1
|
Parsyan A, Bhat V, Athwal H, Goebel EA, Allan AL. Artemis and its role in cancer. Transl Oncol 2025; 51:102165. [PMID: 39520877 PMCID: PMC11584690 DOI: 10.1016/j.tranon.2024.102165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/03/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024] Open
Abstract
Artemis is a key nuclease involved in the non-homologous end joining repair pathway upon DNA double-stranded breaks and during V(D)J recombination. It participates in various cellular processes and cooperates with various proteins involved in tumorigenesis. Its hereditary mutations lead to several pathological conditions, such as severe combined immunodeficiency with radiation sensitivity. Recent studies suggest that Artemis deregulation plays an important role in cancer and is associated with poorer oncologic outcomes and resistance to treatment including radiotherapy, chemotherapy and targeted therapeutics. Artemis emerges as an attractive candidate for cancer prognosis and treatment. Its role in modulating sensitivity to ionizing radiation and DNA-damaging agents makes it an appealing target for drug development. Various existing drugs and novel compounds have been described to inhibit Artemis activity. This review synthesizes the up-to-date information regarding Artemis function, its role in different malignancies and its clinical utility as a potential biomarker and therapeutic target in Oncology.
Collapse
Affiliation(s)
- Armen Parsyan
- Department of Anatomy and Cell Biology, Western University, London, ON, N6A 3K7, Canada; Verspeeten Family Cancer Centre, London Health Sciences Centre, London, ON, N6A 5W9, Canada; Department of Oncology, Western University, London, ON, N6A 3K7, Canada; Department of Surgery, St Joseph's Health Care and London Health Sciences Centre, Western University, London, ON, N6A 4V2, Canada.
| | - Vasudeva Bhat
- Department of Anatomy and Cell Biology, Western University, London, ON, N6A 3K7, Canada; Verspeeten Family Cancer Centre, London Health Sciences Centre, London, ON, N6A 5W9, Canada
| | - Harjot Athwal
- Department of Anatomy and Cell Biology, Western University, London, ON, N6A 3K7, Canada
| | - Emily A Goebel
- Department of Pathology and Laboratory Medicine, London Health Sciences Centre and Western University, London, ON, N6A 5A5, Canada
| | - Alison L Allan
- Department of Anatomy and Cell Biology, Western University, London, ON, N6A 3K7, Canada; Verspeeten Family Cancer Centre, London Health Sciences Centre, London, ON, N6A 5W9, Canada; Department of Oncology, Western University, London, ON, N6A 3K7, Canada
| |
Collapse
|
2
|
Huang X, Wang X, Sun Y, Li L, Li A, Xu W, Xie X, Diao Y. Bleomycin promotes rAAV2 transduction via DNA-PKcs/Artemis-mediated DNA break repair pathways. Virology 2024; 590:109959. [PMID: 38100984 DOI: 10.1016/j.virol.2023.109959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/17/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023]
Abstract
Because it is safe and has a simple genome, recombinant adeno-associated virus (rAAV) is an extremely appealing vector for delivery in in vivo gene therapy. However, its low transduction efficiency for some cells, limits its further application in the field of gene therapy. Bleomycin is a chemotherapeutic agent approved by the FDA whose effect on rAAV transduction has not been studied. In this study, we systematically investigated the effect of Bleomycin on the second-strand synthesis and used CRISPR/CAS9 and RNAi methods to understand the effects of Bleomycin on rAAV vector transduction, particularly the effect of DNA repair enzymes. The results showed that Bleomycin could promote rAAV2 transduction both in vivo and in vitro. Increased transduction was discovered to be a direct result of decreased cytoplasmic rAAV particle degradation and increased second-strand synthesis. TDP1, PNKP, and SETMAR are required to repair the DNA damage gap caused by Bleomycin, TDP1, PNKP, and SETMAR promote rAAV second-strand synthesis. Bleomycin induced DNA-PKcs phosphorylation and phosphorylated DNA-PKcs and Artemis promoted second-strand synthesis. The current study identifies an effective method for increasing the capability and scope of in-vivo and in-vitro rAAV applications, which can amplify cell transduction at Bleomycin concentrations. It also supplies information on combining tumor gene therapy with chemotherapy.
