1
|
Kou Y, Li J, Zhu Y, Liu J, Ren R, Jiang Y, Wang Y, Qiu C, Zhou J, Yang Z, Jiang T, Huang J, Ren X, Li S, Qiu C, Wei X, Yu L. Human Amniotic Epithelial Stem Cells Promote Colonic Recovery in Experimental Colitis via Exosomal MiR-23a-TNFR1-NF-κB Signaling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401429. [PMID: 39378064 PMCID: PMC11600273 DOI: 10.1002/advs.202401429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 09/20/2024] [Indexed: 11/28/2024]
Abstract
Inflammatory bowel disease (IBD), including ulcerative colitis and Crohn's disease, manifests as chronic intestinal inflammation with debilitating symptoms, posing a significant burden on global healthcare. Moreover, current therapies primarily targeting inflammation can lead to immunosuppression-related complications. Human amniotic epithelial stem cells (hAESCs), which exhibit low immunogenicity and ethical acceptability, have gained attention as potential therapeutics. In this study, it is demonstrated that their encapsulation in a hydrogel and administration via anal injection enhanced the colonic mucosal barrier repair in a murine colitis model induced by dextran sodium sulfate during the recovery phase. The underlying mechanism involved the release of exosomes from hAESCs enriched with microRNA-23a-3p, which post-transcriptionally reduced tumor necrosis factor receptor 1 expression, suppressing the nuclear factor-κB pathway in colonic epithelial cells, thus played a key role in inflammation. The novel approach shows potential for IBD treatment by restoring intestinal epithelial homeostasis without the immunosuppressive therapy-associated risks. Furthermore, the approach provides an alternative strategy to target the key molecular pathways involved in inflammation and promotes intestinal barrier function using hAESCs and their secreted exosomes. Overall, this study provides key insights to effectively treat IBD, addresses the unmet needs of patients, and reduces related healthcare burden.
Collapse
Affiliation(s)
- Yaohui Kou
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw HospitalMOE Laboratory of Biosystems Homeostasis & Protection of College of Life SciencesZhejiang UniversityHangzhouZhejiang310058China
- College of Life Sciences‐iCell Biotechnology Regenerative Biomedicine LaboratoryZhejiang University‐Lishui Joint Innovation Center for Life and HealthLishuiZhejiang323010China
| | - Jinying Li
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw HospitalMOE Laboratory of Biosystems Homeostasis & Protection of College of Life SciencesZhejiang UniversityHangzhouZhejiang310058China
- College of Life Sciences‐iCell Biotechnology Regenerative Biomedicine LaboratoryZhejiang University‐Lishui Joint Innovation Center for Life and HealthLishuiZhejiang323010China
| | - Yingyi Zhu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw HospitalMOE Laboratory of Biosystems Homeostasis & Protection of College of Life SciencesZhejiang UniversityHangzhouZhejiang310058China
- College of Life Sciences‐iCell Biotechnology Regenerative Biomedicine LaboratoryZhejiang University‐Lishui Joint Innovation Center for Life and HealthLishuiZhejiang323010China
| | - Jia Liu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw HospitalMOE Laboratory of Biosystems Homeostasis & Protection of College of Life SciencesZhejiang UniversityHangzhouZhejiang310058China
- College of Life Sciences‐iCell Biotechnology Regenerative Biomedicine LaboratoryZhejiang University‐Lishui Joint Innovation Center for Life and HealthLishuiZhejiang323010China
| | - Ruizhe Ren
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw HospitalMOE Laboratory of Biosystems Homeostasis & Protection of College of Life SciencesZhejiang UniversityHangzhouZhejiang310058China
- College of Life Sciences‐iCell Biotechnology Regenerative Biomedicine LaboratoryZhejiang University‐Lishui Joint Innovation Center for Life and HealthLishuiZhejiang323010China
| | - Yuanqing Jiang
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw HospitalMOE Laboratory of Biosystems Homeostasis & Protection of College of Life SciencesZhejiang UniversityHangzhouZhejiang310058China
- College of Life Sciences‐iCell Biotechnology Regenerative Biomedicine LaboratoryZhejiang University‐Lishui Joint Innovation Center for Life and HealthLishuiZhejiang323010China
| | - Yunyun Wang
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw HospitalMOE Laboratory of Biosystems Homeostasis & Protection of College of Life SciencesZhejiang UniversityHangzhouZhejiang310058China
- College of Life Sciences‐iCell Biotechnology Regenerative Biomedicine LaboratoryZhejiang University‐Lishui Joint Innovation Center for Life and HealthLishuiZhejiang323010China
| | - Chen Qiu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw HospitalMOE Laboratory of Biosystems Homeostasis & Protection of College of Life SciencesZhejiang UniversityHangzhouZhejiang310058China
- College of Life Sciences‐iCell Biotechnology Regenerative Biomedicine LaboratoryZhejiang University‐Lishui Joint Innovation Center for Life and HealthLishuiZhejiang323010China
| | - Jiayi Zhou
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw HospitalMOE Laboratory of Biosystems Homeostasis & Protection of College of Life SciencesZhejiang UniversityHangzhouZhejiang310058China
- College of Life Sciences‐iCell Biotechnology Regenerative Biomedicine LaboratoryZhejiang University‐Lishui Joint Innovation Center for Life and HealthLishuiZhejiang323010China
| | - Zhuoheng Yang
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw HospitalMOE Laboratory of Biosystems Homeostasis & Protection of College of Life SciencesZhejiang UniversityHangzhouZhejiang310058China
- College of Life Sciences‐iCell Biotechnology Regenerative Biomedicine LaboratoryZhejiang University‐Lishui Joint Innovation Center for Life and HealthLishuiZhejiang323010China
| | - Tuoying Jiang
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw HospitalMOE Laboratory of Biosystems Homeostasis & Protection of College of Life SciencesZhejiang UniversityHangzhouZhejiang310058China
- College of Life Sciences‐iCell Biotechnology Regenerative Biomedicine LaboratoryZhejiang University‐Lishui Joint Innovation Center for Life and HealthLishuiZhejiang323010China
| | - Jianan Huang
- Eye Center the Second Affiliated HospitalSchool of MedicineZhejiang Provincial Key Laboratory of OphthalmologyZhejiang Provincial Clinical Research Center for Eye DiseasesZhejiang Provincial Engineering Institute on Eye DiseasesZhejiang UniversityHangzhouZhejiang310009China
| | - Xiangyi Ren
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw HospitalMOE Laboratory of Biosystems Homeostasis & Protection of College of Life SciencesZhejiang UniversityHangzhouZhejiang310058China
- College of Life Sciences‐iCell Biotechnology Regenerative Biomedicine LaboratoryZhejiang University‐Lishui Joint Innovation Center for Life and HealthLishuiZhejiang323010China
| | - Shiguang Li
- Department of ObstetricsWomen's HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiang310006China
| | - Cong Qiu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw HospitalMOE Laboratory of Biosystems Homeostasis & Protection of College of Life SciencesZhejiang UniversityHangzhouZhejiang310058China
- College of Life Sciences‐iCell Biotechnology Regenerative Biomedicine LaboratoryZhejiang University‐Lishui Joint Innovation Center for Life and HealthLishuiZhejiang323010China
| | - Xiyang Wei
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw HospitalMOE Laboratory of Biosystems Homeostasis & Protection of College of Life SciencesZhejiang UniversityHangzhouZhejiang310058China
- Department of General SurgerySir Run Run Shaw HospitalZhejiang University School of MedicineLiangzhu LaboratoryZhejiang UniversityHangzhouZhejiang310012China
| | - Luyang Yu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw HospitalMOE Laboratory of Biosystems Homeostasis & Protection of College of Life SciencesZhejiang UniversityHangzhouZhejiang310058China
- College of Life Sciences‐iCell Biotechnology Regenerative Biomedicine LaboratoryZhejiang University‐Lishui Joint Innovation Center for Life and HealthLishuiZhejiang323010China
| |
Collapse
|
2
|
Siegmund D, Zaitseva O, Wajant H. Fn14 and TNFR2 as regulators of cytotoxic TNFR1 signaling. Front Cell Dev Biol 2023; 11:1267837. [PMID: 38020877 PMCID: PMC10657838 DOI: 10.3389/fcell.2023.1267837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Tumor necrosis factor (TNF) receptor 1 (TNFR1), TNFR2 and fibroblast growth factor-inducible 14 (Fn14) belong to the TNF receptor superfamily (TNFRSF). From a structural point of view, TNFR1 is a prototypic death domain (DD)-containing receptor. In contrast to other prominent death receptors, such as CD95/Fas and the two TRAIL death receptors DR4 and DR5, however, liganded TNFR1 does not instruct the formation of a plasma membrane-associated death inducing signaling complex converting procaspase-8 into highly active mature heterotetrameric caspase-8 molecules. Instead, liganded TNFR1 recruits the DD-containing cytoplasmic signaling proteins TRADD and RIPK1 and empowers these proteins to trigger cell death signaling by cytosolic complexes after their release from the TNFR1 signaling complex. The activity and quality (apoptosis versus necroptosis) of TNF-induced cell death signaling is controlled by caspase-8, the caspase-8 regulatory FLIP proteins, TRAF2, RIPK1 and the RIPK1-ubiquitinating E3 ligases cIAP1 and cIAP2. TNFR2 and Fn14 efficiently recruit TRAF2 along with the TRAF2 binding partners cIAP1 and cIAP2 and can thereby limit the availability of these molecules for other TRAF2/cIAP1/2-utilizing proteins including TNFR1. Accordingly, at the cellular level engagement of TNFR2 or Fn14 inhibits TNFR1-induced RIPK1-mediated effects reaching from activation of the classical NFκB pathway to induction of apoptosis and necroptosis. In this review, we summarize the effects of TNFR2- and Fn14-mediated depletion of TRAF2 and the cIAP1/2 on TNFR1 signaling at the molecular level and discuss the consequences this has in vivo.
