates are generally low, prompting the exploration of novel strategies that incorporate other effector cells within the tumor microenvironment. Within the last decade, important advances have been made leveraging the powerful innate antitumor function of natural killer (NK) cells to treat solid tumors, including head and neck squamous cell carcinoma. NK cells are hybrid innate-adaptive effector cells capable of directly eliminating tumor cells in addition to initiating adaptive antitumor immune responses. In the setting of HNSCC, NK cells are important for tumor surveillance and control, and NK cell infiltration has repeatedly been associated with a favorable prognosis. Yet, HNSCC-infiltrating NK cells are susceptible to an array of immune evasion strategies employed by tumors that must be overcome to fully realize the antitumor potential of NK cells. We believe that a conceptual framework informed by the basic biological understanding of the mechanisms underlying NK cell activation can improve treatment of HNSCC, in part by selecting for patients most likely to respond to NK cell-based immunotherapy. Herein, we review the activity of NK cells in HNSCC, paying special attention to the role of environmental and genetic determinants of NK cell antitumor function. Moreover, we explore the evidence that NK cells are a crucial determinant of the efficacy of both established and emerging treatments for HNSCC.
Collapse
Affiliation(s)
- Andrew J Charap
- Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Tomohiro Enokida
- Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Rachel Brody
- Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - John Sfakianos
- Urology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Brett Miles
- Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Nina Bhardwaj
- Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Amir Horowitz
- Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
12
|
Ng SS, De Labastida Rivera F, Yan J, Corvino D, Das I, Zhang P, Kuns R, Chauhan SB, Hou J, Li XY, Frame TCM, McEnroe BA, Moore E, Na J, Engel JA, Soon MSF, Singh B, Kueh AJ, Herold MJ, Montes de Oca M, Singh SS, Bunn PT, Aguilera AR, Casey M, Braun M, Ghazanfari N, Wani S, Wang Y, Amante FH, Edwards CL, Haque A, Dougall WC, Singh OP, Baxter AG, Teng MWL, Loukas A, Daly NL, Cloonan N, Degli-Esposti MA, Uzonna J, Heath WR, Bald T, Tey SK, Nakamura K, Hill GR, Kumar R, Sundar S, Smyth MJ, Engwerda CR. The NK cell granule protein NKG7 regulates cytotoxic granule exocytosis and inflammation. Nat Immunol 2020; 21:1205-1218. [PMID: 32839608 PMCID: PMC7965849 DOI: 10.1038/s41590-020-0758-6] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 07/08/2020] [Indexed: 12/24/2022]
Abstract
Immune-modulating therapies have revolutionized the treatment of chronic diseases, particularly cancer. However, their success is restricted and there is a need to identify new therapeutic targets. Here, we show that natural killer cell granule protein 7 (NKG7) is a regulator of lymphocyte granule exocytosis and downstream inflammation in a broad range of diseases. NKG7 expressed by CD4+ and CD8+ T cells played key roles in promoting inflammation during visceral leishmaniasis and malaria-two important parasitic diseases. Additionally, NKG7 expressed by natural killer cells was critical for controlling cancer initiation, growth and metastasis. NKG7 function in natural killer and CD8+ T cells was linked with their ability to regulate the translocation of CD107a to the cell surface and kill cellular targets, while NKG7 also had a major impact on CD4+ T cell activation following infection. Thus, we report a novel therapeutic target expressed on a range of immune cells with functions in different immune responses.
Collapse
Affiliation(s)
- Susanna S Ng
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Environment and Science, Griffith University, Nathan, Queensland, Australia
- Institute of Experimental Oncology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany
| | | | - Juming Yan
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Dillon Corvino
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Medicine, University of Queensland, Brisbane, Queensland, Australia
- Institute of Experimental Oncology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Indrajit Das
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Ping Zhang
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Rachel Kuns
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Shashi Bhushan Chauhan
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Jiajie Hou
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Xian-Yang Li
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Teija C M Frame
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Benjamin A McEnroe
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Eilish Moore
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Jinrui Na
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Jessica A Engel
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Megan S F Soon
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Bhawana Singh
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Andrew J Kueh
- Division of Blood Cells and Blood Cancer, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Marco J Herold
- Division of Blood Cells and Blood Cancer, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | | | - Siddharth Sankar Singh
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Patrick T Bunn
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Institute of Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Amy Roman Aguilera
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Mika Casey
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Matthias Braun
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Nazanin Ghazanfari
- Department of Microbiology and Immunology, The Peter Doherty Institute, University of Melbourne, Melbourne, Victoria, Australia
| | - Shivangi Wani
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Institute of Molecular Biology, University of Queensland, Brisbane, Queensland, Australia
| | - Yulin Wang
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Environment and Science, Griffith University, Nathan, Queensland, Australia
| | - Fiona H Amante
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Chelsea L Edwards
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Ashraful Haque
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - William C Dougall
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Om Prakash Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Alan G Baxter
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Michele W L Teng
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Alex Loukas
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Norelle L Daly
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Nicole Cloonan
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Mariapia A Degli-Esposti
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
- The Centre for Experimental Immunology, Lions Eye Institute, Perth, Western Australia, Australia
| | - Jude Uzonna
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - William R Heath
- Department of Microbiology and Immunology, The Peter Doherty Institute, University of Melbourne, Melbourne, Victoria, Australia
| | - Tobias Bald
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Siok-Keen Tey
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Kyohei Nakamura
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Geoffrey R Hill
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Rajiv Kumar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Mark J Smyth
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | | |
Collapse
|
13
|
Abstract
Anticancer immunotherapies involving the use of immune-checkpoint inhibitors or adoptive cellular transfer have emerged as new therapeutic pillars within oncology. These treatments function by overcoming or relieving tumour-induced immunosuppression, thereby enabling immune-mediated tumour clearance. While often more effective and better tolerated than traditional and targeted therapies, many patients have innate or acquired resistance to immunotherapies. Cancer immunoediting is the process whereby the immune system can both constrain and promote tumour development, which proceeds through three phases termed elimination, equilibrium and escape. Throughout these phases, tumour immunogenicity is edited, and immunosuppressive mechanisms that enable disease progression are acquired. The mechanisms of resistance to immunotherapy seem to broadly overlap with those used by cancers as they undergo immunoediting to evade detection by the immune system. In this Review, we discuss how a deeper understanding of the mechanisms underlying the cancer immunoediting process can provide insight into the development of resistance to immunotherapies and the strategies that can be used to overcome such resistance.
Collapse
|
14
|
Blomberg OS, Spagnuolo L, de Visser KE. Immune regulation of metastasis: mechanistic insights and therapeutic opportunities. Dis Model Mech 2018; 11:11/10/dmm036236. [PMID: 30355585 PMCID: PMC6215427 DOI: 10.1242/dmm.036236] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Metastatic disease is the leading cause of death in cancer patients. Metastasis formation involves a cascade of events for which the underlying mechanisms are still poorly understood. During the metastatic cascade, cancer cells tightly interact with the immune system and they influence each other, both in the tumor microenvironment and systemically. The crosstalk between cancer and immune cells adds another layer of complexity to our understanding of metastasis formation, but at the same time opens new therapeutic opportunities for cancer patients. The intensifying development of immunotherapeutic strategies calls for a better understanding of immune regulation of metastasis in order to maximize the therapeutic benefit for patients with metastatic disease. In this Review and accompanying poster, we describe the main mechanisms of immune regulation of metastasis that have been reported to date, and present promising immunotherapeutic options that are currently available, or may become so in the near future, to tackle metastasis.
Collapse
Affiliation(s)
- Olga S Blomberg
- Division of Tumor Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Lorenzo Spagnuolo
- Division of Tumor Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Karin E de Visser
- Division of Tumor Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
15
|
Dong L, Zheng X, Wang G. Peritoneal adhesions induce T h17/Treg imbalance in mice. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:4352-4362. [PMID: 31949832 PMCID: PMC6962961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 02/10/2018] [Indexed: 06/10/2023]
Abstract
Naïve CD4+ T cells differentiate to a distinct subset to mount specific inflammatory responses while minimizing self-reactivity. Recent work has identified that an imbalance between T helper (Th) 17 cell and regulatory T (Treg) cells is involved in the pathophysiology of tumor immune responses. The factors that modulate the development of Th17 and Treg cells are variable but still unclear. Peritoneal adhesion is a common complication of surgery and peritonitis, which can lead to abdominal pain, intestinal obstruction, and infertility. In this study, we examined the role of peritoneal adhesions in development of Th17 and Treg cells and discovered that adhesions reduced proliferation of Th17 cells and promoted the Tregs. in particular we found that adhesion modulated the activity of signal transducers and activators of transcription (STAT) 5 which was critical for the development of Th17 and Treg cells.