Collapse
Affiliation(s)
- Xiaoping Huang
- College of Chemical Engineering and Materials Sciences, Quanzhou Normal University, Quanzhou, China; Institute of Molecular Medicine, Huaqiao University, Quanzhou, China
| | - Xiao Wang
- Institute of Molecular Medicine, Huaqiao University, Quanzhou, China
| | - Yaqi Sun
- College of Chemical Engineering and Materials Sciences, Quanzhou Normal University, Quanzhou, China
| | - Ling Li
- Institute of Molecular Medicine, Huaqiao University, Quanzhou, China
| | - Anna Li
- Institute of Molecular Medicine, Huaqiao University, Quanzhou, China
| | - Wentao Xu
- College of Chemical Engineering and Materials Sciences, Quanzhou Normal University, Quanzhou, China
| | - Xiaolan Xie
- College of Chemical Engineering and Materials Sciences, Quanzhou Normal University, Quanzhou, China.
| | - Yong Diao
- Institute of Molecular Medicine, Huaqiao University, Quanzhou, China.
| |
Collapse
|
3
|
Fochtman TJ, Oza JP. Established and Emerging Methods for Protecting Linear DNA in Cell-Free Expression Systems. Methods Protoc 2023; 6:mps6020036. [PMID: 37104018 PMCID: PMC10146267 DOI: 10.3390/mps6020036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 04/03/2023] Open
Abstract
Cell-free protein synthesis (CFPS) is a method utilized for producing proteins without the limits of cell viability. The plug-and-play utility of CFPS is a key advantage over traditional plasmid-based expression systems and is foundational to the potential of this biotechnology. A key limitation of CFPS is the varying stability of DNA types, limiting the effectiveness of cell-free protein synthesis reactions. Researchers generally rely on plasmid DNA for its ability to support robust protein expression in vitro. However, the overhead required to clone, propagate, and purify plasmids reduces the potential of CFPS for rapid prototyping. While linear templates overcome the limits of plasmid DNA preparation, linear expression templates (LETs) were under-utilized due to their rapid degradation in extract based CFPS systems, limiting protein synthesis. To reach the potential of CFPS using LETs, researchers have made notable progress toward protection and stabilization of linear templates throughout the reaction. The current advancements range from modular solutions, such as supplementing nuclease inhibitors and genome engineering to produce strains lacking nuclease activity. Effective application of LET protection techniques improves expression yields of target proteins to match that of plasmid-based expression. The outcome of LET utilization in CFPS is rapid design–build–test–learn cycles to support synthetic biology applications. This review describes the various protection mechanisms for linear expression templates, methodological insights for implementation, and proposals for continued efforts that may further advance the field.
Collapse
|
4
|
Gullickson P, Xu YW, Niedernhofer LJ, Thompson EL, Yousefzadeh MJ. The Role of DNA Repair in Immunological Diversity: From Molecular Mechanisms to Clinical Ramifications. Front Immunol 2022; 13:834889. [PMID: 35432317 PMCID: PMC9010869 DOI: 10.3389/fimmu.2022.834889] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/02/2022] [Indexed: 12/18/2022] Open
Abstract
An effective humoral immune response necessitates the generation of diverse and high-affinity antibodies to neutralize pathogens and their products. To generate this assorted immune repertoire, DNA damage is introduced at specific regions of the genome. Purposeful genotoxic insults are needed for the successful completion of multiple immunological diversity processes: V(D)J recombination, class-switch recombination, and somatic hypermutation. These three processes, in concert, yield a broad but highly specific immune response. This review highlights the importance of DNA repair mechanisms involved in each of these processes and the catastrophic diseases that arise from DNA repair deficiencies impacting immune system function. These DNA repair disorders underline not only the importance of maintaining genomic integrity for preventing disease but also for robust adaptive immunity.
Collapse
|
5
|
Wu HY, Zheng Y, Laciak AR, Huang NN, Koszelak-Rosenblum M, Flint AJ, Carr G, Zhu G. Structure and Function of SNM1 Family Nucleases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1414:1-26. [PMID: 35708844 DOI: 10.1007/5584_2022_724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Three human nucleases, SNM1A, SNM1B/Apollo, and SNM1C/Artemis, belong to the SNM1 gene family. These nucleases are involved in various cellular functions, including homologous recombination, nonhomologous end-joining, cell cycle regulation, and telomere maintenance. These three proteins share a similar catalytic domain, which is characterized as a fused metallo-β-lactamase and a CPSF-Artemis-SNM1-PSO2 domain. SNM1A and SNM1B/Apollo are exonucleases, whereas SNM1C/Artemis is an endonuclease. This review contains a summary of recent research on SNM1's cellular and biochemical functions, as well as structural biology studies. In addition, protein structure prediction by the artificial intelligence program AlphaFold provides a different view of the proteins' non-catalytic domain features, which may be used in combination with current results from X-ray crystallography and cryo-EM to understand their mechanism more clearly.