Collapse
Affiliation(s)
| | | | - Harald Wajant
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
3
|
Efficacy and safety of erythropoietin in a chronic model of Inflammatory Bowel Disease. Biomed Pharmacother 2022; 156:113944. [DOI: 10.1016/j.biopha.2022.113944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
|
4
|
Skartsis N, Ferreira LMR, Tang Q. The dichotomous outcomes of TNFα signaling in CD4 + T cells. Front Immunol 2022; 13:1042622. [PMID: 36466853 PMCID: PMC9708889 DOI: 10.3389/fimmu.2022.1042622] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/03/2022] [Indexed: 09/26/2023] Open
Abstract
TNFa blocking agents were the first-in-class biologic drugs used for the treatment of autoimmune disease. Paradoxically, however, exacerbation of autoimmunity was observed in some patients. TNFa is a pleiotropic cytokine that has both proinflammatory and regulatory effects on CD4+ T cells and can influence the adaptive immune response against autoantigens. Here, we critically appraise the literature and discuss the intricacies of TNFa signaling that may explain the controversial findings of previous studies. The pleiotropism of TNFa is based in part on the existence of two biologically active forms of TNFa, soluble and membrane-bound, with different affinities for two distinct TNF receptors, TNFR1 and TNFR2, leading to activation of diverse downstream molecular pathways involved in cell fate decisions and immune function. Distinct membrane expression patterns of TNF receptors by CD4+ T cell subsets and their preferential binding of distinct forms of TNFα produced by a diverse pool of cellular sources during different stages of an immune response are important determinants of the differential outcomes of TNFa-TNF receptor signaling. Targeted manipulation of TNFa-TNF receptor signaling on select CD4+ T cell subsets may offer specific therapeutic interventions to dampen inflammation while fortifying immune regulation for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Nikolaos Skartsis
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN, United States
- Mayo Clinic William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, United States
| | - Leonardo M. R. Ferreira
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Qizhi Tang
- Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
- Diabetes Center, University of California, San Francisco, San Francisco, CA, United States
- Gladstone University of California San Francisco (UCSF) Institute of Genome Immunology, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
5
|
Silva I, Mendes P, Guerra S, Pinto R, Mateus V. Anti-Inflammatory Effect of Topiramate in a Chronic Model of TNBS-Induced Colitis. Int J Mol Sci 2022; 23:9127. [PMID: 36012393 PMCID: PMC9409153 DOI: 10.3390/ijms23169127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/05/2022] [Accepted: 08/12/2022] [Indexed: 12/01/2022] Open
Abstract
Inflammatory bowel disease (IBD) is characterized by a chronic and relapsing inflammatory response in the gastrointestinal tract, resulting in severe symptoms such as abdominal pain, vomiting, diarrhea, bloody stools, and weight loss. Currently, there is no cure, and the pharmacological treatment includes drugs that induce and keep the patient in remission, not reversing the underlying pathogenic mechanism. These therapies, in the long term, may cause various side effects and complications, which has increased the need to investigate new, more effective, and safer pharmacological approaches. In preclinical studies, topiramate has demonstrated a potential anti-inflammatory effect by inhibiting the production of several pro-inflammatory cytokines. This study aimed to investigate the effect of topiramate in a chronic TNBS-induced colitis model in rodents. Experimental colitis was induced by four intrarectal administrations of 1% TNBS in female CD-1 mice. Topiramate 10 and 20 mg were administered intraperitoneally for 14 days. Several parameters were evaluated, such as bodyweight, alkaline phosphatase (ALP), fecal hemoglobin, fecal calprotectin, tumor necrosis factor (TNF)-α, and interleukin (IL)-10. Topiramate reduces TNBS-induced colonic damage in a model of chronic experimental colitis and normalizes the stool consistency and anus appearance. Additionally, topiramate significantly reduced the concentration of ALP, fecal hemoglobin, fecal calprotectin, TNF-α, and IL-10, demonstrating it to be a promising pharmacological approach for the treatment of IBD in the future.
Collapse
Affiliation(s)
- Inês Silva
- H&TRC–Health and Technology Research Center, ESTeSL–Lisbon School of Health and Technology, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal
- iMed.ULisboa, Faculdade de Farmácia, Universidade de Lisboa, 1990-096 Lisbon, Portugal
| | - Priscila Mendes
- H&TRC–Health and Technology Research Center, ESTeSL–Lisbon School of Health and Technology, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal
| | - Sofia Guerra
- H&TRC–Health and Technology Research Center, ESTeSL–Lisbon School of Health and Technology, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal
| | - Rui Pinto
- iMed.ULisboa, Faculdade de Farmácia, Universidade de Lisboa, 1990-096 Lisbon, Portugal
- JCS, Dr. Joaquim Chaves, Laboratório de Análises Clínicas, Miraflores, 1495-069 Algés, Portugal
| | - Vanessa Mateus
- H&TRC–Health and Technology Research Center, ESTeSL–Lisbon School of Health and Technology, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal
- iMed.ULisboa, Faculdade de Farmácia, Universidade de Lisboa, 1990-096 Lisbon, Portugal
| |
Collapse
|
6
|
Ninnemann J, Winsauer C, Bondareva M, Kühl AA, Lozza L, Durek P, Lissner D, Siegmund B, Kaufmann SHE, Mashreghi MF, Nedospasov SA, Kruglov AA. TNF hampers intestinal tissue repair in colitis by restricting IL-22 bioavailability. Mucosal Immunol 2022; 15:698-716. [PMID: 35383266 PMCID: PMC9259490 DOI: 10.1038/s41385-022-00506-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/10/2022] [Indexed: 02/04/2023]
Abstract
Successful treatment of chronic inflammatory diseases integrates both the cessation of inflammation and the induction of adequate tissue repair processes. Strikingly, targeting a single proinflammatory cytokine, tumor necrosis factor (TNF), induces both processes in a relevant cohort of inflammatory bowel disease (IBD) patients. However, the molecular mechanisms underlying intestinal repair following TNF blockade during IBD remain elusive. Using a novel humanized model of experimental colitis, we demonstrate that TNF interfered with the tissue repair program via induction of a soluble natural antagonist of IL-22 (IL-22Ra2; IL-22BP) in the colon and abrogated IL-22/STAT3-mediated mucosal repair during colitis. Furthermore, membrane-bound TNF expressed by T cells perpetuated colonic inflammation, while soluble TNF produced by epithelial cells (IECs) induced IL-22BP expression in colonic dendritic cells (DCs) and dampened IL-22-driven restitution of colonic epithelial functions. Finally, TNF induced IL-22BP expression in human monocyte-derived DCs and levels of IL22-BP correlated with TNF in sera of IBD patients. Thus, our data can explain how anti-TNF therapy induces mucosal healing by increasing IL-22 availability and implicates new therapeutic opportunities for IBD.
Collapse
Affiliation(s)
- Justus Ninnemann
- German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Caroline Winsauer
- German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Marina Bondareva
- German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany
- Belozersky Institute of Physico-Chemical Biology and Faculty of Bioengineering and Bioinformatics, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Anja A Kühl
- iPATH.Berlin, Core Unit of Charité-Universitätsmedizin Berlin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Laura Lozza
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Pawel Durek
- German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Donata Lissner
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Britta Siegmund
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Stefan H E Kaufmann
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | | | - Sergei A Nedospasov
- Belozersky Institute of Physico-Chemical Biology and Faculty of Bioengineering and Bioinformatics, M.V. Lomonosov Moscow State University, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Institute of Cell Biology and Neurobiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Andrey A Kruglov
- German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany.
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
- Belozersky Institute of Physico-Chemical Biology and Biological Faculty, M.V. Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|
7
|
An Update of Research Animal Models of Inflammatory Bowel Disease. ScientificWorldJournal 2021; 2021:7479540. [PMID: 34938152 PMCID: PMC8687830 DOI: 10.1155/2021/7479540] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 11/28/2021] [Indexed: 12/14/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a group of chronic disorders that includes two main disease forms, Crohn's disease, and ulcerative colitis. The understanding of the intestinal inflammation occurring in IBD has been immeasurably advanced by the development of the now numerous murine models of intestinal inflammation. The usefulness of this research tool in IBD arises from a convergence of underlying genetic susceptibility, immune system dysfunction, environmental factors, and shifts in gut microbiota. Due to the multifactorial feature of these diseases, different animal models have been used to investigate the underlying mechanisms and develop potential therapeutic strategies. The results of preclinical efficacy studies often inform the progression of therapeutic strategies. This review describes the distinct feature and limitations of each murine IBD model and discusses the previous and current lessons from the IBD models.
Collapse
|
8
|
Kaya B, Doñas C, Wuggenig P, Diaz OE, Morales RA, Melhem H, Hernández PP, Kaymak T, Das S, Hruz P, Franc Y, Geier F, Ayata CK, Villablanca EJ, Niess JH. Lysophosphatidic Acid-Mediated GPR35 Signaling in CX3CR1 + Macrophages Regulates Intestinal Homeostasis. Cell Rep 2021; 32:107979. [PMID: 32755573 DOI: 10.1016/j.celrep.2020.107979] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 03/23/2020] [Accepted: 07/10/2020] [Indexed: 12/15/2022] Open
Abstract
Single-nucleotide polymorphisms in the gene encoding G protein-coupled receptor 35 (GPR35) are associated with increased risk of inflammatory bowel disease. However, the mechanisms by which GPR35 modulates intestinal immune homeostasis remain undefined. Here, integrating zebrafish and mouse experimental models, we demonstrate that intestinal Gpr35 expression is microbiota dependent and enhanced upon inflammation. Moreover, murine GPR35+ colonic macrophages are characterized by enhanced production of pro-inflammatory cytokines. We identify lysophosphatidic acid (LPA) as a potential endogenous ligand produced during intestinal inflammation, acting through GPR35 to induce tumor necrosis factor (Tnf) expression in macrophages. Mice lacking Gpr35 in CX3CR1+ macrophages aggravate colitis when exposed to dextran sodium sulfate, which is associated with decreased transcript levels of the corticosterone-generating gene Cyp11b1 and macrophage-derived Tnf. Administration of TNF in these mice restores Cyp11b1 expression and intestinal corticosterone production and ameliorates DSS-induced colitis. Our findings indicate that LPA signals through GPR35 in CX3CR1+ macrophages to maintain TNF-mediated intestinal homeostasis.
Collapse
Affiliation(s)
- Berna Kaya
- Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Cristian Doñas
- Division of Immunology and Allergy, Department of Medicine, Solna, Karolinska Institutet and University Hospital, 17176 Stockholm, Sweden; Center for Molecular Medicine (CMM), 17176 Stockholm, Sweden
| | - Philipp Wuggenig
- Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Oscar E Diaz
- Division of Immunology and Allergy, Department of Medicine, Solna, Karolinska Institutet and University Hospital, 17176 Stockholm, Sweden; Center for Molecular Medicine (CMM), 17176 Stockholm, Sweden
| | - Rodrigo A Morales
- Division of Immunology and Allergy, Department of Medicine, Solna, Karolinska Institutet and University Hospital, 17176 Stockholm, Sweden; Center for Molecular Medicine (CMM), 17176 Stockholm, Sweden
| | - Hassan Melhem
- Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | | | - Pedro P Hernández
- Institut Curie, PSL Research University, INSERM U934/CNRS UMR3215, Development and Homeostasis of Mucosal Tissues Group, 75005 Paris, France
| | - Tanay Kaymak
- Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Srustidhar Das
- Division of Immunology and Allergy, Department of Medicine, Solna, Karolinska Institutet and University Hospital, 17176 Stockholm, Sweden; Center for Molecular Medicine (CMM), 17176 Stockholm, Sweden
| | - Petr Hruz
- University Center for Gastrointestinal and Liver Diseases, St. Clara Hospital and University Hospital of Basel, 4031 Basel, Switzerland
| | - Yannick Franc
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, 1011 Lausanne, Switzerland
| | - Florian Geier
- Department of Biomedicine, University of Basel, 4031 Basel, Switzerland; Swiss Institute of Bioinformatics, 4031 Basel, Switzerland
| | - C Korcan Ayata
- Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Eduardo J Villablanca
- Division of Immunology and Allergy, Department of Medicine, Solna, Karolinska Institutet and University Hospital, 17176 Stockholm, Sweden; Center for Molecular Medicine (CMM), 17176 Stockholm, Sweden.