Collapse
Affiliation(s)
- Linlin Dong
- Department of Anesthesiology, Qi Lu Hospital of Shan Dong UniversityJinan, Shandong, China
| | - Xiaoyu Zheng
- Department of Anesthesiology, Harbin Medical University Cancer HospitalHeilongjiang, China
| | - Guonian Wang
- Department of Anesthesiology, Harbin Medical University Cancer HospitalHeilongjiang, China
- Department of Pain Research Institute of Heilongjiang Academy of Medical SciencesHeilongjiang, China
| |
Collapse
|
16
|
Friedman J, Morisada M, Sun L, Moore EC, Padget M, Hodge JW, Schlom J, Gameiro SR, Allen CT. Inhibition of WEE1 kinase and cell cycle checkpoint activation sensitizes head and neck cancers to natural killer cell therapies. J Immunother Cancer 2018; 6:59. [PMID: 29925431 PMCID: PMC6011473 DOI: 10.1186/s40425-018-0374-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 06/05/2018] [Indexed: 01/23/2023] Open
Abstract
Background Natural killer (NK) cells recognize and lyse target tumor cells in an MHC-unrestricted fashion and complement antigen- and MHC-restricted killing by T-lymphocytes. NK cells and T-lymphocytes mediate early killing of targets through a common granzyme B-dependent mechanism. Tumor cell resistance to granzyme B and how this alters NK cell killing is not clearly defined. Methods Tumor cell sensitivity to cultured murine KIL and human high affinity NK (haNK) cells in the presence or absence of AZD1775, a small molecule inhibitor of WEE1 kinase, was assessed via real time impedance analysis. Mechanisms of enhanced sensitivity to NK lysis were determined and in vivo validation via adoptive transfer of KIL cells into syngeneic mice was performed. Results Cultured murine KIL cells lyse murine oral cancer 2 (MOC2) cell targets more efficiently than freshly isolated peripheral murine NK cells. MOC2 sensitivity to granzyme B-dependent KIL cell lysis was enhanced by inhibition of WEE1 kinase, reversing G2/M cell cycle checkpoint activation and resulting in enhanced DNA damage and apoptosis. Treatment of MOC2 tumor-bearing wild-type C57BL/6 mice with AZD1775 and adoptively transferred KIL cells resulted in enhanced tumor growth control and survival over controls or either treatment alone. Validating these findings in human models, WEE1 kinase inhibition sensitized two human head and neck cancer cell lines to direct lysis by haNK cells. Further, WEE1 kinase inhibition sensitized these cell lines to antibody-dependent cell-mediated cytotoxicity when combined with the anti-PD-L1 IgG1 mAb Avelumab. Conclusions Tumor cell resistance to granzyme B-induced cell death can be reversed through inhibition of WEE1 kinase as AZD1775 sensitized both murine and human head and neck cancer cells to NK lysis. These data provide the pre-clinical rationale for the combination of small molecules that reverse cell cycle checkpoint activation and NK cellular therapies.
Collapse
Affiliation(s)
- Jay Friedman
- Translational Tumor Immunology Program, National Institutes on Deafness and Other Communication Disorders, National Institutes of Health, Building 10, Room 7N240C, Bethesda, MD, 20892, USA
| | - Megan Morisada
- Translational Tumor Immunology Program, National Institutes on Deafness and Other Communication Disorders, National Institutes of Health, Building 10, Room 7N240C, Bethesda, MD, 20892, USA
| | - Lillian Sun
- Translational Tumor Immunology Program, National Institutes on Deafness and Other Communication Disorders, National Institutes of Health, Building 10, Room 7N240C, Bethesda, MD, 20892, USA
| | - Ellen C Moore
- Translational Tumor Immunology Program, National Institutes on Deafness and Other Communication Disorders, National Institutes of Health, Building 10, Room 7N240C, Bethesda, MD, 20892, USA
| | - Michelle Padget
- Laboratory of Tumor Immunology and Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - James W Hodge
- Laboratory of Tumor Immunology and Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sofia R Gameiro
- Laboratory of Tumor Immunology and Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Clint T Allen
- Translational Tumor Immunology Program, National Institutes on Deafness and Other Communication Disorders, National Institutes of Health, Building 10, Room 7N240C, Bethesda, MD, 20892, USA. .,Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
17
|
Jović V, Konjević G, Radulović S, Jelić S, Spuzić I. Impaired Perforin-Dependent NK Cell Cytotoxicity and Proliferative Activity of Peripheral Blood T Cells is Associated with Metastatic Melanoma. TUMORI JOURNAL 2018; 87:324-9. [PMID: 11765182 DOI: 10.1177/030089160108700509] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aims and Background Patients with metastatic melanoma often have defects in the percentage and function of peripheral blood NK cells, which are involved in the non-specific innate antitumor immune response, and T cells, which participate in the specific acquired antitumor immune response. The aim of this study was to investigate in more detail not only the percentage but also the activation status and function of NK and T cells in patients with metastatic melanoma prior to therapy. Methods The percentage of peripheral blood CD56+ NK cells, CD3+ T cells and their CD4+ and CD8+ subsets, as well as the expression of the activation antigens CD69, CD38 and HLA-DR were analyzed by flow cytometry. The functional capacity of NK cells was evaluated by the 51-chromium release cytotoxicity assay, while the proliferative activity of T cells was estimated by the lymphocyte transformation test to mitogen phytohemagglutinin. Results The results obtained in this study have revealed a new aspect of NK and T cell dysfunction that is not, as commonly reported, associated with a decrease in their percentage. Moreover, a significant number of the investigated patients had a higher percentage of NK cells that did not lead to improved NK ceil cytotoxicity as a result of the detected defect in the NK cell perforin-mediated cytotoxic mechanism of tumor cell lysis. The impaired proliferative response of T cells was associated with a decreased expression of the activation antigen HLA-DR. Conclusion The novel finding in this study of melanoma patients with metastatic disease is the impaired perforin-depen-dent NK cell cytotoxic mechanism, which was recently shown to be primarily responsible for preventing metastasis. Another interesting finding was the generally hyporeactive status of T cells, possibly resulting from persistent antigenic stimulation. The observed dysfunction of NK and T cells in patients with metastatic melanoma prior to therapy point to the need to supplement chemotherapy with appropriate immunotherapeutic agents in order to overcome the immunosuppression associated with advanced malignancy.
Collapse
Affiliation(s)
- V Jović
- Institute for Oncology and Radiology of Serbia, Belgrade
| | | | | | | | | |
Collapse
|
18
|
Guillerey C, Smyth MJ. Cancer Immunosurveillance by Natural Killer Cells and Other Innate Lymphoid Cells. Oncoimmunology 2018. [DOI: 10.1007/978-3-319-62431-0_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
19
|
Saleh MH, Rashedi I, Keating A. Immunomodulatory Properties of Coriolus versicolor: The Role of Polysaccharopeptide. Front Immunol 2017; 8:1087. [PMID: 28932226 PMCID: PMC5592279 DOI: 10.3389/fimmu.2017.01087] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/21/2017] [Indexed: 01/10/2023] Open
Abstract
Traditional uses of herbal medicine have depended mostly on anecdotal evidence for much of history. The increasing application of scientific rigor to the study some of these traditional therapies in recent years has revealed potent bioactivity, notably demonstrated by the 2015 Nobel Prize for the discovery of an antimalarial compound from traditional Chinese herbs. Given the recent successes of immunotherapy and checkpoint blockade, there is a renewed interest in identifying new drugs with immunomodulatory effects. As an estimated 45-60% of cancer patients worldwide are reported to use complementary alternative medicine alongside traditional therapy, this review will highlight the literature on the immunomodulatory effects of one of these compounds. We report on the induction of a largely pro-inflammatory cytokine profile by the polysaccharopeptide (PSP) isolated from the Coriolus versicolor (Yun zhi) mushroom, as well as its effects on various immune subsets, and the clinical data that have led to its widespread adoption as an adjunct cancer therapeutic in many Eastern cultures. Particular focus is given to the potential mechanisms underlying the bioactivity of PSP and reports of its ability to promote antitumor immunity by helping overcome tolerogenic tumor microenvironments.
Collapse
Affiliation(s)
- Mohammad H Saleh
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada.,Cell Therapy Program, Princess Margaret Cancer Centre, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Iran Rashedi
- Cell Therapy Program, Princess Margaret Cancer Centre, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Armand Keating
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada.,Cell Therapy Program, Princess Margaret Cancer Centre, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| |
Collapse
|
20
|
O'Flaherty SM, Sutummaporn K, Häggtoft WL, Worrall AP, Rizzo M, Braniste V, Höglund P, Kadri N, Chambers BJ. TLR-Stimulated Eosinophils Mediate Recruitment and Activation of NK Cells In Vivo. Scand J Immunol 2017; 85:417-424. [PMID: 28426135 DOI: 10.1111/sji.12554] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/12/2017] [Indexed: 12/22/2022]
Abstract
Eosinophils like many myeloid innate immune cells can provide cytokines and chemokines for the activation of other immune cells upon TLR stimulation. When TLR-stimulated eosinophils were inoculated i.p. into wild-type mice, and NK cells were rapidly recruited and exhibited antitumour cytotoxicity. However, when mice depleted of CD11c+ cells were used, a marked decrease in the number of recruited NK cells was observed. We postulated that CpG or LPS from the injected eosinophils could be transferred to host cells, which in turn could recruit NK cells. However, by inoculating mice deficient in TLR4 or TLR9 with LPS or CpG-stimulated eosinophils respectively, NK cell recruitment was still observed alongside cytotoxicity and IFNγ production. CpG stimulation of eosinophils produced the pro-inflammatory cytokine IL-12 and the chemokine CXCL10, which are important for NK cell activation and recruitment in vivo. To demonstrate the importance of CXCL10 in NK cell recruitment, we found that CpG-stimulated eosinophils pretreated with the gut microbial metabolite butyrate had reduced expression and production of CXCL10 and IL-12 and concomitantly were poor at recruitment of NK cells and inducing IFNγ in NK cells. Therefore, eosinophils like other innate immune cells of myeloid origin can conceivably stimulate NK cell activity. In addition, products of the gut microbiota can be potential inhibitors of NK cell.