Collapse
|
6
|
Yosaatmadja Y, Baddock H, Newman J, Bielinski M, Gavard A, Mukhopadhyay SMM, Dannerfjord A, Schofield C, McHugh P, Gileadi O. Structural and mechanistic insights into the Artemis endonuclease and strategies for its inhibition. Nucleic Acids Res 2021; 49:9310-9326. [PMID: 34387696 PMCID: PMC8450076 DOI: 10.1093/nar/gkab693] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 07/20/2021] [Accepted: 08/11/2021] [Indexed: 12/23/2022] Open
Abstract
Artemis (SNM1C/DCLRE1C) is an endonuclease that plays a key role in development of B- and T-lymphocytes and in dsDNA break repair by non-homologous end-joining (NHEJ). Artemis is phosphorylated by DNA-PKcs and acts to open DNA hairpin intermediates generated during V(D)J and class-switch recombination. Artemis deficiency leads to congenital radiosensitive severe acquired immune deficiency (RS-SCID). Artemis belongs to a superfamily of nucleases containing metallo-β-lactamase (MBL) and β-CASP (CPSF-Artemis-SNM1-Pso2) domains. We present crystal structures of the catalytic domain of wildtype and variant forms of Artemis, including one causing RS-SCID Omenn syndrome. The catalytic domain of the Artemis has similar endonuclease activity to the phosphorylated full-length protein. Our structures help explain the predominantly endonucleolytic activity of Artemis, which contrasts with the predominantly exonuclease activity of the closely related SNM1A and SNM1B MBL fold nucleases. The structures reveal a second metal binding site in its β-CASP domain unique to Artemis, which is amenable to inhibition by compounds including ebselen. By combining our structural data with that from a recently reported Artemis structure, we were able model the interaction of Artemis with DNA substrates. The structures, including one of Artemis with the cephalosporin ceftriaxone, will help enable the rational development of selective SNM1 nuclease inhibitors.
Collapse
Affiliation(s)
- Yuliana Yosaatmadja
- Centre for Medicines Discovery, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Hannah T Baddock
- Department of Oncology, MRC-Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Joseph A Newman
- Centre for Medicines Discovery, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Marcin Bielinski
- The Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Angeline E Gavard
- Centre for Medicines Discovery, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK
| | | | - Adam A Dannerfjord
- Centre for Medicines Discovery, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Christopher J Schofield
- The Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Peter J McHugh
- Department of Oncology, MRC-Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Opher Gileadi
- Centre for Medicines Discovery, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK
| |
Collapse
|
7
|
Carusillo A, Mussolino C. DNA Damage: From Threat to Treatment. Cells 2020; 9:E1665. [PMID: 32664329 PMCID: PMC7408370 DOI: 10.3390/cells9071665] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/07/2020] [Accepted: 07/07/2020] [Indexed: 12/14/2022] Open
Abstract
DNA is the source of genetic information, and preserving its integrity is essential in order to sustain life. The genome is continuously threatened by different types of DNA lesions, such as abasic sites, mismatches, interstrand crosslinks, or single-stranded and double-stranded breaks. As a consequence, cells have evolved specialized DNA damage response (DDR) mechanisms to sustain genome integrity. By orchestrating multilayer signaling cascades specific for the type of lesion that occurred, the DDR ensures that genetic information is preserved overtime. In the last decades, DNA repair mechanisms have been thoroughly investigated to untangle these complex networks of pathways and processes. As a result, key factors have been identified that control and coordinate DDR circuits in time and space. In the first part of this review, we describe the critical processes encompassing DNA damage sensing and resolution. In the second part, we illustrate the consequences of partial or complete failure of the DNA repair machinery. Lastly, we will report examples in which this knowledge has been instrumental to develop novel therapies based on genome editing technologies, such as CRISPR-Cas.