| | - Jan Hendrik Niess
- Department of Biomedicine, University of Basel, 4031 Basel, Switzerland; University Center for Gastrointestinal and Liver Diseases, St. Clara Hospital and University Hospital of Basel, 4031 Basel, Switzerland.
| |
Collapse
|
9
|
Seitz C, Huang J, Geiselhöringer AL, Galbani-Bianchi P, Michalek S, Phan TS, Reinhold C, Dietrich L, Schmidt C, Corazza N, Delgado ME, Schnalzger T, Schoonjans K, Brunner T. The orphan nuclear receptor LRH-1/NR5a2 critically regulates T cell functions. SCIENCE ADVANCES 2019; 5:eaav9732. [PMID: 31328159 PMCID: PMC6636985 DOI: 10.1126/sciadv.aav9732] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 06/12/2019] [Indexed: 06/10/2023]
Abstract
LRH-1 (liver receptor homolog-1/NR5a2) is an orphan nuclear receptor, which regulates glucose and lipid metabolism, as well as intestinal inflammation via the transcriptional control of intestinal glucocorticoid synthesis. Predominantly expressed in epithelial cells, its expression and role in immune cells are presently enigmatic. LRH-1 was found to be induced in immature and mature T lymphocytes upon stimulation. T cell-specific deletion of LRH-1 causes a drastic loss of mature peripheral T cells. LRH-1-depleted CD4+ T cells exert strongly reduced activation-induced proliferation in vitro and in vivo and fail to mount immune responses against model antigens and to induce experimental intestinal inflammation. Similarly, LRH-1-deficient cytotoxic CD8+ T cells fail to control viral infections. This study describes a novel and critical role of LRH-1 in T cell maturation, functions, and immopathologies and proposes LRH-1 as an emerging pharmacological target in the treatment of T cell-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Carina Seitz
- Division of Biochemical Pharmacology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Juan Huang
- Division of Biochemical Pharmacology, Department of Biology, University of Konstanz, Konstanz, Germany
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Sichuan, P.R. China
| | - Anna-Lena Geiselhöringer
- Division of Biochemical Pharmacology, Department of Biology, University of Konstanz, Konstanz, Germany
| | | | - Svenja Michalek
- Division of Biochemical Pharmacology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Truong San Phan
- Division of Biochemical Pharmacology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Cindy Reinhold
- Division of Biochemical Pharmacology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Lea Dietrich
- Division of Biochemical Pharmacology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Christian Schmidt
- Division of Biochemical Pharmacology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Nadia Corazza
- Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
| | - M. Eugenia Delgado
- Division of Biochemical Pharmacology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Theresa Schnalzger
- Division of Biochemical Pharmacology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Kristina Schoonjans
- Laboratory of Metabolic Signaling, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Thomas Brunner
- Division of Biochemical Pharmacology, Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
10
|
Delgado ME, Brunner T. The many faces of tumor necrosis factor signaling in the intestinal epithelium. Genes Immun 2019; 20:609-626. [DOI: 10.1038/s41435-019-0057-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 12/26/2018] [Indexed: 01/15/2023]
|
11
|
Mateus V, Rocha J, Mota-Filipe H, Sepodes B, Pinto R. Hemin reduces inflammation associated with TNBS-induced colitis. Clin Exp Gastroenterol 2018; 11:325-334. [PMID: 30271188 PMCID: PMC6151101 DOI: 10.2147/ceg.s166197] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Purpose Hemin is a heme-oxygenase inducer, which can confer anti-inflammatory, cytoprotective, and antiapoptotic effects. These properties are beneficial therapeutical effects to inflammatory bowel disease (IBD). IBD is a worldwide health problem characterized by chronic inflammation of intestinal epithelium, which promotes intestinal and extraintestinal symptomatology. Current treatment only induces and maintains the patient in remission and results in many side effects. The research of other pharmacologic approaches is crucial to the treatment of IBD. The aim of this study is to evaluate the effect of hemin in the 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis model. Materials and methods Male CD-1 mice with TNBS-induced colitis were treated with a daily dose of hemin 5 mg/kg body weight/day and 10 mg/kg body weight/day intraperitoneal, during 4 days. The evaluated parameters were fecal hemoglobin, alkaline phosphatase (ALP), myeloperoxidase, tumor necrosis factor-α, interleukin (IL)-1β, IL-10, histopathologic analysis, urea, creatinine, and alanine aminotransferase. Results The hemin-treated mice presented a decrease in fecal hemoglobin, ALP, and proinflammatory cytokine concentrations compared to the TNBS group. Histopathology analysis confirmed the decrease in lesion extension produced by hemin. Conclusion These findings suggest that hemin treatment reduces hemorrhagic focus, intestinal damage, tissue inflammation, and lesion extension associated with experimental colitis.
Collapse
Affiliation(s)
- Vanessa Mateus
- H&TRC - Health and Technology Research Center, ESTeSL - Lisbon School of Health Technology, Instituto Politécnico de Lisboa, Lisbon, Portugal.,iMed.ULisboa, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal,
| | - João Rocha
- iMed.ULisboa, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal,
| | - Hélder Mota-Filipe
- iMed.ULisboa, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal,
| | - Bruno Sepodes
- iMed.ULisboa, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal,
| | - Rui Pinto
- iMed.ULisboa, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal, .,Dr. Joaquim Chaves, Laboratory of Clinical Analysis, Joaquim Chaves Saúde, Lisbon, Portugal,
| |
Collapse
|
12
|
Huang J, Jia R, Brunner T. Local synthesis of immunosuppressive glucocorticoids in the intestinal epithelium regulates anti-viral immune responses. Cell Immunol 2018; 334:1-10. [PMID: 30144940 DOI: 10.1016/j.cellimm.2018.08.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/10/2018] [Accepted: 08/17/2018] [Indexed: 12/21/2022]
Abstract
The nuclear receptor Small Heterodimer Partner (SHP) is a transcriptional target and inhibitor of Liver Receptor Homolog 1 (LRH-1), the transcriptional regulator of intestinal glucocorticoid (GC) synthesis. The role of SHP in the regulation of intestinal GC synthesis and its impact on T cell-mediated anti-viral immune responses in the intestinal mucosa are currently not understood. Lymphocytic choriomeningitis virus (LCMV) infection promoted intestinal GC synthesis, which was enhanced in SHP-deficient mice. Intestinal GC suppressed the expansion and altered the activation of virus-specific T cells. In contrast, deletion of LRH-1 reduced intestinal GC synthesis and accelerated the expansion of cytotoxic T cells post LCMV infection. These findings show that virus-induced intestinal GC synthesis is controlled by LRH-1 and SHP, and that local steroidogenesis contributes to the maintenance of intestinal immune homeostasis. Thus, LRH-1-regulated intestinal GC synthesis could represent an interesting therapeutic target in the treatment of inflammatory disorders.
Collapse
Affiliation(s)
- Juan Huang
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Germany; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, China
| | - Thomas Brunner
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Germany.
| |
Collapse
|
13
|
A New Venue of TNF Targeting. Int J Mol Sci 2018; 19:ijms19051442. [PMID: 29751683 PMCID: PMC5983675 DOI: 10.3390/ijms19051442] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 04/25/2018] [Accepted: 05/03/2018] [Indexed: 12/20/2022] Open
Abstract
The first Food and Drug Administration-(FDA)-approved drugs were small, chemically-manufactured and highly active molecules with possible off-target effects, followed by protein-based medicines such as antibodies. Conventional antibodies bind a specific protein and are becoming increasingly important in the therapeutic landscape. A very prominent class of biologicals are the anti-tumor necrosis factor (TNF) drugs that are applied in several inflammatory diseases that are characterized by dysregulated TNF levels. Marketing of TNF inhibitors revolutionized the treatment of diseases such as Crohn’s disease. However, these inhibitors also have undesired effects, some of them directly associated with the inherent nature of this drug class, whereas others are linked with their mechanism of action, being pan-TNF inhibition. The effects of TNF can diverge at the level of TNF format or receptor, and we discuss the consequences of this in sepsis, autoimmunity and neurodegeneration. Recently, researchers tried to design drugs with reduced side effects. These include molecules with more specificity targeting one specific TNF format or receptor, or that neutralize TNF in specific cells. Alternatively, TNF-directed biologicals without the typical antibody structure are manufactured. Here, we review the complications related to the use of conventional TNF inhibitors, together with the anti-TNF alternatives and the benefits of selective approaches in different diseases.
Collapse
|
14
|
Brasseit J, Kwong Chung CKC, Noti M, Zysset D, Hoheisel-Dickgreber N, Genitsch V, Corazza N, Mueller C. Divergent Roles of Interferon-γ and Innate Lymphoid Cells in Innate and Adaptive Immune Cell-Mediated Intestinal Inflammation. Front Immunol 2018; 9:23. [PMID: 29416538 PMCID: PMC5787534 DOI: 10.3389/fimmu.2018.00023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 01/04/2018] [Indexed: 12/20/2022] Open
Abstract
Aberrant interferon gamma (IFNγ) expression is associated with the pathogenesis of numerous autoimmune- and inflammatory disorders, including inflammatory bowel diseases (IBD). However, the requirement of IFNγ for the pathogenesis of chronic intestinal inflammation remains controversial. The aim of this study was thus to investigate the role of IFNγ in experimental mouse models of innate and adaptive immune cell-mediated intestinal inflammation using genetically and microbiota-stabilized hosts. While we find that IFNγ drives acute intestinal inflammation in the anti-CD40 colitis model in an innate lymphoid cell (ILC)-dependent manner, IFNγ secreted by both transferred CD4 T cells and/or cells of the lymphopenic Rag1-/- recipient mice was dispensable for CD4 T cell-mediated colitis. In the absence of IFNγ, intestinal inflammation in CD4 T cell recipient mice was associated with enhanced IL17 responses; consequently, targeting IL17 signaling in IFNγ-deficient mice reduced T cell-mediated colitis. Intriguingly, in contrast to the anti-CD40 model of colitis, depletion of ILC in the Rag1-/- recipients of colitogenic CD4 T cells did not prevent induction of colonic inflammation. Together, our findings demonstrate that IFNγ represents an essential, or a redundant, pro-inflammatory cytokine for the induction of intestinal inflammation, depending on the experimental mouse model used and on the nature of the critical disease inducing immune cell populations involved.