Collapse
Affiliation(s)
- S M O'Flaherty
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - K Sutummaporn
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - W L Häggtoft
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - A P Worrall
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - M Rizzo
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - V Braniste
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - P Höglund
- Department of Medicine Huddinge, HERM, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - N Kadri
- Department of Medicine Huddinge, HERM, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - B J Chambers
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| |
Collapse
|
21
|
Putz EM, Guillerey C, Kos K, Stannard K, Miles K, Delconte RB, Takeda K, Nicholson SE, Huntington ND, Smyth MJ. Targeting cytokine signaling checkpoint CIS activates NK cells to protect from tumor initiation and metastasis. Oncoimmunology 2017; 6:e1267892. [PMID: 28344878 DOI: 10.1080/2162402x.2016.1267892] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/22/2016] [Accepted: 11/24/2016] [Indexed: 01/30/2023] Open
Abstract
The cytokine-induced SH2-containing protein CIS belongs to the suppressor of cytokine signaling (SOCS) protein family. Here, we show the critical role of CIS in suppressing natural killer (NK) cell control of tumor initiation and metastasis. Cish-deficient mice were highly resistant to methylcholanthrene-induced sarcoma formation and protected from lung metastasis of B16F10 melanoma and RM-1 prostate carcinoma cells. In contrast, the growth of primary subcutaneous tumors, including those expressing the foreign antigen OVA, was unchanged in Cish-deficient mice. The combination of Cish deficiency and relevant targeted and immuno-therapies such as combined BRAF and MEK inhibitors, immune checkpoint blockade antibodies, IL-2 and type I interferon revealed further improved control of metastasis. The data clearly indicate that targeting CIS promotes NK cell antitumor functions and CIS holds great promise as a novel target in NK cell immunotherapy.
Collapse
Affiliation(s)
- Eva M Putz
- Immunology of Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute , Herston, Queensland, Australia
| | - Camille Guillerey
- Immunology of Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia; School of Medicine, The University of Queensland, Herston, Queensland, Australia
| | - Kevin Kos
- Immunology of Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute , Herston, Queensland, Australia
| | - Kimberley Stannard
- Immunology of Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute , Herston, Queensland, Australia
| | - Kim Miles
- Immunology of Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute , Herston, Queensland, Australia
| | - Rebecca B Delconte
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Victoria, Australia
| | - Kazuyoshi Takeda
- Department of Immunology, Juntendo University School of Medicine , Bunkyo-ku, Tokyo, Japan
| | - Sandra E Nicholson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Victoria, Australia
| | - Nicholas D Huntington
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Victoria, Australia
| | - Mark J Smyth
- Immunology of Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia; School of Medicine, The University of Queensland, Herston, Queensland, Australia
| |
Collapse
|
22
|
Ortner D, Tripp CH, Komenda K, Dubrac S, Zelger B, Hermann M, Doppler W, Tymoszuk PZ, Boon L, Clausen BE, Stoitzner P. Langerhans cells and NK cells cooperate in the inhibition of chemical skin carcinogenesis. Oncoimmunology 2016; 6:e1260215. [PMID: 28344868 PMCID: PMC5353916 DOI: 10.1080/2162402x.2016.1260215] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 11/09/2016] [Indexed: 01/31/2023] Open
Abstract
Tissue immunosurveillance is an important mechanism to prevent cancer. Skin treatment with the carcinogen 7,12-dimethylbenz(a)anthracene (DMBA), followed by the tumor promoter 12-O-tetra-decanoyl-phorbol-13-acetate (TPA), is an established murine model for squamous cell carcinoma (SCC). However, the innate immunological events occurring during the initiation of chemical carcinogenesis with DMBA remain elusive. Here, we discovered that natural killer (NK) cells and Langerhans cells (LC) cooperate to impair this oncogenic process in murine skin. The depletion of NK cells or LC caused an accumulation of DNA-damaged, natural killer group 2D-ligand (NKG2D-L) expressing keratinocytes and accelerated tumor growth. Notably, the secretion of TNFα mainly by LC promoted the recruitment of NK cells into the epidermis. Indeed, the TNFα-induced chemokines CCL2 and CXCL10 directed NK cells to DMBA-treated epidermis. Our findings reveal a novel mechanism how innate immune cells cooperate in the inhibition of cutaneous chemical carcinogenesis.
Collapse
Affiliation(s)
- Daniela Ortner
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Christoph H. Tripp
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Kerstin Komenda
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Sandrine Dubrac
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Bernhard Zelger
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Martin Hermann
- Department of Anesthesiology and Intensive Care Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Wolfgang Doppler
- Section for Medical Biochemistry, Medical University of Innsbruck, Innsbruck, Austria
| | - Piotr Z. Tymoszuk
- Department of Internal Medicine VI, Infectious Diseases, Immunology, Rheumatology & Pneumology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Björn E. Clausen
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Patrizia Stoitzner
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
23
|
Mahasa KJ, Ouifki R, Eladdadi A, Pillis LD. Mathematical model of tumor-immune surveillance. J Theor Biol 2016; 404:312-330. [PMID: 27317864 DOI: 10.1016/j.jtbi.2016.06.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 06/09/2016] [Accepted: 06/09/2016] [Indexed: 12/26/2022]
Abstract
We present a novel mathematical model involving various immune cell populations and tumor cell populations. The model describes how tumor cells evolve and survive the brief encounter with the immune system mediated by natural killer (NK) cells and the activated CD8(+) cytotoxic T lymphocytes (CTLs). The model is composed of ordinary differential equations describing the interactions between these important immune lymphocytes and various tumor cell populations. Based on up-to-date knowledge of immune evasion and rational considerations, the model is designed to illustrate how tumors evade both arms of host immunity (i.e. innate and adaptive immunity). The model predicts that (a) an influx of an external source of NK cells might play a crucial role in enhancing NK-cell immune surveillance; (b) the host immune system alone is not fully effective against progression of tumor cells; (c) the development of immunoresistance by tumor cells is inevitable in tumor immune surveillance. Our model also supports the importance of infiltrating NK cells in tumor immune surveillance, which can be enhanced by NK cell-based immunotherapeutic approaches.
Collapse
Affiliation(s)
- Khaphetsi Joseph Mahasa
- DST/NRF Centre of Excellence in Epidemiological Modelling and Analysis (SACEMA), University of Stellenbosch, Stellenbosch, South Africa.
| | - Rachid Ouifki
- DST/NRF Centre of Excellence in Epidemiological Modelling and Analysis (SACEMA), University of Stellenbosch, Stellenbosch, South Africa
| | | | | |
Collapse
|
24
|
Ponzetta A, Benigni G, Antonangeli F, Sciumè G, Sanseviero E, Zingoni A, Ricciardi MR, Petrucci MT, Santoni A, Bernardini G. Multiple Myeloma Impairs Bone Marrow Localization of Effector Natural Killer Cells by Altering the Chemokine Microenvironment. Cancer Res 2015; 75:4766-77. [PMID: 26438594 DOI: 10.1158/0008-5472.can-15-1320] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 08/13/2015] [Indexed: 11/16/2022]
Abstract
Natural killer (NK) cells are key innate immune effectors against multiple myeloma, their activity declining in multiple myeloma patients with disease progression. To identify the mechanisms underlying NK cell functional impairment, we characterized the distribution of functionally distinct NK cell subsets in the bone marrow of multiple myeloma-bearing mice. Herein we report that the number of KLRG1(-) NK cells endowed with potent effector function rapidly and selectively decreases in bone marrow during multiple myeloma growth, this correlating with decreased bone marrow NK cell degranulation in vivo. Altered NK cell subset distribution was dependent on skewed chemokine/chemokine receptor axes in the multiple myeloma microenvironment, with rapid downmodulation of the chemokine receptor CXCR3 on NK cells, increased CXCL9 and CXCL10, and decreased CXCL12 expression in bone marrow. Similar alterations in chemokine receptor/chemokine axes were observed in patients with multiple myeloma. Adoptive transfer experiments demonstrated that KLRG1(-) NK cell migration to the bone marrow was more efficient in healthy than multiple myeloma-bearing mice. Furthermore, bone marrow localization of transferred CXCR3-deficient NK cells with respect to wild type was enhanced in healthy and multiple myeloma-bearing mice, suggesting that CXCR3 restrains bone marrow NK cell trafficking. Our results indicate that multiple myeloma-promoted CXCR3 ligand upregulation together with CXCL12 downmodulation act as exit signals driving effector NK cells outside the bone marrow, thus weakening the antitumor immune response at the primary site of tumor growth.