Collapse
Affiliation(s)
- Antonio Carusillo
- Institute for Transfusion Medicine and Gene Therapy, Medical Center—University of Freiburg, 79106 Freiburg, Germany;
- Center for Chronic Immunodeficiency, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Claudio Mussolino
- Institute for Transfusion Medicine and Gene Therapy, Medical Center—University of Freiburg, 79106 Freiburg, Germany;
- Center for Chronic Immunodeficiency, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| |
Collapse
|
8
|
Ministro J, Manuel AM, Goncalves J. Therapeutic Antibody Engineering and Selection Strategies. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2019; 171:55-86. [PMID: 31776591 DOI: 10.1007/10_2019_116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Antibody drugs became an increasingly important element of the therapeutic landscape. Their accomplishment has been driven by many unique properties, in particular by their very high specificity and selectivity, in contrast to the off-target liabilities of small molecules (SMs). Antibodies can bring additional functionality to the table with their ability to interact with the immune system, and this can be further manipulated with advances in antibody engineering.The expansion of strategies related to discovery technologies of monoclonal antibodies (mAbs) (phage display, yeast display, ribosome display, bacterial display, mammalian cell surface display, mRNA display, DNA display, transgenic animal, and human B cell derived) opened perspectives for the screening and the selection of therapeutic antibodies for, theoretically, any target from any kind of organism. Moreover, antibody engineering technologies were developed and explored to obtain chosen characteristics of selected leading candidates such as high affinity, low immunogenicity, improved functionality, improved protein production, improved stability, and others. This chapter contains an overview of discovery technologies, mainly display methods and antibody humanization methods for the selection of therapeutic humanized and human mAbs that appeared along the development of these technologies and thereafter. The increasing applications of these technologies will be highlighted in the antibody engineering area (affinity maturation, guided selection to obtain human antibodies) giving promising perspectives for the development of future therapeutics.
Collapse
Affiliation(s)
| | - Ana Margarida Manuel
- iMed - Research Institute for Medicines, Faculty of Pharmacy at University of Lisbon, Lisbon, Portugal
| | - Joao Goncalves
- iMed - Research Institute for Medicines, Faculty of Pharmacy at University of Lisbon, Lisbon, Portugal.
| |
Collapse
|
9
|
Moreno-Villanueva M, Feiveson AH, Krieger S, Kay Brinda A, von Scheven G, Bürkle A, Crucian B, Wu H. Synergistic Effects of Weightlessness, Isoproterenol, and Radiation on DNA Damage Response and Cytokine Production in Immune Cells. Int J Mol Sci 2018; 19:ijms19113689. [PMID: 30469384 PMCID: PMC6275019 DOI: 10.3390/ijms19113689] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/10/2018] [Accepted: 11/11/2018] [Indexed: 12/15/2022] Open
Abstract
The implementation of rotating-wall vessels (RWVs) for studying the effect of lack of gravity has attracted attention, especially in the fields of stem cells, tissue regeneration, and cancer research. Immune cells incubated in RWVs exhibit several features of immunosuppression including impaired leukocyte proliferation, cytokine responses, and antibody production. Interestingly, stress hormones influence cellular immune pathways affected by microgravity, such as cell proliferation, apoptosis, DNA repair, and T cell activation. These pathways are crucial defense mechanisms that protect the cell from toxins, pathogens, and radiation. Despite the importance of the adrenergic receptor in regulating the immune system, the effect of microgravity on the adrenergic system has been poorly studied. Thus, we elected to investigate the synergistic effects of isoproterenol (a sympathomimetic drug), radiation, and microgravity in nonstimulated immune cells. Peripheral blood mononuclear cells were treated with the sympathomimetic drug isoproterenol, exposed to 0.8 or 2 Gy γ-radiation, and incubated in RWVs. Mixed model regression analyses showed significant synergistic effects on the expression of the β2-adrenergic receptor gene (ADRB2). Radiation alone increased ADRB2 expression, and cells incubated in microgravity had more DNA strand breaks than cells incubated in normal gravity. We observed radiation-induced cytokine production only in microgravity. Prior treatment with isoproterenol clearly prevents most of the microgravity-mediated effects. RWVs may be a useful tool to provide insight into novel regulatory pathways, providing benefit not only to astronauts but also to patients suffering from immune disorders or undergoing radiotherapy.
Collapse
Affiliation(s)
- Maria Moreno-Villanueva
- National Aeronautics and Space Administration (NASA), Johnson Space Center Houston, Houston, TX 77058, USA.
