1
|
Nisnboym M, Sneiderman CT, Jaswal AP, Xiong Z, Vincze SR, Sever RE, Zou H, Frederico SC, Agnihotri S, Hu B, Drappatz J, Pollack IF, Kohanbash G, Raphael I. Assessment of anti-CD69 antibody therapy alone or in combination with anti-PD-1 in murine GBM. Expert Rev Clin Immunol 2025; 21:239-247. [PMID: 39402706 DOI: 10.1080/1744666x.2024.2412770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 09/27/2024] [Indexed: 02/02/2025]
Abstract
BACKGROUND Glioblastoma (GBM) is an aggressive cancer with limited treatment options. Immunotherapy targeting CD69, an early activation marker on T cells, has shown promise in preclinical models of non-CNS malignancies. This study investigates anti-CD69 therapy alone or in combination with anti-PD-1 in a preclinical GBM model. RESEARCH DESIGN AND METHODS CD69 expression in GBM patient tissues was analyzed using the TCGA database. Therapeutic efficacy of anti-CD69 was tested in a murine GBM model with different regimens. Immune cell populations in the tumor microenvironment (TME) were assessed by flow cytometry. RESULTS Increased CD69 expression was observed in GBM patients compared to normal brain tissue and was associated with worse prognosis. Anti-CD69 treatment reduced percentages of CD69+ immune cells but did not improve survival in GBM-bearing mice. Increased PD-1 expression on NK cells was observed following anti-CD69 treatment. Anti-CD69 treatment was not improved by the addition of anti-PD-1 in vivo. CONCLUSIONS This is the first study evaluating anti-CD69 therapy in a preclinical GBM model. Despite promising preclinical data in other cancers, anti-CD69 monotherapy or combination therapy with anti-PD-1 did not improve survival in this GBM model.
Collapse
MESH Headings
- Animals
- Glioblastoma/immunology
- Glioblastoma/drug therapy
- Glioblastoma/therapy
- Antigens, Differentiation, T-Lymphocyte/immunology
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Mice
- Lectins, C-Type/immunology
- Lectins, C-Type/antagonists & inhibitors
- Lectins, C-Type/metabolism
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Humans
- Programmed Cell Death 1 Receptor/antagonists & inhibitors
- Programmed Cell Death 1 Receptor/immunology
- Brain Neoplasms/immunology
- Brain Neoplasms/drug therapy
- Brain Neoplasms/therapy
- Immunotherapy/methods
- Tumor Microenvironment/immunology
- Disease Models, Animal
- Killer Cells, Natural/immunology
- Cell Line, Tumor
- Immune Checkpoint Inhibitors/therapeutic use
- Female
Collapse
Affiliation(s)
- Michal Nisnboym
- Department of Neurological Surgery, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Neurology, Tel-Aviv Sourasky Medical Center, Tel-Aviv University, Tel-Aviv, Israel
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | - Chaim T Sneiderman
- Department of Neurological Surgery, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ambika P Jaswal
- Department of Neurological Surgery, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zujian Xiong
- Department of Neurological Surgery, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sarah R Vincze
- Department of Neurological Surgery, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - ReidAnn E Sever
- Department of Neurological Surgery, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Han Zou
- Department of Neurological Surgery, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Stephen C Frederico
- Department of Neurological Surgery, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sameer Agnihotri
- Department of Neurological Surgery, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Baoli Hu
- Department of Neurological Surgery, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jan Drappatz
- Departments of Neurology and Medicine, Division of Hematology/Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Ian F Pollack
- Department of Neurological Surgery, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Gary Kohanbash
- Department of Neurological Surgery, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Itay Raphael
- Department of Neurological Surgery, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
2
|
Li Y, Gu Y, Yang P, Wang Y, Yu X, Li Y, Jin Z, Xu L. CD69 is a Promising Immunotherapy and Prognosis Prediction Target in Cancer. Immunotargets Ther 2024; 13:1-14. [PMID: 38223406 PMCID: PMC10787557 DOI: 10.2147/itt.s439969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/22/2023] [Indexed: 01/16/2024] Open
Abstract
Immunotherapy utilizing T cells that attack tumors is a promising strategy for treatment, but immune suppressive T cell subsets, such as regulatory T cell (Treg), and immune checkpoint molecules, including programmed death-1 (PD-1), can suppress the intensity of a T cell immune reaction and thereby impair tumor clearance. Cluster of differentiation 69 (CD69), known as an early leukocyte activation marker, can be used as a measure or early marker of T cell activation. In recent years, the functions of CD69 in the regulation of Treg/Th17 (T helper cell 17) differentiation and in the tissue retention of T cells have attracted considerable interest. These functions are related to the role of CD69 in immune suppression in tumor environments (TME). In this review, we first summarized current perspectives in the biological function of CD69 and demonstrated that CD69 acts as a regulator of T cell activation, differentiation, retention, and exhaustion. Then, we discussed recent advances in understanding of CD69 deficiency and anti-CD69 antibody administration and shed light on the value of targeting on CD69 for cancer immunotherapy and prognosis prediction.
Collapse
Affiliation(s)
- Yuchen Li
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Yinfeng Gu
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Pengyue Yang
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Yan Wang
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Xibao Yu
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Yangqiu Li
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Zhenyi Jin
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, 510632, People’s Republic of China
- Department of Pathology, School of Medicine, Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Ling Xu
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, 510632, People’s Republic of China
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, 510632, People’s Republic of China
| |
Collapse
|
3
|
Miles MA, Luong R, To EE, Erlich JR, Liong S, Liong F, Logan JM, O’Leary J, Brooks DA, Selemidis S. TLR9 Monotherapy in Immune-Competent Mice Suppresses Orthotopic Prostate Tumor Development. Cells 2024; 13:97. [PMID: 38201300 PMCID: PMC10778079 DOI: 10.3390/cells13010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Prostate cancer is ranked second in the world for cancer-related deaths in men, highlighting the lack of effective therapies for advanced-stage disease. Toll-like receptors (TLRs) and immunity have a direct role in prostate cancer pathogenesis, but TLR9 has been reported to contribute to both the progression and inhibition of prostate tumorigenesis. To further understand this apparent disparity, we have investigated the effect of TLR9 stimulation on prostate cancer progression in an immune-competent, syngeneic orthotopic mouse model of prostate cancer. Here, we utilized the class B synthetic agonist CPG-1668 to provoke a TLR9-mediated systemic immune response and demonstrate a significant impairment of prostate tumorigenesis. Untreated tumors contained a high abundance of immune-cell infiltrates. However, pharmacological activation of TLR9 resulted in smaller tumors containing significantly fewer M1 macrophages and T cells. TLR9 stimulation of tumor cells in vitro had no effect on cell viability or its downstream transcriptional targets, whereas stimulation in macrophages suppressed cancer cell growth via type I IFN. This suggests that the antitumorigenic effects of CPG-1668 were predominantly mediated by an antitumor immune response. This study demonstrated that systemic TLR9 stimulation negatively regulates prostate cancer tumorigenesis and highlights TLR9 agonists as a useful therapeutic for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Mark A. Miles
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Raymond Luong
- Infection and Immunity Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, VIC 3800, Australia
| | - Eunice E. To
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Jonathan R. Erlich
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Stella Liong
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Felicia Liong
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Jessica M. Logan
- Cancer Research Institute, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5001, Australia
| | - John O’Leary
- Discipline of Histopathology, School of Medicine, Trinity Translational Medicine Institute (TTMI), Trinity College Dublin, D8 Dublin, Ireland
- Sir Patrick Dun’s Laboratory, Central Pathology Laboratory, St James’s Hospital, D8 Dublin, Ireland
- Molecular Pathology Laboratory, Coombe Women and Infants’ University Hospital, D8 Dublin, Ireland
| | - Doug A. Brooks
- Cancer Research Institute, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5001, Australia
- Discipline of Histopathology, School of Medicine, Trinity Translational Medicine Institute (TTMI), Trinity College Dublin, D8 Dublin, Ireland
| | - Stavros Selemidis
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
- Infection and Immunity Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
4
|
Neuperger P, Szalontai K, Gémes N, Balog JÁ, Tiszlavicz L, Furák J, Lázár G, Puskás LG, Szebeni GJ. Single-cell mass cytometric analysis of peripheral immunity and multiplex plasma marker profiling of non-small cell lung cancer patients receiving PD-1 targeting immune checkpoint inhibitors in comparison with platinum-based chemotherapy. Front Immunol 2023; 14:1243233. [PMID: 37901220 PMCID: PMC10611454 DOI: 10.3389/fimmu.2023.1243233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/27/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction The effect of platinum-based chemotherapy (Chem.) and second- or multiple- line immune checkpoint PD-1 blocking therapy by Nivolumab or Pembrolizumab (ICI) was assayed in the peripheral blood of non-small cell lung cancer (NSCLC) patients. Methods Flow cytometry was used to detect NSCLC-related antigen binding IgG antibodies. The Luminex MagPix multiplex bead-based cytokine/chemokine detecting system was used to quantitatively measure 17 soluble markers in the plasma samples. Single-cell mass cytometry was applied for the immunophenotyping of peripheral leukocytes. Results The incubation of patient derived plasma with human NSCLC tumor cell lines, such as A549, H1975, and H1650, detected NSCLC-specific antibodies reaching a maximum of up to 32% reactive IgG-positive NSCLC cells. The following markers were detected in significantly higher concentration in the plasma of Chem. group versus healthy non-smoker and smoker controls: BTLA, CD27, CD28, CD40, CD80, CD86, GITRL, ICOS, LAG-3, PD-1, PD-L1, and TLR-2. The following markers were detected in significantly higher concentration in the plasma of ICI group versus healthy non-smoker and smoker controls: CD27, CD28, CD40, GITRL, LAG-3, PD-1, PD-L1, and TLR-2. We showed the induction of CD69 and IL-2R on CD4+ CD25+ T-cells upon chemotherapy; the exhaustion of one CD8+ T-cell population was detected by the loss of CD127 and a decrease in CD27. CD19+CD20+, CD79B+, or activated B-cell subtypes showed CD69 increase and downregulation of BTLA, CD27, and IL-2R in NSCLC patients following chemotherapy or ICI. Discussion Peripheral immunophenotype caused by chemotherapy or PD-1 blocking was shown in the context of advanced NSCLC.
Collapse
Affiliation(s)
- Patrícia Neuperger
- Laboratory of Functional Genomics, HUN-REN Biological Research Centre, Szeged, Hungary
- PhD School in Biology, University of Szeged, Szeged, Hungary
| | | | - Nikolett Gémes
- Laboratory of Functional Genomics, HUN-REN Biological Research Centre, Szeged, Hungary
- PhD School in Biology, University of Szeged, Szeged, Hungary
| | - József Á. Balog
- Laboratory of Functional Genomics, HUN-REN Biological Research Centre, Szeged, Hungary
| | | | - József Furák
- Department of Surgery, University of Szeged, Szeged, Hungary
| | - György Lázár
- Department of Surgery, University of Szeged, Szeged, Hungary
| | - László G. Puskás
- Laboratory of Functional Genomics, HUN-REN Biological Research Centre, Szeged, Hungary
- Avicor Ltd., Szeged, Hungary
| | - Gábor J. Szebeni
- Laboratory of Functional Genomics, HUN-REN Biological Research Centre, Szeged, Hungary
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
- CS-Smartlab Devices Ltd., Kozármisleny, Hungary
| |
Collapse
|
5
|
Nisnboym M, Vincze SR, Xiong Z, Sneiderman CT, Raphael RA, Li B, Jaswal AP, Sever RE, Day KE, LaToche JD, Foley LM, Karimi H, Hitchens TK, Agnihotri S, Hu B, Rajasundaram D, Anderson CJ, Blumenthal DT, Pearce TM, Uttam S, Nedrow JR, Panigrahy A, Pollack IF, Lieberman FS, Drappatz J, Raphael I, Edwards WB, Kohanbash G. Immuno-PET Imaging of CD69 Visualizes T-Cell Activation and Predicts Survival Following Immunotherapy in Murine Glioblastoma. CANCER RESEARCH COMMUNICATIONS 2023; 3:1173-1188. [PMID: 37426447 PMCID: PMC10324623 DOI: 10.1158/2767-9764.crc-22-0434] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/19/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2023]
Abstract
Glioblastoma (GBM) is the most common and malignant primary brain tumor in adults. Immunotherapy may be promising for the treatment of some patients with GBM; however, there is a need for noninvasive neuroimaging techniques to predict immunotherapeutic responses. The effectiveness of most immunotherapeutic strategies requires T-cell activation. Therefore, we aimed to evaluate an early marker of T-cell activation, CD69, for its use as an imaging biomarker of response to immunotherapy for GBM. Herein, we performed CD69 immunostaining on human and mouse T cells following in vitro activation and post immune checkpoint inhibitors (ICI) in an orthotopic syngeneic mouse glioma model. CD69 expression on tumor-infiltrating leukocytes was assessed using single-cell RNA sequencing (scRNA-seq) data from patients with recurrent GBM receiving ICI. Radiolabeled CD69 Ab PET/CT imaging (CD69 immuno-PET) was performed on GBM-bearing mice longitudinally to quantify CD69 and its association with survival following immunotherapy. We show CD69 expression is upregulated upon T-cell activation and on tumor-infiltrating lymphocytes (TIL) in response to immunotherapy. Similarly, scRNA-seq data demonstrated elevated CD69 on TILs from patients with ICI-treated recurrent GBM as compared with TILs from control cohorts. CD69 immuno-PET studies showed a significantly higher tracer uptake in the tumors of ICI-treated mice compared with controls. Importantly, we observed a positive correlation between survival and CD69 immuno-PET signals in immunotherapy-treated animals and established a trajectory of T-cell activation by virtue of CD69-immuno-PET measurements. Our study supports the potential use of CD69 immuno-PET as an immunotherapy response assessment imaging tool for patients with GBM. Significance Immunotherapy may hold promise for the treatment of some patients with GBM. There is a need to assess therapy responsiveness to allow the continuation of effective treatment in responders and to avoid ineffective treatment with potential adverse effects in the nonresponders. We demonstrate that noninvasive PET/CT imaging of CD69 may allow early detection of immunotherapy responsiveness in patients with GBM.
