1
|
Gao B, Ni H, Lai J, Gao N, Luo X, Wang Y, Chen Y, Zhao J, Yu Z, Zhang J, Cai W, Yang G. Macrophage response to fibrin structure mediated by Tgm2-dependent mitochondrial mechanosensing. Bioact Mater 2025; 50:382-395. [PMID: 40331213 PMCID: PMC12051126 DOI: 10.1016/j.bioactmat.2025.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/17/2025] [Accepted: 04/17/2025] [Indexed: 05/08/2025] Open
Abstract
Following an injury at the implantation position, blood-material interactions form a fibrin architecture, which serves as the initial activator of foreign body response (FBR). However, there is limited knowledge regarding how the topography of fibrin architectures regulates macrophage behavior in mitigating FBR. Mechanical cues of the microenvironment have been reported to shape immune cell functions. Here, we investigated macrophage mechanobiology at the organelle level by constructing heterogeneous fibrin networks. Based on findings in vivo, we demonstrated that adhesion-mediated differentiation of mitochondrial function modulated macrophage polarization. The finite activation of integrin signaling upregulated transglutaminase 2 (Tgm2) in a trans-manner, augments PGC1α-mediated mitochondrial biogenesis. Our study highlighted the previously overlooked spatial structures of host proteins adsorbed on material surfaces, advocating for a paradigm shift in material design strategies, from focusing solely on physical properties to considering the modification of host proteins.
Collapse
Affiliation(s)
- Bicong Gao
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Haifeng Ni
- Zhejiang Key Laboratory of Plastic Modification and Processing Technology, College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Junhong Lai
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Ning Gao
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Xinxin Luo
- Zhejiang Key Laboratory of Plastic Modification and Processing Technology, College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Ying Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Yani Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Jiaying Zhao
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Zhou Yu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Jing Zhang
- Zhejiang Key Laboratory of Plastic Modification and Processing Technology, College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Wenjin Cai
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Guoli Yang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| |
Collapse
|
2
|
Everts PA, Lana JF, Alexander RW, Dallo I, Kon E, Ambach MA, van Zundert A, Podesta L. Profound Properties of Protein-Rich, Platelet-Rich Plasma Matrices as Novel, Multi-Purpose Biological Platforms in Tissue Repair, Regeneration, and Wound Healing. Int J Mol Sci 2024; 25:7914. [PMID: 39063156 PMCID: PMC11277244 DOI: 10.3390/ijms25147914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/07/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Autologous platelet-rich plasma (PRP) preparations are prepared at the point of care. Centrifugation cellular density separation sequesters a fresh unit of blood into three main fractions: a platelet-poor plasma (PPP) fraction, a stratum rich in platelets (platelet concentrate), and variable leukocyte bioformulation and erythrocyte fractions. The employment of autologous platelet concentrates facilitates the biological potential to accelerate and support numerous cellular activities that can lead to tissue repair, tissue regeneration, wound healing, and, ultimately, functional and structural repair. Normally, after PRP preparation, the PPP fraction is discarded. One of the less well-known but equally important features of PPP is that particular growth factors (GFs) are not abundantly present in PRP, as they reside outside of the platelet alpha granules. Precisely, insulin-like growth factor-1 (IGF-1) and hepatocyte growth factor (HGF) are mainly present in the PPP fraction. In addition to their roles as angiogenesis activators, these plasma-based GFs are also known to inhibit inflammation and fibrosis, and they promote keratinocyte migration and support tissue repair and wound healing. Additionally, PPP is known for the presence of exosomes and other macrovesicles, exerting cell-cell communication and cell signaling. Newly developed ultrafiltration technologies incorporate PPP processing methods by eliminating, in a fast and efficient manner, plasma water, cytokines, molecules, and plasma proteins with a molecular mass (weight) less than the pore size of the fibers. Consequently, a viable and viscous protein concentrate of functional total proteins, like fibrinogen, albumin, and alpha-2-macroglobulin is created. Consolidating a small volume of high platelet concentrate with a small volume of highly concentrated protein-rich PPP creates a protein-rich, platelet-rich plasma (PR-PRP) biological preparation. After the activation of proteins, mainly fibrinogen, the PR-PRP matrix retains and facilitates interactions between invading resident cells, like macrophages, fibroblast, and mesenchymal stem cells (MSCs), as well as the embedded concentrated PRP cells and molecules. The administered PR-PRP biologic will ultimately undergo fibrinolysis, leading to a sustained release of concentrated cells and molecules that have been retained in the PR-PRP matrix until the matrix is dissolved. We will discuss the unique biological and tissue reparative and regenerative properties of the PR-PRP matrix.
Collapse
Affiliation(s)
- Peter A. Everts
- Gulf Coast Biologics, A Non-Profit Organization, Fort Myers, FL 33916, USA
- OrthoRegen Group, Max-Planck University, Indaiatuba 13334-170, SP, Brazil;
| | - José Fábio Lana
- OrthoRegen Group, Max-Planck University, Indaiatuba 13334-170, SP, Brazil;
| | - Robert W. Alexander
- Regenevita Biocellular Aesthetic & Reconstructive Surgery, Cranio-Maxillofacial Surgery, Regenerative and Wound Healing, Hamilton, MT 59840, USA;
- Department of Surgery & Maxillofacial Surgery, School of Medicine & Dentistry, University of Washington, Seattle, WA 98195, USA
| | - Ignacio Dallo
- Unit of Biological Therapies and MSK Interventionism, Department of Orthopaedic Surgery and Sports Medicine, Sport Me Medical Center, 41013 Seville, Spain;
| | - Elizaveta Kon
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy;
- IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Mary A. Ambach
- BioEvolve, San Diego Orthobiologics and Sports Center, San Diego, CA 92024, USA
| | - André van Zundert
- Department of Anaesthesia and Perioperative Medicine, Royal Brisbane and Women’s Hospital, Brisbane and The University of Queensland, Brisbane 4072, Australia;
| | - Luga Podesta
- Bluetail Medical Group & Podesta Orthopedic Sports Medicine, Naples, FL 34109, USA;
- Physical Medicine & Rehabilitation Orlando College of Osteopathic Medicine, Orlando, FL 32806, USA
| |
Collapse
|
3
|
Uztimür M, Kizil Ö, Akbulut HH. Immunophenotyping of peripheral circulating lymphocytes and serum selenium levels in calves with neonatal diarrhea. Vet Immunol Immunopathol 2024; 269:110728. [PMID: 38340536 DOI: 10.1016/j.vetimm.2024.110728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024]
Abstract
This work aims to: (1) elucidate the immune response exhibited by CD4 + and CD8 + T lymphocyte cells in response to various infectious agents in calves suffering with neonatal diarrhea; and (2) determine and investigate the association between serum selenium levels and T lymphocyte subtypes in neonatal calves afflicted with neonatal diarrhea and infected with various infectious agents. The study encompassed a cohort of 50 calves, encompassing both sexes and various breeds, within the neonatal age range (1-28 days old). Subdivided into distinct groups, the calves were categorized based on the causative agents of neonatal diarrhea, including Rotavirus (n = 10), Cryptosporidium parvum (C.parvum) (n = 10), Coronavirus (n = 5), Rotavirus+C.parvum (n = 5), and a Control group (n = 20). Blood samples were meticulously obtained from the vena jugularis of all animals utilizing specific techniques-8 ml in tubes devoid of anticoagulant and 3 ml in blood collection tubes containing EDTA. Serum selenium levels were analyzed by ICP-MS. Flow Cytometry device was used to determine CD4 + and CD8 +T lymphocyte levels. In this study, although there was no statistically significant difference in serum selenium levels between all study groups, it was found that the selenium level in the control group was not sufficient. CD4 T lymphocyte levels, the rotavirus+C.parvum group exhibited a statistically significant elevation compared to the coronavirus group. Regarding CD8 + T lymphocyte levels, the coronavirus group demonstrated a statistically significant increase when compared to the control group. In intragroup analyses of CD8 + T lymphocyte levels, the coronavirus group exhibited a significant elevation compared to the rotavirus group, C.parvum group, and the C.parvum + Rotavirus group. A significant negative correlation was detected between selenium levels and CD4 + T lymphocytes, while no correlation was found between CD8 + T lymphocytes. Fibrinogen concentration exhibited statistical significance, being higher in the Rotavirus group (p < 0.008) compared to the control group, in the C.parvum group (p < 0.004) compared to the control group, and in the Coronavirus group (p < 0.001) compared to the control group. The leukocyte count demonstrated statistical significance, being higher in the Rotavirus group compared to the control group (p < 0.001), in the Rotavirus+C.parvum group compared to the control group (p < 0.002), and in the Coronavirus group compared to the control group (p < 0.011). In conclusion, the data derived from this study illuminate discernible disparities in CD4 + and CD8 + T lymphocyte immune responses, contingent upon the specific etiological agent associated with neonatal diarrhea. Furthermore, the study underscores the importance of considering selenium deficiency as a relevant factor in calves affected by neonatal diarrhea.
Collapse
Affiliation(s)
- Murat Uztimür
- Bingöl University Faculty of Veterinary Medicine, Department of Internal Medicine, Selahaddin-i Eyyubi, Bingöl, Turkey.
| | - Ömer Kizil
- Fırat University Faculty of Veterinary Medicine, Department of Internal Medicine, 23000 Elazığ, Turkey.
| | - Hatice Handan Akbulut
- Department of Immunology, Firat University Faculty of Medicine, 23000 Elazig, Turkey
| |
Collapse
|
4
|
Sulimai N, Brown J, Lominadze D. Vascular Effects on Cerebrovascular Permeability and Neurodegeneration. Biomolecules 2023; 13:648. [PMID: 37189395 PMCID: PMC10136045 DOI: 10.3390/biom13040648] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/29/2023] [Accepted: 04/02/2023] [Indexed: 05/17/2023] Open
Abstract
Neurons and glial cells in the brain are protected by the blood brain barrier (BBB). The local regulation of blood flow is determined by neurons and signal conducting cells called astrocytes. Although alterations in neurons and glial cells affect the function of neurons, the majority of effects are coming from other cells and organs of the body. Although it seems obvious that effects beginning in brain vasculature would play an important role in the development of various neuroinflammatory and neurodegenerative pathologies, significant interest has only been directed to the possible mechanisms involved in the development of vascular cognitive impairment and dementia (VCID) for the last decade. Presently, the National Institute of Neurological Disorders and Stroke applies considerable attention toward research related to VCID and vascular impairments during Alzheimer's disease. Thus, any changes in cerebral vessels, such as in blood flow, thrombogenesis, permeability, or others, which affect the proper vasculo-neuronal connection and interaction and result in neuronal degeneration that leads to memory decline should be considered as a subject of investigation under the VCID category. Out of several vascular effects that can trigger neurodegeneration, changes in cerebrovascular permeability seem to result in the most devastating effects. The present review emphasizes the importance of changes in the BBB and possible mechanisms primarily involving fibrinogen in the development and/or progression of neuroinflammatory and neurodegenerative diseases resulting in memory decline.
Collapse
Affiliation(s)
- Nurul Sulimai
- Department of Surgery, College of Medicine, University of South Florida Morsani, Tampa, FL 33612, USA; (N.S.); (J.B.)
| | - Jason Brown
- Department of Surgery, College of Medicine, University of South Florida Morsani, Tampa, FL 33612, USA; (N.S.); (J.B.)
| | - David Lominadze
- Department of Surgery, College of Medicine, University of South Florida Morsani, Tampa, FL 33612, USA; (N.S.); (J.B.)
- Department of Molecular Pharmacology and Physiology, College of Medicine, University of South Florida Morsani, Tampa, FL 33612, USA
| |
Collapse
|
5
|
Contini C, Serrao S, Manconi B, Olianas A, Iavarone F, Guadalupi G, Messana I, Castagnola M, Masullo C, Bizzarro A, Turck CW, Maccarrone G, Cabras T. Characterization of Cystatin B Interactome in Saliva from Healthy Elderly and Alzheimer’s Disease Patients. Life (Basel) 2023; 13:life13030748. [PMID: 36983903 PMCID: PMC10054399 DOI: 10.3390/life13030748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/27/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Cystatin B is a small, multifunctional protein involved in the regulation of inflammation, innate immune response, and neuronal protection and found highly abundant in the brains of patients with Alzheimer’s disease (AD). Recently, our study demonstrated a significant association between the level of salivary cystatin B and AD. Since the protein is able to establish protein-protein interaction (PPI) in different contexts and aggregation-prone proteins and the PPI networks are relevant for AD pathogenesis, and due to the relevance of finding new AD markers in peripheral biofluids, we thought it was interesting to study the possible involvement of cystatin B in PPIs in saliva and to evaluate differences and similarities between AD and age-matched elderly healthy controls (HC). For this purpose, we applied a co-immunoprecipitation procedure and a bottom-up proteomics analysis to purify, identify, and quantify cystatin B interactors. Results demonstrated for the first time the existence of a salivary cystatin B-linked multi-protein complex composed by 82 interactors and largely expressed in the body. Interactors are involved in neutrophil activation, antimicrobial activity, modulation of the cytoskeleton and extra-cellular matrix (ECM), and glucose metabolism. Preliminary quantitative data showed significantly lower levels of triosophosphate isomerase 1 and higher levels of mucin 7, BPI, and matrix Gla protein in AD with respect to HC, suggesting implications associated with AD of altered glucose metabolism, antibacterial activities, and calcification-associated processes. Data are available via ProteomeXchange with identifiers PXD039286 and PXD030679.