- Molecular Toxicology Group, Department of Biology, Box 628, University of Konstanz, 78457 Konstanz, Germany.
| | - Alan H Feiveson
- National Aeronautics and Space Administration (NASA), Johnson Space Center Houston, Houston, TX 77058, USA.
| | | | - AnneMarie Kay Brinda
- Department of Biomedical Engineering, University of Minnesota, 312 Church Street SE, Minneapolis, MN 55455, USA.
| | - Gudrun von Scheven
- Molecular Toxicology Group, Department of Biology, Box 628, University of Konstanz, 78457 Konstanz, Germany.
| | - Alexander Bürkle
- Molecular Toxicology Group, Department of Biology, Box 628, University of Konstanz, 78457 Konstanz, Germany.
| | - Brian Crucian
- National Aeronautics and Space Administration (NASA), Johnson Space Center Houston, Houston, TX 77058, USA.
| | - Honglu Wu
- National Aeronautics and Space Administration (NASA), Johnson Space Center Houston, Houston, TX 77058, USA.
| |
Collapse
|
10
|
Gholami S, Mohammadi SM, Movasaghpour Akbari A, Abedelahi A, Alihemmati A, Fallahi S, Nozad Charoudeh H. Terminal Deoxynucleotidyl Transferase (TdT) Inhibiti on of Cord Blood Derived B and T Cells Expansion. Adv Pharm Bull 2017; 7:215-220. [PMID: 28761823 PMCID: PMC5527235 DOI: 10.15171/apb.2017.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 04/30/2017] [Accepted: 05/01/2017] [Indexed: 01/01/2023] Open
Abstract
Purpose: Terminal deoxynucleotidyl transferase(TdT) is a DNA polymerase that is present in immature pre-B and pre-T cells. TdT inserts N-nucleotides to the V (D) J gene segment during rearrangements of genes, therefore, it plays a vital role in the development and variation of the immune system in vertebrates. Here we evaluated the relationship between cytokines like interleukin-2 (IL-2), interleukin-7 (IL-7), and interleukin-15 (IL-15) and TdT expression in cord blood mononuclear cells and also effect of inhibition in the expansion of B and T cells derived from cord blood. Methodes: The cord blood mononuclear cells were cultured with different combination of cytokines for 21days, which they were harvested in definite days (7, 14 and 21) and evaluated by flow cytometry. Results: Our data indicated that TdT expression increased in cord blood mononuclear cells using immune cell key cytokines without being dependent on the type of cytokines. TdT inhibition reduced both the expansion of B and T cells derived from cord blood and also declined the apoptosis and proliferation. Considered together, TdT played an important role in the control of the expansion of B and T cells derived from cord blood. Conclusion: considered together, it was observed that TdT expression was increased by cytokines and TdT inhibition not only reduced B and Tcells derived from cord blood, but it also affected the rate of apoptosis and proliferation.
Collapse
Affiliation(s)
- Sanaz Gholami
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Anatomical Sciences Department, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Ali Abedelahi
- Anatomical Sciences Department, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Alihemmati
- Anatomical Sciences Department, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Fallahi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
11
|
Reeves R. High mobility group (HMG) proteins: Modulators of chromatin structure and DNA repair in mammalian cells. DNA Repair (Amst) 2015; 36:122-136. [PMID: 26411874 DOI: 10.1016/j.dnarep.2015.09.015] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
It has been almost a decade since the last review appeared comparing and contrasting the influences that the different families of High Mobility Group proteins (HMGA, HMGB and HMGN) have on the various DNA repair pathways in mammalian cells. During that time considerable progress has been made in our understanding of how these non-histone proteins modulate the efficiency of DNA repair by all of the major cellular pathways: nucleotide excision repair, base excision repair, double-stand break repair and mismatch repair. Although there are often similar and over-lapping biological activities shared by all HMG proteins, members of each of the different families appear to have a somewhat 'individualistic' impact on various DNA repair pathways. This review will focus on what is currently known about the roles that different HMG proteins play in DNA repair processes and discuss possible future research areas in this rapidly evolving field.