Collapse
Affiliation(s)
- Jennifer Brasseit
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
| | - Cheong K. C. Kwong Chung
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
| | - Mario Noti
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
| | - Daniel Zysset
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
| | - Nina Hoheisel-Dickgreber
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
| | - Vera Genitsch
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
| | - Nadia Corazza
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
| | - Christoph Mueller
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
| |
Collapse
|
15
|
De Santis S, Kunde D, Galleggiante V, Liso M, Scandiffio L, Serino G, Pinto A, Campiglia P, Sorrentino R, Cavalcanti E, Santino A, Caruso ML, Eri R, Chieppa M. TNFα deficiency results in increased IL-1β in an early onset of spontaneous murine colitis. Cell Death Dis 2017; 8:e2993. [PMID: 28796256 PMCID: PMC5596580 DOI: 10.1038/cddis.2017.397] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/04/2017] [Accepted: 07/11/2017] [Indexed: 12/17/2022]
Abstract
Inflammatory bowel disease (Crohn's disease (CD) and ulcerative colitis (UC)) is a multifactorial disease resulting from immune dysregulation in the gut. The underlying colitis is characterized by high levels of inflammatory cytokines, including TNFα. Biological intervention for IBD patients using anti-TNFα antibodies is often an effective therapeutic solution. However, TNFα neutralization fails to induce remission in a subgroup of IBD patients, primarily in UC patients. There is a dearth of suitable animal models representing TNFα non-responders. Here we have combined one of the best UC models currently available, namely Winnie and the TNFαKO mouse to generate a TNFα-deficient Winnie to study early onset colitis. The induced TNFα deficiency with underlying colitis does not influence general health (viability and body weight) or clinical parameters (colon weight, colon length and histological colitis) when compared with the Winnie genotype alone. The molecular characterization resulted in identification of Il1β as the major elevated cytokine during early phases of colitis. Further, in vitro functional assay using bone marrow-derived dendritic cells confirmed IL-1β as the major cytokine released in the absence of TNFα. This study has generated a successful model of colitis that remains TNFα non-responsive and has demonstrated that IL-1β expression is a major pathway for the progression of colitis in this system. These data also suggest that IL-1β can be a potential target for clinical intervention of UC patients who fail to respond to TNFα neutralization.
Collapse
Affiliation(s)
- S De Santis
- National Institute of Gastroenterology 'S. de Bellis', Research Hospital, Castellana Grotte, Bari 70013, Italy
- Institute of Sciences of Food Production C.N.R., Unit of Lecce, via Monteroni, Lecce 73100, Italy
| | - D Kunde
- Mucosal Biology, School of Health Sciences, University of Tasmania, Launceston, TAS, Australia
| | - V Galleggiante
- National Institute of Gastroenterology 'S. de Bellis', Research Hospital, Castellana Grotte, Bari 70013, Italy
| | - M Liso
- National Institute of Gastroenterology 'S. de Bellis', Research Hospital, Castellana Grotte, Bari 70013, Italy
| | - L Scandiffio
- National Institute of Gastroenterology 'S. de Bellis', Research Hospital, Castellana Grotte, Bari 70013, Italy
| | - G Serino
- National Institute of Gastroenterology 'S. de Bellis', Research Hospital, Castellana Grotte, Bari 70013, Italy
| | - A Pinto
- Department of Pharmacy, Faculty of Pharmacy and Medicine, University of Salerno, Fisciano (SA), Italy
| | - P Campiglia
- Department of Pharmacy, Faculty of Pharmacy and Medicine, University of Salerno, Fisciano (SA), Italy
| | - R Sorrentino
- Department of Pharmacy, Faculty of Pharmacy and Medicine, University of Salerno, Fisciano (SA), Italy
| | - E Cavalcanti
- National Institute of Gastroenterology 'S. de Bellis', Research Hospital, Castellana Grotte, Bari 70013, Italy
| | - A Santino
- Institute of Sciences of Food Production C.N.R., Unit of Lecce, via Monteroni, Lecce 73100, Italy
| | - M L Caruso
- National Institute of Gastroenterology 'S. de Bellis', Research Hospital, Castellana Grotte, Bari 70013, Italy
| | - R Eri
- Mucosal Biology, School of Health Sciences, University of Tasmania, Launceston, TAS, Australia
| | - M Chieppa
- National Institute of Gastroenterology 'S. de Bellis', Research Hospital, Castellana Grotte, Bari 70013, Italy
- Department of Pharmacy, Faculty of Pharmacy and Medicine, University of Salerno, Fisciano (SA), Italy
| |
Collapse
|
16
|
Drutskaya MS, Efimov GA, Kruglov AA, Nedospasov SA. Can we design a better anti‐cytokine therapy? J Leukoc Biol 2017; 102:783-790. [DOI: 10.1189/jlb.3ma0117-025r] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 04/30/2017] [Accepted: 05/05/2017] [Indexed: 12/14/2022] Open
Affiliation(s)
- Marina S. Drutskaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Lomonosov Moscow State University, Moscow, Russia
| | - Grigory A. Efimov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- National Research Center for Hematology, Moscow, Russia; and
| | - Andrei A. Kruglov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Lomonosov Moscow State University, Moscow, Russia
- German Rheumatism Research Center (DRFZ), Berlin, Germany
| | - Sergei A. Nedospasov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Lomonosov Moscow State University, Moscow, Russia
- German Rheumatism Research Center (DRFZ), Berlin, Germany
| |
Collapse
|
17
|
Grabinger T, Bode KJ, Demgenski J, Seitz C, Delgado ME, Kostadinova F, Reinhold C, Etemadi N, Wilhelm S, Schweinlin M, Hänggi K, Knop J, Hauck C, Walles H, Silke J, Wajant H, Nachbur U, W Wei-Lynn W, Brunner T. Inhibitor of Apoptosis Protein-1 Regulates Tumor Necrosis Factor-Mediated Destruction of Intestinal Epithelial Cells. Gastroenterology 2017; 152:867-879. [PMID: 27889570 DOI: 10.1053/j.gastro.2016.11.019] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 10/25/2016] [Accepted: 11/16/2016] [Indexed: 01/03/2023]
Abstract
BACKGROUND AND AIMS Tumor necrosis factor (TNF) is a cytokine that promotes inflammation and contributes to pathogenesis of inflammatory bowel diseases. Unlike other cells and tissues, intestinal epithelial cells undergo rapid cell death upon exposure to TNF, by unclear mechanisms. We investigated the roles of inhibitor of apoptosis proteins (IAPs) in the regulation of TNF-induced cell death in the intestinal epithelium of mice and intestinal organoids. METHODS RNA from cell lines and tissues was analyzed by quantitative polymerase chain reaction, protein levels were analyzed by immunoblot assays. BIRC2 (also called cIAP1) was expressed upon induction from lentiviral vectors in young adult mouse colon (YAMC) cells. YAMC cells, the mouse colon carcinoma cell line MC38, the mouse macrophage cell line RAW 264.7, or mouse and human organoids were incubated with second mitochondrial activator of caspases (Smac)-mimetic compound LCL161 or recombinant TNF-like weak inducer of apoptosis (TNFSF12) along with TNF, and cell death was quantified. C57BL/6 mice with disruption of Xiap, Birc2 (encodes cIAP1), Birc3 (encodes cIAP2), Tnfrsf1a, or Tnfrsf1b (Tnfrsf1a and b encode TNF receptors) were injected with TNF or saline (control); liver and intestinal tissues were collected and analyzed for apoptosis induction by cleaved caspase 3 immunohistochemistry. We also measured levels of TNF and alanine aminotransferase in serum from mice. RESULTS YAMC cells, and mouse and human intestinal organoids, died rapidly in response to TNF. YAMC and intestinal crypts expressed lower levels of XIAP, cIAP1, cIAP2, and cFLIP than liver tissue. Smac-mimetics reduced levels of cIAP1 and XIAP in MC38 and YAMC cells, and Smac-mimetics and TNF-related weak inducer of apoptosis increased TNF-induced cell death in YAMC cells and organoids-most likely by sequestering and degrading cIAP1. Injection of TNF greatly increased levels of cell death in intestinal tissue of cIAP1-null mice, compared with wild-type C57BL/6 mice, cIAP2-null mice, or XIAP-null mice. Excessive TNF-induced cell death in the intestinal epithelium was mediated TNF receptor 1. CONCLUSIONS In a study of mouse and human cell lines, organoids, and tissues, we found cIAP1 to be required for regulation of TNF-induced intestinal epithelial cell death and survival. These findings have important implications for the pathogenesis of TNF-mediated enteropathies and chronic inflammatory diseases of the intestine.
Collapse
Affiliation(s)
- Thomas Grabinger
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Germany
| | - Konstantin J Bode
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Germany
| | - Janine Demgenski
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Germany
| | - Carina Seitz
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Germany
| | - M Eugenia Delgado
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Germany
| | - Feodora Kostadinova
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Germany
| | - Cindy Reinhold
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Germany
| | - Nima Etemadi
- Cell Signaling and Cell Death Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Sabine Wilhelm
- Department of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Matthias Schweinlin
- Department of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Kay Hänggi
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Janin Knop
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Christof Hauck
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Heike Walles
- Department of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Würzburg, Germany; Translational Center Würzburg, Würzburg branch of the Fraunhofer IGB, Würzburg, Germany
| | - John Silke
- Cell Signaling and Cell Death Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Harald Wajant
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Germany
| | - Ueli Nachbur
- Cell Signaling and Cell Death Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Wong W Wei-Lynn
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Thomas Brunner
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Germany.
| |
Collapse
|
18
|
Mateus V, Rocha J, Alves P, Mota-Filipe H, Sepodes B, Pinto RMA. Anti-Inflammatory Effect of Erythropoietin in the TNBS-induced Colitis. Basic Clin Pharmacol Toxicol 2016; 120:138-145. [PMID: 27579991 DOI: 10.1111/bcpt.12663] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 08/19/2016] [Indexed: 12/19/2022]
Abstract
Erythropoietin is a potent stimulator of erythroid progenitor cells, which is able to inhibit NF-kB activation, due to its pleiotropic properties, thus promoting an anti-inflammatory effect. As inflammatory bowel disease is a chronic disease with reduced quality of life, and the current pharmacotherapy only induces or maintains the patient in remission, there is a crucial need of new pharmacological approaches. The main objective of this study was to evaluate the effect of erythropoietin in the TNBS-induced colitis model in mice with a normal intestinal flora. Mice with TNBS-induced colitis were treated with a daily dose of erythropoietin at 500 IU/kg bw/day and 1000 IU/Kg bw/day IP during 4 days. As to clinical symptoms/signs, erythropoietin attenuated the decreased body-weight and reduced diarrhoea and oedema of the anus registered in the non-treated mice group in a dose-dependent manner. The anti-inflammatory properties of erythropoietin in the TNBS-induced colitis were confirmed by suppression of pro-inflammatory mediators, such as TNF-α, IL-1β and MPO, as well as a significant increase in the anti-inflammatory cytokine, IL-10, was promoted. These treated mice also presented a reduction in haemoglobin faecal and ALP, suggesting a beneficial effect of erythropoietin in the haemorrhagic focus and destruction of the enterocyte associated with the colon injury induced by TNBS, respectively. The histopathological score was reduced after treatment with erythropoietin, decreasing the severity and extension of the colitis. Furthermore, renal and hepatic biomarkers, as well as haematocrit concentration, remained stabilized after treatment. In conclusion, erythropoietin reduces the inflammatory response associated with TNBS-induced colitis in mice.