Collapse
Affiliation(s)
- Michal Nisnboym
- Department of Neurological Surgery, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Neurology, Tel-Aviv Sourasky Medical Center, Tel-Aviv University, Tel-Aviv, Israel
| | - Sarah R. Vincze
- Department of Neurological Surgery, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Zujian Xiong
- Department of Neurological Surgery, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Chaim T. Sneiderman
- Department of Neurological Surgery, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Rebecca A. Raphael
- Department of Computational and Systems Biology, UPMC Hillman Cancer Center, Cancer Biology Program, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Bo Li
- Department of Neurological Surgery, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Ambika P. Jaswal
- Department of Neurological Surgery, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - ReidAnn E. Sever
- Department of Neurological Surgery, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kathryn E. Day
- In Vivo Imaging Facility, University of Pittsburgh Medical Center, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Joseph D. LaToche
- In Vivo Imaging Facility, University of Pittsburgh Medical Center, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Lesley M. Foley
- In Vivo Imaging Facility, University of Pittsburgh Medical Center, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Hanieh Karimi
- Department of Biochemistry, University of Missouri, Columbia, Missouri
| | - T. Kevin Hitchens
- In Vivo Imaging Facility, University of Pittsburgh Medical Center, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Sameer Agnihotri
- Department of Neurological Surgery, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Baoli Hu
- Department of Neurological Surgery, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Dhivyaa Rajasundaram
- Division of Health Informatics, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | | | - Deborah T. Blumenthal
- Neuro-oncology Division, Tel-Aviv Sourasky Medical Center, Tel-Aviv University, Tel-Aviv, Israel
| | - Thomas M. Pearce
- Division of Neuropathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Shikhar Uttam
- Department of Computational and Systems Biology, UPMC Hillman Cancer Center, Cancer Biology Program, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jessie R. Nedrow
- In Vivo Imaging Facility, University of Pittsburgh Medical Center, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Ashok Panigrahy
- Department of Radiology, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Ian F. Pollack
- Department of Neurological Surgery, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Frank S. Lieberman
- Neuro-oncology Program, Division of Hematology/Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Jan Drappatz
- Neuro-oncology Program, Division of Hematology/Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Itay Raphael
- Department of Neurological Surgery, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Wilson B. Edwards
- Department of Biochemistry, University of Missouri, Columbia, Missouri
| | - Gary Kohanbash
- Department of Neurological Surgery, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
6
|
Inoue S, Takeuchi Y, Horiuchi Y, Murakami T, Odaka A. CD69 on Tumor-Infiltrating Cells Correlates With Neuroblastoma Suppression by Simultaneous PD-1 and PD-L1 Blockade. J Surg Res 2023; 289:190-201. [PMID: 37141702 DOI: 10.1016/j.jss.2023.03.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/15/2023] [Accepted: 03/26/2023] [Indexed: 05/06/2023]
Abstract
INTRODUCTION Tumor-infiltrating cells play an important role in tumor immunology, and tumor-infiltrating lymphocytes (TILs) are critical in antitumor reaction related to immune checkpoint inhibition targeting programmed cell death protein 1 (PD-1) and programmed cell death ligand 1 (PD-L1). METHODS In nude mice, which are immune deficient because they lack T cells, and inbred A/J mice, which are syngeneic to neuroblastoma cells (Neuro-2a) and have normal T cell function, we investigated the importance of T lymphocytes in immune checkpoint inhibition in mouse neuroblastoma and analyzed the immune cells in the tumor microenvironment. Then, we subcutaneously injected mouse Neuro-2ainto nude mice and A/J mice, administered anti-PD-1 and anti-PD-L1 antibodies by intraperitoneal injection, and evaluated tumor growth. At 16 d after Neuro-2a cells injection, mice were euthanized, tumors and spleens were harvested, and immune cells were analyzed by flow cytometry. RESULTS The antibodies suppressed tumor growth in A/J but not in nude mice. The co-administration of antibodies did not affect regulatory T cells (culster of differentiation [CD]4+CD25+FoxP3+ cells) or activated CD4+ lymphocytes (expressing CD69). No changes in activated CD8+ lymphocytes (expressing CD69) were observed in spleen tissue. However, increased infiltration of activated CD8+ TILs was seen in tumors weighing less than 300 mg, and the amount of activated CD8+ TILs was negatively correlated with tumor weight. CONCLUSIONS Our study confirms that lymphocytes are essential for the antitumor immune reaction induced by blocking PD-1/PD-L1 and raises the possibility that promoting the infiltration of activated CD8+ TIL into tumors may be an effective treatment for neuroblastoma.
Collapse
Affiliation(s)
- Seiichiro Inoue
- Department of Hepato-Biliary-Pancreatic and Pediatric Surgery, Saitama Medical Center, Saitama Medical University, Saitama, Japan.
| | - Yuta Takeuchi
- Department of Hepato-Biliary-Pancreatic and Pediatric Surgery, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Yutaka Horiuchi
- Department of Microbiology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Takashi Murakami
- Department of Microbiology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Akio Odaka
- Department of Hepato-Biliary-Pancreatic and Pediatric Surgery, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| |
Collapse
|
7
|
Jiménez-Fernández M, de la Fuente H, Martín P, Cibrián D, Sánchez-Madrid F. Unraveling CD69 signaling pathways, ligands and laterally associated molecules. EXCLI JOURNAL 2023; 22:334-351. [PMID: 37223078 PMCID: PMC10201016 DOI: 10.17179/excli2022-5751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/09/2023] [Indexed: 05/25/2023]
Abstract
CD69 is an early leukocyte activation marker involved in the regulation of the immune response. Initial in vitro studies evaluated its function using monoclonal antibodies until knock-out mice were developed. Subsequently, four ligands for CD69 have been identified, namely galectin-1, S100A8/S100A9 complex, myosin light chains 9 and 12, and oxidized low-density lipoproteins. In addition, several molecules are laterally associated with and regulated by CD69, including calreticulin and two transmembrane receptors, sphingosine-1-phosphate receptor (S1P1) and the heterodimeric amino acid transporter complex SLC7A5-SLC3A2 (LAT1-CD98). Recently, CD69 engagement has been shown to induce the expression of the immunoregulatory receptor programmed cell death-1 (PD-1) in T cells. The molecular signaling induced by CD69 has been explored in different scenarios and cell types. This review provides a perspective on the molecular pathways, ligands and cellular functions known to be regulated by CD69.
Collapse
Affiliation(s)
- María Jiménez-Fernández
- Hospital Universitario de la Princesa, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa (IIS-IP), 28006 Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 29029 Madrid, Spain
| | - Hortensia de la Fuente
- Hospital Universitario de la Princesa, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa (IIS-IP), 28006 Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 29029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Pilar Martín
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 29029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Danay Cibrián
- Hospital Universitario de la Princesa, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa (IIS-IP), 28006 Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 29029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Francisco Sánchez-Madrid
- Hospital Universitario de la Princesa, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa (IIS-IP), 28006 Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 29029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
8
|
Laskewitz A, Kieffer TEC, van Benthem KL, Erwich JJHM, Faas MM, Prins JR. Differences in Immune phenotype in decidual tissue from multigravid women compared to primigravid women. Am J Reprod Immunol 2023; 89:e13658. [PMID: 36414574 DOI: 10.1111/aji.13658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 10/26/2022] [Accepted: 11/15/2022] [Indexed: 11/24/2022] Open
Abstract
PROBLEM Women with a previous uncomplicated pregnancy have lower risks of immune-associated pregnancy disorders in a subsequent pregnancy. This could indicate a different maternal immune response in multigravid women compared to primigravid women. In a previous study, we showed persistent higher memory T cell proportions with higher CD69 expression after uncomplicated pregnancies. To our knowledge no studies have reported on immune cells in general, and immune memory cells and macrophages specifically in multigravid and primigravid women. METHOD OF STUDY T cells and macrophages were isolated from term decidua parietalis and decidua basalis tissue from healthy primigravid women (n = 12) and multigravid women (n = 12). Using flow cytometry, different T cell populations including memory T cells and macrophages were analyzed. To analyze whether a different immune phenotype is already present in early pregnancy, decidual tissue from uncomplicated ongoing pregnancies between 9 and 12 weeks of gestation from multigravida and primigravid women was investigated using qRT-PCR. RESULTS Nearly all T cell subsets analyzed in the decidua parietalis had significantly higher CD69+ proportions in multigravid women compared to primigravid women. A higher proportion of decidual (CD50- ) M2-like macrophages was found in the decidua parietalis in multigravid women compared to primigravid women. In first trimester decidual tissue higher FOXP3 mRNA expression was found in multigravid women compared to primigravid women. CONCLUSIONS This study shows that decidual tissue from multigravid women has a more activated and immunoregulatory phenotype compared to decidual tissue from primigravid women in early pregnancy and at term which could suggest a more balanced immune adaptation towards pregnancy after earlier uncomplicated pregnancies.
Collapse
Affiliation(s)
- Anne Laskewitz
- Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Tom E C Kieffer
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Currently: Department of Obstetrics and Gynecology, OLVG, Amsterdam, The Netherlands
| | - Karlijn L van Benthem
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jan Jaap H M Erwich
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marijke M Faas
- Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jelmer R Prins
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
9
|
Wang Y, Sun Z, Du X, Yu Q, Sun C, Huang J, Wang L. Increased death and exhaustion of CD69 high T cells and NK cells are associated with PD-1 antibody application in the in vitro co-culture system. PeerJ 2023; 11:e15374. [PMID: 37180581 PMCID: PMC10174060 DOI: 10.7717/peerj.15374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/18/2023] [Indexed: 05/16/2023] Open
Abstract
Background The application of PD-1 monoclonal antibody (mAb) helps to treat non-small cell lung cancer, but acquired resistance has emerged in clinical practice. We tested the hypothesis that acquired resistance of anti-PD-1 immunotherapy is linked to death and exhaustion of activated T and NK cell. Methods The co-culture system of HCC827 cells and peripheral mononuclear cells (PBMCs) was established to evaluate the effect of PD-1 mAb on the death rate and exhaustion of T and NK cell. The predisposing role of CD69 for death and exhaustion was validated by using PHA-activated PBMCs of CD69low NSCLC patients. The 10-colour/three laser flow cytometer was used to test related markers for cell activation, death and exhaustion. Results We found that PD-1 mAb increase the death and exhaustion of T cells and NK cells in a dose-dependent way when PBMCs from NSCLC patients whose the percentages of CD69+ cells in peripheral blood T cells were greater than 5% (CD69high NSCLC patients). By analyzing PBMCs from healthy volunteers and CD69low NSCLC patients, we found that T cells and NK cells can be induced to die by PD-1 mAb after PHA activation, and had a tendency to raise the rate of cell exhaustion. Conclusions Our findings imply that increased death and exhaustion of CD69high T cells and NK cells are associated with ineffective anti-PD-1 immunotherapy in lung cancer. The CD69 expression of T cells and NK cells may be developed as a potential predictor for acquired resistance of anti-PD-1 immunotherapy. These data may provide ideas to guide individualized medication of PD-1 mAb in NSCLC patients.
Collapse
Affiliation(s)
- Ying Wang
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, China
| | - Zhengyi Sun
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, China
| | - Xue Du
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, China
| | - Qiuyang Yu
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, China
| | - Chao Sun
- Cancer Centre, The First Hospital of Jilin University, Changchun, China
| | - Jing Huang
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, China
| | - Liying Wang
- Institute of Pediatrics, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
10
|
McKeown BT, Relja NJ, Hall SR, Gebremeskel S, MacLeod JM, Veinotte CJ, Bennett LG, Ohlund LB, Sleno L, Jakeman DL, Berman JN, Johnston B, Goralski KB. Pilot study of jadomycin B pharmacokinetics and anti-tumoral effects in zebrafish larvae and mouse breast cancer xenograft models. Can J Physiol Pharmacol 2022; 100:1065-1076. [PMID: 35985040 DOI: 10.1139/cjpp-2022-0152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Despite numerous therapeutic options, multidrug resistance (MDR) remains an obstacle to successful breast cancer therapy. Jadomycin B, a natural product derived from Streptomyces venezuelae ISP5230, maintains cytotoxicity in MDR human breast cancer cells. Our objectives were to evaluate the pharmacokinetics, toxicity, anti-tumoral, and anti-metastatic effects of jadomycin B in zebrafish larvae and mice. In a zebrafish larval xenograft model, jadomycin B significantly reduced the proliferation of human MDA-MB-231 cells at or below its maximum tolerated dose (40 µm). In female Balb/C mice, a single intraperitoneal dose (6 mg/kg) was rapidly absorbed with a maximum serum concentration of 3.4 ± 0.27 µm. Jadomycin B concentrations declined biphasically with an elimination half-life of 1.7 ± 0.058 h. In the 4T1 mouse mammary carcinoma model, jadomycin B (12 mg/kg every 12 h from day 6 to 15 after tumor cell injection) decreased primary tumor volume compared to vehicle control. Jadomycin B-treated mice did not exhibit weight loss, nor significant increases in biomarkers of impaired hepatic (alanine aminotransferase) and renal (creatinine) function. In conclusion, jadomycin B demonstrated a good safety profile and provided partial anti-tumoral effects, warranting further dose-escalation safety and efficacy studies in MDR breast cancer models.
Collapse
Affiliation(s)
- Brendan T McKeown
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, NS, B3H 4R2, Canada.,Beatrice Hunter Cancer Research Institute, Halifax, NS, B3H 4R2, Canada
| | - Nicholas J Relja
- Faculty of Health, College of Pharmacy, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Steven R Hall
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Simon Gebremeskel
- Department of Microbiology & Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Jeanna M MacLeod
- Faculty of Health, College of Pharmacy, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Chansey J Veinotte
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, IWK Health Centre, Halifax, NS, B3K 6R8, Canada
| | - Leah G Bennett
- Faculty of Health, College of Pharmacy, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Leanne B Ohlund
- Chemistry department/CERMO-FC, Faculty of Sciences, Université du Québec à Montréal, Montréal, QC, H2X 2J6, Canada
| | - Lekha Sleno
- Chemistry department/CERMO-FC, Faculty of Sciences, Université du Québec à Montréal, Montréal, QC, H2X 2J6, Canada
| | - David L Jakeman
- Faculty of Health, College of Pharmacy, Dalhousie University, Halifax, NS, B3H 4R2, Canada.,Department of Chemistry, Faculty of Science, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Jason N Berman
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, IWK Health Centre, Halifax, NS, B3K 6R8, Canada.,Children's Hospital of Eastern Ontario Research Institute and Department of Pediatrics, University of Ottawa, Ottawa, ON, K1H 5B2, Canada.,Department of Pediatrics, Faculty of Medicine, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Brent Johnston
- Beatrice Hunter Cancer Research Institute, Halifax, NS, B3H 4R2, Canada.,Department of Microbiology & Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, B3H 4R2, Canada.,Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Kerry B Goralski
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, NS, B3H 4R2, Canada.,Beatrice Hunter Cancer Research Institute, Halifax, NS, B3H 4R2, Canada.,Faculty of Health, College of Pharmacy, Dalhousie University, Halifax, NS, B3H 4R2, Canada.,Division of Pediatric Hematology/Oncology, Department of Pediatrics, IWK Health Centre, Halifax, NS, B3K 6R8, Canada
| |
Collapse
|
11
|
Jiménez-Fernández M, Rodríguez-Sinovas C, Cañes L, Ballester-Servera C, Vara A, Requena S, de la Fuente H, Martínez-González J, Sánchez-Madrid F. CD69-oxLDL ligand engagement induces Programmed Cell Death 1 (PD-1) expression in human CD4 + T lymphocytes. Cell Mol Life Sci 2022; 79:468. [PMID: 35930205 PMCID: PMC9355928 DOI: 10.1007/s00018-022-04481-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/28/2022] [Accepted: 07/12/2022] [Indexed: 11/24/2022]
Abstract
The mechanisms that control the inflammatory–immune response play a key role in tissue remodelling in cardiovascular diseases. T cell activation receptor CD69 binds to oxidized low-density lipoprotein (oxLDL), inducing the expression of anti-inflammatory NR4A nuclear receptors and modulating inflammation in atherosclerosis. To understand the downstream T cell responses triggered by the CD69-oxLDL binding, we incubated CD69-expressing Jurkat T cells with oxLDL. RNA sequencing revealed a differential gene expression profile dependent on the presence of CD69 and the degree of LDL oxidation. CD69-oxLDL binding induced the expression of NR4A receptors (NR4A1 and NR4A3), but also of PD-1. These results were confirmed using oxLDL and a monoclonal antibody against CD69 in CD69-expressing Jurkat and primary CD4 + lymphocytes. CD69-mediated induction of PD-1 and NR4A3 was dependent on NFAT activation. Silencing NR4A3 slightly increased PD-1 levels, suggesting a potential regulation of PD-1 by this receptor. Moreover, expression of PD-1, CD69 and NR4A3 was increased in human arteries with chronic inflammation compared to healthy controls, with a strong correlation between PD-1 and CD69 mRNA expression (r = 0.655 P < 0.0001). Moreover, PD-1 was expressed in areas enriched in CD3 infiltrating T cells. Our results underscore a novel mechanism of PD-1 induction independent of TCR signalling that might contribute to the role of CD69 in the modulation of inflammation and vascular remodelling in cardiovascular diseases.