Collapse
Affiliation(s)
- Cristina Contini
- Department of Life and Environmental Sciences, University of Cagliari, 09124 Cagliari, Italy
| | - Simone Serrao
- Department of Life and Environmental Sciences, University of Cagliari, 09124 Cagliari, Italy
| | - Barbara Manconi
- Department of Life and Environmental Sciences, University of Cagliari, 09124 Cagliari, Italy
- Correspondence:
| | - Alessandra Olianas
- Department of Life and Environmental Sciences, University of Cagliari, 09124 Cagliari, Italy
| | - Federica Iavarone
- Department of Basic Biotechnological Sciences, Intensive and Perioperative Clinics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Policlinico Universitario “A. Gemelli” Foundation IRCCS, 00168 Rome, Italy
| | - Giulia Guadalupi
- Department of Life and Environmental Sciences, University of Cagliari, 09124 Cagliari, Italy
| | - Irene Messana
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, Consiglio Nazionale delle Ricerche, 00168 Rome, Italy
| | - Massimo Castagnola
- Proteomics Laboratory, European Center for Brain Research, (IRCCS) Santa Lucia Foundation, 00168 Rome, Italy
| | - Carlo Masullo
- Department of Neuroscience, Neurology Section, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | | | - Christoph W. Turck
- Proteomics and Biomarkers, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Giuseppina Maccarrone
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Tiziana Cabras
- Department of Life and Environmental Sciences, University of Cagliari, 09124 Cagliari, Italy
| |
Collapse
|
6
|
CCR2 monocytes repair cerebrovascular damage caused by chronic social defeat stress. Brain Behav Immun 2022; 101:346-358. [PMID: 35063606 DOI: 10.1016/j.bbi.2022.01.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/21/2021] [Accepted: 01/10/2022] [Indexed: 11/23/2022] Open
Abstract
Immune surveillance of the brain plays an important role in health and disease. Peripheral leukocytes patrol blood-brain barrier interfaces, and after injury, monocytes cross the cerebrovasculature and follow a pattern of pro- and anti-inflammatory activity leading to tissue repair. We have shown that chronic social defeat (CSD) causes scattered vasculature disruptions. Here, we assessed CCR2+ monocyte trafficking to the vascular injury sites in Ccr2wt/rfp reporter mice both during CSD and one week following CSD cessation. We found that CSD for 14 days induced microhemorrhages where plasma fibrinogen leaked into perivascular spaces, but it did not affect the distribution or density of CCR2rfp+ monocytes in the brain. However, after recovery from CSD, many vascularly adhered CCR2+ cells were detected, and gene expression of the CCR2 chemokine receptor ligands CCL7 and CCL12, but not CCL2, was elevated in endothelial cells. Adhered CCR2+ cells were mostly the non-classical, anti-inflammatory Ly6Clo type, and they phagocytosed fibrinogen in perivascular spaces. In CCR2-deficient Ccr2rfp/rfp mice, fibrinogen levels remained elevated in recovery. Fibrinogen infused intracerebroventricularly induced CCR2+ cells to adhere to the vasculature and phagocytose perivascular fibrinogen in Ccr2wt/rfp but not Ccr2rfp/rfp mice. Depletion of monocytes with clodronate liposomes during CSD recovery prevented fibrinogen clearance and blocked behavioral recovery. We hypothesize that peripheral CCR2+ monocytes are not elevated in the brain on day 14 at the end of CSD and do not contribute to its behavioral effects at that time, but in recovery following cessation of stress, they enter the brain and exert restorative functions mediating vascular repair and normalization of behavior.
Collapse
|
7
|
Negrón O, Hur WS, Prasad J, Paul DS, Rowe SE, Degen JL, Abrahams SR, Antoniak S, Conlon BP, Bergmeier W, Hӧӧk M, Flick MJ. Fibrin(ogen) engagement of S. aureus promotes the host antimicrobial response and suppression of microbe dissemination following peritoneal infection. PLoS Pathog 2022; 18:e1010227. [PMID: 35041705 PMCID: PMC8797238 DOI: 10.1371/journal.ppat.1010227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/28/2022] [Accepted: 12/22/2021] [Indexed: 12/22/2022] Open
Abstract
The blood-clotting protein fibrin(ogen) plays a critical role in host defense against invading pathogens, particularly against peritoneal infection by the Gram-positive microbe Staphylococcus aureus. Here, we tested the hypothesis that direct binding between fibrin(ogen) and S. aureus is a component of the primary host antimicrobial response mechanism and prevention of secondary microbe dissemination from the peritoneal cavity. To establish a model system, we showed that fibrinogen isolated from FibγΔ5 mice, which express a mutant form lacking the final 5 amino acids of the fibrinogen γ chain (termed fibrinogenγΔ5), did not support S. aureus adherence when immobilized and clumping when in suspension. In contrast, purified wildtype fibrinogen supported robust adhesion and clumping that was largely dependent on S. aureus expression of the receptor clumping factor A (ClfA). Following peritoneal infection with S. aureus USA300, FibγΔ5 mice displayed worse survival compared to WT mice coupled to reduced bacterial killing within the peritoneal cavity and increased dissemination of the microbes into circulation and distant organs. The failure of acute bacterial killing, but not enhanced dissemination, was partially recapitulated by mice infected with S. aureus USA300 lacking ClfA. Fibrin polymer formation and coagulation transglutaminase Factor XIII each contributed to killing of the microbes within the peritoneal cavity, but only elimination of polymer formation enhanced systemic dissemination. Host macrophage depletion or selective elimination of the fibrin(ogen) β2-integrin binding motif both compromised local bacterial killing and enhanced S. aureus systemic dissemination, suggesting fibrin polymer formation in and of itself was not sufficient to retain S. aureus within the peritoneal cavity. Collectively, these findings suggest that following peritoneal infection, the binding of S. aureus to stabilized fibrin matrices promotes a local, macrophage-mediated antimicrobial response essential for prevention of microbe dissemination and downstream host mortality. The Gram-positive bacterium Staphylococcus aureus (S. aureus) produces a number of soluble and surface-associated proteins that bind the host coagulation protein fibrinogen. The contribution of fibrinogen-S. aureus binding through the fibrinogen receptor clumping factor A (ClfA) in peritoneal infection has not been defined. Elimination of the binding motif on fibrinogen for ClfA or deletion of ClfA from S. aureus significantly reduced S. aureus-fibrinogen binding and bacterial clumping in solution. In a mouse model of peritonitis, loss of these activities resulted in diminished bacterial killing, increased bacterial dissemination, and worsened host survival. Although fibrin polymer formation and fibrin(ogen)-macrophage binding are mechanistically linked to the local antimicrobial response, fibrin formation in and of itself is not sufficient to suppress microbe dissemination. These discoveries have identified important components of the fibrin(ogen)-dependent host antimicrobial response against S. aureus, providing further understanding of this physiological response to infection which could uncover potential therapeutic strategies for peritonitis patients.
Collapse
Affiliation(s)
- Oscar Negrón
- Department of Pathology and Laboratory Medicine, UNC Blood Research Center, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Woosuk S. Hur
- Department of Pathology and Laboratory Medicine, UNC Blood Research Center, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Joni Prasad
- Division of Experimental Hematology, Cincinnati Children’s Hospital Medical Center and University of Cincinnati School of Medicine, Cincinnati, Ohio, United States of America
| | - David S. Paul
- Department of Biochemistry, UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Sarah E. Rowe
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jay L. Degen
- Division of Experimental Hematology, Cincinnati Children’s Hospital Medical Center and University of Cincinnati School of Medicine, Cincinnati, Ohio, United States of America
| | - Sara R. Abrahams
- Department of Pathology and Laboratory Medicine, UNC Blood Research Center, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Silvio Antoniak
- Department of Pathology and Laboratory Medicine, UNC Blood Research Center, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Brian P. Conlon
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Wolfgang Bergmeier
- Department of Biochemistry, UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Magnus Hӧӧk
- Center of Infectious and Inflammatory Diseases, Texas A&M Health Sciences Center, Houston, Texas, United States of America
| | - Matthew J. Flick
- Department of Pathology and Laboratory Medicine, UNC Blood Research Center, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
8
|
Wu F, Li Y, Yang Q, Wang C, Hou L, Liu W, Hou C. Transcriptome sequencing analysis of primary fibroblasts: a new insight into postoperative abdominal adhesion. Surg Today 2022; 52:151-164. [PMID: 34120243 DOI: 10.1007/s00595-021-02321-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/22/2021] [Indexed: 11/09/2022]
Abstract
PURPOSE The specific genes or pathways in fibroblasts responsible for the pathogenesis of postoperative abdominal adhesion (PAA) remain to be elucidated. We aim to provide a new insight into disease mechanisms at the transcriptome level. METHODS Male Sprague-Dawley rats were used to establish a PAA model. Primary fibroblasts were separated from normal peritoneal tissue (NF) and postoperative adhesion tissue (PF). RNA sequencing was used to analyze the transcriptome in NF and PF. RESULTS One thousand two hundred thirty-five upregulated and 625 downregulated DEGs were identified through RNA-Seq. A pathway enrichment analysis identified distinct enriched biological processes, among which the most prominent was related to immune and inflammatory response and fibrosis. HE staining and Masson's trichrome staining histologically validated the RNA-Seq results. Six hub genes, ITGAM, IL-1β, TNF, IGF1, CSF1R and EGFR were further verified by RT-PCR. CONCLUSIONS Our study revealed the roles of the immune and inflammatory responses and fibrosis in the process of PAA. We also found six hub genes that may be potential therapeutic targets for PPA.
Collapse
Affiliation(s)
- Fuling Wu
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yilei Li
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Qin Yang
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Canmao Wang
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Lianbing Hou
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Wenqin Liu
- Biopharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Chuqi Hou
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
- Biopharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
9
|
Chang CW, Cheng N, Bai Y, Skidgel RA, Du X. Gα 13 Mediates Transendothelial Migration of Neutrophils by Promoting Integrin-Dependent Motility without Affecting Directionality. THE JOURNAL OF IMMUNOLOGY 2021; 207:3038-3049. [PMID: 34799423 DOI: 10.4049/jimmunol.2001385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 10/07/2021] [Indexed: 11/19/2022]
Abstract
Neutrophil migration requires β2 integrins and chemoattractant receptor signaling for motility and directionality. G protein subunit Gα13 can facilitate cell migration by mediating RhoA activation induced by G protein-coupled receptors. However, the possible role of Gα13-integrin interaction in migration is unclear. In this study, we show that Gα13 -/- neutrophils are deficient in transendothelial migration and migration on β2 integrin ligand ICAM-1. However, unlike G protein-coupled receptors and integrin inside-out signaling pathways, Gα13 is important in migration velocity and neutrophil spreading but not in directionality nor cell adhesion. Importantly, neutrophil recruitment in vivo was also inhibited in Gα13 -/- mice, suggesting the importance of Gα13 in transendothelial migration of neutrophils in vitro and in vivo. Furthermore, a synthetic peptide (MB2mP6) derived from the Gα13 binding site of β2 inhibited Gα13-β2 interaction and Gα13-mediated transient RhoA inhibition in neutrophils, suggesting that this peptide inhibited integrin outside-in signaling. MB2mP6 inhibited migration of control neutrophils through endothelial cell monolayers or ICAM-1-coated filters, but was without further effect on Gα13 -/- neutrophils. It also inhibited integrin-dependent neutrophil migration velocity without affecting directionality. In vivo, MB2mP6 markedly inhibited neutrophil infiltration into the cardiac tissues induced by ischemia/reperfusion injury. Thus, Gα13-dependent outside-in signaling enables integrin-dependent neutrophil motility without affecting directionality and may be a new therapeutic target for inhibiting neutrophil trafficking but not adhesion.
Collapse
Affiliation(s)
- Claire W Chang
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL.,Department of Bioengineering, University of Illinois at Chicago, Chicago, IL; and
| | - Ni Cheng
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL
| | - Yanyan Bai
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL
| | | | - Xiaoping Du
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL;
| |
Collapse
|
10
|
Jin L, Han X, Zhang X, Zhao Z, Ulrich J, Syrovets T, Simmet T. Identification of Oleanolic Acid as Allosteric Agonist of Integrin α M by Combination of In Silico Modeling and In Vitro Analysis. Front Pharmacol 2021; 12:702529. [PMID: 34603018 PMCID: PMC8484648 DOI: 10.3389/fphar.2021.702529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/31/2021] [Indexed: 12/31/2022] Open
Abstract
Oleanolic acid is a widely distributed natural product, which possesses promising antitumor, antiviral, antihyperlipidemic, and anti-inflammatory activities. A heterodimeric complex formed by integrin αM (CD11b) and integrin β2 (CD18) is highly expressed on monocytes and macrophages. In the current study, we demonstrate that the I domain of αM (αM-I domain) might present a potential cellular target for oleanolic acid. In vitro data show that oleanolic acid induces clustering of αM on macrophages and reduces their non-directional migration. In accordance with experimental data, molecular docking revealed that oleanolic acid binds to the αM-I domain in its extended-open form, the dominant conformation found in αM clusters. Molecular dynamics simulation revealed that oleanolic acid can increase the flexibility of the α7 helix and promote its movement away from the N-terminus, indicating that oleanolic acid may facilitate the conversion of the αM-I domain from the extended-closed to the extended-open conformation. As demonstrated by metadynamics simulation, oleanolic acid can destabilize the local minimum of the αM-I domain in the open conformation partially through disturbance of the interactions between α1 and α7 helices. In summary, we demonstrate that oleanolic acid might function as an allosteric agonist inducing clustering of αM on macrophages by shifting the balance from the closed to the extended-open conformation. The molecular target identified in this study might hold potential for a purposeful use of oleanolic acid to modulate chronic inflammatory responses.
Collapse
Affiliation(s)
- Lu Jin
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany.,School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Xiaoyu Han
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Xinlei Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Zhimin Zhao
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Judith Ulrich
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany
| | - Tatiana Syrovets
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany
| | - Thomas Simmet
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany
| |
Collapse
|
11
|
Han S, Yang B, Feng Y, Zhao L, Feng Q, Guan H, Song D, Yin F, Zhuang L. The Correlation Between FGB Promoter Polymorphism and Clotting Function in Patients With Idiopathic Lower Extremity Deep Venous Thrombosis. Clin Appl Thromb Hemost 2021; 27:1076029620967108. [PMID: 34583575 PMCID: PMC8485564 DOI: 10.1177/1076029620967108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
To explore the possible single nucleotide polymorphisms (SNPs) sites in the promoter region of fibrinogen B β (FGB), and construct logistic regression model and haplotype model, so as to reveal the influence of FGB promoter SNPs on susceptibility, hemodynamics and coagulation function of lower extremity deep venous thrombosis (LEDVT) in the genetic background. LEDVT patients (120) and healthy people (120) were taken as case and control objects, respectively. SNPs and their genotypes of FGB promoter were detected by promoter sequencing and PCR-RFLP. The parameters of coagulation system were evaluated. There were 6 SNPs in FGB promoter, which were β-148C/T, β-249C/T, β-455G/A, β-854G/A, β-993C/T and β-1420G/A. The genotype and allele frequency of β-1420 G/A, β-455G/A, β-249c/T and β-148C/T were significantly different between the LEDVT group and the control group, but not β-993C/T and β-854G/A. In addition, we found that the higher the content of Fibrinogen (FG), the higher the risk of LEDVT. The risk of LEDVT increased by 4.579 times for every unit increase of fibrinogen. We also found that FG, PT and APTT in LEDVT group were higher than those in control group, while TT was lower than those in control group; Furthermore, there was no significant difference in all coagulation indexes among 6 SNP genotypes in LEDVT group, while a significant difference was found between the 2 genotypes of β-993C/T in the control group. β-993C/T may indirectly affect the susceptibility of LEDVT by improving the basic level of plasma FG.