Collapse
Affiliation(s)
- Andrea Ponzetta
- Department of Molecular Medicine-Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Giorgia Benigni
- Department of Molecular Medicine-Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Fabrizio Antonangeli
- Department of Molecular Medicine-Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Sciumè
- Department of Molecular Medicine-Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Emilio Sanseviero
- Department of Molecular Medicine-Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Alessandra Zingoni
- Department of Molecular Medicine-Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Maria Rosaria Ricciardi
- Division of Hematology, Department of Cellular Biotechnologies and Hematology, Sapienza University of Rome, Rome, Italy
| | - Maria Teresa Petrucci
- Division of Hematology, Department of Cellular Biotechnologies and Hematology, Sapienza University of Rome, Rome, Italy
| | - Angela Santoni
- Department of Molecular Medicine-Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy. IRCCS, Neuromed, Pozzilli, IS, Italy.
| | - Giovanni Bernardini
- Department of Molecular Medicine-Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy. IRCCS, Neuromed, Pozzilli, IS, Italy.
| |
Collapse
|
25
|
Souza-Fonseca-Guimaraes F, Young A, Mittal D, Martinet L, Bruedigam C, Takeda K, Andoniou CE, Degli-Esposti MA, Hill GR, Smyth MJ. NK cells require IL-28R for optimal in vivo activity. Proc Natl Acad Sci U S A 2015; 112:E2376-84. [PMID: 25901316 PMCID: PMC4426428 DOI: 10.1073/pnas.1424241112] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Natural killer (NK) cells are naturally circulating innate lymphoid cells that protect against tumor initiation and metastasis and contribute to immunopathology during inflammation. The signals that prime NK cells are not completely understood, and, although the importance of IFN type I is well recognized, the role of type III IFN is comparatively very poorly studied. IL-28R-deficient mice were resistant to LPS and cecal ligation puncture-induced septic shock, and hallmark cytokines in these disease models were dysregulated in the absence of IL-28R. IL-28R-deficient mice were more sensitive to experimental tumor metastasis and carcinogen-induced tumor formation than WT mice, and additional blockade of interferon alpha/beta receptor 1 (IFNAR1), but not IFN-γ, further enhanced metastasis and tumor development. IL-28R-deficient mice were also more susceptible to growth of the NK cell-sensitive lymphoma, RMAs. Specific loss of IL-28R in NK cells transferred into lymphocyte-deficient mice resulted in reduced LPS-induced IFN-γ levels and enhanced tumor metastasis. Therefore, by using IL-28R-deficient mice, which are unable to signal type III IFN-λ, we demonstrate for the first time, to our knowledge, the ability of IFN-λ to directly regulate NK cell effector functions in vivo, alone and in the context of IFN-αβ.
Collapse
Affiliation(s)
- Fernando Souza-Fonseca-Guimaraes
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; School of Medicine, University of Queensland, St. Lucia, QLD 4006, Australia
| | - Arabella Young
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; School of Medicine, University of Queensland, St. Lucia, QLD 4006, Australia
| | - Deepak Mittal
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
| | - Ludovic Martinet
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
| | - Claudia Bruedigam
- Translational Leukaemia Research Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
| | - Kazuyoshi Takeda
- Division of Cell Biology, Biomedical Research Center, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Christopher E Andoniou
- Immunology and Virology Program, Centre for Ophthalmology and Visual Science, University of Western Australia, Crawley, WA 6009, Australia; Centre for Experimental Immunology, Lions Eye Institute, Nedlands, WA 6009, Australia
| | - Mariapia A Degli-Esposti
- Immunology and Virology Program, Centre for Ophthalmology and Visual Science, University of Western Australia, Crawley, WA 6009, Australia; Centre for Experimental Immunology, Lions Eye Institute, Nedlands, WA 6009, Australia
| | - Geoffrey R Hill
- Bone Marrow Transplantation Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; and Department of Bone Marrow Transplantation, Royal Brisbane Hospital, Brisbane, QLD 4006, Australia
| | - Mark J Smyth
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; School of Medicine, University of Queensland, St. Lucia, QLD 4006, Australia;
| |
Collapse
|
26
|
Tu TC, Brown NK, Kim TJ, Wroblewska J, Yang X, Guo X, Lee SH, Kumar V, Lee KM, Fu YX. CD160 is essential for NK-mediated IFN-γ production. ACTA ACUST UNITED AC 2015; 212:415-29. [PMID: 25711213 PMCID: PMC4354368 DOI: 10.1084/jem.20131601] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Tu et al. generated a novel CD160-deficient mouse and showed impaired NK cell–mediated tumor elimination and IFN-γ production. CD160+ NK cells are functionally distinct in secretion of IFN-γ from their CD160− NK cell counterparts. NK-derived cytokines play important roles for natural killer (NK) function, but how the cytokines are regulated is poorly understood. CD160 is expressed on activated NK or T cells in humans but its function is unknown. We generated CD160-deficient mice to probe its function. Although CD160−/− mice showed no abnormalities in lymphocyte development, the control of NK-sensitive tumors was severely compromised in CD160−/− mice. Surprisingly, the cytotoxicity of NK cells was not impaired, but interferon-γ (IFN-γ) secretion by NK cells was markedly reduced in CD160−/− mice. Functionally targeting CD160 signaling with a soluble CD160-Ig also impaired tumor control and IFN-γ production, suggesting an active role of CD160 signaling. Using reciprocal bone marrow transfer and cell culture, we have identified the intrinsic role of CD160 on NK cells, as well as its receptor on non-NK cells, for regulating cytokine production. To demonstrate sufficiency of the CD160+ NK cell subset in controlling NK-dependent tumor growth, intratumoral transfer of the CD160+ NK fraction led to tumor regression in CD160−/− tumor-bearing mice, indicating demonstrable therapeutic potential for controlling early tumors. Therefore, CD160 is not only an important biomarker but also functionally controls cytokine production by NK cells.
Collapse
Affiliation(s)
- Tony C Tu
- Department of Pathology, The University of Chicago, Chicago, IL 60637
| | - Nicholas K Brown
- Department of Pathology, The University of Chicago, Chicago, IL 60637
| | - Tae-Jin Kim
- Department of Pathology, The University of Chicago, Chicago, IL 60637 Global Research Lab, Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul 136-705, South Korea
| | - Joanna Wroblewska
- Department of Pathology, The University of Chicago, Chicago, IL 60637
| | - Xuanming Yang
- Department of Pathology, The University of Chicago, Chicago, IL 60637
| | - Xiaohuan Guo
- Department of Pathology, The University of Chicago, Chicago, IL 60637
| | - Seoyun Hyunji Lee
- Department of Pathology, The University of Chicago, Chicago, IL 60637 Global Research Lab, Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul 136-705, South Korea
| | - Vinay Kumar
- Department of Pathology, The University of Chicago, Chicago, IL 60637
| | - Kyung-Mi Lee
- Department of Pathology, The University of Chicago, Chicago, IL 60637 Global Research Lab, Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul 136-705, South Korea Department of Melanoma Medical Oncology and Immunology, MD Anderson Cancer Center, Houston, TX 77054
| | - Yang-Xin Fu
- Department of Pathology, The University of Chicago, Chicago, IL 60637
| |
Collapse
|
27
|
Abstract
Natural killer (NK) cells are innate lymphoid cells (ILC) known for their ability to recognize and rapidly eliminate infected or transformed cells. Consequently, NK cells are fundamental for host protection against virus infections and malignancies. Even though the critical role of NK cells in cancer immunosurveillance was suspected years ago, the underlying mechanisms took time to be unraveled. Today, it is clear that anti-tumor functions of NK cells are tightly regulated and expand far beyond the simple killing of malignant cells. In spite of tremendous steps made in understanding the NK cell biology, further work is warranted to fully exploit the anticancer potential of these cells. Indeed, tumor-mediated immune suppression hampers NK cell activity, thus complicating their stimulation for therapeutic purposes. Herein, we review the current knowledge of NK cell functions in anti-tumor immunity . We discuss NK cell activity in the cancer immunoediting process with particular emphasis on the elimination and escape phases.
Collapse
Affiliation(s)
- Camille Guillerey
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, 4006, Australia.,School of Medicine, University of Queensland, Herston, QLD, Australia
| | - Mark J Smyth
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, 4006, Australia. .,School of Medicine, University of Queensland, Herston, QLD, Australia.
| |
Collapse
|
28
|
Haabeth OAW, Bogen B, Corthay A. A model for cancer-suppressive inflammation. Oncoimmunology 2014; 1:1146-1155. [PMID: 23170261 PMCID: PMC3494627 DOI: 10.4161/onci.21542] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In oncology, inflammation is generally regarded as a cancer-promoting process only. Here, we argue that this view may represent a misleading oversimplification. We present evidence from our own work and from the literature documenting cancer-suppressive aspects of inflammation. We propose that specific types of inflammation, in particular inflammation driven by tumor-specific Th1 cells, may repress rather than promote cancer. Th1 cells collaborate with tumor-infiltrating M1 macrophages to efficiently recognize and eliminate malignant cells. In a Th1 environment, pro-inflammatory cytokines such as interleukin (IL)-1α, IL-1β, IL-6 and tumor-necrosis factor α (TNFα) enhance anti-cancer immunity. Inducing Th1-type inflammation may significantly improve immunotherapeutic strategies against cancer.