Collapse
Affiliation(s)
- María Jiménez-Fernández
- Hospital Universitario de la Princesa, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa (IIS-IP), c/ Diego de León, 62, 28006, Madrid, Spain.,Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Cristina Rodríguez-Sinovas
- Institut de Recerca Hospital de la Santa Creu i Sant Pau (IRHSCSP), IIB-Sant Pau, Barcelona, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Laia Cañes
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Instituto de Investigaciones Biomédicas de Barcelona - Consejo Superior de Investigaciones Científicas (IIBB-CSIC), IIB-Sant Pau, C/ Rosselló, 161, 08036, Barcelona, Spain
| | - Carme Ballester-Servera
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Instituto de Investigaciones Biomédicas de Barcelona - Consejo Superior de Investigaciones Científicas (IIBB-CSIC), IIB-Sant Pau, C/ Rosselló, 161, 08036, Barcelona, Spain
| | - Alicia Vara
- Hospital Universitario de la Princesa, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa (IIS-IP), c/ Diego de León, 62, 28006, Madrid, Spain
| | - Silvia Requena
- Hospital Universitario de la Princesa, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa (IIS-IP), c/ Diego de León, 62, 28006, Madrid, Spain
| | - Hortensia de la Fuente
- Hospital Universitario de la Princesa, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa (IIS-IP), c/ Diego de León, 62, 28006, Madrid, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - José Martínez-González
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain. .,Instituto de Investigaciones Biomédicas de Barcelona - Consejo Superior de Investigaciones Científicas (IIBB-CSIC), IIB-Sant Pau, C/ Rosselló, 161, 08036, Barcelona, Spain.
| | - Francisco Sánchez-Madrid
- Hospital Universitario de la Princesa, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa (IIS-IP), c/ Diego de León, 62, 28006, Madrid, Spain. .,Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain. .,CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
| |
Collapse
|
12
|
Wang H, Chen L, Qi L, Jiang N, Zhang Z, Guo H, Song T, Li J, Li H, Zhang N, Chen R. A Single-Cell Atlas of Tumor-Infiltrating Immune Cells in Pancreatic Ductal Adenocarcinoma. Mol Cell Proteomics 2022; 21:100258. [PMID: 35718340 PMCID: PMC9294203 DOI: 10.1016/j.mcpro.2022.100258] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 06/09/2022] [Accepted: 06/11/2022] [Indexed: 11/30/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies with limited treatment options. To guide the design of more effective immunotherapy strategies, mass cytometry was employed to characterize the cellular composition of the PDAC-infiltrating immune cells. The expression of 33 protein markers was examined at the single-cell level in more than two million immune cells from four types of clinical samples, including PDAC tumors, normal pancreatic tissues, chronic pancreatitis tissues, and peripheral blood. Based on the analyses, we identified 23 distinct T-cell phenotypes, with some cell clusters exhibiting aberrant frequencies in the tumors. Programmed cell death protein 1 (PD-1) was extensively expressed in CD4+ and CD8+ T cells and coexpressed with both stimulatory and inhibitory immune markers. In addition, we observed elevated levels of functional markers, such as CD137L and CD69, in PDAC-infiltrating immune cells. Moreover, the combination of PD-1 and CD8 was used to stratify PDAC tumors from The Cancer Genome Atlas database into three immune subtypes, with S1 (PD-1+CD8+) exhibiting the best prognosis. Further analysis suggested distinct molecular mechanisms for immune exclusion in different subtypes. Taken together, the single-cell protein expression data depicted a detailed cell atlas of the PDAC-infiltrating immune cells and revealed clinically relevant information regarding useful cell phenotypes and targets for immunotherapy development.
Collapse
Affiliation(s)
- Hao Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China; Department of Clinical Laboratory, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Lu Chen
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, China
| | - Lisha Qi
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, China
| | - Na Jiang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Zhibin Zhang
- Department of General Surgery, Tianjin First Central Hospital, Tianjin, China
| | - Hua Guo
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, China
| | - Tianqiang Song
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, China
| | - Jun Li
- Department of Molecular Pathology, Clinical Pathology Center, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Hongle Li
- Department of Molecular Pathology, Clinical Pathology Center, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Ning Zhang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, China; Peking University First Hospital, Peking University Health Science Center, Beijing, China.
| | - Ruibing Chen
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China.
| |
Collapse
|
13
|
Koyaman-Nasu R, Wang Y, Hasegawa I, Endo Y, Nakayama T, Kimura MY. The cellular and molecular basis of CD69 function in anti-tumor immunity. Int Immunol 2022; 34:555-561. [PMID: 35689672 DOI: 10.1093/intimm/dxac024] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/09/2022] [Indexed: 12/16/2022] Open
Abstract
Cancer immunotherapy utilizes our immune system to attack cancer cells and is an extremely promising strategy for cancer treatment. Although immune-checkpoint blockade, such as anti-PD-1 antibody (Ab), has demonstrated significant enhancement of anti-tumor immunity and has induced notable clinical outcomes, its response rates remain low, and adverse effects are always a matter of concern; therefore, new targets for cancer immunotherapy are always desired. In this situation, new concepts are needed to fuel the investigation of new target molecules for cancer immunotherapy. We propose that CD69 is one such target molecule. CD69 is known to be an activation marker of leukocytes and is also considered a crucial regulator of various immune responses through its interacting proteins. CD69 promotes T cell retention in lymphoid tissues via sphingosine-1-phosphate receptor 1 (S1P1) internalization and also plays roles in the pathogenesis of inflammatory disorders through interacting with its functional ligands Myl9/12 (myosin light chains 9, 12a and 12b). In anti-tumor immunity, CD69 is known to be expressed on T cells in the tumor microenvironment (TME) and tumor-draining lymph nodes (TDLNs). We revealed that CD69 negatively regulates the effector function of intratumoral T cells and importantly controls the 'exhaustion' of CD8 T cells. In addition, we and others showed that either CD69 deficiency or the administration of anti-CD69 monoclonal antibody enhances anti-tumor immunity. Thus, CD69 is an attractive target for cancer immunotherapy.
Collapse
Affiliation(s)
- Ryo Koyaman-Nasu
- Department of Experimental Immunology, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Yangsong Wang
- Department of Experimental Immunology, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Ichita Hasegawa
- Department of Experimental Immunology, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Yukihiro Endo
- Department of Experimental Immunology, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Toshinori Nakayama
- Department of Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan.,AMED-CREST, AMED, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Motoko Y Kimura
- Department of Experimental Immunology, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| |
Collapse
|
14
|
Jiang Y, Li F, Li Y, Duan J, Di C, Zhu Y, Zhao J, Jia X, Qu J. CD69 mediates the protective role of adipose tissue-derived mesenchymal stem cells against Pseudomonas aeruginosa pulmonary infection. Clin Transl Med 2021; 11:e563. [PMID: 34841721 PMCID: PMC8567058 DOI: 10.1002/ctm2.563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/15/2021] [Accepted: 08/19/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Our previous study shows that Adipose tissue-derived mesenchymal stem cells (ASCs) are a promising strategy for cell-based therapy against pulmonary infection with Pseudomonas aeruginosa (P. aeruginosa), but the underlying mechanisms remain unclear. METHODS cDNA microarray assay was performed to explore the transcriptome of ASCs primed by P. aeruginosa. Small interfering RNA (siRNA) was constructed to select the receptor candidates for P. aeruginosa recognition and granulocyte-macrophage colony-stimulating factor (GM-CSF) production in ASCs. The soluble protein chimeras containing the extracellular domain of human CD69 fused to the Fc region of human immunoglobulin IgG1 were used as a probe to validate the recognition of P. aeruginosa. The association between CD69 and extracellular regulated protein kinases 1/2 (ERK1/2) was explored via co-immunoprecipitation, siRNA, and inhibitor. The murine models of P. aeruginosa pneumonia treated with WT-ASCs, GM-CSF-/- -ASCs Cd69-/- -ASCs or Erk1-/- -ASCs were used to determine the role of GM-CSF, CD69, and ERK1 in ASCs against P. aeruginosa infection. RESULTS We showed that C-type lectin receptor CD69 mediated the protective effects of ASCs partly through GM-CSF. CD69 could specifically recognize P. aeruginosa and regulate GM-CSF secretion of ASCs. CD69 regulated the production of GM-CSF via ERK1 in ASCs after P. aeruginosa infection. Moreover, the Administration of ASCs with deficiency of CD69 or ERK1 completely blocked its protective effects in a murine model of P. aeruginosa pneumonia. CONCLUSIONS CD69 recognizes P. aeruginosa and further facilitates ERK1 activation, which plays a crucial role in ASCs-based therapy against P. aeruginosa pneumonia. CD69 may be a novel target molecule to improve ASCs-based therapy against P. aeruginosa infection.
Collapse
Affiliation(s)
- Yanshan Jiang
- Department of Respiratory and Critical Care MedicineRuijin Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200025China
- Institute of Respiratory DiseasesSchool of MedicineShanghai Jiao Tong UniversityShanghai200025China
- Shanghai Key Laboratory of Emergency PreventionDiagnosis and Treatment of Respiratory Infectious DiseasesShanghai200025China
- Clinical Medicine Scientific and Technical Innovation CenterShanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Fan Li
- Clinical Medicine Scientific and Technical Innovation CenterShanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Yanan Li
- Department of Respiratory and Critical Care MedicineRuijin Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200025China
- Institute of Respiratory DiseasesSchool of MedicineShanghai Jiao Tong UniversityShanghai200025China
- Shanghai Key Laboratory of Emergency PreventionDiagnosis and Treatment of Respiratory Infectious DiseasesShanghai200025China
- Clinical Medicine Scientific and Technical Innovation CenterShanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Jielin Duan
- Clinical Medicine Scientific and Technical Innovation CenterShanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Caixia Di
- Department of Respiratory and Critical Care MedicineRuijin Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200025China
- Institute of Respiratory DiseasesSchool of MedicineShanghai Jiao Tong UniversityShanghai200025China
- Shanghai Key Laboratory of Emergency PreventionDiagnosis and Treatment of Respiratory Infectious DiseasesShanghai200025China
| | - Yinggang Zhu
- Department of Pulmonary and Critical Care MedicineHuadong HospitalFudan UniversityShanghaiChina
| | - Jingya Zhao
- Department of Respiratory and Critical Care MedicineRuijin Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200025China
- Institute of Respiratory DiseasesSchool of MedicineShanghai Jiao Tong UniversityShanghai200025China
- Shanghai Key Laboratory of Emergency PreventionDiagnosis and Treatment of Respiratory Infectious DiseasesShanghai200025China
| | - Xinming Jia
- Clinical Medicine Scientific and Technical Innovation CenterShanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Jieming Qu
- Department of Respiratory and Critical Care MedicineRuijin Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200025China
- Institute of Respiratory DiseasesSchool of MedicineShanghai Jiao Tong UniversityShanghai200025China
- Shanghai Key Laboratory of Emergency PreventionDiagnosis and Treatment of Respiratory Infectious DiseasesShanghai200025China
| |
Collapse
|
15
|
Gao P, Ren G. Identification of potential target genes of non-small cell lung cancer in response to resveratrol treatment by bioinformatics analysis. Aging (Albany NY) 2021; 13:23245-23261. [PMID: 34633989 PMCID: PMC8544309 DOI: 10.18632/aging.203616] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/28/2021] [Indexed: 12/24/2022]
Abstract
Non-small cell lung cancer (NSCLC) is the most common type in lung cancer in the world, and it severely threatens the life of patients. Resveratrol has been reported to inhibit cancer. However, mechanisms of resveratrol inhibiting NSCLC were unclear. The aim of this study was to identify differentially expressed genes (DEGs) of NSCLC treated with resveratrol and reveal the potential targets of resveratrol in NSCLC. We obtained mRNA expression profiles of two datasets from the National Center for Biotechnology Information Gene Expression Omnibus (NCBI-GEO) and 271 DEGs were selected for further analysis. Data from STRING shown that 177 nodes and 342 edges were in the protein-protein interaction (PPI) network, and 10 hub genes (ANPEP, CD69, ITGAL, PECAM1, PTPRC, CD34, ITGA1, CCL2, SOX2, and EGFR) were identified by Cytoscape plus-in cytoHubba. Survival analysis revealed that NSCLC patients showing low expression of PECAM1, ANPEP, CD69, ITGAL, and PTPRC were associated with worse overall survival (OS) (P < 0.05), and high expression of SOX2 and EGFR was associated with worse OS for NSCLC patients (P < 0.05). Overall, we identified ANPEP, CD69, ITGAL, and PTPRC as potential candidate genes which were main effects of resveratrol on the treatment of NSCLC. ANPEP, ITGAL, CD69, and PTPRC are all clusters of differentiation (CD) antigens, might be the targets of resveratrol. The bioinformatic results suggested that the inhibitory effect of resveratrol on lung cancer may be related to the immune signaling pathway. Further studies are needed to validate these findings and to explore their functional mechanisms.
Collapse
Affiliation(s)
- Peng Gao
- Institute of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China
| | - Guanghui Ren
- Shandong Provincial Key Laboratory of Animal Resistant, School of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| |
Collapse
|
16
|
Joshua DE, Vuckovic S, Favaloro J, Lau KHA, Yang S, Bryant CE, Gibson J, Ho PJ. Treg and Oligoclonal Expansion of Terminal Effector CD8 + T Cell as Key Players in Multiple Myeloma. Front Immunol 2021; 12:620596. [PMID: 33708212 PMCID: PMC7940512 DOI: 10.3389/fimmu.2021.620596] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/12/2021] [Indexed: 12/13/2022] Open
Abstract
The classical paradigm of host-tumor interaction, i.e. elimination, equilibrium, and escape (EEE), is reflected in the clinical behavior of myeloma which progresses from the premalignant condition, Monoclonal Gammopathy of Unknown Significance (MGUS). Despite the role of other immune cells, CD4+ regulatory T cells (Treg) and cytotoxic CD8+ T cells have emerged as the dominant effectors of host control of the myeloma clone. Progression from MGUS to myeloma is associated with alterations in Tregs and terminal effector CD8+ T cells (TTE). These changes involve CD39 and CD69 expression, affecting the adenosine pathway and residency in the bone marrow (BM) microenvironment, together with oligoclonal expansion within CD8+ TTE cells. In this mini-review article, in the context of earlier data, we summarize our recent understanding of Treg involvement in the adenosine pathway, the significance of oligoclonal expansion within CD8+ TTE cells and BM-residency of CD8+ TTE cells in MGUS and newly diagnosed multiple myeloma patients.