Collapse
Affiliation(s)
- Vanessa Mateus
- Lisbon School of Health Technology (ESTeSL), Polytechnic Institute of Lisbon, Lisbon, Portugal.,iMed.ULisboa, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - João Rocha
- iMed.ULisboa, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Paula Alves
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Portuguese Oncology Institute of Coimbra, Coimbra, Portugal
| | - Helder Mota-Filipe
- iMed.ULisboa, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Bruno Sepodes
- iMed.ULisboa, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Rui Manuel Amaro Pinto
- iMed.ULisboa, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal.,JCS, Dr. Joaquim Chaves, Laboratory of Clinical Analysis, Lisbon, Portugal
| |
Collapse
|
19
|
Zimmermann J, Kühl AA, Weber M, Grün JR, Löffler J, Haftmann C, Riedel R, Maschmeyer P, Lehmann K, Westendorf K, Mashreghi MF, Löhning M, Mack M, Radbruch A, Chang HD. T-bet expression by Th cells promotes type 1 inflammation but is dispensable for colitis. Mucosal Immunol 2016; 9:1487-1499. [PMID: 26883725 DOI: 10.1038/mi.2016.5] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 01/03/2016] [Indexed: 02/04/2023]
Abstract
The transcription factor T-bet is highly expressed by Th cells isolated from the inflamed intestine of Crohn's disease patients, and has been regarded a critical driver of murine T cell-induced colitis. However, we show here that T-bet expression by Th cells is not required for the manifestation of T-cell-induced colitis in the presence of segmented filamentous bacteria and Helicobacter hepaticus. T-bet expression by Th cells controls their survival and localization, their repertoire of chemokine and chemokine receptor expression, the accumulation of monocytes and macrophages in the inflamed colon, and their differentiation to the M1 type, i.e., type 1 inflammation. Nevertheless, T-bet-deficient Th cells efficiently induce colitis, as reflected by weight loss, diarrhea, and colon histopathology. T-bet-deficient Th cells differentiate into Th1/17 cells, able to express IFN-γ and IL-17A upon restimulation. While neutralization of IL-17A exacerbated colitis induced by wild-type or T-bet-deficient Th cells, neutralization of IFN-γ completely abolished colitis.
Collapse
Affiliation(s)
- J Zimmermann
- Deutsches Rheumaforschungszentrum Berlin (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - A A Kühl
- Charité Universitätsmedizin, Campus Benjamin Franklin, Berlin, Germany
| | - M Weber
- Deutsches Rheumaforschungszentrum Berlin (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - J R Grün
- Deutsches Rheumaforschungszentrum Berlin (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - J Löffler
- Deutsches Rheumaforschungszentrum Berlin (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - C Haftmann
- Deutsches Rheumaforschungszentrum Berlin (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - R Riedel
- Deutsches Rheumaforschungszentrum Berlin (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - P Maschmeyer
- Deutsches Rheumaforschungszentrum Berlin (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - K Lehmann
- Deutsches Rheumaforschungszentrum Berlin (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - K Westendorf
- Deutsches Rheumaforschungszentrum Berlin (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - M-F Mashreghi
- Deutsches Rheumaforschungszentrum Berlin (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - M Löhning
- Deutsches Rheumaforschungszentrum Berlin (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - M Mack
- Universitätsklinikum Regensburg, Regensburg, Germany
| | - A Radbruch
- Deutsches Rheumaforschungszentrum Berlin (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - H D Chang
- Deutsches Rheumaforschungszentrum Berlin (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| |
Collapse
|
20
|
Chen YL, Chen YT, Lo CF, Hsieh CI, Chiu SY, Wu CY, Yeh YS, Hung SH, Cheng PH, Su YH, Jiang ST, Chin HJ, Su YC. Early Detection of T cell Transfer-induced Autoimmune Colitis by In Vivo Imaging System. Sci Rep 2016; 6:35635. [PMID: 27762297 PMCID: PMC5071899 DOI: 10.1038/srep35635] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 10/03/2016] [Indexed: 12/15/2022] Open
Abstract
Inflammatory bowel disease is a chronic and progressive inflammatory intestinal disease that includes two major types, namely ulcerative colitis and Crohn’s disease (CD). CD is characterized by intestinal epithelial hyperplasia and inflammatory cell infiltration. Transfer of CD25−CD45RBhiCD4+ (naïve) T cells into immunodeficiency mice induces autoimmune colitis with pathological lesions similar to CD and loss of body weight 4 weeks after cell transfer. However, weight loss neither has sufficient sensitivity nor totally matches the pathological findings of CD. To establish an early and sensitive indicator of autoimmune colitis model, the transferred T cell-induced colitis mouse model was modified by transferring luciferase-expressing donor T cells and determining the colitis by in vivo imaging system (IVIS). Colitis was detected with IVIS 7–10 days before the onset of body weight loss and diarrhea. IVIS was also applied in the dexamethasone treatment trial, and was a more sensitive indicator than body weight changes. All IVIS signals were parallel to the pathological abnormalities of the gut and immunological analysis results. In summary, IVIS provides both sensitive and objective means to monitor the disease course of transferred T cell-induced CD and fulfills the 3Rs principle of humane care of laboratory animals.
Collapse
Affiliation(s)
- Yu-Ling Chen
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei, Taiwan
| | - Yi-Ting Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Cheng-Feng Lo
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei, Taiwan
| | - Ching-I Hsieh
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei, Taiwan
| | - Shang-Yi Chiu
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei, Taiwan
| | - Chang-Yen Wu
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei, Taiwan
| | - Yu-Shan Yeh
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei, Taiwan
| | - Shu-Hsuan Hung
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei, Taiwan
| | - Po-Hao Cheng
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei, Taiwan
| | - Yu-Hsuan Su
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei, Taiwan
| | - Si-Tse Jiang
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei, Taiwan
| | - Hsian-Jean Chin
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei, Taiwan
| | - Yu-Chia Su
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei, Taiwan
| |
Collapse
|
21
|
Brasseit J, Althaus-Steiner E, Faderl M, Dickgreber N, Saurer L, Genitsch V, Dolowschiak T, Li H, Finke D, Hardt WD, McCoy KD, Macpherson AJ, Corazza N, Noti M, Mueller C. CD4 T cells are required for both development and maintenance of disease in a new mouse model of reversible colitis. Mucosal Immunol 2016; 9:689-701. [PMID: 26376366 DOI: 10.1038/mi.2015.93] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 08/06/2015] [Indexed: 02/04/2023]
Abstract
Current therapies to treat inflammatory bowel diseases have limited efficacy, significant side effects, and often wane over time. Little is known about the cellular and molecular mechanisms operative in the process of mucosal healing from colitis. To study such events, we developed a new model of reversible colitis in which adoptive transfer of CD4(+)CD45RB(hi) T cells into Helicobacter typhlonius-colonized lymphopenic mice resulted in a rapid onset of colonic inflammation that was reversible through depletion of colitogenic T cells. Remission was associated with an improved clinical and histopathological score, reduced immune cell infiltration to the intestinal mucosa, altered intestinal gene expression profiles, regeneration of the colonic mucus layer, and the restoration of epithelial barrier integrity. Notably, colitogenic T cells were not only critical for induction of colitis but also for maintenance of disease. Depletion of colitogenic T cells resulted in a rapid drop in tumor necrosis factor α (TNFα) levels associated with reduced infiltration of inflammatory immune cells to sites of inflammation. Although neutralization of TNFα prevented the onset of colitis, anti-TNFα treatment of mice with established disease failed to resolve colonic inflammation. Collectively, this new model of reversible colitis provides an important research tool to study the dynamics of mucosal healing in chronic intestinal remitting-relapsing disorders.
Collapse
Affiliation(s)
- J Brasseit
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
| | - E Althaus-Steiner
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
| | - M Faderl
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
| | - N Dickgreber
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
| | - L Saurer
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
| | - V Genitsch
- Division of Clinical Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
| | - T Dolowschiak
- Institute of Microbiology, ETH Zürich, Zurich, Switzerland
| | - H Li
- Maurice E. Müller Laboratories, University Clinic for Visceral Surgery and Medicine, University of Bern, Bern, Switzerland
| | - D Finke
- Division of Developmental Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - W-D Hardt
- Institute of Microbiology, ETH Zürich, Zurich, Switzerland
| | - K D McCoy
- Maurice E. Müller Laboratories, University Clinic for Visceral Surgery and Medicine, University of Bern, Bern, Switzerland
| | - A J Macpherson
- Maurice E. Müller Laboratories, University Clinic for Visceral Surgery and Medicine, University of Bern, Bern, Switzerland
| | - N Corazza
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
| | - M Noti
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
| | - C Mueller
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
| |
Collapse
|
22
|
Delgado ME, Grabinger T, Brunner T. Cell death at the intestinal epithelial front line. FEBS J 2015; 283:2701-19. [PMID: 26499289 DOI: 10.1111/febs.13575] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/23/2015] [Accepted: 10/21/2015] [Indexed: 12/25/2022]
Abstract
The intestinal epithelium represents the largest epithelial surface in our body. This single-cell-layer epithelium mediates important functions in the absorption of nutrients and in the maintenance of barrier function, preventing luminal microorganisms from invading the body. Due to its constant regeneration the intestinal epithelium is a tissue not only with very high proliferation rates but also with very prominent physiological and pathophysiological cell death induction. The normal physiological differentiation and maturation of intestinal epithelial cells leads to their shedding and apoptotic cell death within a few days, without disturbing the epithelial barrier integrity. In contrast excessive intestinal epithelial cell death induced by irradiation, drugs and inflammation severely impairs the vital functions of this tissue. In this review we discuss cell death processes in the intestinal epithelium in health and disease, with special emphasis on cell death triggered by the tumour necrosis factor receptor family.
Collapse
Affiliation(s)
- Maria Eugenia Delgado
- Chair of Biochemical Pharmacology, Department of Biology, University of Konstanz, Germany
| | - Thomas Grabinger
- Chair of Biochemical Pharmacology, Department of Biology, University of Konstanz, Germany
| | - Thomas Brunner
- Chair of Biochemical Pharmacology, Department of Biology, University of Konstanz, Germany
| |
Collapse
|
23
|
Inhibition of epithelial cell death by Bcl-2 improved chronic colitis in IL-10 KO mice. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 183:1936-1944. [PMID: 24266926 DOI: 10.1016/j.ajpath.2013.08.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 08/05/2013] [Accepted: 08/07/2013] [Indexed: 11/22/2022]
Abstract
IL-10-deficient mice spontaneously develop intestinal inflammation, which has many similarities to Crohn's disease. Several reports suggest that epithelial cell death may increase the severity of colitis; however, decisive evidence is lacking. In the present report, we addressed whether and how epithelial cell death plays a role in the development of chronic colitis. We first examined the morphological characteristics of intestines of IL-10-deficient mice and found two forms of epithelial cell death (typical apoptosis and necrosis-like cell death) in colitis. To elucidate the pathological roles of epithelial cell death, we crossbred IL-10-deficient knockout mice with Bcl-2 transgenic mice, in which the anti-apoptosis protein Bcl-2 was overexpressed in intestinal epithelial cells, but not in immune cells. Epithelial cell-specific Bcl-2 protected IL-10 deficiency-induced colitis and markedly reduced their symptoms. Interestingly, morphological analysis revealed that Bcl-2 suppressed apoptosis and necrosis-like cell death, and better maintained mucosal barrier in IL-10-deficient mice. From the immunological aspect, Bcl-2 did not alter the activation of T-helper cell 1 but inhibited the growth of T-helper cell 17, suggesting that mucosal integrity may control the immune responses. These results provide genetic evidence demonstrating that epithelial cell death is crucial for the development of chronic colitis.