Collapse
Affiliation(s)
- Ole Audun Werner Haabeth
- Centre for Immune Regulation, Department of Immunology; Oslo University Hospital Rikshospitalet and University of Oslo; Oslo, Norway
| | | | | |
Collapse
|
29
|
Abstract
The presence of natural killer (NK) cells in the tumor microenvironment correlates with outcome in a variety of cancers. However, the role of intratumoral NK cells is unclear. Preclinical studies have shown that, while NK cells efficiently kill circulating tumor cells of almost any origin, they seem to have very little effect against the same type of tumor cells when these have extravasated. The ability to kill extravasated tumor cells is, however, is dependent of the level of activation of the NK cells, as more recent published and unpublished studies, discussed below, have demonstrated that interleukin-2-activated NK cells are able to attack well-established solid tumors.
Collapse
Affiliation(s)
- Stine K Larsen
- University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh PA 15213, USA; Department of Hematology, 54P4, Copenhagen University Hospital, Herlev, Denmark
| | - Yanhua Gao
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Per H Basse
- University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh PA 15213, USA; Department of Immunology, University of Pittsburgh, Pittsburgh PA 15213, USA
| |
Collapse
|
30
|
Sedger LM, McDermott MF. TNF and TNF-receptors: From mediators of cell death and inflammation to therapeutic giants - past, present and future. Cytokine Growth Factor Rev 2014; 25:453-72. [PMID: 25169849 DOI: 10.1016/j.cytogfr.2014.07.016] [Citation(s) in RCA: 566] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Tumor Necrosis Factor (TNF), initially known for its tumor cytotoxicity, is a potent mediator of inflammation, as well as many normal physiological functions in homeostasis and health, and anti-microbial immunity. It also appears to have a central role in neurobiology, although this area of TNF biology is only recently emerging. Here, we review the basic biology of TNF and its normal effector functions, and discuss the advantages and disadvantages of therapeutic neutralization of TNF - now a commonplace practice in the treatment of a wide range of human inflammatory diseases. With over ten years of experience, and an emerging range of anti-TNF biologics now available, we also review their modes of action, which appear to be far more complex than had originally been anticipated. Finally, we highlight the current challenges for therapeutic intervention of TNF: (i) to discover and produce orally delivered small molecule TNF-inhibitors, (ii) to specifically target selected TNF producing cells or individual (diseased) tissue targets, and (iii) to pre-identify anti-TNF treatment responders. Although the future looks bright, the therapeutic modulation of TNF now moves into the era of personalized medicine with society's challenging expectations of durable treatment success and of achieving long-term disease remission.
Collapse
Affiliation(s)
- Lisa M Sedger
- Australian School of Advanced Medicine, Macquarie University, North Ryde, NSW 2109, Australia; The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 0200, Australia.
| | - Michael F McDermott
- Experimental Rheumatology, National Institute for Health Research - Leeds Musculoskeletal Biomedical Research Unit (NIHR-LMBRU), and Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), Wellcome Trust Brenner Building, St James University, Beckett Street, West Yorkshire, Leeds LS9 7TF, UK.
| |
Collapse
|
31
|
Kim TJ, Upadhyay V, Kumar V, Lee KM, Fu YX. Innate lymphoid cells facilitate NK cell development through a lymphotoxin-mediated stromal microenvironment. ACTA ACUST UNITED AC 2014; 211:1421-31. [PMID: 24913234 PMCID: PMC4076579 DOI: 10.1084/jem.20131501] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Lymphotoxin expressed by RORγt+ innate lymphoid cells is critical for natural killer cell development. Natural killer (NK) cell development relies on signals provided from the bone marrow (BM) microenvironment. It is thought that lymphotoxin (LT) α1β2 expressed by the NK cell lineage interacts with BM stromal cells to promote NK cell development. However, we now report that a small number of RORγt+ innate lymphoid cells (ILCs), and not CD3−NK1.1+ cells, express LT to drive NK development. Similar to LT−/− or RORγt−/− mice, the mice conditionally lacking LTα1β2 on RORγt+ ILCs experience a developmental arrest at the immature NK stages, between stages of NK development to the mature NK cell stage. This developmental block results in a functional deficiency in the clearance of NK-sensitive tumor cells. Reconstitution of Thy1+ ILCs from BM or purified RORγt+ ILCs from lamina propria lymphocytes into LT-deficient RORγt+ BM cultures rescues NK cell development. These data highlight a previously undiscovered role of RORγt+ ILCs for NK cell development and define LT from ILCs as an essential molecule for the stromal microenvironment supporting NK cell development.
Collapse
Affiliation(s)
- Tae-Jin Kim
- Department of Pathology, The University of Chicago, Chicago, IL 60637 Global Research Lab, Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul 136-705, South Korea
| | - Vaibhav Upadhyay
- Department of Pathology, The University of Chicago, Chicago, IL 60637
| | - Vinay Kumar
- Department of Pathology, The University of Chicago, Chicago, IL 60637
| | - Kyung-Mi Lee
- Department of Pathology, The University of Chicago, Chicago, IL 60637 Global Research Lab, Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul 136-705, South Korea
| | - Yang-Xin Fu
- Department of Pathology, The University of Chicago, Chicago, IL 60637
| |
Collapse
|
32
|
Jiang W, Zhang C, Tian Z, Zhang J. hIL-15 gene-modified human natural killer cells (NKL-IL15) augments the anti-human hepatocellular carcinoma effect in vivo. Immunobiology 2014; 219:547-53. [PMID: 24721706 DOI: 10.1016/j.imbio.2014.03.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 07/25/2013] [Accepted: 03/12/2014] [Indexed: 02/08/2023]
Abstract
Genetic modification of NK cells may provide new possibilities for developing effective cancer immunotherapy by improving NK cell function and specificity. We previously established human interleukin-15 (hIL-15) gene-modified NKL cells (NKL-IL15) and demonstrated their therapeutic efficiency against human hepatocellular carcinoma (HCC) in vitro. To further assess the applicability of NKL-IL15 cells in adoptive cellular immunotherapy, we further investigated their natural cytotoxicity against HCC in vivo in the present study. NKL-IL15 cells exhibited strong inhibition on the growth of transplanted human HCC tumors in xenograft nude mouse models. Further investigation showed that NKL-IL15 cells expressed much higher levels of cytolysis-related molecules, including NKp80, TRAIL, granzyme B, IFN-γ, and TNF-α, than parental NKL cells in response to HCC stimulation. Moreover, soluble mediators secreted by NKL-IL15 cells decreased HCC cell proliferation; in particular, NKL-IL15-derived TNF-α and IFN-γ induced higher NKG2D ligand expression on target cells and resulted in the increased susceptibility of HCCs to NKL-mediated cytolysis. These results show that hIL-15 gene-modified human NK cells can augment the anti-tumor effect of NK cells on human HCC in vivo and suggest their promising applicability as a new candidate for adoptive immunotherapy against HCCs in the future.
Collapse
Affiliation(s)
- Wen Jiang
- Institute of Immunopharmacology & Immunotherapy, School of Pharmaceutical Sciences, Shandong University, 44 Wenhua West Road, Jinan 250012, PR China
| | - Cai Zhang
- Institute of Immunopharmacology & Immunotherapy, School of Pharmaceutical Sciences, Shandong University, 44 Wenhua West Road, Jinan 250012, PR China
| | - Zhigang Tian
- Institute of Immunopharmacology & Immunotherapy, School of Pharmaceutical Sciences, Shandong University, 44 Wenhua West Road, Jinan 250012, PR China
| | - Jian Zhang
- Institute of Immunopharmacology & Immunotherapy, School of Pharmaceutical Sciences, Shandong University, 44 Wenhua West Road, Jinan 250012, PR China.
| |
Collapse
|
33
|
Leigh ND, Bian G, Ding X, Liu H, Aygun-Sunar S, Burdelya LG, Gudkov AV, Cao X. A flagellin-derived toll-like receptor 5 agonist stimulates cytotoxic lymphocyte-mediated tumor immunity. PLoS One 2014; 9:e85587. [PMID: 24454895 PMCID: PMC3891810 DOI: 10.1371/journal.pone.0085587] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 11/29/2013] [Indexed: 01/06/2023] Open
Abstract
Toll-like receptor (TLR) mediated recognition of pathogen associated molecular patterns allows the immune system to rapidly respond to a pathogenic insult. The "danger context" elicited by TLR agonists allows an initially non-immunogenic antigen to become immunogenic. This ability to alter environment is highly relevant in tumor immunity, since it is inherently difficult for the immune system to recognize host-derived tumors as immunogenic. However, immune cells may have encountered certain TLR ligands associated with tumor development, yet the endogenous stimulation is typically not sufficient to induce spontaneous tumor rejection. Of special interest are TLR5 agonists, because there are no endogenous ligands that bind TLR5. CBLB502 is a pharmacologically optimized TLR5 agonist derived from Salmonella enterica flagellin. We examined the effect of CBLB502 on tumor immunity using two syngeneic lymphoma models, both of which do not express TLR5, and thus do not directly respond to CBLB502. Upon challenge with the T-cell lymphoma RMAS, CBLB502 treatment after tumor inoculation protects C57BL/6 mice from death caused by tumor growth. This protective effect is both natural killer (NK) cell- and perforin-dependent. In addition, CBLB502 stimulates clearance of the B-cell lymphoma A20 in BALB/c mice in a CD8(+) T cell-dependent fashion. Analysis on the cellular level via ImageStream flow cytometry reveals that CD11b(+) and CD11c(+) cells, but neither NK nor T cells, directly respond to CBLB502 as determined by NFκB nuclear translocation. Our findings demonstrate that CBLB502 stimulates a robust antitumor response by directly activating TLR5-expressing accessory immune cells, which in turn activate cytotoxic lymphocytes.