Collapse
Affiliation(s)
- Douglas E Joshua
- Institute of Haematology, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Slavica Vuckovic
- Institute of Haematology, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - James Favaloro
- Institute of Haematology, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Ka Hei Aleks Lau
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, Australia
| | - Shihong Yang
- Institute of Haematology, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Christian E Bryant
- Institute of Haematology, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - John Gibson
- Institute of Haematology, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Phoebe Joy Ho
- Institute of Haematology, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
17
|
Novel human immunomodulatory T cell receptors and their double-edged potential in autoimmunity, cardiovascular disease and cancer. Cell Mol Immunol 2020; 18:919-935. [PMID: 33235388 DOI: 10.1038/s41423-020-00586-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/28/2020] [Indexed: 12/15/2022] Open
Abstract
In the last decade, approaches based on T cells and their immunomodulatory receptors have emerged as a solid improvement in treatments for various types of cancer. However, the roles of these molecules in the therapeutic context of autoimmune and cardiovascular diseases are still relatively unexplored. Here, we review the best known and most commonly used immunomodulatory T cell receptors in clinical practice (PD-1 and CTLA-4), along with the rest of the receptors with known functions in animal models, which have great potential as modulators in human pathologies in the medium term. Among these other receptors is the receptor CD69, which has recently been described to be expressed in mouse and human T cells in autoimmune and cardiovascular diseases and cancer. However, inhibition of these receptors individually or in combination by drugs or monoclonal antibodies generates a loss of immunological tolerance and can trigger multiple autoimmune disorders in different organs and immune-related adverse effects. In the coming decades, knowledge on the functions of different immunomodulatory receptors will be pivotal for the development of new and better therapies with less harmful side effects. In this review, we discuss the roles of these receptors in the control of immunity from a perspective focused on therapeutic potential in not only cancer but also autoimmune diseases, such as systemic lupus erythematosus, autoimmune diabetes and rheumatoid arthritis, and cardiovascular diseases, such as atherosclerosis, acute myocardial infarction, and myocarditis.
Collapse
|
18
|
Redondo-Antón J, Fontela MG, Notario L, Torres-Ruiz R, Rodríguez-Perales S, Lorente E, Lauzurica P. Functional Characterization of a Dual Enhancer/Promoter Regulatory Element Leading Human CD69 Expression. Front Genet 2020; 11:552949. [PMID: 33193627 PMCID: PMC7652794 DOI: 10.3389/fgene.2020.552949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 10/07/2020] [Indexed: 11/29/2022] Open
Abstract
The CD69 gene encodes a C-type lectin glycoprotein with immune regulatory properties which is expressed on the cell surfaces of all activated hematopoietic cells. CD69 activation kinetics differ by developmental stage, cell linage and activating conditions, and these differences have been attributed to the participation of complex gene regulatory networks. An evolutionarily conserved regulatory element, CNS2, located 4kb upstream of the CD69 gene transcriptional start site, has been proposed as the major candidate governing the gene transcriptional activation program. To investigate the function of human CNS2, we studied the effect of its endogenous elimination via CRISPR-Cas9 on CD69 protein and mRNA expression levels in various immune cell lines. Even when the entire promoter region was maintained, CNS2-/- cells did not express CD69, thus indicating that CNS2 has promoter-like characteristics. However, like enhancers, inverted CNS2 sustained transcription, although at a diminished levels, thereby suggesting that it has dual promoter and enhancer functions. Episomal luciferase assays further suggested that both functions are combined within the CNS2 regulatory element. In addition, CNS2 directs its own bidirectional transcription into two different enhancer-derived RNAs molecules (eRNAs) which are transcribed from two independent transcriptional start sites in opposite directions. This eRNA transcription is dependent on only the enhancer sequence itself, because in the absence of the CD69 promoter, sufficient RNA polymerase II levels are maintained at CNS2 to drive eRNA expression. Here, we describe a regulatory element with overlapping promoter and enhancer functions, which is essential for CD69 gene transcriptional regulation.
Collapse
Affiliation(s)
- Jennifer Redondo-Antón
- Immune Gene Regulation and Antigen Presentation Group, National Center for Microbiology, Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - M G Fontela
- Immune Gene Regulation and Antigen Presentation Group, National Center for Microbiology, Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - Laura Notario
- Immune Gene Regulation and Antigen Presentation Group, National Center for Microbiology, Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - Raúl Torres-Ruiz
- Molecular Cytogenetics and Genome Editing Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Sandra Rodríguez-Perales
- Molecular Cytogenetics and Genome Editing Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Elena Lorente
- Immune Gene Regulation and Antigen Presentation Group, National Center for Microbiology, Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - Pilar Lauzurica
- Immune Gene Regulation and Antigen Presentation Group, National Center for Microbiology, Institute of Health Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
19
|
Lauder SN, Smart K, Kersemans V, Allen D, Scott J, Pires A, Milutinovic S, Somerville M, Smart S, Kinchesh P, Lopez-Guadamillas E, Hughes E, Jones E, Scurr M, Godkin A, Friedman LS, Vanhaesebroeck B, Gallimore A. Enhanced antitumor immunity through sequential targeting of PI3Kδ and LAG3. J Immunother Cancer 2020; 8:e000693. [PMID: 33093155 PMCID: PMC7583804 DOI: 10.1136/jitc-2020-000693] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Despite striking successes, immunotherapies aimed at increasing cancer-specific T cell responses are unsuccessful in most patients with cancer. Inactivating regulatory T cells (Treg) by inhibiting the PI3Kδ signaling enzyme has shown promise in preclinical models of tumor immunity and is currently being tested in early phase clinical trials in solid tumors. METHODS Mice bearing 4T1 mammary tumors were orally administered a PI3Kδ inhibitor (PI-3065) daily and tumor growth, survival and T cell infiltrate were analyzed in the tumor microenvironment. A second treatment schedule comprised PI3Kδ inhibitor with anti-LAG3 antibodies administered sequentially 10 days later. RESULTS As observed in human immunotherapy trials with other agents, immunomodulation by PI3Kδ-blockade led to 4T1 tumor regressor and non-regressor mice. Tumor infiltrating T cells in regressors were metabolically fitter than those in non-regressors, with significant enrichments of antigen-specific CD8+ T cells, T cell factor 1 (TCF1)+ T cells and CD69- T cells, compatible with induction of a sustained tumor-specific T cell response. Treg numbers were significantly reduced in both regressor and non-regressor tumors compared with untreated tumors. The remaining Treg in non-regressor tumors were however significantly enriched with cells expressing the coinhibitory receptor LAG3, compared with Treg in regressor and untreated tumors. This striking difference prompted us to sequentially block PI3Kδ and LAG3. This combination enabled successful therapy of all mice, demonstrating the functional importance of LAG3 in non-regression of tumors on PI3Kδ inhibition therapy. Follow-up studies, performed using additional cancer cell lines, namely MC38 and CT26, indicated that a partial initial response to PI3Kδ inhibition is an essential prerequisite to a sequential therapeutic benefit of anti-LAG3 antibodies. CONCLUSIONS These data indicate that LAG3 is a key bottleneck to successful PI3Kδ-targeted immunotherapy and provide a rationale for combining PI3Kδ/LAG3 blockade in future clinical studies.
Collapse
Affiliation(s)
- Sarah Nicol Lauder
- Infection and Immunity, Cardiff University Department of Medicine, Cardiff, UK
| | - Kathryn Smart
- Infection and Immunity, Cardiff University Department of Medicine, Cardiff, UK
| | | | - Danny Allen
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Jake Scott
- Infection and Immunity, Cardiff University Department of Medicine, Cardiff, UK
| | - Ana Pires
- Infection and Immunity, Cardiff University Department of Medicine, Cardiff, UK
| | - Stefan Milutinovic
- Infection and Immunity, Cardiff University Department of Medicine, Cardiff, UK
| | - Michelle Somerville
- Infection and Immunity, Cardiff University Department of Medicine, Cardiff, UK
| | - Sean Smart
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Paul Kinchesh
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | | | - Ellyn Hughes
- Cancer Biomarker Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Emma Jones
- Infection and Immunity, Cardiff University Department of Medicine, Cardiff, UK
| | - Martin Scurr
- Infection and Immunity, Cardiff University Department of Medicine, Cardiff, UK
| | - Andrew Godkin
- Infection and Immunity, Cardiff University Department of Medicine, Cardiff, UK
| | | | - Bart Vanhaesebroeck
- UCL Cancer Institute, Paul O'Gorman Building, University College London, London, UK
| | - Awen Gallimore
- Infection and Immunity, Cardiff University Department of Medicine, Cardiff, UK
| |
Collapse
|
20
|
Identification of recurrent noncoding mutations in B-cell lymphoma using capture Hi-C. Blood Adv 2020; 3:21-32. [PMID: 30606723 DOI: 10.1182/bloodadvances.2018026419] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 11/24/2018] [Indexed: 12/22/2022] Open
Abstract
The identification of driver mutations is fundamental to understanding oncogenesis. Although genes frequently mutated in B-cell lymphoma have been identified, the search for driver mutations has largely focused on the coding genome. Here we report an analysis of the noncoding genome using whole-genome sequencing data from 117 patients with B-cell lymphoma. Using promoter capture Hi-C data in naive B cells, we define cis-regulatory elements, which represent an enriched subset of the noncoding genome in which to search for driver mutations. Regulatory regions were identified whose mutation significantly alters gene expression, including copy number variation at cis-regulatory elements targeting CD69, IGLL5, and MMP14, and single nucleotide variants in a cis-regulatory element for TPRG1 We also show the commonality of pathways targeted by coding and noncoding mutations, exemplified by MMP14, which regulates Notch signaling, a pathway important in lymphomagenesis and whose expression is associated with patient survival. This study provides an enhanced understanding of lymphomagenesis and describes the advantages of using chromosome conformation capture to decipher noncoding mutations relevant to cancer biology.
Collapse
|
21
|
Brait VH, Miró-Mur F, Pérez-de-Puig I, Notario L, Hurtado B, Pedragosa J, Gallizioli M, Jiménez-Altayó F, Arbaizar-Rovirosa M, Otxoa-de-Amezaga A, Monteagudo J, Ferrer-Ferrer M, de la Rosa X, Bonfill-Teixidor E, Salas-Perdomo A, Hernández-Vidal A, Garcia-de-Frutos P, Lauzurica P, Planas AM. CD69 Plays a Beneficial Role in Ischemic Stroke by Dampening Endothelial Activation. Circ Res 2019; 124:279-291. [PMID: 30582456 DOI: 10.1161/circresaha.118.313818] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
RATIONALE CD69 is an immunomodulatory molecule induced during lymphocyte activation. Following stroke, T-lymphocytes upregulate CD69 but its function is unknown. OBJECTIVE We investigated whether CD69 was involved in brain damage following an ischemic stroke. METHODS AND RESULTS We used adult male mice on the C57BL/6 or BALB/c backgrounds, including wild-type mice and CD69-/- mice, and CD69+/+ and CD69-/- lymphocyte-deficient Rag2-/- mice, and generated chimeric mice. We induced ischemia by transient or permanent middle cerebral artery occlusion. We measured infarct volume, assessed neurological function, and studied CD69 expression, as well as platelet function, fibrin(ogen) deposition, and VWF (von Willebrand factor) expression in brain vessels and VWF content and activity in plasma, and performed the tail-vein bleeding test and the carotid artery ferric chloride-induced thrombosis model. We also performed primary glial cell cultures and sorted brain CD45-CD11b-CD31+ endothelial cells for mRNA expression studies. We blocked VWF by intravenous administration of anti-VWF antibodies. CD69-/- mice showed larger infarct volumes and worse neurological deficits than the wild-type mice after ischemia. This worsening effect was not attributable to lymphocytes or other hematopoietic cells. CD69 deficiency lowered the time to thrombosis in the carotid artery despite platelet function not being affected. Ischemia upregulated Cd69 mRNA expression in brain endothelial cells. CD69-deficiency increased fibrin(ogen) accumulation in the ischemic tissue, and plasma VWF content and activity, and VWF expression in brain vessels. Blocking VWF reduced infarct volume and reverted the detrimental effect of CD69-/- deficiency. CONCLUSIONS CD69 deficiency promotes a prothrombotic phenotype characterized by increased VWF and worse brain damage after ischemic stroke. The results suggest that CD69 acts as a downregulator of endothelial activation.
Collapse
Affiliation(s)
- Vanessa H Brait
- From the Department of Brain Ischemia and Neurodegeneration (V.H.B., F.M.-M., I.P.-d.-P., J.P., M.G., M.A.-R., A.O.-d.-A., X.d.l.R., E.B.-T., A.M.P.), Institut d'Investigacions Biomèdiques de Barcelona (IIBB)-Consejo Superior de Investigaciones Científicas (CSIC), Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (V.H.B., F.M.-M., J.P., M.G., M.A.-R., A.O.-d.-A., M.F.-F., E.B.-T., A.S.-P., A.H.-V., A.M.P.)
| | - Francesc Miró-Mur
- From the Department of Brain Ischemia and Neurodegeneration (V.H.B., F.M.-M., I.P.-d.-P., J.P., M.G., M.A.-R., A.O.-d.-A., X.d.l.R., E.B.-T., A.M.P.), Institut d'Investigacions Biomèdiques de Barcelona (IIBB)-Consejo Superior de Investigaciones Científicas (CSIC), Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (V.H.B., F.M.-M., J.P., M.G., M.A.-R., A.O.-d.-A., M.F.-F., E.B.-T., A.S.-P., A.H.-V., A.M.P.)
| | - Isabel Pérez-de-Puig
- From the Department of Brain Ischemia and Neurodegeneration (V.H.B., F.M.-M., I.P.-d.-P., J.P., M.G., M.A.-R., A.O.-d.-A., X.d.l.R., E.B.-T., A.M.P.), Institut d'Investigacions Biomèdiques de Barcelona (IIBB)-Consejo Superior de Investigaciones Científicas (CSIC), Spain
| | - Laura Notario
- Grupo de Activación Inmunológica, Centro Nacional de Microbiología, Instituto de Salud Carlos III (ISCIII), Madrid, Spain (L.N., P.L.)
| | - Begoña Hurtado
- Department of Cell Death and Proliferation (B.H., P.G.-d.-F.), Institut d'Investigacions Biomèdiques de Barcelona (IIBB)-Consejo Superior de Investigaciones Científicas (CSIC), Spain
| | - Jordi Pedragosa
- From the Department of Brain Ischemia and Neurodegeneration (V.H.B., F.M.-M., I.P.-d.-P., J.P., M.G., M.A.-R., A.O.-d.-A., X.d.l.R., E.B.-T., A.M.P.), Institut d'Investigacions Biomèdiques de Barcelona (IIBB)-Consejo Superior de Investigaciones Científicas (CSIC), Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (V.H.B., F.M.-M., J.P., M.G., M.A.-R., A.O.-d.-A., M.F.-F., E.B.-T., A.S.-P., A.H.-V., A.M.P.)
| | - Mattia Gallizioli
- From the Department of Brain Ischemia and Neurodegeneration (V.H.B., F.M.-M., I.P.-d.-P., J.P., M.G., M.A.-R., A.O.-d.-A., X.d.l.R., E.B.-T., A.M.P.), Institut d'Investigacions Biomèdiques de Barcelona (IIBB)-Consejo Superior de Investigaciones Científicas (CSIC), Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (V.H.B., F.M.-M., J.P., M.G., M.A.-R., A.O.-d.-A., M.F.-F., E.B.-T., A.S.-P., A.H.-V., A.M.P.)
| | - Francesc Jiménez-Altayó
- Departament de Farmacologia, Terapèutica i Toxicologia, Institut de Neurociències, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain (F.J.A.)