Collapse
|
24
|
Winsauer C, Kruglov AA, Chashchina AA, Drutskaya MS, Nedospasov SA. Cellular sources of pathogenic and protective TNF and experimental strategies based on utilization of TNF humanized mice. Cytokine Growth Factor Rev 2014; 25:115-23. [DOI: 10.1016/j.cytogfr.2013.12.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 12/15/2013] [Indexed: 12/13/2022]
|
25
|
Weber B, Schuster S, Zysset D, Rihs S, Dickgreber N, Schürch C, Riether C, Siegrist M, Schneider C, Pawelski H, Gurzeler U, Ziltener P, Genitsch V, Tacchini-Cottier F, Ochsenbein A, Hofstetter W, Kopf M, Kaufmann T, Oxenius A, Reith W, Saurer L, Mueller C. TREM-1 deficiency can attenuate disease severity without affecting pathogen clearance. PLoS Pathog 2014; 10:e1003900. [PMID: 24453980 PMCID: PMC3894224 DOI: 10.1371/journal.ppat.1003900] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 12/10/2013] [Indexed: 12/02/2022] Open
Abstract
Triggering receptor expressed on myeloid cells-1 (TREM-1) is a potent amplifier of pro-inflammatory innate immune reactions. While TREM-1-amplified responses likely aid an improved detection and elimination of pathogens, excessive production of cytokines and oxygen radicals can also severely harm the host. Studies addressing the pathogenic role of TREM-1 during endotoxin-induced shock or microbial sepsis have so far mostly relied on the administration of TREM-1 fusion proteins or peptides representing part of the extracellular domain of TREM-1. However, binding of these agents to the yet unidentified TREM-1 ligand could also impact signaling through alternative receptors. More importantly, controversial results have been obtained regarding the requirement of TREM-1 for microbial control. To unambiguously investigate the role of TREM-1 in homeostasis and disease, we have generated mice deficient in Trem1. Trem1−/− mice are viable, fertile and show no altered hematopoietic compartment. In CD4+ T cell- and dextran sodium sulfate-induced models of colitis, Trem1−/− mice displayed significantly attenuated disease that was associated with reduced inflammatory infiltrates and diminished expression of pro-inflammatory cytokines. Trem1−/− mice also exhibited reduced neutrophilic infiltration and decreased lesion size upon infection with Leishmania major. Furthermore, reduced morbidity was observed for influenza virus-infected Trem1−/− mice. Importantly, while immune-associated pathologies were significantly reduced, Trem1−/− mice were equally capable of controlling infections with L. major, influenza virus, but also Legionella pneumophila as Trem1+/+ controls. Our results not only demonstrate an unanticipated pathogenic impact of TREM-1 during a viral and parasitic infection, but also indicate that therapeutic blocking of TREM-1 in distinct inflammatory disorders holds considerable promise by blunting excessive inflammation while preserving the capacity for microbial control. Triggering receptor expressed on myeloid cells-1 (TREM-1) is an immune receptor expressed by myeloid cells that has the capacity to augment pro-inflammatory responses in the context of a microbial infection. While a TREM-1-amplified response likely serves the efficient clearance of pathogens, it also bears the potential to cause substantial tissue damage or even death. Hence, TREM-1 appears a possible therapeutic target for tempering deleterious host-pathogen interactions. However, in models of bacterial sepsis controversial findings have been obtained regarding the requirement of TREM-1 for bacterial control - depending on the overall degree of the TREM-1 blockade that was achieved. In order to conclusively investigate harmful versus essential functions of TREM-1 in vivo, we have generated mice deficient in Trem1. Trem1−/− mice were subjected to experimentally-induced intestinal inflammation (as a model of a non-infectious, yet microbial-driven disease) and also analysed following infections with Leishmania major, influenza virus and Legionella pneumophila. Across all models analysed, Trem1−/− mice showed substantially reduced immune-associated disease. We thus describe a previously unanticipated pathogenic role for TREM-1 also during a parasitic and viral infection. Importantly, our data suggest that in certain diseases microbial control can be achieved in the context of blunted inflammation in the absence of TREM-1.
Collapse
Affiliation(s)
- Benjamin Weber
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
| | - Steffen Schuster
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Daniel Zysset
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
| | - Silvia Rihs
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
| | - Nina Dickgreber
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
| | - Christian Schürch
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
- Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Carsten Riether
- Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Mark Siegrist
- Department of Clinical Research, University of Bern, Bern, Switzerland
| | | | - Helga Pawelski
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Ursina Gurzeler
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | | | - Vera Genitsch
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
| | | | - Adrian Ochsenbein
- Department of Clinical Research, University of Bern, Bern, Switzerland
- Department of Medical Oncology, University of Bern, Bern, Switzerland
| | - Willy Hofstetter
- Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Manfred Kopf
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Thomas Kaufmann
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | | | - Walter Reith
- Department of Pathology and Immunology, Centre Medical Universitaire, Geneva, Switzerland
| | - Leslie Saurer
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
- * E-mail: (LS); (CM)
| | - Christoph Mueller
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
- * E-mail: (LS); (CM)
| |
Collapse
|
26
|
Endothelial and epithelial barriers in graft-versus-host disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 763:105-31. [PMID: 23397621 DOI: 10.1007/978-1-4614-4711-5_5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Endothelial and epithelial cells form selectively permeable barriers that separate tissue compartments. These cells coordinate movement between the lumen and tissue via the transcellular and paracellular pathways. The primary determinant of paracellular permeability is the tight junction, which forms an apical belt-like structure around endothelial and epithelial cells. This chapter discusses endothelial and epithelial barriers in graft-versus-host disease after allogeneic bone marrow transplantation, with a focus on the tight junction and its role in regulating paracellular permeability. Recent studies suggest that in graft-versus-host disease, pathological increases in paracellular permeability, or barrier dysfunction, are initiated by pretransplant conditioning and sustained by alloreactive cells and the proinflammatory milieu. The intestinal epithelium is a significant focus, as it is a target organ of graft-versus-host disease, and the mechanisms of barrier regulation in intestinal epithelium have been well characterized. Finally, we propose a model that incorporates endothelial and epithelial barrier dysfunction in graft-versus-host disease and discuss modulating barrier properties as a therapeutic approach.
Collapse
|
27
|
Huber S, Gagliani N, Flavell RA. Life, death, and miracles: Th17 cells in the intestine. Eur J Immunol 2013; 42:2238-45. [PMID: 22949322 DOI: 10.1002/eji.201242619] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Th17 cells, a distinct subset of CD4(+) T-helper cells, are commonly associated with chronic inflammatory and autoimmune diseases; however, Th17 cells also possess a variety of beneficial functions as they maintain and defend mucosal barriers against pathogens and promote tissue repair. Furthermore, recent findings indicate that Th17 cells can also acquire immunosuppressive functions that protect against inflammatory and auto-immune diseases. A sentinel population of Th17 cells is localized in the intestine in the absence of pathology and, in response to infection, this population expands in number, and can also modulate its functions. This review discusses the beneficial and pathogenic roles played by Th17 cells in the intestine.
Collapse
Affiliation(s)
- Samuel Huber
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | |
Collapse
|
28
|
Mizoguchi A. Animal models of inflammatory bowel disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 105:263-320. [PMID: 22137435 DOI: 10.1016/b978-0-12-394596-9.00009-3] [Citation(s) in RCA: 182] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic intestinal inflammatory condition that is medicated by genetic, immune, and environmental factors. At least 66 different kinds of animal models have been established to study IBD, which are classified primarily into chemically induced, cell-transfer, congenial mutant, and genetically engineered models. These IBD models have provided significant contributions to not only dissect the mechanism but also develop novel therapeutic strategies for IBD. In addition, recent advances on genetically engineered techniques such as cell-specific and inducible knockout as well as knockin mouse systems have brought novel concepts on IBD pathogenesis to the fore. Further, mouse models, which lack some IBD susceptibility genes, have suggested more complicated mechanism of IBD than previously predicted. This chapter summarizes the distinct feature of each murine IBD model and discusses the previous and current lessons from the IBD models.
Collapse
Affiliation(s)
- Atsushi Mizoguchi
- Department of Pathology, Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
29
|
Novel diarylheptanoids as inhibitors of TNF-α production. Bioorg Med Chem Lett 2011; 21:3784-7. [DOI: 10.1016/j.bmcl.2011.04.040] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 03/22/2011] [Accepted: 04/12/2011] [Indexed: 01/15/2023]
|
30
|
Philippe D, Favre L, Foata F, Adolfsson O, Perruisseau-Carrier G, Vidal K, Reuteler G, Dayer-Schneider J, Mueller C, Blum S. Bifidobacterium lactis attenuates onset of inflammation in a murine model of colitis. World J Gastroenterol 2011; 17:459-69. [PMID: 21274375 PMCID: PMC3027012 DOI: 10.3748/wjg.v17.i4.459] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 07/30/2010] [Accepted: 08/07/2010] [Indexed: 02/06/2023] Open
Abstract
AIM To assess the anti-inflammatory effect of the probiotic Bifidobacterium lactis (B. lactis) in an adoptive transfer model of colitis. METHODS Donor and recipient mice received either B. lactis or bacterial culture medium as control (deMan Rogosa Sharpe) in drinking water for one week prior to transfer of a mix of naive and regulatory T cells until sacrifice. RESULTS All recipient mice developed signs of colonic inflammation, but a significant reduction of weight loss was observed in B. lactis-fed recipient mice compared to control mice. Moreover, a trend toward a diminution of mucosal thickness and attenuated epithelial damage was revealed. Colonic expression of pro-inflammatory and T cell markers was significantly reduced in B. lactis-fed recipient mice compared to controls. Concomitantly, forkhead box protein 3, a marker of regulatory T cells, was significantly up-regulated by B. lactis. CONCLUSION Daily oral administration of B. lactis was able to reduce inflammatory and T cells mediators and to promote regulatory T cells specific markers in a mouse model of colitis.