Collapse
Affiliation(s)
- Nicholas D. Leigh
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Guanglin Bian
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Xilai Ding
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Hong Liu
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Semra Aygun-Sunar
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Lyudmila G. Burdelya
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Andrei V. Gudkov
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Xuefang Cao
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|
34
|
Cheng M, Chen Y, Xiao W, Sun R, Tian Z. NK cell-based immunotherapy for malignant diseases. Cell Mol Immunol 2013; 10:230-52. [PMID: 23604045 DOI: 10.1038/cmi.2013.10] [Citation(s) in RCA: 476] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Natural killer (NK) cells play critical roles in host immunity against cancer. In response, cancers develop mechanisms to escape NK cell attack or induce defective NK cells. Current NK cell-based cancer immunotherapy aims to overcome NK cell paralysis using several approaches. One approach uses expanded allogeneic NK cells, which are not inhibited by self histocompatibility antigens like autologous NK cells, for adoptive cellular immunotherapy. Another adoptive transfer approach uses stable allogeneic NK cell lines, which is more practical for quality control and large-scale production. A third approach is genetic modification of fresh NK cells or NK cell lines to highly express cytokines, Fc receptors and/or chimeric tumor-antigen receptors. Therapeutic NK cells can be derived from various sources, including peripheral or cord blood cells, stem cells or even induced pluripotent stem cells (iPSCs), and a variety of stimulators can be used for large-scale production in laboratories or good manufacturing practice (GMP) facilities, including soluble growth factors, immobilized molecules or antibodies, and other cellular activators. A list of NK cell therapies to treat several types of cancer in clinical trials is reviewed here. Several different approaches to NK-based immunotherapy, such as tissue-specific NK cells, killer receptor-oriented NK cells and chemically treated NK cells, are discussed. A few new techniques or strategies to monitor NK cell therapy by non-invasive imaging, predetermine the efficiency of NK cell therapy by in vivo experiments and evaluate NK cell therapy approaches in clinical trials are also introduced.
Collapse
Affiliation(s)
- Min Cheng
- Institute of Immunology, University of Science and Technology of China, Hefei, China
| | | | | | | | | |
Collapse
|
35
|
Witek Janusek L, Tell D, Albuquerque K, Mathews HL. Childhood adversity increases vulnerability for behavioral symptoms and immune dysregulation in women with breast cancer. Brain Behav Immun 2013; 30 Suppl:S149-62. [PMID: 22659062 PMCID: PMC3492527 DOI: 10.1016/j.bbi.2012.05.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 04/24/2012] [Accepted: 05/22/2012] [Indexed: 10/28/2022] Open
Abstract
Women respond differentially to the stress-associated with breast cancer diagnosis and treatment, with some women experiencing more intense and/or sustained behavioral symptoms and immune dysregulation than others. Childhood adversity has been identified to produce long-term dysregulation of stress response systems, increasing reactivity to stressors encountered during adulthood. This study determined whether childhood adversity increased vulnerability for more intense and sustained behavioral symptoms (fatigue, perceived stress, and depressive symptoms), poorer quality of life, and greater immune dysregulation in women (N=40) with breast cancer. Evaluation was after breast surgery and through early survivorship. Hierarchical linear modeling was used to examine intra-individual and inter-individual differences with respect to initial status and to the pattern of change (i.e. trajectory) of outcomes. At initial assessment, women exposed to childhood emotional neglect/abuse had greater perceived stress, fatigue, depressive symptoms and poorer quality of life, as well as lower natural killer cell activity (NKCA). Although these outcomes improved over time, women with greater childhood emotional neglect/abuse exhibited worse outcomes through early survivorship. No effect was observed on the pattern of change for these outcomes. In contrast, childhood physical neglect predicted sustained trajectories of greater perceived stress, worse quality of life, and elevated plasma IL-6; with no effect observed at initial assessment. Thus, childhood adversity leaves an enduring imprint, increasing vulnerability for behavioral symptoms, poor quality of life, and elevations in IL-6 in women with breast cancer. Further, childhood adversity predisposes to lower NKCA at a critical time when this immune-effector mechanism is most effective at halting nascent tumor seeding.
Collapse
Affiliation(s)
- Linda Witek Janusek
- Marcella Niehoff School of Nursing, Loyola University Chicago, Health Science Division, Maywood, IL 60153, USA.
| | - Dina Tell
- Marcella Niehoff School of Nursing, Loyola University Chicago, Health Science Division, Maywood, IL 60153
| | - Kevin Albuquerque
- Stritch School of Medicine, Loyola University Chicago, Health Science Division, Maywood, IL 60153
| | - Herbert L. Mathews
- Stritch School of Medicine, Loyola University Chicago, Health Science Division, Maywood, IL 60153
| |
Collapse
|
36
|
Paradoxical roles of tumour necrosis factor-alpha in prostate cancer biology. Prostate Cancer 2012; 2012:128965. [PMID: 23326670 PMCID: PMC3543804 DOI: 10.1155/2012/128965] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 11/19/2012] [Indexed: 01/08/2023] Open
Abstract
Tumour necrosis factor (TNF) is a pleiotropic cytokine with dual roles in cancer biology including prostate cancer (PCa). On the one hand, there is evidence that it stimulates tumour angiogenesis, is involved in the initiation of PCa from an androgen-dependent to a castrate resistant state, plays a role in epithelial to mesenchymal plasticity, and may contribute to the aberrant regulation of eicosanoid pathways. On the other hand, TNF has also been reported to inhibit neovascularisation, induce apoptosis of PCa cells, and stimulate antitumour immunity. Much of the confusion surrounding its seemingly paradoxical roles in cancer biology stems from the dependence of its effects on the biological model within which TNF is investigated. This paper will address some of these issues and also discuss the therapeutic implications.
Collapse
|
37
|
Anel A, Aguiló JI, Catalán E, Garaude J, Rathore MG, Pardo J, Villalba M. Protein Kinase C-θ (PKC-θ) in Natural Killer Cell Function and Anti-Tumor Immunity. Front Immunol 2012; 3:187. [PMID: 22783260 PMCID: PMC3389606 DOI: 10.3389/fimmu.2012.00187] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 06/15/2012] [Indexed: 12/24/2022] Open
Abstract
The protein kinase C-θ (PKCθ), which is essential for T cell function and survival, is also required for efficient anti-tumor immune surveillance. Natural killer (NK) cells, which express PKCθ, play a prominent role in this process, mainly by elimination of tumor cells with reduced or absent major histocompatibility complex class-I (MHC-I) expression. This justifies the increased interest of the use of activated NK cells in anti-tumor immunotherapy in the clinic. The in vivo development of MHC-I-deficient tumors is much favored in PKCθ−/− mice compared with wild-type mice. Recent data offer some clues on the mechanism that could explain the important role of PKCθ in NK cell-mediated anti-tumor immune surveillance: some studies show that PKCθ is implicated in signal transduction and anti-tumoral activity of NK cells elicited by interleukin (IL)-12 or IL-15, while others show that it is implicated in NK cell functional activation mediated by certain killer-activating receptors. Alternatively, the possibility that PKCθ is involved in NK cell degranulation is discussed, since recent data indicate that it is implicated in microtubule-organizing center polarization to the immune synapse in CD4+ T cells. The implication of PKC isoforms in degranulation has been more extensively studied in cytotoxic T lymphocyte, and these studies will be also summarized.