| | - Maria Arbaizar-Rovirosa
- From the Department of Brain Ischemia and Neurodegeneration (V.H.B., F.M.-M., I.P.-d.-P., J.P., M.G., M.A.-R., A.O.-d.-A., X.d.l.R., E.B.-T., A.M.P.), Institut d'Investigacions Biomèdiques de Barcelona (IIBB)-Consejo Superior de Investigaciones Científicas (CSIC), Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (V.H.B., F.M.-M., J.P., M.G., M.A.-R., A.O.-d.-A., M.F.-F., E.B.-T., A.S.-P., A.H.-V., A.M.P.)
| | - Amaia Otxoa-de-Amezaga
- From the Department of Brain Ischemia and Neurodegeneration (V.H.B., F.M.-M., I.P.-d.-P., J.P., M.G., M.A.-R., A.O.-d.-A., X.d.l.R., E.B.-T., A.M.P.), Institut d'Investigacions Biomèdiques de Barcelona (IIBB)-Consejo Superior de Investigaciones Científicas (CSIC), Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (V.H.B., F.M.-M., J.P., M.G., M.A.-R., A.O.-d.-A., M.F.-F., E.B.-T., A.S.-P., A.H.-V., A.M.P.)
| | - Juan Monteagudo
- Hemotherapy and Haemostasis Service, Hospital Clinic, Barcelona, Spain (J.M.)
| | - Maura Ferrer-Ferrer
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (V.H.B., F.M.-M., J.P., M.G., M.A.-R., A.O.-d.-A., M.F.-F., E.B.-T., A.S.-P., A.H.-V., A.M.P.)
| | - Xavier de la Rosa
- From the Department of Brain Ischemia and Neurodegeneration (V.H.B., F.M.-M., I.P.-d.-P., J.P., M.G., M.A.-R., A.O.-d.-A., X.d.l.R., E.B.-T., A.M.P.), Institut d'Investigacions Biomèdiques de Barcelona (IIBB)-Consejo Superior de Investigaciones Científicas (CSIC), Spain
| | - Ester Bonfill-Teixidor
- From the Department of Brain Ischemia and Neurodegeneration (V.H.B., F.M.-M., I.P.-d.-P., J.P., M.G., M.A.-R., A.O.-d.-A., X.d.l.R., E.B.-T., A.M.P.), Institut d'Investigacions Biomèdiques de Barcelona (IIBB)-Consejo Superior de Investigaciones Científicas (CSIC), Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (V.H.B., F.M.-M., J.P., M.G., M.A.-R., A.O.-d.-A., M.F.-F., E.B.-T., A.S.-P., A.H.-V., A.M.P.)
| | - Angélica Salas-Perdomo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (V.H.B., F.M.-M., J.P., M.G., M.A.-R., A.O.-d.-A., M.F.-F., E.B.-T., A.S.-P., A.H.-V., A.M.P.)
| | - Alba Hernández-Vidal
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (V.H.B., F.M.-M., J.P., M.G., M.A.-R., A.O.-d.-A., M.F.-F., E.B.-T., A.S.-P., A.H.-V., A.M.P.)
| | - Pablo Garcia-de-Frutos
- Department of Cell Death and Proliferation (B.H., P.G.-d.-F.), Institut d'Investigacions Biomèdiques de Barcelona (IIBB)-Consejo Superior de Investigaciones Científicas (CSIC), Spain
| | - Pilar Lauzurica
- Grupo de Activación Inmunológica, Centro Nacional de Microbiología, Instituto de Salud Carlos III (ISCIII), Madrid, Spain (L.N., P.L.)
| | - Anna M Planas
- From the Department of Brain Ischemia and Neurodegeneration (V.H.B., F.M.-M., I.P.-d.-P., J.P., M.G., M.A.-R., A.O.-d.-A., X.d.l.R., E.B.-T., A.M.P.), Institut d'Investigacions Biomèdiques de Barcelona (IIBB)-Consejo Superior de Investigaciones Científicas (CSIC), Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (V.H.B., F.M.-M., J.P., M.G., M.A.-R., A.O.-d.-A., M.F.-F., E.B.-T., A.S.-P., A.H.-V., A.M.P.)
| |
Collapse
|
22
|
Lower activation of CD4+ memory T cells in preeclampsia compared to healthy pregnancies persists postpartum. J Reprod Immunol 2019; 136:102613. [DOI: 10.1016/j.jri.2019.102613] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/19/2019] [Accepted: 09/17/2019] [Indexed: 11/23/2022]
|
23
|
Erkan EP, Ströbel T, Dorfer C, Sonntagbauer M, Weinhäusel A, Saydam N, Saydam O. Circulating Tumor Biomarkers in Meningiomas Reveal a Signature of Equilibrium Between Tumor Growth and Immune Modulation. Front Oncol 2019; 9:1031. [PMID: 31649887 PMCID: PMC6795693 DOI: 10.3389/fonc.2019.01031] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 09/24/2019] [Indexed: 12/31/2022] Open
Abstract
Meningiomas are primary central nervous system (CNS) tumors that originate from the arachnoid cells of the meninges. Recurrence occurs in higher grade meningiomas and a small subset of Grade I meningiomas with benign histology. Currently, there are no established circulating tumor markers which can be used for diagnostic and prognostic purposes in a non-invasive way for meningiomas. Here, we aimed to identify potential biomarkers of meningioma in patient sera. For this purpose, we collected preoperative (n = 30) serum samples from the meningioma patients classified as Grade I (n = 23), Grade II (n = 4), or Grade III (n = 3). We used a high-throughput, multiplex immunoassay cancer panel comprising of 92 cancer-related protein biomarkers to explore the serum protein profiles of meningioma patients. We detected 14 differentially expressed proteins in the sera of the Grade I meningioma patients in comparison to the age- and gender-matched control subjects (n = 12). Compared to the control group, Grade I meningioma patients showed increased serum levels of amphiregulin (AREG), CCL24, CD69, prolactin, EGF, HB-EGF, caspase-3, and decreased levels of VEGFD, TGF-α, E-Selectin, BAFF, IL-12, CCL9, and GH. For validation studies, we utilized an independent set of meningioma tumor tissue samples (Grade I, n = 20; Grade II, n = 10; Grade III, n = 6), and found that the expressions of amphiregulin and Caspase3 are significantly increased in all grades of meningiomas either at the transcriptional or protein level, respectively. In contrast, the gene expression of VEGF-D was significantly lower in Grade I meningioma tissue samples. Taken together, our study identifies a meningioma-specific protein signature in blood circulation of meningioma patients and highlights the importance of equilibrium between tumor-promoting factors and anti-tumor immunity.
Collapse
Affiliation(s)
- Erdogan Pekcan Erkan
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Thomas Ströbel
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | - Christian Dorfer
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Markus Sonntagbauer
- Austrian Institute of Technology, Molecular Diagnostics Center for Health and Bioresources, Vienna, Austria
| | - Andreas Weinhäusel
- Austrian Institute of Technology, Molecular Diagnostics Center for Health and Bioresources, Vienna, Austria
| | - Nurten Saydam
- Department of Biochemistry, Molecular Biology, and Biophysics, Medical School, University of Minnesota, Minneapolis, MN, United States
| | - Okay Saydam
- Division of Hematology and Oncology, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
24
|
CD69 Targeting Enhances Anti-vaccinia Virus Immunity. J Virol 2019; 93:JVI.00553-19. [PMID: 31315995 DOI: 10.1128/jvi.00553-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/07/2019] [Indexed: 12/30/2022] Open
Abstract
CD69 is highly expressed on the leukocyte surface upon viral infection, and its regulatory role in the vaccinia virus (VACV) immune response has been recently demonstrated using CD69-/- mice. Here, we show augmented control of VACV infection using the anti-human CD69 monoclonal antibody (MAb) 2.8 as both preventive and therapeutic treatment for mice expressing human CD69. This control was related to increased natural killer (NK) cell reactivity and increased numbers of cytokine-producing T and NK cells in the periphery. Moreover, similarly increased immunity and protection against VACV were reproduced over both long and short periods in anti-mouse CD69 MAb 2.2-treated immunocompetent wild-type (WT) mice and immunodeficient Rag2-/- CD69+/+ mice. This result was not due to synergy between infection and anti-CD69 treatment since, in the absence of infection, anti-human CD69 targeting induced immune activation, which was characterized by mobilization, proliferation, and enhanced survival of immune cells as well as marked production of several innate proinflammatory cytokines by immune cells. Additionally, we showed that the rapid leukocyte effect induced by anti-CD69 MAb treatment was dependent on mTOR signaling. These properties suggest the potential of CD69-targeted therapy as an antiviral adjuvant to prevent derived infections.IMPORTANCE In this study, we demonstrate the influence of human and mouse anti-CD69 therapies on the immune response to VACV infection. We report that targeting CD69 increases the leukocyte numbers in the secondary lymphoid organs during infection and improves the capacity to clear the viral infection. Targeting CD69 increases the numbers of gamma interferon (IFN-γ)- and tumor necrosis factor alpha (TNF-α)-producing NK and T cells. In mice expressing human CD69, treatment with an anti-CD69 MAb produces increases in cytokine production, survival, and proliferation mediated in part by mTOR signaling. These results, together with the fact that we have mainly worked with a human-CD69 transgenic model, reveal CD69 as a treatment target to enhance vaccine protectiveness.
Collapse
|
25
|
Mita Y, Kimura MY, Hayashizaki K, Koyama-Nasu R, Ito T, Motohashi S, Okamoto Y, Nakayama T. Crucial role of CD69 in anti-tumor immunity through regulating the exhaustion of tumor-infiltrating T cells. Int Immunol 2019; 30:559-567. [PMID: 30085193 DOI: 10.1093/intimm/dxy050] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 08/04/2018] [Indexed: 12/20/2022] Open
Abstract
The introduction of immune checkpoint inhibitors in cancer treatment highlights the negative regulation of anti-tumor immunity, such as effector T-cell exhaustion in the tumor microenvironment. However, the mechanisms underlying the induction and prevention of T-cell exhaustion remain largely unknown. We found that CD69, a type II glycoprotein known to regulate inflammation through T-cell migration and retention in tissues, plays an important role in inducing the exhaustion of tumor-infiltrating T cells. Cd69-/- mice showed reduced tumor growth and metastasis in a 4T1-luc2 murine breast cancer model, in which increased numbers of tumor-infiltrating lymphocytes, relatively little T-cell exhaustion, and enhanced IFNγ production were observed. Anti-CD69 monoclonal antibody treatment attenuated the T-cell exhaustion and tumor progression in tumor-bearing mice. These findings highlight a novel role of CD69 in controlling the tumor immune escape mediated by T-cell exhaustion and indicate that CD69 is a novel target for cancer immunotherapy.
Collapse
Affiliation(s)
- Yukiyoshi Mita
- Department of Immunology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan.,Department of Otorhinolaryngology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan
| | - Motoko Y Kimura
- Department of Immunology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan.,Department of Medical Immunology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan
| | - Koji Hayashizaki
- Department of Immunology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan
| | - Ryo Koyama-Nasu
- Department of Immunology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan
| | - Toshihiro Ito
- Department of Immunology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan
| | - Shinichiro Motohashi
- Department of Medical Immunology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan
| | - Yoshitaka Okamoto
- Department of Otorhinolaryngology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan
| | - Toshinori Nakayama
- Department of Immunology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan
| |
Collapse
|
26
|
Zheng G, Xiang W, Pan M, Huang Y, Li Z. Identification of the association between rs41274221 polymorphism in the seed sequence of microRNA-25 and the risk of neonate sepsis. J Cell Physiol 2019; 234:15147-15155. [PMID: 30666638 DOI: 10.1002/jcp.28155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 12/14/2018] [Indexed: 01/24/2023]
Abstract
BACKGROUND Many studies have investigated the role of microRNA-25 (miR-25) in the initiation and progression of sepsis in newborns. In this study, we aim to explore how rs41274221 polymorphism in miR-25 compromises the interaction between miR-25 and CD69, so as to understand the mechanisms involved in the control of sepsis in newborns. METHODS Computational analysis, luciferase assay, real-time polymerase chain reaction (PCR), and western blot analysis were performed in this study. RESULTS The luciferase assays results showed that CD69 was a target gene of miR-25, because the luciferase activity in cells transfected with wild type CD69 was much lower than that in the cells transfected with mutant CD69 or the scramble control. Real-time PCR and western blot analysis results showed that the expression of miR-25 in sepsis patients was significantly upregulated as compared with that in the normal control group, and the CD69 position ratio as well as the messenger RNA (mRNA) and protein level of CD69 in sepsis patients was much higher than those in the normal control group. As compared with the scramble control, miR-25 mimics, and CD69 small interfering RNA (siRNA) downregulated the mRNA and protein expression of CD69, whereas the expression of CD69 mRNA and protein in cells transfected with miR-25 inhibitors was significantly higher as compared with that in the scramble control. In addition, interferonγ production was significantly downregulated in cells transfected with miR-25 inhibitors but notably upregulated in cells transfected with miR-25 mimics or CD69 siRNA. CONCLUSION The single-nucleotide polymorphism (SNP; rs41274221) in miR-25 is associated with the risk of sepsis in newborns.
Collapse
Affiliation(s)
- Ge Zheng
- Department of Pediatrics, People's Hospital of Ruian, Zhejiang, People's Republic of China
| | - Wenna Xiang
- Department of Pediatrics, People's Hospital of Ruian, Zhejiang, People's Republic of China
| | - Minli Pan
- Department of Pediatrics, People's Hospital of Ruian, Zhejiang, People's Republic of China
| | - Yihua Huang
- Department of Pediatrics, Children and Woman's Hospital of Ruian, Zhejiang, People's Republic of China
| | - Zhishu Li
- Department of Pediatrics, People's Hospital of Ruian, Zhejiang, People's Republic of China
| |
Collapse
|
27
|
Fontela MG, Notario L, Alari-Pahissa E, Lorente E, Lauzurica P. The Conserved Non-Coding Sequence 2 (CNS2) Enhances CD69 Transcription through Cooperation between the Transcription Factors Oct1 and RUNX1. Genes (Basel) 2019; 10:genes10090651. [PMID: 31466317 PMCID: PMC6770821 DOI: 10.3390/genes10090651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/29/2019] [Accepted: 08/23/2019] [Indexed: 02/02/2023] Open
Abstract
The immune regulatory receptor CD69 is expressed upon activation in all types of leukocytes and is strongly regulated at the transcriptional level. We previously described that, in addition to the CD69 promoter, there are four conserved noncoding regions (CNS1-4) upstream of the CD69 promoter. Furthermore, we proposed that CNS2 is the main enhancer of CD69 transcription. In the present study, we mapped the transcription factor (TF) binding sites (TFBS) from ChIP-seq databases within CNS2. Through luciferase reporter assays, we defined a ~60 bp sequence that acts as the minimum enhancer core of mouse CNS2, which includes the Oct1 TFBS. This enhancer core establishes cooperative interactions with the 3′ and 5′ flanking regions, which contain RUNX1 BS. In agreement with the luciferase reporter data, the inhibition of RUNX1 and Oct1 TF expression by siRNA suggests that they synergistically enhance endogenous CD69 gene transcription. In summary, we describe an enhancer core containing RUNX1 and Oct1 BS that is important for the activity of the most potent CD69 gene transcription enhancer.