Collapse
Affiliation(s)
- Shengbin Han
- Department of Vascular Surgery, the First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Bin Yang
- Department of Vascular Surgery, the First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Yaoyu Feng
- Department of Vascular Surgery, the First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Lingfeng Zhao
- Department of Vascular Surgery, the First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Qun Feng
- Department of Vascular Surgery, the First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Hongxi Guan
- Department of Vascular Surgery, the First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Donghui Song
- Department of Vascular Surgery, the First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Fang Yin
- Department of Vascular Surgery, the First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Li Zhuang
- Department of Palliative Medicine, Yunnan Cancer Hospital, the Third Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
12
|
Kearney KJ, Ariëns RAS, Macrae FL. The Role of Fibrin(ogen) in Wound Healing and Infection Control. Semin Thromb Hemost 2021; 48:174-187. [PMID: 34428799 DOI: 10.1055/s-0041-1732467] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Fibrinogen, one of the most abundant plasma proteins playing a key role in hemostasis, is an important modulator of wound healing and host defense against microbes. In the current review, we address the role of fibrin(ogen) throughout the process of wound healing and subsequent tissue repair. Initially fibrin(ogen) acts as a provisional matrix supporting incoming leukocytes and acting as reservoir for growth factors. It later goes on to support re-epithelialization, angiogenesis, and fibroplasia. Importantly, removal of fibrin(ogen) from the wound is essential for wound healing to progress. We also discuss how fibrin(ogen) functions through several mechanisms to protect the host against bacterial infection by providing a physical barrier, entrapment of bacteria in fibrin(ogen) networks, and by directing immune cell function. The central role of fibrin(ogen) in defense against bacterial infection has made it a target of bacterial proteins, evolved to interact with fibrin(ogen) to manipulate clot formation and degradation for the purpose of promoting microbial virulence and survival. Further understanding of the dual roles of fibrin(ogen) in wound healing and infection could provide novel means of therapy to improve recovery from surgical or chronic wounds and help to prevent infection from highly virulent bacterial strains, including those resistant to antibiotics.
Collapse
Affiliation(s)
- Katherine J Kearney
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Robert A S Ariëns
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom.,Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Fraser L Macrae
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
13
|
Lamers C, Plüss CJ, Ricklin D. The Promiscuous Profile of Complement Receptor 3 in Ligand Binding, Immune Modulation, and Pathophysiology. Front Immunol 2021; 12:662164. [PMID: 33995387 PMCID: PMC8118671 DOI: 10.3389/fimmu.2021.662164] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/12/2021] [Indexed: 12/19/2022] Open
Abstract
The β2-integrin receptor family has a broad spectrum of physiological functions ranging from leukocyte adhesion, cell migration, activation, and communication to the phagocytic uptake of cells and particles. Among the members of this family, complement receptor 3 (CR3; CD11b/CD18, Mac-1, αMβ2) is particularly promiscuous in its functional profile and ligand selectivity. There are close to 100 reported structurally unrelated ligands for CR3, and while many ligands appear to cluster at the αMI domain, molecular details about binding modes remain largely elusive. The versatility of CR3 is reflected in its functional portfolio, which includes prominent roles in the removal of invaders and cell debris, induction of tolerance and synaptic pruning, and involvement in the pathogenesis of numerous autoimmune and chronic inflammatory pathologies. While CR3 is an interesting therapeutic target for immune modulation due to these known pathophysiological associations, drug development efforts are limited by concerns of potential interference with host defense functions and, most importantly, an insufficient molecular understanding of the interplay between ligand binding and functional impact. Here, we provide a systematic summary of the various interaction partners of CR3 with a focus on binding mechanisms and functional implications. We also discuss the roles of CR3 as an immune receptor in health and disease, as an activation marker in research and diagnostics, and as a therapeutic target.
Collapse
Affiliation(s)
- Christina Lamers
- Molecular Pharmacy Unit, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | | | | |
Collapse
|
14
|
Hulshof AM, Hemker HC, Spronk HMH, Henskens YMC, ten Cate H. Thrombin-Fibrin(ogen) Interactions, Host Defense and Risk of Thrombosis. Int J Mol Sci 2021; 22:2590. [PMID: 33806700 PMCID: PMC7961882 DOI: 10.3390/ijms22052590] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 12/14/2022] Open
Abstract
Fibrinogen is a well-known risk factor for arterial and venous thrombosis. Its function is not restricted to clot formation, however, as it partakes in a complex interplay between thrombin, soluble plasma fibrinogen, and deposited fibrin matrices. Fibrinogen, like thrombin, participates predominantly in hemostasis to maintain vascular integrity, but executes some important pleiotropic effects: firstly, as observed in thrombin generation experiments, fibrin removes thrombin from free solution by adsorption. The adsorbed thrombin is protected from antithrombins, notably α2-macroglobulin, and remains physiologically active as it can activate factors V, VIII, and platelets. Secondly, immobilized fibrinogen or fibrin matrices activate monocytes/macrophages and neutrophils via Mac-1 interactions. Immobilized fibrin(ogen) thereby elicits a pro-inflammatory response with a reciprocal stimulating effect of the immune system on coagulation. In contrast, soluble fibrinogen prohibits recruitment of these immune cells. Thus, while fibrin matrices elicit a procoagulant response, both directly by protecting thrombin and indirectly through the immune system, high soluble fibrinogen levels might protect patients due to its immune diminutive function. The in vivo influence of the 'protective' plasma fibrinogen versus the 'pro-thrombotic' fibrin matrices on thrombosis should be explored in future research.
Collapse
Affiliation(s)
- Anne-Marije Hulshof
- Central Diagnostic Laboratory, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands;
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 MD Maastricht, The Netherlands;
| | - H. Coenraad Hemker
- Synapse Research Institute, Cardiovascular Research Institute Maastricht, Maastricht University, 6200 MD Maastricht, The Netherlands;
| | - Henri M. H. Spronk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 MD Maastricht, The Netherlands;
| | - Yvonne M. C. Henskens
- Central Diagnostic Laboratory, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands;
| | - Hugo ten Cate
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 MD Maastricht, The Netherlands;
- Thrombosis Expert Centre Maastricht and Department of Internal Medicine, Section Vascular Medicine, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands
| |
Collapse
|
15
|
Branfield S, Washington AV. The enigmatic nature of the triggering receptor expressed in myeloid cells -1 (TLT- 1). Platelets 2021; 32:753-760. [PMID: 33560928 DOI: 10.1080/09537104.2021.1881948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Receptors are important pharmacological targets on cells. The Triggering Receptor Expressed on Myeloid Cells (TREM) - Like Transcript - 1 is an abundant, yet little understood, platelet receptor. It is a single Ig domain containing receptor isolated in the α-granules of resting platelets and brought to the platelet surface upon activation. On platelets, the integrin αIIbβ3 is the major receptor having roughly 80,000 copies. αIIbβ3 is a heterodimeric multidomain structure that mediates platelet aggregation through its interaction with the plasma protein fibrinogen. Anti-platelet drugs have successfully targeted αIIbβ3 to control thrombosis. Like αIIbβ3, TLT-1 also binds fibrinogen, making its role in platelet function somewhat obscure. In this review, we highlight the known structural features of TLT-1 and present the challenges of understanding TLT-1 function. In our analysis of the dynamics of the platelet surface after activation we propose a model in which TLT-1 supports αIIbβ3 function as a mechanoreceptor that may direct platelets toward immune function.
Collapse
Affiliation(s)
- Siobhan Branfield
- , Department of Biology, University of Puerto Rico- Rio Piedras- Molecular Science Research Center, San Juan, Puerto Rico
| | - A Valance Washington
- , Department of Biology, University of Puerto Rico- Rio Piedras- Molecular Science Research Center, San Juan, Puerto Rico
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW Fibrin(ogen) is a multifunctional clotting protein that not only has critical roles in hemostasis but is also important in inflammatory processes that control bacterial infection. As a provisional extracellular matrix protein, fibrin(ogen) functions as a physical barrier, a scaffold for immune cell migration, or as a spatially-defined cue to drive inflammatory cell activation. These mechanisms contribute to overall host antimicrobial defense against infection. However, numerous bacterial species have evolved mechanisms to manipulate host fibrin(ogen) to promote microbial virulence and survival. Staphylococcal species, in particular, express numerous virulence factors capable of engaging fibrin(ogen), promoting fibrin formation, and driving the dissolution of fibrin matrices. RECENT FINDINGS Recent studies have highlighted both new insights into the molecular mechanisms involved in fibrin(ogen)-mediated host defense and pathogen-driven virulence. Of particular interest is the role of fibrin(ogen) in forming host protective biofilms versus pathogen protective barriers and biofilms as well as the role of fibrin(ogen) in mediating direct host antimicrobial responses. SUMMARY Current data suggest that the role of fibrin(ogen) in staphylococcal infection is highly context-dependent and that better defining the precise cellular and molecular pathways activated will provide unique opportunities of therapeutic intervention to better treat Staphylococcal disease.
Collapse
|
17
|
Abstract
Biomarkers are widely used for the diagnosing of diseases, evaluation of their severity, prediction of outcomes, and for monitoring the effectiveness and safety of targeted therapy. This review describes specific cardiac biomarkers approved by FDA (Food and Drug AdministrationбUSA). The list of described biomarkers is not exhaustive. In addition to the general concepts of biomarkers, definitions and classification, this Part I of the review contains data on diagnostic and prognostic biomarkers of cardiovascular diseases associated with atherosclerosis.
Collapse
Affiliation(s)
| | - N. G. Gumanova
- National Medical Center for Therapy and Preventive Medicine
| |
Collapse
|
18
|
Hoppe B, Schwedler C, Edelmann A, Pistioli A, Poddubnyy D, Burmester GR, Häupl T. Fibrinogen, factor XIII and α 2-antiplasmin genotypes are associated with inflammatory activity and anti-citrullinated protein antibodies. Thromb Res 2020; 191:90-96. [PMID: 32408093 DOI: 10.1016/j.thromres.2020.04.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/07/2020] [Accepted: 04/29/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Fibrin(ogen) derivatives, crosslinked fibrin and fibrinolysis play important roles in inflammation and are involved in pathogenesis of rheumatoid arthritis (RA). About 2/3 of RA patients exhibit anti-citrullinated protein antibodies (ACPA) that target deiminated fibrinogen. Genetic variants of β-fibrinogen (FGB) (rs1800790G>A) and factor XIII A-subunit (F13A) Val34Leu (rs5985) are known to influence interactively inflammatory processes. It is hypothesized that predisposition for dense fibrin clots is related to better inflammation control. METHODS To test this hypothetical model a cohort of 924 patients (288 RA and 636 non-RA patients) (3545 observations) was genotyped for FGB (rs1800790G>A, rs1800788C>T), α-fibrinogen (FGA) (rs6050A>G, rs2070006G>A, rs2070016T>C), γ-fibrinogen (FGG) (rs1049636T>C), F13A Val34Leu (rs5985) and α2-antiplasmin (A2AP) Arg6Trp (rs2070863). Genotype constellations potentially predisposing for dense fibrin clots were defined and their relation to inflammatory activity as measured by C-reactive protein (CRP) and disease activity score of 28 joints (DAS28) was assessed in univariate and multivariate analyses. The relation of these genotype constellations with presence of ACPA was tested. RESULTS Genotype constellations involving FGB rs1800790G>A and FGA rs2070016T>C were inversely associated with CRP levels (≥10 mg/L) (OR: 0.49, P < 10-8/7adj = 0.0001; OR: 0.52, P < 0.0005/Padj = 0.01). In RA, both genotype constellations were observed with higher frequencies of low disease activity (DAS28 ≤ 3.2) (OR: 2.66, P = .009; OR 2.78, P = .01) and lower frequencies of high disease activity (DAS28>5.1) (OR: 0.52, P < .03, OR: 0.42, P = .01). Associations with CRP depended on A2AP 6Arg/Arg genotype known to be necessary for optimal anti-fibrinolytic capacity (P = .001). Finally, Genotype constellations involving FGB rs1800790G>A and FGA rs2070016T>C were found to be associated with ACPA-positivity in RA (OR: 2.18, P < .03; OR: 1.95, P = .09). CONCLUSIONS These results support the hypothesis that genotypes, which increase fibrin clot density and anti-fibrinolytic capacity, reduce inflammatory activity and are related to humoral autoimmunity in RA.
Collapse
Affiliation(s)
- Berthold Hoppe
- Institute of Laboratory Medicine, BG Klinikum Unfallkrankenhaus Berlin gGmbH, Warener Straße 7, 12683 Berlin, Germany; Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353 Berlin, Germany.
| | - Christian Schwedler
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Anke Edelmann
- Department of Molecular Diagnostics, Labor Berlin - Charité Vivantes GmbH, Sylter Straße 2, 13353 Berlin, Germany
| | - Anneta Pistioli
- Institute of Laboratory Medicine, BG Klinikum Unfallkrankenhaus Berlin gGmbH, Warener Straße 7, 12683 Berlin, Germany
| | - Denis Poddubnyy
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany; Epidemiology Unit, German Rheumatism Research Centre, Berlin, Charité-Platz 1, 10117 Berlin, Germany
| | - Gerd-Rüdiger Burmester
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Campus Charité Mitte, Charité-Platz 1, 10117 Berlin, Germany
| | - Thomas Häupl
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Campus Charité Mitte, Charité-Platz 1, 10117 Berlin, Germany
| |
Collapse
|
19
|
Yang JJ, Lei WH, Hu P, Wu BB, Chen JX, Ni YM, Lai EY, Han F, Chen JH, Yang Y. Preoperative Serum Fibrinogen is Associated With Acute Kidney Injury after Cardiac Valve Replacement Surgery. Sci Rep 2020; 10:6403. [PMID: 32286477 PMCID: PMC7156756 DOI: 10.1038/s41598-020-63522-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/02/2020] [Indexed: 12/13/2022] Open
Abstract
Acute kidney injury (AKI) after open cardiac surgery is associated with a longer hospital stay and higher risk of mortality. We aimed to explore the association between preoperative serum fibrinogen level and risk of postoperative AKI in patients with open cardiac surgery. 3459 patients who underwent cardiac valve replacement surgery from January 2011 to September 2015 were recruited. The primary outcome was AKI, defined as AKI stage-1 or higher based on the Kidney Disease: Improving Global Outcomes (KDIGO) Guidelines. Synthetic Minority Oversampling Technique (SMOTE) was used to subsample minority groups to eliminate classification bias. 510 (14.74%) patients developed postoperative AKI. Serum fibrinogen was independently associated with AKI (OR = 1.211, 95% CI 1.080 to 1.358, p = 0.001) after adjustment of covariates. The receiver operator characteristic (ROC) curve for the outcome of AKI, after the addition of serum fibrinogen, had a c-statistic increasing from 0.72 to 0.73 (p < 0.001). This translated to a substantially improved AKI risk classification with a net reclassification index of 0.178 (p < 0.001). After SMOTE subsampling, serum fibrinogen was still independently associated with AKI grade 1 or higher (OR = 1.212, 95% CI 1.1089 to 1.347, p = 0.003). Preoperative serum fibrinogen levels were associated with the risk of postoperative AKI after cardiac valve replacement surgery.