Collapse
|
31
|
Fonseca LC, Dadarkar SS, Lobo AS, Suthar AC, Chauhan VS, Chandrababu S, Sharma SD, Dagia NM, Padigaru M. 7-hydroxyfrullanolide, a sesquiterpene lactone, inhibits pro-inflammatory cytokine production from immune cells and is orally efficacious in animal models of inflammation. Eur J Pharmacol 2010; 644:220-9. [DOI: 10.1016/j.ejphar.2010.06.052] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 05/03/2010] [Accepted: 06/29/2010] [Indexed: 10/19/2022]
|
32
|
Singh UP, Singh NP, Singh B, Mishra MK, Nagarkatti M, Nagarkatti PS, Singh SR. Stem cells as potential therapeutic targets for inflammatory bowel disease. Front Biosci (Schol Ed) 2010; 2:993-1008. [PMID: 20515838 DOI: 10.2741/s115] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The incidence and prevalence of Crohn's disease and ulcerative colitis, the two major forms of inflammatory bowel disease (IBD), are rising. According to some estimates >1 million new cases of IBD arise in the United States annually. The conventional therapies available for IBD range from anti-inflammatory drugs to immunosuppressive agents, but these therapies generally fail to achieve satisfactory results due to their side effects. Interest in a new therapeutic option, that is, biological therapy, has gained much momentum recently due to its focus on different stages of the inflammatory process. Stem cell (SC) research has become a new direction for IBD therapy due to our recent understanding of cell populations involved in the pathogenic process. To this end, hematopoietic and mesenchymal stem cells are receiving more attention from IBD investigators. The intestinal environment, with its crypts and niches, supports incoming embryonic and hematopoietic stem cells and allows them to engraft and differentiate. The above findings suggest that, in the future, SC-based therapy will be a promising alternative to conventional therapy for IBD. In this review, we discuss SCs as potential therapeutic targets for future treatment of IBD.
Collapse
Affiliation(s)
- Udai P Singh
- Pathology and Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29208, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Insights into inflammatory bowel disease (IBD) are advancing rapidly owing to immunologic investigations of a plethora of animal models of intestinal inflammation, ground-breaking advances in the interrogation of diseases that are inherited as complex genetic traits, and the development of culture-independent methods to define the composition of the intestinal microbiota. These advances are bringing a deeper understanding to the genetically determined interplay between the commensal microbiota, intestinal epithelial cells, and the immune system and the manner in which this interplay might be modified by relevant environmental factors in the pathogenesis of IBD. This review examines these interactions and, where possible, potential lessons from IBD-directed, biologic therapies that may allow for elucidation of pathways that are central to disease pathogenesis in humans.
Collapse
Affiliation(s)
- Arthur Kaser
- Department of Medicine II, Medical University Innsbruck, Austria
| | | | | |
Collapse
|
34
|
Abstract
Insights into inflammatory bowel disease (IBD) are advancing rapidly owing to immunologic investigations of a plethora of animal models of intestinal inflammation, ground-breaking advances in the interrogation of diseases that are inherited as complex genetic traits, and the development of culture-independent methods to define the composition of the intestinal microbiota. These advances are bringing a deeper understanding to the genetically determined interplay between the commensal microbiota, intestinal epithelial cells, and the immune system and the manner in which this interplay might be modified by relevant environmental factors in the pathogenesis of IBD. This review examines these interactions and, where possible, potential lessons from IBD-directed, biologic therapies that may allow for elucidation of pathways that are central to disease pathogenesis in humans.
Collapse
Affiliation(s)
- Arthur Kaser
- Department of Medicine II, Medical University Innsbruck, Austria
| | | | | |
Collapse
|
35
|
Noti M, Corazza N, Mueller C, Berger B, Brunner T. TNF suppresses acute intestinal inflammation by inducing local glucocorticoid synthesis. ACTA ACUST UNITED AC 2010; 207:1057-66. [PMID: 20439544 PMCID: PMC2867273 DOI: 10.1084/jem.20090849] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Although tumor necrosis factor (α) (TNF) exerts proinflammatory activities in a variety of diseases, including inflammatory bowel disease, there is increasing evidence for antiinflammatory actions of TNF. In contrast, glucocorticoids (GCs) are steroid hormones that suppress inflammation, at least in part by regulating the expression and action of TNF. We report that TNF induces extraadrenal production of immunoregulatory GCs in the intestinal mucosa during acute intestinal inflammation. The absence of TNF results in a lack of colonic GC synthesis and exacerbation of dextran sodium sulfate–induced colitis. TNF seems to promote local steroidogenesis by directly inducing steroidogenic enzymes in intestinal epithelial cells. Therapeutic administration of TNF induces GC synthesis in oxazolone-induced colitis and ameliorates intestinal inflammation, whereas inhibition of intestinal GC synthesis abrogates the therapeutic effect of TNF. These data show that TNF suppresses the pathogenesis of acute intestinal inflammation by promoting local steroidogenesis.
Collapse
Affiliation(s)
- Mario Noti
- Division of Experimental Pathology, Institute of Pathology, University of Bern, 3010 Bern, Switzerland
| | | | | | | | | |
Collapse
|
36
|
Noti M, Corazza N, Tuffin G, Schoonjans K, Brunner T. Lipopolysaccharide induces intestinal glucocorticoid synthesis in a TNFα‐dependent manner. FASEB J 2010; 24:1340-6. [DOI: 10.1096/fj.09-140913] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Mario Noti
- Division of Experimental PathologyInstitute of PathologyUniversity of BernBernSwitzerland
| | - Nadia Corazza
- Division of Experimental PathologyInstitute of PathologyUniversity of BernBernSwitzerland
| | - Gérald Tuffin
- University of Applied Sciences Northwestern SwitzerlandSchool of Life SciencesMuttenzSwitzerland
| | - Kristina Schoonjans
- École Polytechnique Fédérale de LausanneLaboratory of Integrative Systems and PhysiologyLausanneSwitzerland
| | - Thomas Brunner
- Division of Experimental PathologyInstitute of PathologyUniversity of BernBernSwitzerland
| |
Collapse
|
37
|
Müller S, Rihs S, Dayer Schneider JM, Paredes BE, Seibold I, Brunner T, Mueller C. Soluble TNF-α but not transmembrane TNF-α sensitizes T cells for enhanced activation-induced cell death. Eur J Immunol 2009; 39:3171-80. [DOI: 10.1002/eji.200939554] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
38
|
Transmembrane tumor necrosis factor alpha is required for enteropathy and is sufficient to promote parasite expulsion in gastrointestinal helminth infection. Infect Immun 2009; 77:3879-85. [PMID: 19564380 DOI: 10.1128/iai.01461-08] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
To study the specific role of transmembrane tumor necrosis factor (tmTNF) in protective and pathological responses against the gastrointestinal helminth Trichinella spiralis, we compared the immune responses of TNF-alpha/lymphotoxin alpha (LTalpha)(-/-) mice expressing noncleavable transgenic tmTNF to those of TNF-alpha/LTalpha(-/-) and wild-type mice. The susceptibility of TNF-alpha/LTalpha(-/-) mice to T. spiralis infection was associated with impaired induction of a protective Th2 response and the lack of mucosal mastocytosis. Although tmTNF-expressing transgenic (tmTNF-tg) mice also had a reduced Th2 response, the mast cell response was greater than that observed in TNF-alpha/LTalpha(-/-) mice and was sufficient to induce the expulsion of the parasite. T. spiralis infection of tmTNF-tg mice resulted in significant intestinal pathology characterized by villus atrophy and crypt hyperplasia comparable to that induced following the infection of wild-type mice, while pathology in TNF-alpha/LTalpha(-/-) mice was significantly reduced. Our data thus indicate a role for tmTNF in host defense against gastrointestinal helminths and in the accompanying enteropathy. Furthermore, they also demonstrate that TNF-alpha is required for the induction of Th2 immune responses related to infection with gastrointestinal helminth parasites.
Collapse
|
39
|
Dayer Schneider J, Seibold I, Saxer-Sekulic N, Paredes BE, Saurer L, Mueller C. Lack of TNFR2 expression by CD4+T cells exacerbates experimental colitis. Eur J Immunol 2009; 39:1743-53. [DOI: 10.1002/eji.200839132] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
40
|
Weber B, Saurer L, Mueller C. Intestinal macrophages: differentiation and involvement in intestinal immunopathologies. Semin Immunopathol 2009; 31:171-84. [PMID: 19533135 DOI: 10.1007/s00281-009-0156-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Accepted: 05/11/2009] [Indexed: 12/11/2022]
Abstract
Intestinal macrophages, preferentially located in the subepithelial lamina propria, represent the largest pool of tissue macrophages in humans. As an adaptation to the local antigen- and bacteria-rich environment, intestinal macrophages exhibit several distinct phenotypic and functional characteristics. Notably, microbe-associated molecular pattern receptors, including the lipopolysaccharide (LPS) receptors CD14 and TLR4, and also the Fc receptors for IgA and IgG are absent on most intestinal macrophages under homeostatic conditions. Moreover, while macrophages in the intestinal mucosa are refractory to the induction of proinflammatory cytokine secretion, they still display potent phagocytic activity. These adaptations allow intestinal macrophages to comply with their main task, i.e., the efficient removal of microbes while maintaining local tissue homeostasis. In this paper, we review recent findings on the functional differentiation of monocyte subsets into distinct macrophage populations and on the phenotypic and functional adaptations that have evolved in intestinal macrophages in response to their antigen-rich environment. Furthermore, the involvement of intestinal macrophages in the pathogenesis of celiac disease and inflammatory bowel diseases is discussed.
Collapse
Affiliation(s)
- Benjamin Weber
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
| | | | | |
Collapse
|
41
|
Steinberg MW, Shui JW, Ware CF, Kronenberg M. Regulating the mucosal immune system: the contrasting roles of LIGHT, HVEM, and their various partners. Semin Immunopathol 2009; 31:207-21. [PMID: 19495760 DOI: 10.1007/s00281-009-0157-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Accepted: 05/13/2009] [Indexed: 12/23/2022]
Abstract
LIGHT and herpes virus entry mediator (HVEM) comprise a ligand-receptor pair in the tumor necrosis factor superfamily. These molecules play an important role in regulating immunity, particularly in the intestinal mucosa. LIGHT also binds the lymphotoxin beta receptor, and HVEM can act as a ligand for immunoglobulin family molecules, including B- and T-lymphocyte attenuator, which suppresses immune responses. Complexity in this pivotal system arises from several factors, including the non-monogamous pairing of ligands and receptors, and reverse signaling or the ability of some ligands to serve as receptors. As a result, recognition events in this fascinating network of interacting molecules can have pro- or anti-inflammatory consequences. Despite complexity, experiments we and others are carrying out are establishing rules for understanding when and in what cell types these molecules contribute to intestinal inflammation.
Collapse
Affiliation(s)
- Marcos W Steinberg
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
42
|
Abstract
In the intestinal tract, only a single layer of epithelial cells separates innate and adaptive immune effector cells from a vast amount of antigens. Here, the immune system faces a considerable challenge in tolerating commensal flora and dietary antigens while preventing the dissemination of potential pathogens. Failure to tightly control immune reactions may result in detrimental inflammation. In this respect, 'conventional' regulatory CD4(+) T cells, including naturally occurring and adaptive CD4(+) CD25(+) Foxp3(+) T cells, Th3 and Tr1 cells, have recently been the focus of considerable attention. However, regulatory mechanisms in the intestinal mucosa are highly complex, including adaptations of nonhaematopoietic cells and innate immune cells as well as the presence of unconventional T cells with regulatory properties such as resident TCRgammadelta or TCRalphabeta CD8(+) intraepithelial lymphocytes. This review aims to summarize the currently available knowledge on conventional and unconventional regulatory T cell subsets (Tregs), with special emphasis on clinical data and the potential role or malfunctioning of Tregs in four major human gastrointestinal diseases, i.e. inflammatory bowel diseases, coeliac disease, food allergy and colorectal cancer. We conclude that the clinical data confirms some but not all of the findings derived from experimental animal models.