Collapse
Affiliation(s)
- Miguel G. Fontela
- Microbiology National Center, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Laura Notario
- Microbiology National Center, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Elisenda Alari-Pahissa
- Department of Experimental and Health Science, University Pompeu Fabra, 08003 Barcelona, Spain
| | - Elena Lorente
- Microbiology National Center, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Pilar Lauzurica
- Microbiology National Center, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
- Correspondence: ; Tel.: +34-918222720
| |
Collapse
|
28
|
Dréau D, Moore LJ, Wu M, Roy LD, Dillion L, Porter T, Puri R, Momin N, Wittrup KD, Mukherjee P. Combining the Specific Anti-MUC1 Antibody TAB004 and Lip-MSA-IL-2 Limits Pancreatic Cancer Progression in Immune Competent Murine Models of Pancreatic Ductal Adenocarcinoma. Front Oncol 2019; 9:330. [PMID: 31114758 PMCID: PMC6503151 DOI: 10.3389/fonc.2019.00330] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 04/11/2019] [Indexed: 12/19/2022] Open
Abstract
Immunotherapy regimens have shown success in subsets of cancer patients; however, their efficacy against pancreatic ductal adenocarcinoma (PDA) remain unclear. Previously, we demonstrated the potential of TAB004, a monoclonal antibody targeting the unique tumor-associated form of MUC1 (tMUC1) in the early detection of PDA. In this study, we evaluated the therapeutic benefit of combining the TAB004 antibody with Liposomal-MSA-IL-2 in immune competent and human MUC1 transgenic (MUC1.Tg) mouse models of PDA and investigated the associated immune responses. Treatment with TAB004 + Lip-MSA-IL-2 resulted in significantly improved survival and slower tumor growth compared to controls in MUC1.Tg mice bearing an orthotopic PDA.MUC1 tumor. Similarly, in the spontaneous model of PDA that expresses human MUC1, the combination treatment stalled the progression of pancreatic intraepithelial pre-neoplastic (PanIN) lesion to adenocarcinoma. Treatment with the combination elicited a robust systemic and tumor-specific immune response with (a) increased percentages of systemic and tumor infiltrated CD45+CD11b+ cells, (b) increased levels of myeloperoxidase (MPO), (c) increased antibody-dependent cellular cytotoxicity/phagocytosis (ADCC/ADCP), (d) decreased percentage of immune regulatory cells (CD8+CD69+ cells), and (e) reduced circulating levels of immunosuppressive tMUC1. We report that treatment with a novel antibody against tMUC1 in combination with a unique formulation of IL-2 can improve survival and lead to stable disease in appropriate models of PDA by reducing tumor-induced immune regulation and promoting recruitment of CD45+CD11b+ cells, thereby enhancing ADCC/ADCP.
Collapse
Affiliation(s)
- Didier Dréau
- Department of Biological Sciences, UNC Charlotte, Charlotte, NC, United States
| | | | - Mike Wu
- OncoTab Inc., Charlotte, NC, United States
| | | | | | - Travis Porter
- Department of Biological Sciences, UNC Charlotte, Charlotte, NC, United States
| | - Rahul Puri
- OncoTab Inc., Charlotte, NC, United States
| | - Noor Momin
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - K Dane Wittrup
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Pinku Mukherjee
- Department of Biological Sciences, UNC Charlotte, Charlotte, NC, United States.,OncoTab Inc., Charlotte, NC, United States
| |
Collapse
|
29
|
Kimura MY, Koyama-Nasu R, Yagi R, Nakayama T. A new therapeutic target: the CD69-Myl9 system in immune responses. Semin Immunopathol 2019; 41:349-358. [PMID: 30953160 DOI: 10.1007/s00281-019-00734-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 03/05/2019] [Indexed: 01/21/2023]
Abstract
CD69 is an activation marker on leukocytes. Early studies showed that the CD69+ cells were detected in the lung of patients with asthmatic and eosinophilic pneumonia, suggesting that CD69 might play crucial roles in the pathogenesis of such inflammatory diseases, rather than simply being an activation marker. Intensive studies using mouse models have since clarified that CD69 is a functional molecule regulating the immune responses. We discovered that Myosin light chain 9, 12a, 12b (Myl9/12) are ligands for CD69 and that platelet-derived Myl9 forms a net-like structure (Myl9 nets) that is strongly detected inside blood vessels in inflamed lung. CD69-expressing activated T cells attached to the Myl9 nets can thereby migrate into the inflamed tissues through a system known as the CD69-Myl9 system. In this review, we summarize the discovery of the CD69-Myl9 system and discuss how this system is important in inflammatory immune responses. In addition, we discuss our recent finding that CD69 controls the exhaustion status of tumor-infiltrating T cells and that the blockade of the CD69 function enhances anti-tumor immunity. Finally, we discuss the possibility of CD69 as a new therapeutic target for patients with intractable inflammatory disorders and tumors.
Collapse
Affiliation(s)
- Motoko Y Kimura
- Department of Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan.
| | - Ryo Koyama-Nasu
- Department of Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Ryoji Yagi
- Department of Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Toshinori Nakayama
- Department of Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| |
Collapse
|
30
|
Silymarin Restores Regulatory T Cells (Tregs) Function in Multiple Sclerosis (MS) Patients In Vitro. Inflammation 2019; 42:1203-1214. [DOI: 10.1007/s10753-019-00980-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
31
|
Zhou Y, Zhang Y, Johnson A, Venable A, Griswold J, Pappas D. Combined CD25, CD64, and CD69 biomarker panel for flow cytometry diagnosis of sepsis. Talanta 2019; 191:216-221. [DOI: 10.1016/j.talanta.2018.08.058] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 08/21/2018] [Accepted: 08/23/2018] [Indexed: 01/04/2023]
|
32
|
Ng SL, Teo YJ, Setiagani YA, Karjalainen K, Ruedl C. Type 1 Conventional CD103 + Dendritic Cells Control Effector CD8 + T Cell Migration, Survival, and Memory Responses During Influenza Infection. Front Immunol 2018; 9:3043. [PMID: 30622538 PMCID: PMC6308161 DOI: 10.3389/fimmu.2018.03043] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 12/10/2018] [Indexed: 12/24/2022] Open
Abstract
Type 1 conventional CD103+ dendritic cells (cDC1) contribute significantly to the cytotoxic T lymphocyte (CTL) response during influenza virus infection; however, the mechanisms by which cDC1s promote CTL recruitment and viral clearance are unclear. We demonstrate that cDC1 ablation leads to a deficient influenza-specific primary CD8+ T cell response alongside severe pulmonary inflammation, intensifying susceptibility to infection. The diminished pulmonary CTL population is not only a consequence of reduced priming in the lymph node (LN), but also of dysregulated CD8+ T cell egression from the LN and reduced CD8+ T cell viability in the lungs. cDC1s promote S1PR expression on CTLs, a key chemokine receptor facilitating CTL LN egress, and express high levels of the T cell survival cytokine, IL-15, to support CTL viability at the site of infection. Moreover, cDC1 ablation leads to severe impairment of CD8+ T cell memory recall and cross-reactive protection, suggesting that cDC1 are not only involved in primary T cell activation, but also in supporting the development of effective memory CD8+ T cell precursors. Our findings demonstrate a previously unappreciated and multifaceted role of CD103+ DCs in controlling pulmonary T cell-mediated immune responses.
Collapse
Affiliation(s)
- See Liang Ng
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Yi Juan Teo
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | | | - Klaus Karjalainen
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Christiane Ruedl
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
33
|
Al Reef T, Ghanem E. Caffeine: Well-known as psychotropic substance, but little as immunomodulator. Immunobiology 2018; 223:818-825. [PMID: 30146130 DOI: 10.1016/j.imbio.2018.08.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/15/2018] [Accepted: 08/19/2018] [Indexed: 12/13/2022]
Abstract
To date, numerable reviews are found in the literature prominent to the effect of caffeine on the immune system, with the latest review published in 2006. Database screening reveals around three thousand articles that have been published during the last decade. Interestingly, less than hundred articles involved humans and rodents as tested models, out of which 20% is of interest to this paper excluding studies done on the nervous and cardiac systems, and in pregnant and cancer cases. In this review, information pertaining to the experimental setup of various studies, namely, the tested model, the study type (in vivo or in vitro), and caffeine dose is covered to discern the behaviour of major cellular and molecular immune components in light of caffeine exposure. Although it is hard to extrapolate results done in rodents to humans and to relay conclusions from in vitro to in vivo studies, most of the collected data favor the suppressive effects of caffeine on the proliferation of stimulated lymphocytes. Macrophages and natural killer cells also exhibited a reduced activity in the presence of high caffeine doses compared to increased activity at low doses. Immunosuppression is also supported by reduced levels of major anti-inflammatory cytokines, IL-2, IL-6, TNF-α. Moreover, certain innate and adaptive immune receptors, such as TLR1, TLR2, TLR4, and MHC class I-related chain B (MICB) molecules, exhibited decreased expression levels. Thus, we support the use of caffeine to alleviate various inflammatory conditions and autoimmune diseases.
Collapse
Affiliation(s)
- Tatiana Al Reef
- Department of Sciences, Faculty of Natural and Applied Sciences, Notre Dame University, Louaize, Lebanon
| | - Esther Ghanem
- Department of Sciences, Faculty of Natural and Applied Sciences, Notre Dame University, Louaize, Lebanon.
| |
Collapse
|
34
|
Taylor ES, McCall JL, Shen S, Girardin A, Munro FM, Black MA, Ward-Hartstonge KA, Kemp RA. Prognostic roles for IL-2-producing and CD69 + T cell subsets in colorectal cancer patients. Int J Cancer 2018; 143:2008-2016. [PMID: 29752720 DOI: 10.1002/ijc.31598] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 03/08/2018] [Accepted: 04/17/2018] [Indexed: 01/30/2023]
Abstract
Tumor infiltrating T cells are a predictor of patient outcome in patients with colorectal cancer (CRC). However, many T cell populations have been associated with both poor and positive patient prognoses, indicating a need to further understand the role of different T cell subsets in CRC. In this study, the T cell infiltrate from the tumor and nontumor bowel (NTB) was examined in 95 CRC patients using flow cytometry and associations with cancer stage and disease recurrence made. Our findings showed that IFN-γ-producing T cells were associated with positive patient outcomes, and CD69+ T cells were associated with disease recurrence. Inflammatory (IL-17) and regulatory T cells were not associated with disease recurrence. Surprisingly, in a second cohort of 32 patients with long-term clinical follow up data, tumor infiltrating IL-2-producing T cells correlated negatively with disease free survival (DFS) and a higher frequency of IL-2-producing T cells was found in the NTB of patients with poorly differentiated tumors. These results point toward the possibility of a negative impact of IL-2 in tumor immune responses, which may influence future immunotherapy treatments in CRC patients.
Collapse
Affiliation(s)
- Edward S Taylor
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - John L McCall
- Department of Surgical Sciences, University of Otago, Dunedin, New Zealand
| | - Shirley Shen
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Adam Girardin
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Fran M Munro
- Department of Surgical Sciences, University of Otago, Dunedin, New Zealand
| | - Michael A Black
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | | | - Roslyn A Kemp
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
35
|
Komai T, Okamura T, Inoue M, Yamamoto K, Fujio K. Reevaluation of Pluripotent Cytokine TGF-β3 in Immunity. Int J Mol Sci 2018; 19:ijms19082261. [PMID: 30071700 PMCID: PMC6121403 DOI: 10.3390/ijms19082261] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 07/28/2018] [Indexed: 12/22/2022] Open
Abstract
Transforming growth factor (TGF)-βs are pluripotent cytokines with stimulatory and inhibitory properties for multiple types of immune cells. Analyses of genetic knockouts of each isoform of TGF-β have revealed differing expression patterns and distinct roles for the three mammalian isoforms of TGF-β. Considerable effort has been focused on understanding the molecular mechanisms of TGF-β1-mediated immune regulation, given its pivotal role in prohibiting systemic autoimmune disease. In recent years, functional similarities and differences between the TGF-β isoforms have delineated their distinct roles in the development of immunopathology and immune tolerance, with increased recent attention being focused on TGF-β3. In addition to the characteristic properties of each TGF-β isoform, recent progress has identified determinants of context-dependent functionality, including various cellular targets, cytokine concentrations, tissue microenvironments, and cytokine synergy, which combine to shape the physiological and pathophysiological roles of the TGF-βs in immunity. Controlling TGF-β production and signaling is being tested as a novel therapeutic strategy in multiple clinical trials for several human diseases. This review highlights advances in the understanding of the cellular sources, activation processes, contextual determinants, and immunological roles of TGF-β3 with comparisons to other TGF-β isoforms.
Collapse
Affiliation(s)
- Toshihiko Komai
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan.
| | - Tomohisa Okamura
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan.
- Department of Functional Genomics and Immunological Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan.
- Max Planck-The University of Tokyo Center for Integrative Inflammology, The University of Tokyo, Tokyo 153-8505, Japan.
| | - Mariko Inoue
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan.
| | - Kazuhiko Yamamoto
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan.
- Max Planck-The University of Tokyo Center for Integrative Inflammology, The University of Tokyo, Tokyo 153-8505, Japan.
- Laboratory for Autoimmune Diseases, Center for Integrative Medical Sciences, RIKEN, Kanagawa 230-0045, Japan.
| | - Keishi Fujio
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan.
| |
Collapse
|
36
|
Huang L, Deng J, Xu W, Wang H, Shi L, Wu F, Wu D, Nei W, Zhao M, Mao P, Zhou X. CD8+ T cells with high TGF‑β1 expression cause lymph node fibrosis following HIV infection. Mol Med Rep 2018; 18:77-86. [PMID: 29749506 PMCID: PMC6059705 DOI: 10.3892/mmr.2018.8964] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 03/20/2018] [Indexed: 12/11/2022] Open
Abstract
Lymph node (LN) fibrosis resulting in cluster of differentiation (CD) 4+ T cell reduction following human immunodeficiency virus (HIV) infection is an important step in the pathogenesis of acquired immunodeficiency syndrome. The mechanisms mediating LN fibrosis following HIV infection have not been completely elucidated. In order to investigate the mechanism of LN fibrosis, the expression of transforming growth factor (TGF)‑β1 was determined in the LNs of HIV‑infected individuals by immunohistochemistry and fluorescence‑based flow cytometry. The effect of stimulated CD8+ T cells on collagen secretion by fibroblasts was detected using immunofluorescence staining and western blot analysis. The results demonstrated that the LNs of HIV‑infected individuals exhibited a significantly increased proportion of CD8+ T cells with high TGF‑β1 expression. These CD8+ T cells demonstrated increased CD38 and programmed cell death protein 1 expression and decreased CD127 expression compared with the controls. CD8+ T cells from the LNs of non‑HIV infected individuals expressed a high TGF‑β1 level following stimulation with phorbol‑12‑myristate 13‑acetate. These CD8+T cells subsequently induced the secretion of a large amount of type I collagen in human lymphatic fibroblasts. The results of the present study indicated that CD8+ T cells with high TGF‑β1 expression served an important role in LN fibrosis following HIV infection.