Collapse
Affiliation(s)
- Jing Juan Yang
- Department of Nephrology, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, N1, Shangcheng Road, Yiwu, China
| | - Wen Hua Lei
- Kidney Disease Center, the First Affiliated Hospital, Zhejiang University School of Medicine; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province; The Third Grade Laboratory under the National State, Administration of Traditional Chinese Medicine, 79, Qingchun Road, Hangzhou, China
| | - Peng Hu
- Department of Cardiothoracic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, 79, Qingchun Road, Hangzhou, China
| | - Bin Bin Wu
- Kidney Disease Center, the First Affiliated Hospital, Zhejiang University School of Medicine; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province; The Third Grade Laboratory under the National State, Administration of Traditional Chinese Medicine, 79, Qingchun Road, Hangzhou, China
| | - Jian Xiao Chen
- Department of Nephrology, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, N1, Shangcheng Road, Yiwu, China
| | - Yi Ming Ni
- Department of Cardiothoracic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, 79, Qingchun Road, Hangzhou, China
| | - En Yin Lai
- Kidney Disease Center, the First Affiliated Hospital, Zhejiang University School of Medicine; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province; The Third Grade Laboratory under the National State, Administration of Traditional Chinese Medicine, 79, Qingchun Road, Hangzhou, China.,Department of Physiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, 866, Yuhangtang Road, Hangzhou, China
| | - Fei Han
- Kidney Disease Center, the First Affiliated Hospital, Zhejiang University School of Medicine; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province; The Third Grade Laboratory under the National State, Administration of Traditional Chinese Medicine, 79, Qingchun Road, Hangzhou, China
| | - Jiang Hua Chen
- Kidney Disease Center, the First Affiliated Hospital, Zhejiang University School of Medicine; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province; The Third Grade Laboratory under the National State, Administration of Traditional Chinese Medicine, 79, Qingchun Road, Hangzhou, China
| | - Yi Yang
- Department of Nephrology, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, N1, Shangcheng Road, Yiwu, China. .,Kidney Disease Center, the First Affiliated Hospital, Zhejiang University School of Medicine; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province; The Third Grade Laboratory under the National State, Administration of Traditional Chinese Medicine, 79, Qingchun Road, Hangzhou, China.
| |
Collapse
|
20
|
Klohs J. An Integrated View on Vascular Dysfunction in Alzheimer's Disease. NEURODEGENER DIS 2020; 19:109-127. [PMID: 32062666 DOI: 10.1159/000505625] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/23/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Cerebrovascular disease is a common comorbidity in patients with Alzheimer's disease (AD). It is believed to contribute additively to the cognitive impairment and to lower the threshold for the development of dementia. However, accumulating evidence suggests that dysfunction of the cerebral vasculature and AD neuropathology interact in multiple ways. Vascular processes even proceed AD neuropathology, implicating a causal role in the etiology of AD. Thus, the review aims to provide an integrated view on vascular dysfunction in AD. SUMMARY In AD, the cerebral vasculature undergoes pronounced cellular, morphological and structural changes, which alters regulation of blood flow, vascular fluid dynamics and vessel integrity. Stiffening of central blood vessels lead to transmission of excessive pulsatile energy to the brain microvasculature, causing end-organ damage. Moreover, a dysregulated hemostasis and chronic vascular inflammation further impede vascular function, where its mediators interact synergistically. Changes of the cerebral vasculature are triggered and driven by systemic vascular abnormalities that are part of aging, and which can be accelerated and aggravated by cardiovascular diseases. Key Messages: In AD, the cerebral vasculature is the locus where multiple pathogenic processes converge and contribute to cognitive impairment. Understanding the molecular mechanism and pathophysiology of vascular dysfunction in AD and use of vascular blood-based and imaging biomarker in clinical studies may hold promise for future prevention and therapy of the disease.
Collapse
Affiliation(s)
- Jan Klohs
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland, .,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland,
| |
Collapse
|
21
|
Huang GQ, Lin YT, Wu YM, Cheng QQ, Cheng HR, Wang Z. Individualized Prediction Of Stroke-Associated Pneumonia For Patients With Acute Ischemic Stroke. Clin Interv Aging 2019; 14:1951-1962. [PMID: 31806951 PMCID: PMC6844226 DOI: 10.2147/cia.s225039] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 10/15/2019] [Indexed: 12/21/2022] Open
Abstract
Background Stroke-associated pneumonia (SAP) is a serious and common complication in stroke patients. Purpose We aimed to develop and validate an easy-to-use model for predicting the risk of SAP in acute ischemic stroke (AIS) patients. Patients and methods The nomogram was established by univariate and multivariate binary logistic analyses in a training cohort of 643 AIS patients. The prediction performance was determined based on the receiver operating characteristic curve (ROC) and calibration plots in a validation cohort (N=340). Individualized clinical decision-making was conducted by weighing the net benefit in each AIS patient by decision curve analysis (DCA). Results Seven predictors, including age, NIHSS score on admission, atrial fibrillation, nasogastric tube intervention, mechanical ventilation, fibrinogen, and leukocyte count were incorporated to construct the nomogram model. The nomogram showed good predictive performance in ROC analysis [AUROC of 0.845 (95% CI: 0.814-0.872) in training cohort, and 0.897 (95% CI: 0.860-0.927) in validation cohort], and was superior to the A2DS2, ISAN, and PANTHERIS scores. Furthermore, the calibration plots showed good agreement between actual and nomogram-predicted SAP probabilities, in both training and validation cohorts. The DCA confirmed that the SAP nomogram was clinically useful. Conclusion Our nomogram may provide clinicians with a simple and reliable tool for predicting SAP based on routinely available data. It may also assist clinicians with respect to individualized treatment decision-making for patients differing in risk level.
Collapse
Affiliation(s)
- Gui-Qian Huang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, People's Republic of China
| | - Yu-Ting Lin
- Department of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, People's Republic of China
| | - Yue-Min Wu
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, People's Republic of China
| | - Qian-Qian Cheng
- School of Mental Health, Wenzhou Medical University, Wenzhou 325000, Zhejiang, People's Republic of China
| | - Hao-Ran Cheng
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, People's Republic of China
| | - Zhen Wang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, People's Republic of China
| |
Collapse
|
22
|
Lishko VK, Yakubenko VP, Ugarova TP, Podolnikova NP. Leukocyte integrin Mac-1 (CD11b/CD18, α Mβ 2, CR3) acts as a functional receptor for platelet factor 4. J Biol Chem 2018. [PMID: 29540475 DOI: 10.1074/jbc.ra117.000515] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Platelet factor 4 (PF4) is one of the most abundant cationic proteins secreted from α-granules of activated platelets. Based on its structure, PF4 was assigned to the CXC family of chemokines and has been shown to have numerous effects on myeloid leukocytes. However, the receptor for PF4 remains unknown. Here, we demonstrate that PF4 induces leukocyte responses through the integrin Mac-1 (αMβ2, CD11b/CD18). Human neutrophils, monocytes, U937 monocytic and HEK293 cells expressing Mac-1 strongly adhered to immobilized PF4 in a concentration-dependent manner. The cell adhesion was partially blocked by anti-Mac-1 mAb and inhibition was enhanced when anti-Mac-1 antibodies were combined with glycosaminoglycans, suggesting that cell-surface proteoglycans act cooperatively with Mac-1. PF4 also induced Mac-1-dependent migration of human neutrophils and murine WT, but not Mac-1-deficient macrophages. Coating of Escherichia coli bacteria or latex beads with PF4 enhanced their phagocytosis by macrophages by ∼4-fold, and this process was blocked by different Mac-1 antagonists. Furthermore, PF4 potentiated phagocytosis by WT, but not Mac-1-deficient macrophages. As determined by biolayer interferometry, PF4 directly bound the αMI-domain, the major ligand-binding region of Mac-1, and this interaction was governed by a Kd of 1.3 ± 0.2 μm Using the PF4-derived peptide library, synthetic peptides duplicating the αMI-domain recognition sequences and recombinant mutant PF4 fragments, the binding sites for αMI-domain were identified in the PF4 segments Cys12-Ser26 and Ala57-Ser70 These results identify PF4 as a ligand for the integrin Mac-1 and suggest that many immune-modulating effects previously ascribed to PF4 are mediated through its interaction with Mac-1.
Collapse
Affiliation(s)
- Valeryi K Lishko
- From the Center for Metabolic and Vascular Biology, School of Life Sciences, Arizona State University, Tempe, Arizona 85287 and
| | - Valentin P Yakubenko
- the Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee 37614
| | - Tatiana P Ugarova
- From the Center for Metabolic and Vascular Biology, School of Life Sciences, Arizona State University, Tempe, Arizona 85287 and
| | - Nataly P Podolnikova
- From the Center for Metabolic and Vascular Biology, School of Life Sciences, Arizona State University, Tempe, Arizona 85287 and
| |
Collapse
|
23
|
Stavrou EX, Fang C, Bane KL, Long AT, Naudin C, Kucukal E, Gandhi A, Brett-Morris A, Mumaw MM, Izadmehr S, Merkulova A, Reynolds CC, Alhalabi O, Nayak L, Yu WM, Qu CK, Meyerson HJ, Dubyak GR, Gurkan UA, Nieman MT, Sen Gupta A, Renné T, Schmaier AH. Factor XII and uPAR upregulate neutrophil functions to influence wound healing. J Clin Invest 2018; 128:944-959. [PMID: 29376892 PMCID: PMC5824869 DOI: 10.1172/jci92880] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 12/14/2017] [Indexed: 01/13/2023] Open
Abstract
Coagulation factor XII (FXII) deficiency is associated with decreased neutrophil migration, but the mechanisms remain uncharacterized. Here, we examine how FXII contributes to the inflammatory response. In 2 models of sterile inflammation, FXII-deficient mice (F12-/-) had fewer neutrophils recruited than WT mice. We discovered that neutrophils produced a pool of FXII that is functionally distinct from hepatic-derived FXII and contributes to neutrophil trafficking at sites of inflammation. FXII signals in neutrophils through urokinase plasminogen activator receptor-mediated (uPAR-mediated) Akt2 phosphorylation at S474 (pAktS474). Downstream of pAkt2S474, FXII stimulation of neutrophils upregulated surface expression of αMβ2 integrin, increased intracellular calcium, and promoted extracellular DNA release. The sum of these activities contributed to neutrophil cell adhesion, migration, and release of neutrophil extracellular traps in a process called NETosis. Decreased neutrophil signaling in F12-/- mice resulted in less inflammation and faster wound healing. Targeting hepatic F12 with siRNA did not affect neutrophil migration, whereas WT BM transplanted into F12-/- hosts was sufficient to correct the neutrophil migration defect in F12-/- mice and restore wound inflammation. Importantly, these activities were a zymogen FXII function and independent of FXIIa and contact activation, highlighting that FXII has a sophisticated role in vivo that has not been previously appreciated.