Collapse
Affiliation(s)
- Raymond Reeves
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-4660, USA.
| |
Collapse
|
12
|
Su YW, Chen YP, Chen MY, Reth M, Tan TH. The serine/threonine phosphatase PP4 is required for pro-B cell development through its promotion of immunoglobulin VDJ recombination. PLoS One 2013; 8:e68804. [PMID: 23874770 PMCID: PMC3712940 DOI: 10.1371/journal.pone.0068804] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 05/31/2013] [Indexed: 12/15/2022] Open
Abstract
PP4 phosphatase regulates a number of crucial processes but the role of PP4 in B cells has never been reported. We generated B cell-specific pp4 knockout mice and have identified an essential role for PP4 in B cell development. Deficiency of PP4 in B lineage cells leads to a strong reduction in pre-B cell numbers, an absence in immature B cells, and a complete loss of mature B cells. In PP4-deficient pro-B cells, immunoglobulin (Ig) DJ(H) recombination is impaired and Ig µ heavy chain expression is greatly decreased. In addition, PP4-deficient pro-B cells show an increase of DNA double-strand breaks at Ig loci. Consistent with their reduced numbers, residual PP4-deficient pre-B cells accumulate in the G1 phase, exhibit excessive DNA damage, and undergo increased apoptosis. Overexpression of transgenic Ig in PP4-deficient mice rescues the defect in B cell development such that the animals have normal numbers of IgM(+) B cells. Our study therefore reveals a novel function for PP4 in pro-B cell development through its promotion of V(H)DJ(H) recombination.
Collapse
Affiliation(s)
- Yu-Wen Su
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli County, Taiwan.
| | | | | | | | | |
Collapse
|
13
|
Briney BS, Jr. JEC. Secondary mechanisms of diversification in the human antibody repertoire. Front Immunol 2013; 4:42. [PMID: 23483107 PMCID: PMC3593266 DOI: 10.3389/fimmu.2013.00042] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 02/05/2013] [Indexed: 12/25/2022] Open
Abstract
V(D)J recombination and somatic hypermutation (SHM) are the primary mechanisms for diversification of the human antibody repertoire. These mechanisms allow for rapid humoral immune responses to a wide range of pathogenic challenges. V(D)J recombination efficiently generate a virtually limitless diversity through random recombination of variable (V), diversity (D), and joining (J) genes with diverse non-templated junctions between the selected gene segments. Following antigen stimulation, affinity maturation by SHM produces antibodies with refined specificity mediated by mutations typically focused in complementarity determining regions (CDRs), which form the bulk of the antigen recognition site. While V(D)J recombination and SHM are responsible for much of the diversity of the antibody repertoire, there are several secondary mechanisms that, while less frequent, make substantial contributions to antibody diversity including V(DD)J recombination (or D-D fusion), SHM-associated insertions and deletions, and affinity maturation and antigen contact by non-CDR regions of the antibody. In addition to enhanced diversity, these mechanisms allow the production of antibodies that are critical to response to a variety of viral and bacterial pathogens but that would be difficult to generate using only the primary mechanisms of diversification.
Collapse
Affiliation(s)
- Bryan S. Briney
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical CenterNashville, TN, USA
| | - James E. Crowe Jr.
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical CenterNashville, TN, USA
- Department of Pediatrics, Vanderbilt University Medical CenterNashville, TN, USA
- The Vanderbilt Vaccine Center, Vanderbilt University Medical CenterNashville, TN, USA
| |
Collapse
|
14
|
Malu S, Malshetty V, Francis D, Cortes P. Role of non-homologous end joining in V(D)J recombination. Immunol Res 2013; 54:233-46. [PMID: 22569912 DOI: 10.1007/s12026-012-8329-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The pathway of V(D)J recombination was discovered almost three decades ago. Yet it continues to baffle scientists because of its inherent complexity and the multiple layers of regulation that are required to efficiently generate a diverse repertoire of T and B cells. The non-homologous end-joining (NHEJ) DNA repair pathway is an integral part of the V(D)J reaction, and its numerous players perform critical functions in generating this vast diversity, while ensuring genomic stability. In this review, we summarize the efforts of a number of laboratories including ours in providing the mechanisms of V(D)J regulation with a focus on the NHEJ pathway. This involves discovering new players, unraveling unknown roles for known components, and understanding how deregulation of these pathways contributes to generation of primary immunodeficiencies. A long-standing interest of our laboratory has been to elucidate various mechanisms that control RAG activity. Our recent work has focused on understanding the multiple protein-protein interactions and protein-DNA interactions during V(D)J recombination, which allow efficient and regulated generation of the antigen receptors. Exploring how deregulation of this process contributes to immunodeficiencies also continues to be an important area of research for our group.