Collapse
Affiliation(s)
- Alberto Anel
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza Zaragoza, Spain
| | | | | | | | | | | | | |
Collapse
|
38
|
Albuquerque K, Tell D, Lobo P, Millbrandt L, Mathews HL, Janusek LW. Impact of partial versus whole breast radiation therapy on fatigue, perceived stress, quality of life and natural killer cell activity in women with breast cancer. BMC Cancer 2012; 12:251. [PMID: 22708709 PMCID: PMC3542587 DOI: 10.1186/1471-2407-12-251] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 05/29/2012] [Indexed: 12/02/2022] Open
Abstract
Introduction This pilot study used a prospective longitudinal design to compare the effect of adjuvant whole breast radiation therapy (WBRT) versus partial breast radiation therapy (PBRT) on fatigue, perceived stress, quality of life and natural killer cell activity (NKCA) in women receiving radiation after breast cancer surgery. Methods Women (N = 30) with early-stage breast cancer received either PBRT, Mammosite brachytherapy at dose of 34 Gy 10 fractions/5 days, (N = 15) or WBRT, 3-D conformal techniques at dose of 50 Gy +10 Gy Boost/30 fractions, (N = 15). Treatment was determined by the attending oncologist after discussion with the patient and the choice was based on tumor stage and clinical need. Women were assessed prior to initiation of radiation therapy and twice after completion of radiation therapy. At each assessment, blood was obtained for determination of NKCA and the following instruments were administered: Perceived Stress Scale (PSS), Functional Assessment of Cancer Therapy-Fatigue (FACT-F), and Functional Assessment of Cancer Therapy-General (FACT-G). Hierarchical linear modeling (HLM) was used to evaluate group differences in initial outcomes and change in outcomes over time. Results Fatigue (FACT-F) levels, which were similar prior to radiation therapy, demonstrated a significant difference in trajectory. Women who received PBRT reported progressively lower fatigue; conversely fatigue worsened over time for women who received WBRT. No difference in perceived stress was observed between women who received PBRT or WBRT. Both groups of women reported similar levels of quality of life (FACT-G) prior to initiation of radiation therapy. However, HLM analysis revealed significant group differences in the trajectory of quality of life, such that women receiving PBRT exhibited a linear increase in quality of life over time after completion of radiation therapy; whereas women receiving WBRT showed a decreasing trajectory. NKCA was also similar between therapy groups but additional post hoc analysis revealed that better quality of life significantly predicted higher NKCA regardless of therapy. Conclusions Compared to WBRT, PBRT results in more rapid recovery from cancer-related fatigue with improved restoration of quality of life after radiation therapy. Additionally, better quality of life predicts higher NKCA against tumor targets, emphasizing the importance of fostering quality of life for women undergoing adjuvant radiation therapy.
Collapse
Affiliation(s)
- Kevin Albuquerque
- Department of Radiation Oncology, Loyola University Health System, Maywood, IL, USA.
| | | | | | | | | | | |
Collapse
|
39
|
Gonzaga R, Matzinger P, Perez-Diez A. Resident peritoneal NK cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 187:6235-42. [PMID: 22079985 PMCID: PMC3237802 DOI: 10.4049/jimmunol.1101540] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this study, we describe a new population of NK cells that reside in the normal, uninflamed peritoneal cavity. Phenotypically, they share some similarities with the small population of CD49b(-), CD27(+) immature splenic NK cells, as well as liver NK cells, but they differ in their expression of CD62L, TRAIL, and EOMES. Functionally, the peritoneal NK cells resemble the immature splenic NK cells in their production of IFN-γ, GM-CSF, and TNF-α and in the killing of YAC-1 target cells. We also found that the peritoneum induces different behavior in mature and immature splenic NK cells. When transferred i.v. into RAGγc knockout mice, both populations undergo homeostatic proliferation in the spleen, but only the immature splenic NK cells are able to reach the peritoneum. When transferred directly into the peritoneum, the mature NK cells survive but do not divide, whereas the immature NK cells proliferate profusely. These data suggest that the peritoneum is not only home to a new subset of tissue-resident NK cells, but that it differentially regulates the migration and homeostatic proliferation of immature versus mature NK cells.
Collapse
Affiliation(s)
- Rosemary Gonzaga
- Ghost Lab, T Cell Memory and Tolerance Section, Laboratory of Cellular and Molecular Immunology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Polly Matzinger
- Ghost Lab, T Cell Memory and Tolerance Section, Laboratory of Cellular and Molecular Immunology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Ainhoa Perez-Diez
- Ghost Lab, T Cell Memory and Tolerance Section, Laboratory of Cellular and Molecular Immunology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
40
|
Abstract
Natural killer (NK) cells and dendritic cells (DCs) are essential effector cells of the innate immune system that rapidly recognize and eliminate microbial pathogens and abnormal cells, and induce and regulate adaptive immune functions. While NK cells express perforin and granzymes in the lysosomal granules and transmembrane tumor necrosis factor superfamily ligands (tmTNFSFL) on the plasma membrane, DCs express only tmTNFSFL on the plasma membrane. Perforin and granzymes are cytolytic molecules, which NK cells use to mediate a secretory/necrotic killing mechanism against rare leukemia cell targets. TNFSFL are pleiotropic transmembrane molecules, which can mediate a variety of important functions such as apoptosis, development of peripheral lymphoid tissues, inflammation and regulation of immune functions. Using tmTNFSFL, NK cells and DCs mediate a cell contact-dependent non-secretory apoptotic cytotoxic mechanism against virtually all types of cancer cells, and cross talk that leads to polarization and reciprocal stimulation and amplification of Th1 type cytokines secreted by NK cells and DCs. In this paper, we review and discuss the supporting evidence of the non-secretory, tmTNFSFL-mediated innate mechanisms of NK cells and DCs, their roles in anticancer immune defense and potential of their modulation and use in prevention and treatment of cancer.
Collapse
|
41
|
Epigenetic patterns associated with the immune dysregulation that accompanies psychosocial distress. Brain Behav Immun 2011; 25:830-9. [PMID: 21146603 PMCID: PMC3079772 DOI: 10.1016/j.bbi.2010.12.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Revised: 12/05/2010] [Accepted: 12/06/2010] [Indexed: 11/21/2022] Open
Abstract
The molecular basis for psychosocial-distress mediated immune-dysregulation is not well understood. The purpose of this study was to determine whether peripheral blood mononuclear cell (PBMC) epigenetic pattern associates with this form of immune dysregulation. Women newly diagnosed with early stage breast cancer were enrolled into the study and psychosocial, immunological and epigenetic assessments were made at diagnosis and four months later, after completion of cancer treatment. At diagnosis women reported increased perceived stress, anxiety, and mood disturbance and the PBMC of these women exhibited reduced natural killer cell activity and reduced production of interferon gamma, which contrasted with results, obtained after completion of treatment. At the epigenetic level, a PBMC subset derived from women at diagnosis exhibited a distinct epigenetic pattern, with reduced nuclear acetylation of histone residues H4-K8 and H4-K12, as well as reduced phosphorylation of H3-S10, when compared to similar cells derived after the completion of treatment. Natural killer cell activity and interferon-gamma production were associated with nuclear acetylation and phosphorylation status of these histone residues. These findings demonstrate associations among nuclear epigenetic pattern and the immune dysregulation that accompanies psychosocial distress.
Collapse
|
42
|
Pegram HJ, Kershaw MH, Darcy PK. Genetic modification of natural killer cells for adoptive cellular immunotherapy. Immunotherapy 2011; 1:623-30. [PMID: 20635990 DOI: 10.2217/imt.09.36] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Immunotherapy of cancer is a rapidly developing field; one such development is the manipulation and use of natural killer (NK) cells. These cells with 'killer instincts' are an attractive cell to utilize, as they are directly reactive toward tumor and could potentially activate the endogenous adaptive immune system. Their employment in adoptive cell transfer treatments has yielded important results and discoveries, although effective antitumor responses are limited. To address these limitations, NK cells are the target of a new generation of immunotherapy involving gene transfer. The gene modification of immune cells is a relatively recent technique and some groups have targeted NK cells for gene modification to improve their antitumor efficacy. This review will investigate studies describing the gene modification of NK cells and their encouraging antitumor effects.
Collapse
Affiliation(s)
- Hollie J Pegram
- Cancer Immunology Research, Peter MacCallum Cancer Centre, Melbourne, VIC 8006, Australia
| | | | | |
Collapse
|
43
|
Antibody responses to glycolipid‐borne carbohydrates require CD4
+
T cells but not CD1 or NKT cells. Immunol Cell Biol 2011; 89:502-10. [DOI: 10.1038/icb.2010.166] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
44
|
Krukowski K, Eddy J, Kosik KL, Konley T, Janusek LW, Mathews HL. Glucocorticoid dysregulation of natural killer cell function through epigenetic modification. Brain Behav Immun 2011; 25:239-49. [PMID: 20656012 PMCID: PMC2989339 DOI: 10.1016/j.bbi.2010.07.244] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 07/11/2010] [Accepted: 07/18/2010] [Indexed: 11/18/2022] Open
Abstract
It is well-established that psychological distress reduces natural killer cell activity (NKCA) and dysregulates cytokine balance. This may be mediated by stress-induced release of glucocorticoids, which have broad effects on the immune system, including the suppression of NKCA and alteration of cytokine production. The purpose of this study was to evaluate epigenetic mechanisms that may underlie the effect of glucocorticoids on NK cells, using the human NK cell line, NK92. Treatment of NK92 cells with the synthetic glucocorticoid, dexamethasone, at a concentration of 10⁻⁷M, produced a significant reduction in NKCA. Glucocorticoid inhibition was a consequence of not only a reduced capacity of the NK cells to bind to tumor targets but also a reduced production of granule constituents (perforin and granzyme B) with no detectable effect on granule exocytosis. Glucocorticoids also reduced the constitutive and the stimulated production of the cytokines, IL-6, TNF alpha and IFN gamma, and reduced the surface expression of LFA-1. Glucocorticoid treatment also reduced global histone acetylation, the acetylation of histone 4 lysine position 8, and the accessibility of the proximal promoters of perforin, interferon gamma and granzyme B. Histone acetylation was recovered by treatment of the NK cells with a histone deacetylase inhibitor, which also restored NKCA and IFN gamma production. These results demonstrate glucocorticoids to dysregulate NK cell function at least in part through an epigenetic mechanism, which reduces promoter accessibility through modification of histone acetylation status. This epigenetic modification decreases the expression of effector proteins necessary to the full functional activity of NK cells.