Collapse
Affiliation(s)
- Evi X. Stavrou
- Department of Medicine, Louis Stokes Veterans Administration Medical Center, Cleveland, Ohio, USA
- Department of Medicine, Hematology and Oncology Division, Case Western Reserve University (CWRU) School of Medicine, Cleveland, Ohio, USA
| | - Chao Fang
- Department of Medicine, Hematology and Oncology Division, Case Western Reserve University (CWRU) School of Medicine, Cleveland, Ohio, USA
| | - Kara L. Bane
- Department of Medicine, Hematology and Oncology Division, Case Western Reserve University (CWRU) School of Medicine, Cleveland, Ohio, USA
| | - Andy T. Long
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Clément Naudin
- Clinical Chemistry, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Erdem Kucukal
- Department of Mechanical and Aerospace Engineering, CWRU, Cleveland, Ohio, USA
| | - Agharnan Gandhi
- Department of Medicine, Hematology and Oncology Division, Case Western Reserve University (CWRU) School of Medicine, Cleveland, Ohio, USA
| | - Adina Brett-Morris
- Department of Medicine, Hematology and Oncology Division, Case Western Reserve University (CWRU) School of Medicine, Cleveland, Ohio, USA
| | - Michele M. Mumaw
- Department of Medicine, Hematology and Oncology Division, Case Western Reserve University (CWRU) School of Medicine, Cleveland, Ohio, USA
| | - Sudeh Izadmehr
- Department of Genetics and Genomics Sciences, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Alona Merkulova
- Department of Medicine, Hematology and Oncology Division, Case Western Reserve University (CWRU) School of Medicine, Cleveland, Ohio, USA
| | - Cindy C. Reynolds
- Department of Medicine, Hematology and Oncology Division, Case Western Reserve University (CWRU) School of Medicine, Cleveland, Ohio, USA
| | - Omar Alhalabi
- Department of Medicine, Hematology and Oncology Division, Case Western Reserve University (CWRU) School of Medicine, Cleveland, Ohio, USA
| | - Lalitha Nayak
- Department of Medicine, Hematology and Oncology Division, Case Western Reserve University (CWRU) School of Medicine, Cleveland, Ohio, USA
- Department of Medicine, Hematology and Oncology Division, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Wen-Mei Yu
- Department of Medicine, Hematology and Oncology Division, Case Western Reserve University (CWRU) School of Medicine, Cleveland, Ohio, USA
| | - Cheng-Kui Qu
- Department of Medicine, Hematology and Oncology Division, Case Western Reserve University (CWRU) School of Medicine, Cleveland, Ohio, USA
| | | | | | - Umut A. Gurkan
- Department of Mechanical and Aerospace Engineering, CWRU, Cleveland, Ohio, USA
| | | | | | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Clinical Chemistry, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Alvin H. Schmaier
- Department of Medicine, Hematology and Oncology Division, Case Western Reserve University (CWRU) School of Medicine, Cleveland, Ohio, USA
- Department of Medicine, Hematology and Oncology Division, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| |
Collapse
|
24
|
|
25
|
Genetics of Atherosclerosis. Coron Artery Dis 2018. [DOI: 10.1016/b978-0-12-811908-2.00007-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Shen D, Podolnikova NP, Yakubenko VP, Ardell CL, Balabiyev A, Ugarova TP, Wang X. Pleiotrophin, a multifunctional cytokine and growth factor, induces leukocyte responses through the integrin Mac-1. J Biol Chem 2017; 292:18848-18861. [PMID: 28939773 DOI: 10.1074/jbc.m116.773713] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 09/08/2017] [Indexed: 12/27/2022] Open
Abstract
Pleiotrophin (PTN) is a multifunctional, cationic, glycosaminoglycan-binding cytokine and growth factor involved in numerous physiological and pathological processes, including tissue repair and inflammation-related diseases. PTN has been shown to promote leukocyte responses by inducing their migration and expression of inflammatory cytokines. However, the mechanisms through which PTN mediates these responses remain unclear. Here, we identified the integrin Mac-1 (αMβ2, CD11b/CD18) as the receptor mediating macrophage adhesion and migration to PTN. We also found that expression of Mac-1 on the surface of human embryonic kidney (HEK) 293 cells induced their adhesion and migration to PTN. Accordingly, PTN promoted Mac-1-dependent cell spreading and initiated intracellular signaling manifested in phosphorylation of Erk1/2. While binding to PTN, Mac-1 on Mac-1-expressing HEK293 cells appears to cooperate with cell-surface proteoglycans because both anti-Mac-1 function-blocking mAb and heparin were required to block adhesion. Moreover, biolayer interferometry and NMR indicated a direct interaction between the αMI domain, the major ligand-binding region of Mac-1, and PTN. Using peptide libraries, we found that in PTN the αMI domain bound sequences enriched in basic and hydrophobic residues, indicating that PTN conforms to the general principle of ligand-recognition specificity of the αMI domain toward cationic proteins/peptides. Finally, using recombinant PTN-derived fragments, we show that PTN contains two distinct Mac-1-binding sites in each of its constitutive domains. Collectively, these results identify PTN as a ligand for the integrin Mac-1 on the surface of leukocytes and suggest that this interaction may play a role in inflammatory responses.
Collapse
Affiliation(s)
- Di Shen
- From the Schools of Molecular and
| | | | - Valentin P Yakubenko
- Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee 37614
| | - Christopher L Ardell
- Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee 37614
| | - Arnat Balabiyev
- Life Sciences, Arizona State University, Tempe, Arizona 85287 and
| | | | - Xu Wang
- From the Schools of Molecular and
| |
Collapse
|
27
|
Lee SJ, Hong JM, Lee SE, Kang DR, Ovbiagele B, Demchuk AM, Lee JS. Association of fibrinogen level with early neurological deterioration among acute ischemic stroke patients with diabetes. BMC Neurol 2017; 17:101. [PMID: 28525972 PMCID: PMC5438529 DOI: 10.1186/s12883-017-0865-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 04/26/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Diabetes mellitus (DM) is a risk factor for early neurological deterioration (END) in acute ischemic stroke. The prothrombotic protein fibrinogen is frequently elevated in patients with diabetes, and may be associated with poorer prognoses. We evaluated whether fibrinogen is associated with END in patients with diabetes after acute ischemic stroke. METHODS We included 3814 patients from a single hospital database admitted within 72 h of onset of ischemic stroke. END was defined as an increase in the National Institutes of Health Stroke Scale (NIHSS) ≥2 within 7 days post-admission. In the total population (END, n = 661; non-END, n = 3153), univariate and multivariate analyses were performed to assess fibrinogen as an independent predictor for END. We then performed propensity score matching and univariate analyses for DM (END, n = 261; non-END, n = 522) and non-DM populations (END, n = 399; non-END, n = 798). Multiple logistic analyses were performed after matching for fibrinogen as a risk factor in each subgroup. RESULTS Fibrinogen levels were higher in the END group than in the non-END group (367 ± 156 mg/dL vs. 347 ± 122 mg/dL, p = 0.002), though they were not associated with END in logistic regression analyses. Fibrinogen levels were found to be an independent predictor for END, but only in the DM population (fibrinogen levels 300-599 mg/dL, odds ratio: 1.618, 95% confidence interval: 1.037-2.525, p = 0.034, fibrinogen levels ≥600 mg/dL, 2.575, 1.018-6.514, p = 0.046; non-DM population, p = 0.393). The diabetes-fibrinogen interaction for the entire cohort was p = 0.101. CONCLUSIONS Elevated fibrinogen is dose-dependently associated with END in patients with diabetes following acute ischemic stroke.
Collapse
Affiliation(s)
- Seong-Joon Lee
- Department of Neurology, Ajou University School of Medicine, Ajou University Medical Center, San 5, Woncheon-dong, Yeongtong-gu, Suwon, Kyungki-do, 443-721, South Korea
| | - Ji Man Hong
- Department of Neurology, Ajou University School of Medicine, Ajou University Medical Center, San 5, Woncheon-dong, Yeongtong-gu, Suwon, Kyungki-do, 443-721, South Korea
| | - Sung Eun Lee
- Department of Neurology, Ajou University School of Medicine, Ajou University Medical Center, San 5, Woncheon-dong, Yeongtong-gu, Suwon, Kyungki-do, 443-721, South Korea
| | - Dae Ryong Kang
- Center of Biomedical Data Science/ Institute of Genomic Cohort, Yonsei University Wonju College of Medicine, Wonju, South Korea
| | - Bruce Ovbiagele
- Department of Neurology, Medical University of South Carolina, Charleston, SC, USA
| | - Andrew M Demchuk
- Calgary Stroke Program, Departments of Clinical Neurosciences and Radiology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Jin Soo Lee
- Department of Neurology, Ajou University School of Medicine, Ajou University Medical Center, San 5, Woncheon-dong, Yeongtong-gu, Suwon, Kyungki-do, 443-721, South Korea.
| |
Collapse
|
28
|
Das V, Kalyan G, Hazra S, Pal M. Understanding the role of structural integrity and differential expression of integrin profiling to identify potential therapeutic targets in breast cancer. J Cell Physiol 2017; 233:168-185. [DOI: 10.1002/jcp.25821] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 01/23/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Vishal Das
- Biological Sciences and Technology DivisionCSIR‐North East Institute of Science and TechnologyJorhat, AssamIndia
| | - Gazal Kalyan
- Department of BiotechnologyIndian Institute of Technology Roorkee (IITR)RoorkeeUttarakhandIndia
| | - Saugata Hazra
- Department of BiotechnologyIndian Institute of Technology Roorkee (IITR)RoorkeeUttarakhandIndia
- Centre for NanotechnologyIndian Institute of Technology RoorkeeRoorkeeUttarakhandIndia
| | - Mintu Pal
- Biological Sciences and Technology DivisionCSIR‐North East Institute of Science and TechnologyJorhat, AssamIndia
| |
Collapse
|
29
|
Distinct Effects of Integrins αXβ2 and αMβ2 on Leukocyte Subpopulations during Inflammation and Antimicrobial Responses. Infect Immun 2016; 85:IAI.00644-16. [PMID: 27799334 DOI: 10.1128/iai.00644-16] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 10/20/2016] [Indexed: 12/18/2022] Open
Abstract
Integrins αMβ2 and αXβ2 are homologous adhesive receptors that are expressed on many of the same leukocyte populations and bind many of the same ligands. Although αMβ2 was extensively characterized and implicated in leukocyte inflammatory and immune functions, the roles of αXβ2 remain largely obscure. Here, we tested the ability of mice deficient in integrin αMβ2 or αXβ2 to deal with opportunistic infections and the capacity of cells derived from these animals to execute inflammatory functions. The absence of αMβ2 affected the recruitment of polymorphonuclear neutrophils (PMN) to bacterial and fungal pathogens as well as to model inflammatory stimuli, and αMβ2-deficient PMN displayed defective inflammatory functions. In contrast, deficiency of αXβ2 abrogated intraperitoneal recruitment and adhesive functions of monocytes and macrophages (Mϕ) and the ability of these cells to kill/phagocytose Candida albicans or Escherichia coli cells both ex vivo and in vivo During systemic candidiasis, the absence of αXβ2 resulted in the loss of antifungal activity by tissue Mϕ and inhibited the production of tumor necrosis factor alpha (TNF-α)/interleukin-6 (IL-6) in infected kidneys. Deficiency of αMβ2 suppressed Mϕ egress from the peritoneal cavity, decreased the production of anti-inflammatory IL-10, and stimulated the secretion of IL-6. The absence of αXβ2, but not of αMβ2, increased survival against a septic challenge with lipopolysaccharide (LPS) by 2-fold. Together, these results suggest that αMβ2 plays a primary role in PMN inflammatory functions and regulates the anti-inflammatory functions of Mϕ, whereas αXβ2 is central in the regulation of inflammatory functions of recruited and tissue-resident Mϕ.
Collapse
|
30
|
Elevated serum fibrinogen levels and risk of contrast-induced acute kidney injury in patients undergoing a percutaneous coronary intervention for the treatment of acute coronary syndrome. Coron Artery Dis 2016; 27:13-8. [PMID: 26267748 DOI: 10.1097/mca.0000000000000295] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVES Contrast-induced acute kidney injury (CI-AKI) is a common complication of diagnostic and therapeutic catheterizations, especially in the setting of acute coronary syndrome (ACS). Fibrinogen is a well-known cardiovascular risk factor. We evaluated whether serum fibrinogen level is associated independently with CI-AKI in patients with ACS who underwent a percutaneous coronary intervention (PCI). METHODS Patients (n=710, aged 61 ± 13, 69% men) were classified into two groups: CI-AKI and non-CI-AKI. CI-AKI was defined as an increase of at least 0.5 mg/dl or at least 25% in the serum creatinine level within 72 h following PCI. RESULTS CI-AKI occurred in 75 (10.6%) patients. We found significantly higher serum fibrinogen levels in patients who developed CI-AKI than in those who did not (498 ± 152 vs. 386 ± 96 mg/dl, P<0.001). Multivariate logistic regression analysis showed that serum fibrinogen level (odds ratio 1.006, 95% confidence interval 1.003-1.009, P<0.001), age, glomerular filtration rate, female sex, and white blood cell count were correlated with the development of CI-AKI. CONCLUSION Serum fibrinogen level is associated independently with a higher risk of CI-AKI in patients with ACS undergoing PCI.
Collapse
|
31
|
Relation between admission plasma fibrinogen levels and mortality in Chinese patients with coronary artery disease. Sci Rep 2016; 6:30506. [PMID: 27456064 PMCID: PMC4960561 DOI: 10.1038/srep30506] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 07/04/2016] [Indexed: 02/05/2023] Open
Abstract
Fibrinogen (Fib) was considered to be a potential risk factor for the prognosis of patients with coronary artery disease (CAD), but there was lack of the evidence from Chinese contemporary population. 3020 consecutive patients with CAD confirmed by coronary angiography were enrolled and were grouped into 2 categories by the optimal Fib cut-off value (3.17 g/L) for all-cause mortality prediction. The end points were all-cause mortality and cardiac mortality. Cumulative survival curves showed that the risk of all-cause mortality was significantly higher in patients with Fib ≥3.17 g/L compared to those with Fib <3.17 g/L (mortality rate, 11.5% vs. 5.7%, p < 0.001); and cardiovascular mortality obtained results similar to those mentioned above (cardiac mortality rate, 5.9% vs. 3.6%, p = 0.002). Subgroup analysis showed that elevated Fib levels were predictive for the risk of all-cause mortality in the subgroups according to age, medical history, and diagnosis. COX multivariate regression analysis showed that plasma Fib levels remained independently associated with all-cause mortality after adjustment for multiple cardiovascular risk factors (all-cause mortality, HR 2.01, CI 1.51–2.68, p < 0.001). This study has found that Fib levels were independently associated with the mortality risk in Chinese CAD patients.
Collapse
|
32
|
The Role of Integrins αMβ2 (Mac-1, CD11b/CD18) and αDβ2 (CD11d/CD18) in Macrophage Fusion. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2105-2116. [PMID: 27315778 DOI: 10.1016/j.ajpath.2016.04.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/11/2016] [Accepted: 04/06/2016] [Indexed: 11/22/2022]
Abstract
The subfamily of β2 integrins is implicated in macrophage fusion, a hallmark of chronic inflammation. Among β2 family members, integrin Mac-1 (αMβ2, CD11b/CD18) is abundantly expressed on monocyte/macrophages and mediates critical adhesive reactions of these cells. However, the role of Mac-1 in macrophage fusion leading to the formation of multinucleated giant cells remains unclear. Moreover, the role of integrin αDβ2 (CD11d/CD18), a receptor with recognition specificity overlapping that of Mac-1, is unknown. We found that multinucleated giant cells are formed in the inflamed mouse peritoneum during the resolution phase of inflammation, and their numbers were approximately twofold higher in wild-type mice than in Mac-1(-/-) mice. Analyses of isolated inflammatory peritoneal macrophages showed that IL-4-induced fusion of Mac-1-deficient cells was strongly reduced compared with wild-type counterparts. The examination of adhesive reactions known to be required for fusion showed that spreading, but not adhesion and migration, was reduced in Mac-1-deficient macrophages. Fusion of αDβ2-deficient macrophages was also significantly decreased, albeit to a smaller degree. Deficiency of intercellular adhesion molecule 1, a counter-receptor for Mac-1 and αDβ2, did not alter the fusion rate. The results indicate that both Mac-1 and αDβ2 support macrophage fusion with Mac-1 playing a dominant role and suggest that Mac-1 may mediate cell-cell interactions with a previously unrecognized counter-receptor(s).