Collapse
Affiliation(s)
- Lei Huang
- Treatment and Research Center for Infectious Diseases, 302 Military Hospital of China, Beijing 100039, P.R. China
| | - Jianning Deng
- Guangxi AIDS Clinical Treatment Center, The Fourth People's Hospital of Nanning, Nanning, Guangxi 530023, P.R. China
| | - Wen Xu
- Treatment and Research Center for Infectious Diseases, 302 Military Hospital of China, Beijing 100039, P.R. China
| | - Hongbo Wang
- The Second Center of Hepatobiliary Surgery Department, 302 Military Hospital of China, Beijing 100039, P.R. China
| | - Lei Shi
- Treatment and Research Center for Infectious Diseases, 302 Military Hospital of China, Beijing 100039, P.R. China
| | - Fengyao Wu
- Guangxi AIDS Clinical Treatment Center, The Fourth People's Hospital of Nanning, Nanning, Guangxi 530023, P.R. China
| | - Dan Wu
- Treatment and Research Center for Infectious Diseases, 302 Military Hospital of China, Beijing 100039, P.R. China
| | - Weimin Nei
- Treatment and Research Center for Infectious Diseases, 302 Military Hospital of China, Beijing 100039, P.R. China
| | - Min Zhao
- Treatment and Research Center for Infectious Diseases, 302 Military Hospital of China, Beijing 100039, P.R. China
| | - Panyong Mao
- Research Clinical Center for Translational Medicine, 302 Military Hospital of China, Beijing 100039, P.R. China
| | - Xianzhi Zhou
- The Fourth Military Medical University, Xian, Shaanxi 710032, P.R. China
| |
Collapse
|
37
|
Gebhardt T, Palendira U, Tscharke DC, Bedoui S. Tissue-resident memory T cells in tissue homeostasis, persistent infection, and cancer surveillance. Immunol Rev 2018; 283:54-76. [DOI: 10.1111/imr.12650] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Thomas Gebhardt
- Department of Microbiology and Immunology; The University of Melbourne at the Peter Doherty Institute for Infection and Immunity; Melbourne Vic. Australia
| | - Umaimainthan Palendira
- Centenary Institute; The University of Sydney; Sydney NSW Australia
- Sydney Medical School; The University of Sydney; Sydney NSW Australia
| | - David C. Tscharke
- The John Curtin School of Medical Research; The Australian National University; Canberra ACT Australia
| | - Sammy Bedoui
- Department of Microbiology and Immunology; The University of Melbourne at the Peter Doherty Institute for Infection and Immunity; Melbourne Vic. Australia
| |
Collapse
|
38
|
Huang SY, Liu YH, Chen YJ, Yeh YY, Huang HM. CD69 partially inhibits apoptosis and erythroid differentiation via CD24, and their knockdown increase imatinib sensitivity in BCR-ABL-positive cells. J Cell Physiol 2018; 233:7467-7479. [PMID: 29663362 DOI: 10.1002/jcp.26599] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 03/14/2018] [Indexed: 12/12/2022]
Abstract
Chronic myeloid leukemia (CML) is caused by a constitutively active BCR-ABL tyrosine kinase. Tyrosine kinase inhibitors (TKIs) imatinib and its derivatives represent a breakthrough for CML therapy, but the use of TKI alone is ineffective for many CML patients. CD69, an early activation marker of lymphocytes, participates in immune and inflammatory responses. Previous studies revealed that BCR-ABL upregulates CD69 expression; however, the role of CD69 in CML cells is unknown. Here, we demonstrate that BCR-ABL induced CD69 promoter activity and mRNA and protein expression via the NF-κB pathway. CD69 knockdown partially increased apoptosis and expression of erythroid differentiation markers, α-globin, ζ-globin, and glycophorin A, and increased imatinib sensitivity in K562 and KU812 CML cells. Gene microarray analysis and quantitative real-time PCR verified that CD24, an oncogenic gene, downregulated in K562 cells upon CD69 knockdown. CD69 overexpression increased, whereas CD69 knockdown inhibited CD24 promoter activity and mRNA and protein levels. CD24 knockdown also partially increased apoptosis, erythroid differentiation, and imatinib sensitivity in K562 cells, whereas its overexpression inhibited the effects of CD69 knockdown on apoptosis, erythroid differentiation, and imatinib sensitivity in K562 cells. Imatinib-induced apoptosis and erythroid differentiation were also inhibited by CD69 or CD24 overexpression in BCR-ABL-expressing CML cell lines and CD34+ cells. Taken together, CD24 is a downstream effector of CD69. CD69 and CD24 partially inhibit apoptosis and erythroid differentiation in CML cells; thus, they may be potential targets to increase imatinib sensitivity.
Collapse
Affiliation(s)
- Shih-Yun Huang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Hsiu Liu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yi-Ju Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yi-Yen Yeh
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Huei-Mei Huang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
39
|
Kimura MY, Hayashizaki K, Tokoyoda K, Takamura S, Motohashi S, Nakayama T. Crucial role for CD69 in allergic inflammatory responses: CD69-Myl9 system in the pathogenesis of airway inflammation. Immunol Rev 2018; 278:87-100. [PMID: 28658550 DOI: 10.1111/imr.12559] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
CD69 has been known as an early activation marker of lymphocytes; whereas, recent studies demonstrate that CD69 also has critical functions in immune responses. Early studies using human samples revealed the involvement of CD69 in various inflammatory diseases including asthma. Moreover, murine disease models using Cd69-/- mice and/or anti-CD69 antibody (Ab) treatment have revealed crucial roles for CD69 in inflammatory responses. However, it had not been clear how the CD69 molecule contributes to the pathogenesis of inflammatory diseases. We recently elucidated a novel mechanism, in which the interaction between CD69 and its ligands, myosin light chain 9, 12a and 12b (Myl9/12) play a critical role in the recruitment of activated T cells into the inflammatory lung. In this review, we first summarize CD69 function based on its structure and then introduce the evidence for the involvement of CD69 in human diseases and murine disease models. Then, we will describe how we discovered CD69 ligands, Myl9 and Myl12, and how the CD69-Myl9 system regulates airway inflammation. Finally, we will discuss possible therapeutic usages of the blocking Ab to the CD69-Myl9 system.
Collapse
Affiliation(s)
- Motoko Y Kimura
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Koji Hayashizaki
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Koji Tokoyoda
- Department of Osteoimmunology, German Rheumatism Research Centre (DRFZ) Berlin, Berlin, Germany
| | - Shiki Takamura
- Department of Immunology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Shinichiro Motohashi
- Department of Medical Immunology Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Toshinori Nakayama
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
40
|
Anti-CD69 therapy induces rapid mobilization and high proliferation of HSPCs through S1P and mTOR. Leukemia 2018; 32:1445-1457. [PMID: 29483712 DOI: 10.1038/s41375-018-0052-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 12/30/2017] [Accepted: 01/11/2018] [Indexed: 01/05/2023]
Abstract
CD69 regulates lymphocyte egress from the thymus and lymph nodes through cis-interactions and the downregulation of surface sphingosine-1-phosphate (S1P) receptor-1 (S1P1). However, its role in the regulation of cell egress from bone marrow has not been extensively studied. We show here that CD69 targeting induced rapid and massive mobilization of BM leukocytes, which was inhibited by desensitization to S1P with FTY720. This mobilization was reproduced with anti-human CD69 mAb treatment of mice expressing human CD69. In this strain, the mobilization occurred to the same extent as that induced by AMD3100. The anti-human CD69 treatment highly increased LSK and CLP cell proliferation and numbers, both in the periphery and in the BM, and also augmented S1P1 and CXCR4 expression. Additionally, increased mTOR, p70S6K, S6, and 4E-BP1 phosphorylation was detected after in vivo anti-CD69 treatment in the bone marrow. Importantly, mTOR inhibition with rapamycin inhibited anti-huCD69-induced mobilization of hematopoietic stem and progenitor cells (HSPCs). Together, our results indicated that CD69 targeting induces not only mobilization but also high proliferation of HSPCs, and thus is crucial for precursor cell replenishment over time. These results suggest that anti-CD69 mAbs are putative novel candidates for mobilization strategies.
Collapse
|
41
|
Veselý P, Touškoví M, Melichar B. Phenotype of Peripheral Blood Leukocytes and Survival of Patients with Metastatic Colorectal Cancer. Int J Biol Markers 2018. [DOI: 10.1177/172460080502000208] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Immune dysfunction is prevalent in metastatic cancer. Few patients with colorectal cancer metastases are cured, and among the strategies aimed at improving the therapeutic results in patients with metastatic colorectal cancer, immunotherapy is being increasingly investigated. We evaluated retrospectively the prognostic significance of peripheral blood leukocytes in 59 patients with metastatic colorectal cancer. The relative numbers of CD3+, CD3+CD4+, CD3+CD8+, NK (CD3-CD16+CD56+), CD3+DR+, CD3+CD25+, CD3+CD69+, CD19+, CD19+CD23+, CD8+CD28+, CD8-CD28+, CD8+CD57+, CD14+DR+ and CD14+CD16+ leukocytes were analyzed by two-color flow cytometry. A three-step approach was adopted to identify predictors of prognosis using regression analysis. Based on the results of univariate survival analysis, the absolute number of white blood cells, NK/CD3+CD69+ and NK/white cell count ratios were significant indicators of prognosis. In the multivariate regression analysis a model was obtained using a single parameter, the NK/CD3+CD69+ ratio, predicting the survival with 10–15% power of regression. The present results indicate that the NK/CD3+CD69+ ratio in peripheral blood may be an independent variable in a regression model predicting the overall survival of patients with colorectal cancer metastases to be tested in prospective studies.
Collapse
Affiliation(s)
- P. Veselý
- Department of Oncology and Radiotherapy, Charles University Medical School and Teaching Hospital, Hradec Krílové - Czech Republic
- Department of Medicine, Charles University Medical School and Teaching Hospital, Hradec Krílové - Czech Republic
| | - M. Touškoví
- Department of Immunology, Charles University Medical School and Teaching Hospital, Hradec Krílové - Czech Republic
| | - B. Melichar
- Department of Oncology and Radiotherapy, Charles University Medical School and Teaching Hospital, Hradec Krílové - Czech Republic
- Department of Medicine, Charles University Medical School and Teaching Hospital, Hradec Krílové - Czech Republic
| |
Collapse
|
42
|
Cibrián D, Sánchez-Madrid F. CD69: from activation marker to metabolic gatekeeper. Eur J Immunol 2017; 47:946-953. [PMID: 28475283 PMCID: PMC6485631 DOI: 10.1002/eji.201646837] [Citation(s) in RCA: 608] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/17/2017] [Accepted: 05/03/2017] [Indexed: 12/14/2022]
Abstract
CD69 is a membrane-bound, type II C-lectin receptor. It is a classical early marker of lymphocyte activation due to its rapid appearance on the surface of the plasma membrane after stimulation. CD69 is expressed by several subsets of tissue resident immune cells, including resident memory T (TRM) cells and gamma delta (γδ) T cells, and is therefore considered a marker of tissue retention. Recent evidence has revealed that CD69 regulates some specific functions of selected T-cell subsets, determining the migration-retention ratio as well as the acquisition of effector or regulatory phenotypes. Specifically, CD69 regulates the differentiation of regulatory T (Treg) cells as well as the secretion of IFN-γ, IL-17, and IL-22. The identification of putative CD69 ligands, such as Galectin-1 (Gal-1), suggests that CD69-induced signaling can be regulated not only during cognate contacts between T cells and antigen-presenting cells in lymphoid organs, but also in the periphery, where cytokines and other metabolites control the final outcome of the immune response. Here, we will discuss new aspects of the molecular signaling mediated by CD69 and its involvement in the metabolic reprogramming regulating TH-effector lineages.
Collapse
MESH Headings
- Animals
- Antigen-Presenting Cells/immunology
- Antigen-Presenting Cells/physiology
- Antigens, CD/genetics
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Antigens, Differentiation, T-Lymphocyte/genetics
- Antigens, Differentiation, T-Lymphocyte/immunology
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Cell Differentiation
- Cytokines/immunology
- Cytokines/metabolism
- Galectins/immunology
- Gene Expression Regulation
- Humans
- Interleukin-17/immunology
- Interleukin-17/metabolism
- Lectins, C-Type/genetics
- Lectins, C-Type/immunology
- Lectins, C-Type/metabolism
- Lymphocyte Activation
- Signal Transduction
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/physiology
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/physiology
Collapse
Affiliation(s)
- Danay Cibrián
- Hospital Universitario de la Princesa, Instituto Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid, Madrid, Spain
- Centro Nacional Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
| | - Francisco Sánchez-Madrid
- Hospital Universitario de la Princesa, Instituto Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid, Madrid, Spain
- Centro Nacional Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
43
|
Thymus-Derived Regulatory T Cell Development Is Regulated by C-Type Lectin-Mediated BIC/MicroRNA 155 Expression. Mol Cell Biol 2017; 37:MCB.00341-16. [PMID: 28167605 DOI: 10.1128/mcb.00341-16] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 01/27/2017] [Indexed: 01/26/2023] Open
Abstract
Thymus-derived regulatory T (tTreg) cells are key to preventing autoimmune diseases, but the mechanisms involved in their development remain unsolved. Here, we show that the C-type lectin receptor CD69 controls tTreg cell development and peripheral Treg cell homeostasis through the regulation of BIC/microRNA 155 (miR-155) and its target, suppressor of cytokine signaling 1 (SOCS-1). Using Foxp3-mRFP/cd69+/- or Foxp3-mRFP/cd69-/- reporter mice and short hairpin RNA (shRNA)-mediated silencing and miR-155 transfection approaches, we found that CD69 deficiency impaired the signal transducer and activator of transcription 5 (STAT5) pathway in Foxp3+ cells. This results in BIC/miR-155 inhibition, increased SOCS-1 expression, and severely impaired tTreg cell development in embryos, adults, and Rag2-/- γc-/- hematopoietic chimeras reconstituted with cd69-/- stem cells. Accordingly, mirn155-/- mice have an impaired development of CD69+ tTreg cells and overexpression of the miR-155-induced CD69 pathway, suggesting that both molecules might be concomitantly activated in a positive-feedback loop. Moreover, in vitro-inducible CD25+ Treg (iTreg) cell development is inhibited in Il2rγ-/-/cd69-/- mice. Our data highlight the contribution of CD69 as a nonredundant key regulator of BIC/miR-155-dependent Treg cell development and homeostasis.
Collapse
|
44
|
Characterization of the Microenvironment of Nodular Lymphocyte Predominant Hodgkin Lymphoma. Int J Mol Sci 2016; 17:ijms17122127. [PMID: 27999289 PMCID: PMC5187927 DOI: 10.3390/ijms17122127] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/09/2016] [Accepted: 12/12/2016] [Indexed: 12/22/2022] Open
Abstract
Nodular lymphocyte predominant Hodgkin lymphoma (NLPHL) is characterized by a low percentage of neoplastic lymphocyte predominant (LP) cells in a background of lymphocytes. The goal of this study is to characterize the microenvironment in NLPHL. Ten NLPHL cases and seven reactive lymph nodes (RLN) were analyzed by flow cytometry for the main immune cells and multiple specific subpopulations. To discriminate between cells in or outside the tumor cell area, we used CD26. We observed significantly lower levels of CD20+ B-cells and CD56+ NK cells and higher levels of CD4+ T-cells in NLPHL in comparison to RLN. In the subpopulations, we observed increased numbers of PD-1+CD4+ T follicular helper cells (TFH), CD69+CD4+ and CD69+CD8+ T-cells and CCR7-CD45RA-CD4+ effector memory T-cells, while FoxP3+CD4+ T regulatory cells (Tregs) and CCR7-CD45RA+ terminally differentiated CD4+ T-cells were decreased in NLPHL compared to RLN. CD69+ cells were increased in the tumor cell area in CD4+ and CD8+ T-cells, while FoxP3+CD25+CD4+ Tregs and CD25+CD8+ T-cells were significantly increased outside the tumor area. Thus, we show a markedly altered microenvironment in NLPHL, with lower numbers of NK cells and Tregs. PD-1+CD4+ and CD69+ T-cells were located inside, and Tregs and CD25+CD8+ cells outside the tumor cell area.