Collapse
Affiliation(s)
- Karen Krukowski
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University of Chicago, Maywood, IL 60153 USA
| | - Justin Eddy
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University of Chicago, Maywood, IL 60153 USA
| | - Kelly Loster Kosik
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University of Chicago, Maywood, IL 60153 USA
| | - Teresa Konley
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University of Chicago, Maywood, IL 60153 USA
| | - Linda Witek Janusek
- Marcella Niehoff School of Nursing, Loyola University of Chicago, Maywood, IL 60153 USA
| | - Herbert L. Mathews
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University of Chicago, Maywood, IL 60153 USA
- Correspondence author. Herbert L. Mathews, Department of Microbiology and Immunology, Loyola University of Chicago, 2160 South First Ave., Maywood, IL 60153 USA. Tel. (708) 216-4586, Fax. (708) 216-9574,
| |
Collapse
|
45
|
Persson CM, Chambers BJ. Plasmacytoid dendritic cell-induced migration and activation of NK cells in vivo. Eur J Immunol 2010; 40:2155-64. [PMID: 20540112 DOI: 10.1002/eji.200940098] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
NK cells are cytotoxic cells of the innate immune system. They have been found to be critical in the defense against infections and also against some tumors. Recent studies have shown that NK cells require signals from accessory cells to induce their recruitment and activation at the site of infection or tumor growth. In this study, we examined whether plasmacytoid DC (pDC) could recruit and activate NK cells in vivo. When CpG-stimulated pDC were injected i.p. to C57BL/6 mice, they efficiently recruited NK cells, a process that was dependent on NK cell CXCR3 and CD62L and in part on CCR5. NK cells isolated from the peritoneum of mice inoculated with TLR7/8 or TLR9-stimulated pDC exhibited greater cytotoxicity against YAC-1 tumor cells than NK cells recovered from mice inoculated with control pDC. The present results are discussed in relation to pDC-induced NK cell migration and activation in vivo.
Collapse
Affiliation(s)
- Catrine M Persson
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | | |
Collapse
|
46
|
Anthony DA, Andrews DM, Chow M, Watt SV, House C, Akira S, Bird PI, Trapani JA, Smyth MJ. A role for granzyme M in TLR4-driven inflammation and endotoxicosis. THE JOURNAL OF IMMUNOLOGY 2010; 185:1794-803. [PMID: 20585036 DOI: 10.4049/jimmunol.1000430] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Lymphocyte perforin and serine protease granzymes are well-recognized extrinsic mediators of apoptosis. We now demonstrate that cytotoxic lymphocyte granule components profoundly augment the myeloid cell inflammatory cytokine cascade in response to TLR4 ligation. Whereas caspase-1-deficient mice were completely resistant to LPS, reduced serum cytokine production and resistance to lethal endotoxicosis were also obtained with perforin-deficient mice, indicating a role for granzymes. Consistently, a lack of granzyme M (GrzM) resulted in reduced serum IL-1alpha, IL-1beta, TNF, and IFN-gamma levels and significantly reduced susceptibility to lethal endotoxicosis. These altered responses were also observed in granzyme A-deficient but not granzyme B-deficient mice. A role for APC-NK cell cross-talk in the inflammatory cascade was highlighted, as GrzM was exclusively expressed by NK cells and resistance to LPS was also observed on a RAG-1/GrzM-double deficient background. Collectively, the data suggest that NK cell GrzM augments the inflammatory cascade downstream of LPS-TLR4 signaling, which ultimately results in lethal endotoxicosis. Most importantly, these data demonstrate that granzymes should no longer be considered solely as mediators of apoptosis, but additionally as potential key regulators of inflammation.
Collapse
Affiliation(s)
- Desiree A Anthony
- Cancer Immunology Program, Sir Donald and Lady Trescowthick Laboratories, Peter MacCallum Cancer Centre, Locked Bag 1, A'Beckett Street, 8006, East Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Teng MWL, Andrews DM, McLaughlin N, von Scheidt B, Ngiow SF, Möller A, Hill GR, Iwakura Y, Oft M, Smyth MJ. IL-23 suppresses innate immune response independently of IL-17A during carcinogenesis and metastasis. Proc Natl Acad Sci U S A 2010; 107:8328-33. [PMID: 20404142 PMCID: PMC2889517 DOI: 10.1073/pnas.1003251107] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
IL-23 is an important molecular driver of Th17 cells and has strong tumor-promoting proinflammatory activity postulated to occur via adaptive immunity. Conversely, more recently it has been reported that IL-17A elicits a protective inflammation that promotes the activation of tumor-specific CD8(+) T cells. Here we show the much broader impact of IL-23 in antagonizing antitumor immune responses primarily mediated by innate immunity. Furthermore, the majority of this impact was independent of IL-17A, which did not appear critical for many host responses to tumor initiation or metastases. IL-23-deficient mice were resistant to experimental tumor metastases in three models where host NK cells controlled disease. Immunotherapy with IL-2 was more effective in mice lacking IL-23, and again the protection afforded was NK cell mediated and independent of IL-17A. Further investigation revealed that loss of IL-23 promoted perforin and IFN-gamma antitumor effector function in both metastasis models examined. IL-23-deficiency also strikingly protected mice from tumor formation in two distinct mouse models of carcinogenesis where the dependence on host IL-12p40 and IL-17A was quite different. Notably, in the 3'-methylcholanthrene (MCA) induction of fibrosarcoma model, this protection was completely lost in the absence of NK cells. Overall, these data indicate the general role that IL-23 plays in suppressing natural or cytokine-induced innate immunity, promoting tumor development and metastases independently of IL-17A.
Collapse
Affiliation(s)
- Michele W. L. Teng
- Cancer Immunology Program and
- Department of Pathology, University of Melbourne, Parkville 3010, Australia
| | | | | | | | - Shin Foong Ngiow
- Cancer Immunology Program and
- Department of Pathology, University of Melbourne, Parkville 3010, Australia
| | - Andreas Möller
- Cancer Genomics and Biochemistry Laboratory, Trescowthick Laboratories, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
- Department of Pathology, University of Melbourne, Parkville 3010, Australia
| | - Geoffrey R. Hill
- Queensland Institute of Medical Research, Queensland 4006, Australia
| | - Yoichiro Iwakura
- Division of Cell Biology, Centre for Experimental Medicine, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan; and
| | - Martin Oft
- Schering–Plough BioPharma, Palo Alto, CA 94304
| | - Mark J. Smyth
- Cancer Immunology Program and
- Department of Pathology, University of Melbourne, Parkville 3010, Australia
| |
Collapse
|
48
|
Abstract
Natural killer (NK) cells were discovered in the 1970 s and named after their naturally occurring cytotoxic activity against tumor cells. It has recently become clear that NK cells are not just killers and that malignancy is unlikely to be the selective pressure driving the evolution of NK cells. Indeed, NK cells secrete a host of cytokines and chemokines that contribute to tissue remodeling at the feto-maternal interface and to both innate and adaptive immunity during infection. Moreover, in certain conditions, they cannot deliver functions cell autonomously, as they require priming from other cells, namely dendritic cells. Nevertheless, natural cytotoxicity is still considered an important parameter used to evaluate NK cell biology, both in the clinic and in the research lab. In this chapter we describe a simple method to quantify spontaneous NK cell cytotoxicity in vivo.
Collapse
Affiliation(s)
- Aurore Saudemont
- Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, UK
| | | | | |
Collapse
|
49
|
Vankayalapati R, Barnes PF. Innate and adaptive immune responses to human Mycobacterium tuberculosis infection. Tuberculosis (Edinb) 2009; 89 Suppl 1:S77-80. [PMID: 20006312 DOI: 10.1016/s1472-9792(09)70018-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
50
|
A critical analysis of the tumour immunosurveillance controversy for 3-MCA-induced sarcomas. Br J Cancer 2009; 101:381-6. [PMID: 19638986 PMCID: PMC2720247 DOI: 10.1038/sj.bjc.6605198] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The cancer immunoediting hypothesis has gained significant footing over the past decade as a result of work performed using sarcomas induced by 3-methylcholanthrene (3-MCA) in mice. Despite the progress made by several groups in establishing evidence for the three phases of immunoediting (elimination, equilibrium and escape), there continues to be active controversy on the nature of interaction between spontaneously formed tumour cells and the immune system during the early phases of tumourigenesis. At the root of this controversy is conflicting and unresolved evidence spanning back to the 1970s regarding the incidence and frequency of 3-MCA-induced sarcomas in immunocompetent mice as compared to immunodeficient mice. In this mini review we provide a critical analysis of both sides of this controversy.
Collapse
|