Collapse
|
33
|
Ko YP, Flick MJ. Fibrinogen Is at the Interface of Host Defense and Pathogen Virulence in Staphylococcus aureus Infection. Semin Thromb Hemost 2016; 42:408-21. [PMID: 27056151 PMCID: PMC5514417 DOI: 10.1055/s-0036-1579635] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Fibrinogen not only plays a pivotal role in hemostasis but also serves key roles in antimicrobial host defense. As a rapidly assembled provisional matrix protein, fibrin(ogen) can function as an early line of host protection by limiting bacterial growth, suppressing dissemination of microbes to distant sites, and mediating host bacterial killing. Fibrinogen-mediated host antimicrobial activity occurs predominantly through two general mechanisms, namely, fibrin matrices functioning as a protective barrier and fibrin(ogen) directly or indirectly driving host protective immune function. The potential of fibrin to limit bacterial infection and disease has been countered by numerous bacterial species evolving and maintaining virulence factors that engage hemostatic system components within vertebrate hosts. Bacterial factors have been isolated that simply bind fibrinogen or fibrin, promote fibrin polymer formation, or promote fibrin dissolution. Staphylococcus aureus is an opportunistic gram-positive bacterium, the causative agent of a wide range of human infectious diseases, and a prime example of a pathogen exquisitely sensitive to host fibrinogen. Indeed, current data suggest fibrinogen serves as a context-dependent determinant of host defense or pathogen virulence in Staphylococcus infection whose ultimate contribution is dictated by the expression of S. aureus virulence factors, the path of infection, and the tissue microenvironment.
Collapse
Affiliation(s)
- Ya-Ping Ko
- Center for Infectious and Inflammatory Diseases, Institute for Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas
| | - Matthew J. Flick
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
34
|
Zhang Y, Zhu CG, Guo YL, Li S, Xu RX, Dong Q, Li JJ. Fibrinogen and the Severity of Coronary Atherosclerosis among Adults with and without Statin Treatment: Lipid as a mediator. Heart Lung Circ 2016; 25:558-567. [PMID: 26839166 DOI: 10.1016/j.hlc.2016.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 12/24/2015] [Accepted: 01/02/2016] [Indexed: 12/30/2022]
Abstract
BACKGROUND It has been proposed that plasma fibrinogen is associated with lipid levels and increased cardiovascular risk. However, the interrelationship has not been well-elucidated. We hypothesise that lipids may be potential mediators. METHODS We enrolled 4748 consecutive subjects scheduled for coronary angiography in this study. The severity of coronary atherosclerosis was assessed by Gensini score (GS). By principle component analysis, a multi-marker lipid index was extracted weighting the coefficients of six atherogenic lipid parameters: total cholesterol (TC), low-density lipoprotein-cholesterol, non-high-density lipoprotein-cholesterol (non-HDL-C), apolipoprotein (apo) B, apoB/apoA1, and TC/HDL-C ratio. Moreover, using mediation analysis, the relationship between fibrinogen and lipids with high GS was evaluated. RESULTS Fibrinogen was positively associated with GS after adjustment (β=0.100, p<0.001). We stratified our analyses by statin use status and found that subjects in the upper fibrinogen tertiles had higher levels of atherogenic lipid parameters irrespective of statin status (p<0.001, all). Significantly, we observed a synergistic effect of fibrinogen and concurrent elevated lipid index for high GS. The adjusted odds ratios were greater in participants who had high fibrinogen levels and also high lipid index compared to those with low lipid index [on statin: 1.725(1.258-2.364) vs. 1.261(0.962-1.652); not on statin: 2.197(1.450-3.328) vs. 1.166(0.417-3.258)]. Specifically, mediation analysis indicated that around 24% of the effect of fibrinogen on high GS was mediated by lipid index, which was attenuated to 13% by statin status. CONCLUSIONS The increased risk of fibrinogen on coronary atherosclerosis appeared to be enhanced by the high atherogenic lipid levels, which mediated around 24% of this effect.
Collapse
Affiliation(s)
- Yan Zhang
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, FuWai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Cheng-Gang Zhu
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, FuWai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yuan-Lin Guo
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, FuWai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Sha Li
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, FuWai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Rui-Xia Xu
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, FuWai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Qian Dong
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, FuWai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jian-Jun Li
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, FuWai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.
| |
Collapse
|
35
|
Dragneva N, Rubel O, Floriano WB. Molecular Dynamics of Fibrinogen Adsorption onto Graphene, but Not onto Poly(ethylene glycol) Surface, Increases Exposure of Recognition Sites That Trigger Immune Response. J Chem Inf Model 2016; 56:706-20. [DOI: 10.1021/acs.jcim.5b00703] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Nadiya Dragneva
- Thunder Bay Regional Research Institute, 290 Munro Street, Thunder Bay, Ontario P7A 7T1, Canada
- Biotechnology
Ph.D. Program, Faculty of Science and Environment Studies, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada
| | - Oleg Rubel
- Thunder Bay Regional Research Institute, 290 Munro Street, Thunder Bay, Ontario P7A 7T1, Canada
- Department
of Materials Science and Engineering, McMaster University, 1280 Main
Street West, Hamilton, Ontario L8S 4L8, Canada
| | - Wely B. Floriano
- Thunder Bay Regional Research Institute, 290 Munro Street, Thunder Bay, Ontario P7A 7T1, Canada
- Biotechnology
Ph.D. Program, Faculty of Science and Environment Studies, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada
- Department
of Chemistry, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada
| |
Collapse
|
36
|
Motley MP, Madsen DH, Jürgensen HJ, Spencer DE, Szabo R, Holmbeck K, Flick MJ, Lawrence DA, Castellino FJ, Weigert R, Bugge TH. A CCR2 macrophage endocytic pathway mediates extravascular fibrin clearance in vivo. Blood 2016; 127:1085-96. [PMID: 26647393 PMCID: PMC4778161 DOI: 10.1182/blood-2015-05-644260] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 11/30/2015] [Indexed: 12/20/2022] Open
Abstract
Extravascular fibrin deposition accompanies many human diseases and causes chronic inflammation and organ damage, unless removed in a timely manner. Here, we used intravital microscopy to investigate how fibrin is removed from extravascular space. Fibrin placed into the dermis of mice underwent cellular endocytosis and lysosomal targeting, revealing a novel intracellular pathway for extravascular fibrin degradation. A C-C chemokine receptor type 2 (CCR2)-positive macrophage subpopulation constituted the majority of fibrin-uptaking cells. Consequently, cellular fibrin uptake was diminished by elimination of CCR2-expressing cells. The CCR2-positive macrophage subtype was different from collagen-internalizing M2-like macrophages. Cellular fibrin uptake was strictly dependent on plasminogen and plasminogen activator. Surprisingly, however, fibrin endocytosis was unimpeded by the absence of the fibrin(ogen) receptors, αMβ2 and ICAM-1, the myeloid cell integrin-binding site on fibrin or the endocytic collagen receptor, the mannose receptor. The study identifies a novel fibrin endocytic pathway engaged in extravascular fibrin clearance and shows that interstitial fibrin and collagen are cleared by different subsets of macrophages employing distinct molecular pathways.
Collapse
Affiliation(s)
- Michael P Motley
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD
| | - Daniel H Madsen
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD; Center for Cancer Immune Therapy, Department of Haematology, Herlev University Hospital, Herlev, Denmark; Finsen Laboratory, Biotech Research and Innovation Center, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Henrik J Jürgensen
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD; Finsen Laboratory, Biotech Research and Innovation Center, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - David E Spencer
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD
| | - Roman Szabo
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD
| | - Kenn Holmbeck
- Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD
| | - Matthew J Flick
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, OH
| | - Daniel A Lawrence
- Division of Cardiovascular Medicine, Internal Medicine, University of Michigan Medical School, Ann Arbor, MI; and
| | - Francis J Castellino
- W. M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN
| | - Roberto Weigert
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD
| | - Thomas H Bugge
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD
| |
Collapse
|
37
|
Becatti M, Emmi G, Silvestri E, Bruschi G, Ciucciarelli L, Squatrito D, Vaglio A, Taddei N, Abbate R, Emmi L, Goldoni M, Fiorillo C, Prisco D. Neutrophil Activation Promotes Fibrinogen Oxidation and Thrombus Formation in Behçet Disease. Circulation 2016; 133:302-11. [DOI: 10.1161/circulationaha.115.017738] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 11/11/2015] [Indexed: 01/03/2023]
Abstract
Background—
Behçet disease (BD) is a systemic vasculitis with a broad range of organ involvement, characterized by a multisystemic, immune-inflammatory disorder involving vessels of all sizes and often complicated by thrombosis. Systemic redox imbalance and circulating neutrophil hyperactivation have been observed in BD patients and are thought to be responsible for impaired coagulation. We here focused on the pathogenetic mechanisms potentially linking immune cell activation and thrombosis, and specifically examined whether neutrophil activation can affect fibrinogen modifications and consequently elicit thrombosis.
Methods and Results—
Blood samples were collected from 98 consecutive BD patients attending our dedicated Center and from 70 age- and sex-matched healthy controls; in all patients fibrinogen function and structure, fibrin susceptibility to plasmin-lysis, plasma redox status, leukocyte oxidative stress markers, and possible reactive oxygen species sources were examined. Thrombin-catalyzed fibrin formation and fibrin susceptibility to plasmin-induced lysis were significantly impaired in BD patients (
P
<0.001). These findings were associated with increased plasma oxidative stress markers (
P
<0.001) and with a marked carbonylation of fibrinogen (
P
<0.001), whose secondary structure appeared deeply modified. Neutrophils displayed an enhanced NADPH oxidase activity and increased reactive oxygen species production (
P
<0.001), which significantly correlated with fibrinogen carbonylation level (
r
2
=0.33,
P
<0.0001), residual β-band intensity (
r
2
=0.07,
P
<0.01), and fibrinogen clotting ability (
r
2
=0.073,
P
<0.01)
Conclusions—
In BD patients, altered fibrinogen structure and impaired fibrinogen function are associated with neutrophil activation and enhanced reactive oxygen species production whose primary source is represented by neutrophil NADPH oxidase.
Collapse
Affiliation(s)
- Matteo Becatti
- From Department of Experimental and Clinical Biomedical Sciences “Mario Serio” (M.B., G.B., N.T., C.F.) and Department of Experimental and Clinical Medicine (G.E., E.S., L.C., D.S., R.A., D.P.), University of Florence, Italy; Nephrology Unit, University Hospital of Parma, Italy (A.V.); Interdisciplinary Internal Medicine, Center for Autoimmune Systemic Diseases, Behçet Center and Lupus Clinic, AOU Careggi, Florence, Italy (L.E., D.P.); and Department of Clinical and Experimental Medicine, University
| | - Giacomo Emmi
- From Department of Experimental and Clinical Biomedical Sciences “Mario Serio” (M.B., G.B., N.T., C.F.) and Department of Experimental and Clinical Medicine (G.E., E.S., L.C., D.S., R.A., D.P.), University of Florence, Italy; Nephrology Unit, University Hospital of Parma, Italy (A.V.); Interdisciplinary Internal Medicine, Center for Autoimmune Systemic Diseases, Behçet Center and Lupus Clinic, AOU Careggi, Florence, Italy (L.E., D.P.); and Department of Clinical and Experimental Medicine, University
| | - Elena Silvestri
- From Department of Experimental and Clinical Biomedical Sciences “Mario Serio” (M.B., G.B., N.T., C.F.) and Department of Experimental and Clinical Medicine (G.E., E.S., L.C., D.S., R.A., D.P.), University of Florence, Italy; Nephrology Unit, University Hospital of Parma, Italy (A.V.); Interdisciplinary Internal Medicine, Center for Autoimmune Systemic Diseases, Behçet Center and Lupus Clinic, AOU Careggi, Florence, Italy (L.E., D.P.); and Department of Clinical and Experimental Medicine, University
| | - Giulia Bruschi
- From Department of Experimental and Clinical Biomedical Sciences “Mario Serio” (M.B., G.B., N.T., C.F.) and Department of Experimental and Clinical Medicine (G.E., E.S., L.C., D.S., R.A., D.P.), University of Florence, Italy; Nephrology Unit, University Hospital of Parma, Italy (A.V.); Interdisciplinary Internal Medicine, Center for Autoimmune Systemic Diseases, Behçet Center and Lupus Clinic, AOU Careggi, Florence, Italy (L.E., D.P.); and Department of Clinical and Experimental Medicine, University
| | - Lucia Ciucciarelli
- From Department of Experimental and Clinical Biomedical Sciences “Mario Serio” (M.B., G.B., N.T., C.F.) and Department of Experimental and Clinical Medicine (G.E., E.S., L.C., D.S., R.A., D.P.), University of Florence, Italy; Nephrology Unit, University Hospital of Parma, Italy (A.V.); Interdisciplinary Internal Medicine, Center for Autoimmune Systemic Diseases, Behçet Center and Lupus Clinic, AOU Careggi, Florence, Italy (L.E., D.P.); and Department of Clinical and Experimental Medicine, University
| | - Danilo Squatrito
- From Department of Experimental and Clinical Biomedical Sciences “Mario Serio” (M.B., G.B., N.T., C.F.) and Department of Experimental and Clinical Medicine (G.E., E.S., L.C., D.S., R.A., D.P.), University of Florence, Italy; Nephrology Unit, University Hospital of Parma, Italy (A.V.); Interdisciplinary Internal Medicine, Center for Autoimmune Systemic Diseases, Behçet Center and Lupus Clinic, AOU Careggi, Florence, Italy (L.E., D.P.); and Department of Clinical and Experimental Medicine, University
| | - Augusto Vaglio
- From Department of Experimental and Clinical Biomedical Sciences “Mario Serio” (M.B., G.B., N.T., C.F.) and Department of Experimental and Clinical Medicine (G.E., E.S., L.C., D.S., R.A., D.P.), University of Florence, Italy; Nephrology Unit, University Hospital of Parma, Italy (A.V.); Interdisciplinary Internal Medicine, Center for Autoimmune Systemic Diseases, Behçet Center and Lupus Clinic, AOU Careggi, Florence, Italy (L.E., D.P.); and Department of Clinical and Experimental Medicine, University
| | - Niccolò Taddei