Collapse
Affiliation(s)
- L Saurer
- Institute of Pathology, University of Bern, Switzerland
| | | |
Collapse
|
43
|
Iwakura Y, Nakae S, Saijo S, Ishigame H. The roles of IL-17A in inflammatory immune responses and host defense against pathogens. Immunol Rev 2009; 226:57-79. [PMID: 19161416 DOI: 10.1111/j.1600-065x.2008.00699.x] [Citation(s) in RCA: 378] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
T-helper 17 (Th17) cells are a newly discovered CD4(+) helper T-cell subset that produces interleukin-17A (IL-17A) and IL-17F. IL-17A plays important roles in allergic responses such as delayed-type hypersensitivity, contact hypersensitivity, and allergic airway inflammation. IL-17A promotes inflammation by inducing various proinflammatory cytokines and chemokines, recruiting neutrophils, enhancing antibody production, and activating T cells. IL-17A expression is also augmented in autoimmune diseases such as multiple sclerosis and rheumatoid arthritis. Using mouse models of these diseases, we found that IL-17A plays a central role in their development. IL-6 is required for the development of Th17 cells and tumor necrosis factor functions downstream of IL-17A during the effector phase. IL-1 is important both for developing Th17 cells and eliciting inflammation. Th17 cells, like Th1 and Th2 cells, are involved in host defense against infections, but the contribution of these Th subsets to defense mechanisms differs among pathogens. The roles of IL-17F remain largely unknown. In this review, we introduce how IL-17A/IL-17F are involved in inflammatory immune responses and host defense mechanisms and discuss their relationship with other cytokines in the development of inflammatory and infectious diseases.
Collapse
Affiliation(s)
- Yoichiro Iwakura
- Center for Experimental Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| | | | | | | |
Collapse
|
44
|
O'Malley JT, Eri RD, Stritesky GL, Mathur AN, Chang HC, Hogenesch H, Srinivasan M, Kaplan MH. STAT4 isoforms differentially regulate Th1 cytokine production and the severity of inflammatory bowel disease. THE JOURNAL OF IMMUNOLOGY 2008; 181:5062-70. [PMID: 18802110 DOI: 10.4049/jimmunol.181.7.5062] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
STAT4, a critical regulator of inflammation in vivo, can be expressed as two alternative splice forms, a full-length STAT4alpha, and a STAT4beta isoform lacking a C-terminal transactivation domain. Each isoform is sufficient to program Th1 development through both common and distinct subsets of target genes. However, the ability of these isoforms to mediate inflammation in vivo has not been examined. Using a model of colitis that develops following transfer of CD4(+) CD45RB(high) T cells expressing either the STAT4alpha or STAT4beta isoform into SCID mice, we determined that although both isoforms mediate inflammation and weight loss, STAT4beta promotes greater colonic inflammation and tissue destruction. This correlates with STAT4 isoform-dependent expression of TNF-alpha and GM-CSF in vitro and in vivo, but not Th1 expression of IFN-gamma or Th17 expression of IL-17, which were similar in STAT4alpha- and STAT4beta-expressing T cells. Thus, higher expression of a subset of inflammatory cytokines from STAT4beta-expressing T cells correlates with the ability of STAT4beta-expressing T cells to mediate more severe inflammatory disease.
Collapse
Affiliation(s)
- John T O'Malley
- Department of Pediatrics, HB Wells Center for Pediatric Research and Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
The suppressive effect of triptolide on chronic colitis and TNF-α/TNFR2 signal pathway in interleukin-10 deficient mice. Clin Immunol 2008; 129:211-8. [DOI: 10.1016/j.clim.2008.07.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Revised: 07/04/2008] [Accepted: 07/09/2008] [Indexed: 11/19/2022]
|
46
|
Lee J, Kim MS, Kim EY, Park HJ, Chang CY, Park KS, Jung DY, Kwon CH, Joh JW, Kim SJ. Mycophenolate mofetil promotes down-regulation of expanded B cells and production of TNF-α in an experimental murine model of colitis. Cytokine 2008; 44:49-56. [DOI: 10.1016/j.cyto.2008.06.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2007] [Revised: 07/18/2007] [Accepted: 06/12/2008] [Indexed: 01/05/2023]
|
47
|
Platt AM, Mowat AM. Mucosal macrophages and the regulation of immune responses in the intestine. Immunol Lett 2008; 119:22-31. [PMID: 18601952 DOI: 10.1016/j.imlet.2008.05.009] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Revised: 05/23/2008] [Accepted: 05/27/2008] [Indexed: 01/21/2023]
Abstract
The healthy intestinal mucosa is home to one of the largest populations of macrophages (mvarphi) in the body [Lee SH, Starkey PM, Gordon S. Quantitative analysis of total macrophage content in adult mouse tissues. Immunochemical studies with monoclonal antibody F4/80. J Exp Med 1985;161:475-89], yet little is known about their function. Resident mvarphi in the large and small intestine are distinct from other mvarphi populations in the body, with regards to both their functional properties and surface phenotype. They respond in an unconventional manner to inflammatory stimuli, with little upregulation of proteins involved in antigen presentation and T cell co-stimulation, and no production of pro-inflammatory cytokines. This suggests that under resting conditions, intestinal mvarphi may be conditioned to be anti-inflammatory in response to local stimuli such as commensal bacteria. In contrast, during inflammation, intestinal mvarphi exhibit increased bactericidal and inflammatory abilities, promote protective immunity and/or mediate pathology. Thus the status of this cell may be the key to understanding how the intestine maintains a balance between being able to generate protective immunity against pathogens, but still prevent pathological inflammation under normal conditions. In this review, we discuss the current knowledge of intestinal mvarphi biology, and highlight the different levels of immunoregulation which influence these cells, with particular focus on innate pathogen recognition receptor (PRR) function and responsiveness to microbial stimuli.
Collapse
Affiliation(s)
- Andrew M Platt
- Division of Immunology, Infection & Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, 120 University Place, Glasgow, Scotland G12 8TA, UK
| | | |
Collapse
|
48
|
Kotakadi VS, Jin Y, Hofseth AB, Ying L, Cui X, Volate S, Chumanevich A, Wood PA, Price RL, McNeal A, Singh UP, Singh NP, Nagarkatti M, Nagarkatti PS, Matesic LE, Auclair K, Wargovich MJ, Hofseth LJ. Ginkgo biloba extract EGb 761 has anti-inflammatory properties and ameliorates colitis in mice by driving effector T cell apoptosis. Carcinogenesis 2008; 29:1799-806. [PMID: 18567620 DOI: 10.1093/carcin/bgn143] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Ulcerative colitis is a dynamic, chronic inflammatory condition of the colon associated with an increased colon cancer risk. Ginkgo biloba is a putative antioxidant and has been used for thousands of years to treat a variety of ailments. The aim of this study was to test whether the standardized G.biloba extract, EGb 761, is an antioxidant that can be used to prevent and treat colitis in mice. Here, we show that EGb 761 suppresses the activation of macrophages and can be used to both prevent and treat mouse colitis. Markers of inflammation (iNOS, Cox-2 and tumor necrosis factor-alpha) and inflammatory stress (p53 and p53-phospho-serine 15) are also downregulated by EGb 761. Furthermore, we show that EGb 761 reduces the numbers of CD4+/CD25-/Foxp3- effector T cells in the colon. Interestingly, EGb 761 drives CD4+ effector T cell apoptosis in vitro and in vivo, providing a mechanistic explanation to the reduction in numbers of this cell type in the colon. This current study is in agreement with previous studies supporting a use of EGb 761 as a complementary and alternative strategy to abate colitis and associated colon cancer.
Collapse
Affiliation(s)
- Venkata S Kotakadi
- Department of Pharmaceutical and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Singh UP, Singh R, Singh S, Karls RK, Quinn FD, Taub DD, Lillard JW. CXCL10+ T cells and NK cells assist in the recruitment and activation of CXCR3+ and CXCL11+ leukocytes during Mycobacteria-enhanced colitis. BMC Immunol 2008; 9:25. [PMID: 18533024 PMCID: PMC2443107 DOI: 10.1186/1471-2172-9-25] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Accepted: 06/04/2008] [Indexed: 12/19/2022] Open
Abstract
Background The role of Mycobacteria in the etiology of Crohn's disease (CD) has been a contentious subject for many years. Recently, our laboratory showed that spontaneous colitis in IL-10-/- mice is driven in part by antigens (Ags) conserved in Mycobacteria. The present study dissects some of the common cellular and molecular mechanism that drive Mycobacteria-mediated and spontaneous colitis in IL-10-/- mice. Results We show that serum from inflammatory bowel disease (IBD) patients contain significantly higher levels of Mycobacterium avium paratuberculosis-specific IgG1 and IgG2 antibodies (Abs), serum amyloid A (SAA) as well as CXCR3 ligands than serum from healthy donors. To study the cellular mechanisms of Mycobacteria-associated colitis, pathogen-free IL-10-/- mice were given heat-killed or live M. avium paratuberculosis. The numbers of mucosal T cells, neutrophils, NK/NKT cells that expressed TNFα, IFN-γ, and/or CXCL10 were significantly higher in mice that received live Mycobacteria than other groups. The numbers of mucosal CXCR3+, CXCL9+, CXCL11+ and/or IFN-γ+ dendritic cells (DCs) were also significantly higher in M. avium paratuberculosis-challenged mice, than compared to control mice. Conclusion The present study shows that CD and UC patients mount significant Mycobacteria-specific IgG1 > IgG2 and CXCR3 ligand responses. Several cellular mechanisms that drive spontaneous colitis also mediate Mycobacteria-enhanced colitis in IL-10-/- mice. Similar to IL-10-/- mice under conventional housing, we show that Mycobacteria-challenge IL-10-/- mice housed under otherwise pathogen-free conditions develop colitis that is driven by CXCR3- and CXCR3 ligand-expressing leukocytes, which underscores another important hallmark and molecular mechanism of colitis. Together, the data show that Mycobacteria-dependent host responses, namely CXCL10+ T cells and NK cells, assist in the recruitment and activation of CXCR3+ and CXCL11+ leukocytes to enhance colitis of susceptible hosts.
Collapse
Affiliation(s)
- Udai P Singh
- Department of Microbiology, Biochemistry, & Immunology, Morehouse School of Medicine, Atlanta, GA, USA.
| | | | | | | | | | | | | |
Collapse
|
50
|
Kruglov AA, Kuchmiy A, Grivennikov SI, Tumanov AV, Kuprash DV, Nedospasov SA. Physiological functions of tumor necrosis factor and the consequences of its pathologic overexpression or blockade: Mouse models. Cytokine Growth Factor Rev 2008; 19:231-44. [DOI: 10.1016/j.cytogfr.2008.04.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|