Collapse
|
45
|
Studies in a Murine Model Confirm the Safety of Griffithsin and Advocate Its Further Development as a Microbicide Targeting HIV-1 and Other Enveloped Viruses. Viruses 2016; 8:v8110311. [PMID: 27869695 PMCID: PMC5127025 DOI: 10.3390/v8110311] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 11/04/2016] [Indexed: 11/17/2022] Open
Abstract
Griffithsin (GRFT), a lectin from Griffithsia species, inhibits human immunodeficiency virus-1 (HIV-1) replication at sub-nanomolar concentrations, with limited cellular toxicity. However, in vivo safety of GRFT is not fully understood, especially following parenteral administration. We first assessed GRFT’s effects in vitro, on mouse peripheral blood mononuclear cell (mPBMC) viability, mitogenicity, and activation using flow-cytometry, as well as cytokine secretion through enzyme-linked immunosorbent assay (ELISA). Toxicological properties of GRFT were determined after a single subcutaneous administration of 50 mg/kg or 14 daily doses of 10 mg/kg in BALB/c mice. In the context of microbicide development, toxicity of GRFT at 2 mg/kg was determined after subcutaneous, intravaginal, and intraperitoneal administrations, respectively. Interestingly, GRFT caused no significant cell death, mitogenicity, activation, or cytokine release in mPBMCs, validating the usefulness of a mouse model. An excellent safety profile for GRFT was obtained in vivo: no overt changes were observed in animal fitness, blood chemistry or CBC parameters. Following GRFT treatment, reversible splenomegaly was observed with activation of certain spleen B and T cells. However, spleen tissues were not pathologically altered by GRFT (either with a single high dose or chronic doses). Finally, no detectable toxicity was found after mucosal or systemic treatment with 2 mg/kg GRFT, which should be further developed as a microbicide for HIV prevention.
Collapse
|
46
|
Ivanova DL, Fatima R, Gigley JP. Comparative Analysis of Conventional Natural Killer Cell Responses to Acute Infection with Toxoplasma gondii Strains of Different Virulence. Front Immunol 2016; 7:347. [PMID: 27721814 PMCID: PMC5033988 DOI: 10.3389/fimmu.2016.00347] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 08/30/2016] [Indexed: 12/14/2022] Open
Abstract
Conventional natural killer (cNK) cells, members of group 1 innate lymphoid cells, are a diverse cell subpopulation based on surface receptor expression, maturation, and functional potential. cNK cells are critical for early immunity to Toxoplasma gondii via IFNγ production. Acute cNK cell responses to infection with different strains of T. gondii have not yet been characterized in detail. Here, we comprehensively performed this analysis with Type I virulent RH, Type II avirulent ME49, and fully attenuated Type I cps1-1 strains. In response to these three parasite strains, murine cNK cells produce IFNγ and become cytotoxic and polyfunctional (IFNγ+CD107a+) at the site of infection. In contrast to virulent RH and avirulent ME49 T. gondii strains, attenuated cps1-1 induced only local cNK cell responses. Infections with RH and ME49 parasites significantly decreased cNK cell frequency and numbers in spleen 5 days post infection compared with cps1-1 parasites. cNK cell subsets expressing activating receptors Ly49H, Ly49D, and NKG2D and inhibitory receptors Ly49I and CD94/NKG2A were similar when compared between the strains and at 5 days post infection. cNK cells were not proliferating (Ki67−) 5 days post infection with any of the strains. cNK cell maturation as measured by CD27, CD11b, and KLRG1 was affected after infection with different parasite strains. RH and ME49 infection significantly reduced mature cNK cell frequency and increased immature cNK cell populations compared with cps1-1 infection. Interestingly, KLRG1 was highly expressed on immature cNK cells after RH infection. After RH and ME49 infections, CD69+ cNK cells in spleen were present at higher frequency than after cps1-1 infection, which may correlate with loss of the mature cNK cell population. Cytokine multiplex analysis indicated cNK cell responses correlated with peritoneal exudate cell, spleen, and serum proinflammatory cytokine levels, including IL-12. qPCR analysis of parasite-specific B1 gene revealed that parasite burdens may affect cNK cell responses. This study demonstrates infection with RH and ME49 parasites impacts cNK cell maturation during acute T. gondii infection. Different cNK cell responses could impact early immunity and susceptibility to these strains.
Collapse
Affiliation(s)
- Daria L Ivanova
- Department of Molecular Biology, University of Wyoming , Laramie, WY , USA
| | - Rida Fatima
- Department of Molecular Biology, University of Wyoming , Laramie, WY , USA
| | - Jason P Gigley
- Department of Molecular Biology, University of Wyoming , Laramie, WY , USA
| |
Collapse
|
47
|
Paul S, Kulkarni N, Shilpi, Lal G. Intratumoral natural killer cells show reduced effector and cytolytic properties and control the differentiation of effector Th1 cells. Oncoimmunology 2016; 5:e1235106. [PMID: 28151533 DOI: 10.1080/2162402x.2016.1235106] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 09/03/2016] [Accepted: 09/06/2016] [Indexed: 12/12/2022] Open
Abstract
Natural killer (NK) cells are known to have effector and cytolytic properties to kill virus infected or tumor cells spontaneously. Due to these properties, NK cells have been used as an adoptive cellular therapy to control tumor growth in various clinical trials but have shown limited clinical benefits. This indicates that our knowledge about phenotypic and functional differences in NK cells within the tumor microenvironment and secondary lymphoid tissues is incomplete. In this work, we report that B16F10 cell-induced melanoma recruits the CD11b+CD27+ subset of NK cells at a very early stage during tumor progression. These intratumoral NK cells showed increased expression of CD69, reduced inhibitory receptor KLRG1, and decreased proliferative ability. As compared to splenic NK cells, intratumoral NK cells showed decreased expression of activating receptors NKG2D, Ly49D and Ly49H; increased inhibitory receptors, NKG2A and Ly49A; decreased cytokines IFNγ and GM-CSF; decreased cytokine receptors IL-21R, IL-6Rα, and CD122 expression. Depletion of NK cells led to decrease peripheral as well as intratumoral effector CD4+T-bet+ cells (Th1), and increased tumor growth. Furthermore, purified NK cells showed increased differentiation of Th1 cells in an IFNγ-dependent manner. Anti-NKG2D in the culture promoted differentiation of effector Th1 cells. Collectively, these observations suggest that intratumoral NK cells possess several inhibitory functions that can be partly reversed by signaling through the NKG2D receptor or by cytokine stimulation, which then leads to increased differentiation of effector Th1 cells.
Collapse
Affiliation(s)
- Sourav Paul
- National Centre for Cell Science , Pune, India
| | | | - Shilpi
- National Centre for Cell Science , Pune, India
| | | |
Collapse
|
48
|
Colbeck EJ, Hindley JP, Smart K, Jones E, Bloom A, Bridgeman H, McPherson RC, Turner DG, Ladell K, Price DA, O'Connor RA, Anderton SM, Godkin AJ, Gallimore AM. Eliminating roles for T-bet and IL-2 but revealing superior activation and proliferation as mechanisms underpinning dominance of regulatory T cells in tumors. Oncotarget 2016; 6:24649-59. [PMID: 26433463 PMCID: PMC4694785 DOI: 10.18632/oncotarget.5584] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 08/22/2015] [Indexed: 12/28/2022] Open
Abstract
Foxp3+ regulatory T cells (Tregs) are often highly enriched within the tumor-infiltrating T cell pool. Using a well-characterised model of carcinogen-induced fibrosarcomas we show that the enriched tumor-infiltrating Treg population comprises largely of CXCR3+ T-bet+ ‘TH1-like’ Tregs which are thymus-derived Helios+ cells. Whilst IL-2 maintains homeostatic ratios of Tregs in lymphoid organs, we found that the perturbation in Treg frequencies in tumors is IL-2 independent. Moreover, we show that the TH1 phenotype of tumor-infiltrating Tregs is dispensable for their ability to influence tumor progression. We did however find that unlike Tconvs, the majority of intra-tumoral Tregs express the activation markers CD69, CD25, ICOS, CD103 and CTLA4 and are significantly more proliferative than Tconvs. Moreover, we have found that CD69+ Tregs are more suppressive than their CD69− counterparts. Collectively, these data indicate superior activation of Tregs in the tumor microenvironment, promoting their suppressive ability and selective proliferation at this site.
Collapse
Affiliation(s)
- Emily J Colbeck
- Institute of Infection Immunity and Biochemistry, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - James P Hindley
- Institute of Infection Immunity and Biochemistry, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - Kathryn Smart
- Institute of Infection Immunity and Biochemistry, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - Emma Jones
- Institute of Infection Immunity and Biochemistry, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - Anja Bloom
- Institute of Infection Immunity and Biochemistry, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - Hayley Bridgeman
- Institute of Infection Immunity and Biochemistry, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - Rhoanne C McPherson
- MRC Centre for Inflammation Research, Centre for Multiple Sclerosis Research and Centre for Immunity Infection and Evolution, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Darryl G Turner
- MRC Centre for Inflammation Research, Centre for Multiple Sclerosis Research and Centre for Immunity Infection and Evolution, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Kristin Ladell
- Institute of Infection Immunity and Biochemistry, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - David A Price
- Institute of Infection Immunity and Biochemistry, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - Richard A O'Connor
- MRC Centre for Inflammation Research, Centre for Multiple Sclerosis Research and Centre for Immunity Infection and Evolution, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Stephen M Anderton
- MRC Centre for Inflammation Research, Centre for Multiple Sclerosis Research and Centre for Immunity Infection and Evolution, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Andrew J Godkin
- Institute of Infection Immunity and Biochemistry, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - Awen M Gallimore
- Institute of Infection Immunity and Biochemistry, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| |
Collapse
|
49
|
CD69 Deficiency Enhances the Host Response to Vaccinia Virus Infection through Altered NK Cell Homeostasis. J Virol 2016; 90:6464-6474. [PMID: 27147744 DOI: 10.1128/jvi.00550-16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 04/26/2016] [Indexed: 01/18/2023] Open
Abstract
UNLABELLED During the host response to viral infection, the transmembrane CD69 protein is highly upregulated in all immune cells. We have studied the role of CD69 in the murine immune response to vaccinia virus (VACV) infection, and we report that the absence of CD69 enhances protection against VACV at both short and long times postinfection in immunocompetent and immunodeficient mice. Natural killer (NK) cells were implicated in the increased infection control, since the differences were greatly diminished when NK cells were depleted. This role of NK cells was not based on an altered NK cell reactivity, since CD69 did not affect the NK cell activation threshold in response to major histocompatibility complex class I NK cell targets or protein kinase C activation. Instead, NK cell numbers were increased in the spleen and peritoneum of CD69-deficient infected mice. That was not just secondary to better infection control in CD69-deficient mice, since NK cell numbers in the spleens and the blood of uninfected CD69(-/-) mice were already augmented. CD69-deficient NK cells from infected mice did not have an altered proliferation capacity. However, a lower spontaneous cell death rate was observed for CD69(-/-) lymphocytes. Thus, our results suggest that CD69 limits the innate immune response to VACV infection at least in part through cell homeostatic survival. IMPORTANCE We show that increased natural killer (NK) cell numbers augment the host response and survival after infection with vaccinia virus. This phenotype is found in the absence of CD69 in immunocompetent and immunodeficient hosts. As part of the innate immune system, NK lymphocytes are activated and participate in the defense against infection. Several studies have focused on the contribution of NK cells to protection against infection with vaccinia virus. In this study, it was demonstrated that the augmented early NK cell response in the absence of CD69 is responsible for the increased protection seen during infection with vaccinia virus even at late times of infection. This work indicates that the CD69 molecule may be a target of therapy to augment the response to poxvirus infection.
Collapse
|
50
|
Liappas G, González-Mateo GT, Sánchez-Díaz R, Lazcano JJ, Lasarte S, Matesanz-Marín A, Zur R, Ferrantelli E, Ramírez LG, Aguilera A, Fernández-Ruiz E, Beelen RHJ, Selgas R, Sánchez-Madrid F, Martín P, López-Cabrera M. Immune-Regulatory Molecule CD69 Controls Peritoneal Fibrosis. J Am Soc Nephrol 2016; 27:3561-3576. [PMID: 27151919 DOI: 10.1681/asn.2015080909] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 03/07/2016] [Indexed: 01/16/2023] Open
Abstract
Patients with ESRD undergoing peritoneal dialysis develop progressive peritoneal fibrosis, which may lead to technique failure. Recent data point to Th17-mediated inflammation as a key contributor in peritoneal damage. The leukocyte antigen CD69 modulates the setting and progression of autoimmune and inflammatory diseases by controlling the balance between Th17 and regulatory T cells (Tregs). However, the relevance of CD69 in tissue fibrosis remains largely unknown. Thus, we explored the role of CD69 in fibroproliferative responses using a mouse model of peritoneal fibrosis induced by dialysis fluid exposure under either normal or uremic status. We found that cd69-/- mice compared with wild-type (WT) mice showed enhanced fibrosis, mesothelial to mesenchymal transition, IL-17 production, and Th17 cell infiltration in response to dialysis fluid treatment. Uremia contributed partially to peritoneal inflammatory and fibrotic responses. Additionally, antibody-mediated CD69 blockade in WT mice mimicked the fibrotic response of cd69-/- mice. Finally, IL-17 blockade in cd69-/- mice decreased peritoneal fibrosis to the WT levels, and mixed bone marrow from cd69-/- and Rag2-/-γc-/- mice transplanted into WT mice reproduced the severity of the response to dialysis fluid observed in cd69-/- mice, showing that CD69 exerts its regulatory function within the lymphocyte compartment. Overall, our results indicate that CD69 controls tissue fibrosis by regulating Th17-mediated inflammation.
Collapse
Affiliation(s)
- Georgios Liappas
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas Universidad Autónoma de Madrid, Madrid, Spain
| | - Guadalupe Tirma González-Mateo
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas Universidad Autónoma de Madrid, Madrid, Spain
| | - Raquel Sánchez-Díaz
- Signaling and Inflammation Program, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Juan José Lazcano
- Signaling and Inflammation Program, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Sandra Lasarte
- Signaling and Inflammation Program, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Adela Matesanz-Marín
- Signaling and Inflammation Program, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Rafal Zur
- Department of Immunology and Oncology, Centro Nacional de Biotecnología Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Evelina Ferrantelli
- Department of Molecular Cell Biology and Immunology, Vrije Universiteit University Medical Center Vrije Universiteit Medisch Centrum, Amsterdam, The Netherlands
| | | | | | | | - Robert H J Beelen
- Department of Molecular Cell Biology and Immunology, Vrije Universiteit University Medical Center Vrije Universiteit Medisch Centrum, Amsterdam, The Netherlands
| | - Rafael Selgas
- Nephrology Department, Hospital Universitario La Paz, Instituto de Investigación Sanitaria La Paz, Madrid, Spain
| | - Francisco Sánchez-Madrid
- Signaling and Inflammation Program, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain.,Immunology Department, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria La Princesa, Madrid, Spain; and
| | - Pilar Martín
- Signaling and Inflammation Program, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain;
| | - Manuel López-Cabrera
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas Universidad Autónoma de Madrid, Madrid, Spain;
| |
Collapse
|