- From Department of Experimental and Clinical Biomedical Sciences “Mario Serio” (M.B., G.B., N.T., C.F.) and Department of Experimental and Clinical Medicine (G.E., E.S., L.C., D.S., R.A., D.P.), University of Florence, Italy; Nephrology Unit, University Hospital of Parma, Italy (A.V.); Interdisciplinary Internal Medicine, Center for Autoimmune Systemic Diseases, Behçet Center and Lupus Clinic, AOU Careggi, Florence, Italy (L.E., D.P.); and Department of Clinical and Experimental Medicine, University
| | - Rosanna Abbate
- From Department of Experimental and Clinical Biomedical Sciences “Mario Serio” (M.B., G.B., N.T., C.F.) and Department of Experimental and Clinical Medicine (G.E., E.S., L.C., D.S., R.A., D.P.), University of Florence, Italy; Nephrology Unit, University Hospital of Parma, Italy (A.V.); Interdisciplinary Internal Medicine, Center for Autoimmune Systemic Diseases, Behçet Center and Lupus Clinic, AOU Careggi, Florence, Italy (L.E., D.P.); and Department of Clinical and Experimental Medicine, University
| | - Lorenzo Emmi
- From Department of Experimental and Clinical Biomedical Sciences “Mario Serio” (M.B., G.B., N.T., C.F.) and Department of Experimental and Clinical Medicine (G.E., E.S., L.C., D.S., R.A., D.P.), University of Florence, Italy; Nephrology Unit, University Hospital of Parma, Italy (A.V.); Interdisciplinary Internal Medicine, Center for Autoimmune Systemic Diseases, Behçet Center and Lupus Clinic, AOU Careggi, Florence, Italy (L.E., D.P.); and Department of Clinical and Experimental Medicine, University
| | - Matteo Goldoni
- From Department of Experimental and Clinical Biomedical Sciences “Mario Serio” (M.B., G.B., N.T., C.F.) and Department of Experimental and Clinical Medicine (G.E., E.S., L.C., D.S., R.A., D.P.), University of Florence, Italy; Nephrology Unit, University Hospital of Parma, Italy (A.V.); Interdisciplinary Internal Medicine, Center for Autoimmune Systemic Diseases, Behçet Center and Lupus Clinic, AOU Careggi, Florence, Italy (L.E., D.P.); and Department of Clinical and Experimental Medicine, University
| | - Claudia Fiorillo
- From Department of Experimental and Clinical Biomedical Sciences “Mario Serio” (M.B., G.B., N.T., C.F.) and Department of Experimental and Clinical Medicine (G.E., E.S., L.C., D.S., R.A., D.P.), University of Florence, Italy; Nephrology Unit, University Hospital of Parma, Italy (A.V.); Interdisciplinary Internal Medicine, Center for Autoimmune Systemic Diseases, Behçet Center and Lupus Clinic, AOU Careggi, Florence, Italy (L.E., D.P.); and Department of Clinical and Experimental Medicine, University
| | - Domenico Prisco
- From Department of Experimental and Clinical Biomedical Sciences “Mario Serio” (M.B., G.B., N.T., C.F.) and Department of Experimental and Clinical Medicine (G.E., E.S., L.C., D.S., R.A., D.P.), University of Florence, Italy; Nephrology Unit, University Hospital of Parma, Italy (A.V.); Interdisciplinary Internal Medicine, Center for Autoimmune Systemic Diseases, Behçet Center and Lupus Clinic, AOU Careggi, Florence, Italy (L.E., D.P.); and Department of Clinical and Experimental Medicine, University
| |
Collapse
|
38
|
Byrd WC, Schwartz-Baxter S, Carlson J, Barros S, Offenbacher S, Bencharit S. Role of salivary and candidal proteins in denture stomatitis: an exploratory proteomic analysis. MOLECULAR BIOSYSTEMS 2015; 10:2299-304. [PMID: 24947908 DOI: 10.1039/c4mb00185k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Denture stomatitis, inflammation and redness beneath a denture, affects nearly half of all denture wearers. Candidal organisms, the presence of a denture, saliva, and host immunity are the key etiological factors for the condition. The role of salivary proteins in denture stomatitis is not clear. In this study 30 edentulous subjects wearing a maxillary complete denture were recruited. Unstimulated whole saliva from each subject was collected and pooled into two groups (n = 15 each), healthy and stomatitis (Newton classification II and III). Label-free multidimensional liquid chromatography/tandem mass spectrometry (2D-LC-MS/MS) proteomics on two mass spectrometry platforms were used to determine peptide mass differences between control and stomatitis groups. Cluster analysis and principal component analysis were used to determine the differential expression among the groups. The two proteomic platforms identified 97 and 176 proteins (ANOVA; p < 0.01) differentially expressed among the healthy, type 2 and 3 stomatitis groups. Three proteins including carbonic anhydrase 6, cystatin C, and cystatin SN were found to be the same as previous study. Salivary proteomic profiles of patients with denture stomatitis were found to be uniquely different from controls. Analysis of protein components suggests that certain salivary proteins may predispose some patients to denture stomatitis while others are believed to be involved in the reaction to fungal infection. Analysis of candidal proteins suggests that multiple species of candidal organisms play a role in denture stomatitis.
Collapse
Affiliation(s)
- Warren C Byrd
- Department of Prosthodontics, School of Dentistry, Department of Pharmacology, School of Medicine, University of North Carolina, CB#7450, Chapel Hill, NC 27599-7450, USA.
| | | | | | | | | | | |
Collapse
|
39
|
Podolnikova NP, Brothwell JA, Ugarova TP. The opioid peptide dynorphin A induces leukocyte responses via integrin Mac-1 (αMβ2, CD11b/CD18). Mol Pain 2015; 11:33. [PMID: 26036990 PMCID: PMC4481117 DOI: 10.1186/s12990-015-0027-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 05/11/2015] [Indexed: 01/13/2023] Open
Abstract
Background Opioid peptides, including dynorphin A, besides their analgesic action in the nervous system, exert a broad spectrum of effects on cells of the immune system, including leukocyte migration, degranulation and cytokine production. The mechanisms whereby opioid peptides induce leukocyte responses are poorly understood. The integrin Mac-1 (αMβ2, CD11b/CD18) is a multiligand receptor which mediates numerous reactions of neutrophils and monocyte/macrophages during the immune-inflammatory response. Our recent elucidation of the ligand recognition specificity of Mac-1 suggested that dynorphin A and dynorphin B contain Mac-1 recognition motifs and can potentially interact with this receptor. Results In this study, we have synthesized the peptide library spanning the sequence of dynorphin AB, containing dynorphin A and B, and showed that the peptides bound recombinant αMI-domain, the ligand binding region of Mac-1. In addition, immobilized dynorphins A and B supported adhesion of the Mac-1-expressing cells. In binding to dynorphins A and B, Mac-1 cooperated with cell surface proteoglycans since both anti-Mac-1 function-blocking reagents and heparin were required to block adhesion. Further focusing on dynorphin A, we showed that its interaction with the αMI-domain was activation independent as both the α7 helix-truncated (active conformation) and helix-extended (nonactive conformation) αMI-domains efficiently bound dynorphin A. Dynorphin A induced a potent migratory response of Mac-1-expressing, but not Mac-1-deficient leukocytes, and enhanced Mac-1-mediated phagocytosis of latex beads by murine IC-21 macrophages. Conclusions Together, the results identify dynorphins A and B as novel ligands for Mac-1 and suggest a role for the Dynorphin A-Mac-1 interactions in the induction of nonopiod receptor-dependent effects in leukocytes. Electronic supplementary material The online version of this article (doi:10.1186/s12990-015-0027-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nataly P Podolnikova
- From the Center for Metabolic and Vascular Biology, School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA.
| | - Julie A Brothwell
- From the Center for Metabolic and Vascular Biology, School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA.
| | - Tatiana P Ugarova
- From the Center for Metabolic and Vascular Biology, School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA.
| |
Collapse
|
40
|
Podolnikova NP, Podolnikov AV, Haas TA, Lishko VK, Ugarova TP. Ligand recognition specificity of leukocyte integrin αMβ2 (Mac-1, CD11b/CD18) and its functional consequences. Biochemistry 2015; 54:1408-20. [PMID: 25613106 DOI: 10.1021/bi5013782] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The broad recognition specificity exhibited by integrin α(M)β2 (Mac-1, CD11b/CD18) has allowed this adhesion receptor to play innumerable roles in leukocyte biology, yet we know little about how and why α(M)β2 binds its multiple ligands. Within α(M)β2, the α(M)I-domain is responsible for integrin's multiligand binding properties. To identify its recognition motif, we screened peptide libraries spanning sequences of many known protein ligands for α(M)I-domain binding and also selected the α(M)I-domain recognition sequences by phage display. Analyses of >1400 binding and nonbinding peptides derived from peptide libraries showed that a key feature of the α(M)I-domain recognition motif is a small core consisting of basic amino acids flanked by hydrophobic residues. Furthermore, the peptides selected by phage display conformed to a similar pattern. Identification of the recognition motif allowed the construction of an algorithm that reliably predicts the α(M)I-domain binding sites in the α(M)β2 ligands. The recognition specificity of the α(M)I-domain resembles that of some chaperones, which allows it to bind segments exposed in unfolded proteins. The disclosure of the α(M)β2 binding preferences allowed the prediction that cationic host defense peptides, which are strikingly enriched in the α(M)I-domain recognition motifs, represent a new class of α(M)β2 ligands. This prediction has been tested by examining the interaction of α(M)β2 with the human cathelicidin peptide LL-37. LL-37 induced a potent α(M)β2-dependent cell migratory response and caused activation of α(M)β2 on neutrophils. The newly revealed recognition specificity of α(M)β2 toward unfolded protein segments and cationic proteins and peptides suggests that α(M)β2 may serve as a previously proposed "alarmin" receptor with important roles in innate host defense.
Collapse
Affiliation(s)
- Nataly P Podolnikova
- Center for Metabolic and Vascular Biology, School of Life Sciences, Arizona State University , Tempe, Arizona 85287, United States
| | | | | | | | | |
Collapse
|
41
|
Zhang Y, Zhu CG, Guo YL, Xu RX, Li S, Dong Q, Li JJ. Higher fibrinogen level is independently linked with the presence and severity of new-onset coronary atherosclerosis among Han Chinese population. PLoS One 2014; 9:e113460. [PMID: 25426943 PMCID: PMC4245131 DOI: 10.1371/journal.pone.0113460] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 10/26/2014] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Fibrinogen is a coagulation/inflammatory biomarker strongly associated with atherogenesis. However, no data is currently available regarding the association of fibrinogen level with the presence and severity of new-onset coronary atherosclerosis assessed by Gensini score (GS), particularly in Han Chinese with a large sample size. METHODS AND RESULTS We studied 2288 consecutive, new-onset subjects undergoing coronary angiography with angina-like chest pain. Clinical and laboratory data were collected. Coronary stenotic lesions were considered to be the incidence of coronary atherosclerosis. The severity of coronary stenosis was determined by the GS system. Data indicated that patients with high GS had significantly elevated fibrinogen level (p<0.001). The prevalence and severity of coronary atherosclerosis were dramatically increased according to fibrinogen tertiles. Spearman correlation analysis revealed a positive association between fibrinogen level and GS (r = 0.138, p<0.001). Multivariate logistic regression analysis demonstrated that plasma fibrinogen level was independently associated with high GS (OR = 1.275, 95% CI 1.082-1.502, p = 0.004) after adjusting for potential confounders. Moreover, fibrinogen level was also independently related to the presence of coronary atherosclerosis (fibrinogen tertile 2: OR = 1.192, 95% CI 0.889-1.598, p = 0.241; tertile 3: OR = 2.003, 95% CI 1.383-2.903, p <0.001) and high GS (fibrinogen tertile 2: OR = 1.079, 95% CI 0.833-1.397, p = 0.565; tertile 3: OR = 1.524, 95% CI 1.155-2.011, p = 0.003) in a dose-dependent manner. Receiver-operating characteristic curve analysis showed that the best fibrinogen cut-off value for predicting the severity of coronary stenosis was 3.21 g/L. CONCLUSIONS Higher fibrinogen level is independently linked with the presence and severity of new-onset coronary atherosclerosis in Han Chinese population.
Collapse
Affiliation(s)
- Yan Zhang
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, FuWai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing, 100037, China
| | - Cheng-Gang Zhu
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, FuWai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing, 100037, China
| | - Yuan-Lin Guo
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, FuWai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing, 100037, China
| | - Rui-Xia Xu
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, FuWai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing, 100037, China
| | - Sha Li
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, FuWai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing, 100037, China
| | - Qian Dong
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, FuWai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing, 100037, China
| | - Jian-Jun Li
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, FuWai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing, 100037, China
| |
Collapse
|
42
|
Hoppe B. Fibrinogen and factor XIII at the intersection of coagulation, fibrinolysis and inflammation. Thromb Haemost 2014; 112:649-58. [PMID: 25182841 DOI: 10.1160/th14-01-0085] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 07/09/2014] [Indexed: 01/07/2023]
Abstract
Fibrinogen and factor XIII are two essential proteins that are involved directly in fibrin gel formation as the final step of a sequence of reactions triggered by a procoagulant stimulus. Haemostasis is the most obvious function of the resulting fibrin clot. Different variables affect the conversion of fibrinogen to fibrin as well as the mode of fibrin polymerisation and fibrin crosslinking, hereby, critically influencing the architecture of the resulting fibrin network and consequently determining its mechanical strength and resistance against fibrinolysis. Due to fibrinogen's structure with a multitude of domains and binding motifs the fibrin gel allows for complex interactions with other coagulation factors, with profibrinolytic as well as antifibrinolyic proteins, with complement factors and with various cellular receptors. These interactions enable the fibrin network to control its own further state (i. e. expansion or degradation), to influence innate immunity, and to function as a scaffold for cell migration processes. During the whole process of fibrin gel formation biologically active peptides and protein fragments are released that additionally influence cellular processes via chemotaxis or by modulating cell-cell interactions. Thus, it is not surprising that fibrinogen and factor XIII in addition to their haemostatic function influence innate immunity as well as cell-mediated reactions like wound healing, response to tissue injury or inflammatory processes. The present review summarises current knowledge of fibrinogen's and factor XIII's function in coagulation and fibrinolysis giving special emphasis on their relation to inflammation control.
Collapse
Affiliation(s)
- Berthold Hoppe
- PD Dr. Berthold Hoppe, Institute of Laboratory Medicine and Pathobiochemistry, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany, Tel.: +49 30 40 50 26 209, Fax: +49 30 40 50 26 77 209, E-mail:
| |
Collapse
|
43
|
van der Poll T, Herwald H. The coagulation system and its function in early immune defense. Thromb Haemost 2014; 112:640-8. [PMID: 24696161 DOI: 10.1160/th14-01-0053] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Accepted: 02/18/2014] [Indexed: 02/06/2023]
Abstract
Blood coagulation has a Janus-faced role in infectious diseases. When systemically activated, it can cause serious complications associated with high morbidity and mortality. However, coagulation is also part of the innate immune system and its local activation has been found to play an important role in the early host response to infection. Though the latter aspect has been less investigated, phylogenetic studies have shown that many factors involved in coagulation have ancestral origins which are often combined with anti-microbial features. This review gives a general overview about the most recent advances in this area of research also referred to as immunothrombosis.
Collapse
Affiliation(s)
| | - Heiko Herwald
- Heiko Herwald, Department of Clinical Sciences, Lund, Division of Infection Medicine, BMC B14, Lund University, Tornavägen 10, SE-221 84 Lund, Sweden, Tel.: +46 46 2224182, Fax: +46 46 157756, E-mail
| |
Collapse
|
44
|
Luo D, Lin JS, Parent MA, Mullarky-Kanevsky I, Szaba FM, Kummer LW, Duso DK, Tighe M, Hill J, Gruber A, Mackman N, Gailani D, Smiley ST. Fibrin facilitates both innate and T cell-mediated defense against Yersinia pestis. THE JOURNAL OF IMMUNOLOGY 2013; 190:4149-61. [PMID: 23487423 DOI: 10.4049/jimmunol.1203253] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The Gram-negative bacterium Yersinia pestis causes plague, a rapidly progressing and often fatal disease. The formation of fibrin at sites of Y. pestis infection supports innate host defense against plague, perhaps by providing a nondiffusible spatial cue that promotes the accumulation of inflammatory cells expressing fibrin-binding integrins. This report demonstrates that fibrin is an essential component of T cell-mediated defense against plague but can be dispensable for Ab-mediated defense. Genetic or pharmacologic depletion of fibrin abrogated innate and T cell-mediated defense in mice challenged intranasally with Y. pestis. The fibrin-deficient mice displayed reduced survival, increased bacterial burden, and exacerbated hemorrhagic pathology. They also showed fewer neutrophils within infected lung tissue and reduced neutrophil viability at sites of liver infection. Depletion of neutrophils from wild-type mice weakened T cell-mediated defense against plague. The data suggest that T cells combat plague in conjunction with neutrophils, which require help from fibrin to withstand Y. pestis encounters and effectively clear bacteria.
Collapse
Affiliation(s)
- Deyan Luo
- Trudeau Institute, Saranac Lake, NY 12983, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Characterization of fibrinogen-like protein 2 (FGL2): monomeric FGL2 has enhanced immunosuppressive activity in comparison to oligomeric FGL2. Int J Biochem Cell Biol 2012; 45:408-18. [PMID: 23127799 DOI: 10.1016/j.biocel.2012.10.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 10/17/2012] [Accepted: 10/25/2012] [Indexed: 12/15/2022]
Abstract
Fibrinogen-like protein 2 (FGL2), a novel effector molecule of CD4(+)CD25(+)Foxp3(+) regulatory T cells (Treg), mediates its suppressive activity through binding to low affinity Fcγ receptors expressed on antigen presenting cells (APCs). FGL2 has been implicated in the pathogenesis of viral hepatitis, xeno- and allotransplant rejection, and rheumatoid arthritis. Here we fully analyzed the structure-function relationships of recombinant murine FGL2 generated in COS-7 cells and identified the receptor binding domains. Native FGL2 exists as an oligomer with a molecular weight of approximately 260 kDa, while under reducing conditions, FGL2 has a molecular weight of 65 kDa suggesting that native FGL2 is composed of four monomers. By site-directed mutation, cysteines at positions 94, 97, 184 and 187, found in the coiled-coil domain were shown to be crucial for FGL2 oligomerization. Monomeric FGL2 had a lower affinity binding to APCs, but increased immunosuppressive activity compared to oligomeric FGL2. Deglycosylation demonstrated that sugar moieties are critical for maintaining solubility of FGL2. SWISS-MODEL analysis suggested that FGL2 has a similar tertiary structure with other members of the fibrinogen family such as fibrinogen and tachylectin. Mutational analysis of cysteine residues and Western blots suggested an asymmetric bouquet-shaped quaternary structure for oligomeric FGL2, resembling many pattern-recognition molecules in the lectin pathway of innate immunity. The functional motifs of FGL2 were mapped to the C terminal globular domain, using a peptide blockade assay. These results collectively define the biochemical and immunological determinants of FGL2, an important immunosuppressive molecule of Treg providing important insights for designing FGL2-related therapeutics.
Collapse
|
46
|
Carbo C, Yuki K, Demers M, Wagner DD, Shimaoka M. Isoflurane inhibits neutrophil recruitment in the cutaneous Arthus reaction model. J Anesth 2012; 27:261-8. [PMID: 23096126 DOI: 10.1007/s00540-012-1508-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Accepted: 10/11/2012] [Indexed: 12/29/2022]
Abstract
PURPOSE Neutrophil recruitment to the inflammatory sites is regulated by a variety of adhesion molecules including β2 integrins. The dependency of neutrophil recruitment on β2 integrins is variable in different tissues, but has not yet been verified in the cutaneous passive reverse Arthus reaction. We examined this question and also evaluated the impact of isoflurane on neutrophil recruitment to the skin because we previously showed in vitro that isoflurane binds and inhibits β2 integrins. METHODS The dependency on β2 integrins in neutrophil recruitment to the skin in the Arthus reaction was examined using αL, αM and β2 knockout mice. Then, we evaluated the effect of isoflurane on neutrophil recruitment to the skin. In addition, the effects of isoflurane on neutrophil binding to intercellular adhesion molecule-1 (ICAM-1), one of the β2 integrin ligands, were studied in vitro using cell adhesion assays. RESULTS Neutrophil recruitment to the skin in the Arthus reaction model was totally dependent on β2 integrins, as β2 knockout mice completely abolished it. However, the defect of only one of the β2 integrins was not sufficient to abolish neutrophil recruitment. Isoflurane reduced neutrophil recruitment to the skin by approximately 90 %. Also, isoflurane inhibited neutrophil adhesion to β2 integrin ligand ICAM-1. CONCLUSIONS We demonstrated that (1) neutrophil recruitment to the skin was totally dependent on β2 integrins, and (2) isoflurane significantly impaired neutrophil recruitment. Based on the previous studies on the contribution of other adhesion molecules in neutrophil recruitment, it is likely that isoflurane at least partially affects on β2 integrins in this model.
Collapse
|
47
|
Jawhara S, Pluskota E, Verbovetskiy D, Skomorovska-Prokvolit O, Plow EF, Soloviev DA. Integrin αXβ₂ is a leukocyte receptor for Candida albicans and is essential for protection against fungal infections. THE JOURNAL OF IMMUNOLOGY 2012; 189:2468-77. [PMID: 22844116 DOI: 10.4049/jimmunol.1200524] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The opportunistic fungus Candida albicans is one of the leading causes of infections in immunocompromised patients, and innate immunity provides a principal mechanism for protection from the pathogen. In the present work, the role of integrin α(X)β₂ in the pathogenesis of fungal infection was assessed. Both purified α(X)β₂ and α(X)β₂-expressing human epithelial kidney 293 cells recognized and bound to the fungal hyphae of SC5314 strain of C. albicans but not to the yeast form or to hyphae of a strain deficient in the fungal mannoprotein, Pra1. The binding of the integrin to the fungus was inhibited by β-glucans but not by mannans, implicating a lectin-like activity in recognition but distinct in specificity from that of α(M)β₂. Mice deficient in α(X)β₂ were more prone to systemic infection with the LD₅₀ fungal inoculum decreasing 3-fold in α(X)β₂-deficient mice compared with wild-type mice. After challenging i.v. with 1.5 × 10⁴ cell/g, 60% of control C57BL/6 mice died within 14 d compared with 100% mortality of α(X)β₂-deficient mice within 9 d. Organs taken from α(X)β₂-deficient mice 16 h postinfection revealed a 10-fold increase in fungal invasion into the brain and a 2-fold increase into the liver. These data indicate that α(X)β₂ is important for protection against systemic C. albicans infections and macrophage subsets in the liver, Kupffer cells, and in the brain, microglial cells use α(X)β₂ to control fungal invasion.
Collapse
Affiliation(s)
- Samir Jawhara
- Department of Molecular Cardiology, Joseph J. Jacobs Center for Thrombosis and Vascular Biology, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | | | | | | | | |
Collapse
|
48
|
Xu YJ, Qiang M, Zhang JL, Liu Y, He RQ. Reactive carbonyl compounds (RCCs) cause aggregation and dysfunction of fibrinogen. Protein Cell 2012; 3:627-40. [PMID: 22836718 DOI: 10.1007/s13238-012-2057-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 07/01/2012] [Indexed: 01/08/2023] Open
Abstract
Fibrinogen is a key protein involved in coagulation and its deposition on blood vessel walls plays an important role in the pathology of atherosclerosis. Although the causes of fibrinogen (fibrin) deposition have been studied in depth, little is known about the relationship between fibrinogen deposition and reactive carbonyl compounds (RCCs), compounds which are produced and released into the blood and react with plasma protein especially under conditions of oxidative stress and inflammation. Here, we investigated the effect of glycolaldehyde on the activity and deposition of fibrinogen compared with the common RCCs acrolein, methylglyoxal, glyoxal and malondialdehyde. At the same concentration (1 mmol/L), glycolaldehyde and acrolein had a stronger suppressive effect on fibrinogen activation than the other three RCCs. Fibrinogen aggregated when it was respectively incubated with glycolaldehyde and the other RCCs, as demonstrated by SDS-PAGE, electron microscopy and intrinsic fluorescence intensity measurements. Staining with Congo Red showed that glycolaldehyde- and acrolein-fibrinogen distinctly formed amyloid-like aggregations. Furthermore, the five RCCs, particularly glycolaldehyde and acrolein, delayed human plasma coagulation. Only glycolaldehyde showed a markedly suppressive effect on fibrinogenesis, none did the other four RCCs when their physiological blood concentrations were employyed, respectively. Taken together, it is glycolaldehyde that suppresses fibrinogenesis and induces protein aggregation most effectively, suggesting a putative pathological process for fibrinogen (fibrin) deposition in the blood.
Collapse
Affiliation(s)
- Ya-Jie Xu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | |
Collapse
|
49
|
Hoppe B, Häupl T, Skapenko A, Ziemer S, Tauber R, Salama A, Schulze-Koops H, Burmester GR, Dörner T. Fibrinogen and factor XIII A-subunit genotypes interactively influence C-reactive protein levels during inflammation. Ann Rheum Dis 2012; 71:1163-9. [PMID: 22267327 DOI: 10.1136/annrheumdis-2011-200738] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVE Fibrinogen is a target of autoimmune reactions in rheumatoid arthritis (RA). Fibrin(ogen) derivatives are involved in inflammatory processes and the generation of a stable fibrin network is necessary for sufficient inflammation control. As the density and stability of fibrin networks depend on complex interactions between factor XIIIA (F13A) and fibrinogen genotypes, the authors studied whether these genotypes were related to C-reactive protein (CRP) levels during acute-phase reactions. METHODS Association between α-fibrinogen (FGA), β-fibrinogen (FGB) and F13A genotypes with CRP levels was tested in two cohorts with longitudinal CRP measurements. Discovery and replication cohorts consisted of 288 RA (913 observations) and 636 non-RA patients (2541 observations), respectively. RESULTS Genotype FGB -455G>A (rs1800790) was associated with CRP elevations (≥ 10 mg/l) in both cohorts (RA, OR per allele 0.69, p=0.0007/P(adj)<0.015; non-RA, OR 0.70, p=0.0004/p(adj)<0.02; combined, OR 0.69, p<10(-5)/p(adj)=0.001). Genotype F13A 34VV (rs5985) was conditional for the association of FGB -455G>A with CRP as indicated by a clear restriction on F13A 34VV individuals and a highly significant heterogeneity between F13A 34VV and F13A 34L genotypes (p<10(-5), p(adj)=0.001). In both cohorts, mean CRP levels significantly declined with ascending numbers of FGB -455A alleles. Genotype FGA T312A (rs6050) exhibited opposite effects on CRP compared with FGB -455G>A. Again, this relation was dependent on F13A V34L genotype. CONCLUSION Novel genetic determinants of CRP completely unrelated to previously known CRP regulators were identified. Presumably, these haemostatic gene variants modulate inflammation by influencing fibrin crosslinking. These findings could give new perspectives on the genetic background of inflammation control.
Collapse
Affiliation(s)
- Berthold Hoppe
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Jongerius I, von Köckritz-Blickwede M, Horsburgh MJ, Ruyken M, Nizet V, Rooijakkers SHM. Staphylococcus aureus virulence is enhanced by secreted factors that block innate immune defenses. J Innate Immun 2012; 4:301-11. [PMID: 22327617 DOI: 10.1159/000334604] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 10/24/2011] [Indexed: 12/15/2022] Open
Abstract
Staphylococcus aureus is a leading human pathogen that causes a large variety of diseases. In vitro studies have shown that S. aureus secretes several small proteins that block specific elements of the host innate immune system, but their role in bacterial pathogenicity is unknown. For instance, the extracellular complement-binding protein (Ecb) impairs complement activation by binding to the C3d domain of C3. Its homolog, the extracellular fibrinogen-binding protein (Efb), is known to block both complement activation and neutrophil adhesion to fibrinogen. Here, we show that targeted inactivation of the genes encoding Ecb and Efb strongly attenuates S. aureus virulence in a murine infection model: mice experienced significantly higher mortality rates upon intravenous infection with wild-type bacteria (79%) than with an isogenic ΔEcbΔEfb mutant (21%). In addition, Ecb and Efb are both required for staphylococcal persistence in host tissues and abscess formation in the kidneys (27% for wild-type vs. 7% for the ΔEcbΔEfb mutant). During staphylococcal pneumonia, Ecb and Efb together promote bacterial survival in the lungs (p = 0.03) and block neutrophil influx into the lungs. Thus, Ecb and Efb are essential to S. aureus virulence in vivo and could be attractive targets in future vaccine development efforts.
Collapse
Affiliation(s)
- Ilse Jongerius
- Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|