Collapse
Affiliation(s)
- Shruti Malu
- Department of Medicine, Immunology Institute, Mount Sinai School of Medicine, 1425 Madison Avenue, New York, NY 10029, USA
| | | | | | | |
Collapse
|
15
|
Briney BS, Willis JR, Hicar MD, Thomas JW, Crowe JE. Frequency and genetic characterization of V(DD)J recombinants in the human peripheral blood antibody repertoire. Immunology 2012; 137:56-64. [PMID: 22612413 DOI: 10.1111/j.1365-2567.2012.03605.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Antibody heavy-chain recombination that results in the incorporation of multiple diversity (D) genes, although uncommon, contributes substantially to the diversity of the human antibody repertoire. Such recombination allows the generation of heavy chain complementarity determining region 3 (HCDR3) regions of extreme length and enables junctional regions that, because of the nucleotide bias of N-addition regions, are difficult to produce through normal V(D)J recombination. Although this non-classical recombination process has been observed infrequently, comprehensive analysis of the frequency and genetic characteristics of such events in the human peripheral blood antibody repertoire has not been possible because of the rarity of such recombinants and the limitations of traditional sequencing technologies. Here, through the use of high-throughput sequencing of the normal human peripheral blood antibody repertoire, we analysed the frequency and genetic characteristics of V(DD)J recombinants. We found that these recombinations were present in approximately 1 in 800 circulating B cells, and that the frequency was severely reduced in memory cell subsets. We also found that V(DD)J recombination can occur across the spectrum of diversity genes, indicating that virtually all recombination signal sequences that flank diversity genes are amenable to V(DD)J recombination. Finally, we observed a repertoire bias in the diversity gene repertoire at the upstream (5') position, and discovered that this bias was primarily attributable to the order of diversity genes in the genomic locus.
Collapse
Affiliation(s)
- Bryan S Briney
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | | | | |
Collapse
|
16
|
Souto-Carneiro MM, Fritsch R, Sepúlveda N, Lagareiro MJ, Morgado N, Longo NS, Lipsky PE. The NF-kappaB canonical pathway is involved in the control of the exonucleolytic processing of coding ends during V(D)J recombination. THE JOURNAL OF IMMUNOLOGY 2008; 180:1040-9. [PMID: 18178844 DOI: 10.4049/jimmunol.180.2.1040] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
V(D)J recombination is essential to produce an Ig repertoire with a large range of Ag specificities. Although NF-kappaB-binding sites are present in the human and mouse IgH, Igkappa, and Iglambda enhancer modules and RAG expression is controlled by NF-kappaB, it is not known whether NF-kappaB regulates V(D)J recombination mechanisms after RAG-mediated dsDNA breaks. To clarify the involvement of NF-kappaB in human V(D)J recombination, we amplified Ig gene rearrangements from individual peripheral B cells of patients with X-linked anhidrotic ectodermal dysplasia with hyper-IgM syndrome (HED-ID) who have deficient expression of the NF-kappaB essential modulator (NEMO/Ikkgamma). The amplification of nonproductive Ig gene rearrangements from HED-ID B cells reflects the influence of the Ikkgamma-mediated canonical NF-kappaB pathway on specific molecular mechanisms involved in V(D)J recombination. We found that the CDR3(H) from HED-ID B cells were abnormally long, as a result of a marked reduction in the exonuclease activity on the V, D, and J germline coding ends, whereas random N-nucleotide addition and palindromic overhangs (P nucleotides) were comparable to controls. This suggests that an intact canonical NF-kappaB pathway is essential for normal exonucleolytic activity during human V(D)J recombination, whereas terminal deoxynucleotide transferase, Artemis, and DNA-dependent protein kinase catalytic subunit activity are not affected. The generation of memory B cells and somatic hypermutation were markedly deficient confirming a role for NF-kappaB in these events of B cell maturation. However, selection of the primary B cell repertoire appeared to be intact and was partially able to correct the defects generated by abnormal V(D)J recombination.
Collapse
Affiliation(s)
- M Margarida Souto-Carneiro
- Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892-1560, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Inagaki K, Ma C, Storm TA, Kay MA, Nakai H. The role of DNA-PKcs and artemis in opening viral DNA hairpin termini in various tissues in mice. J Virol 2007; 81:11304-21. [PMID: 17686847 PMCID: PMC2045570 DOI: 10.1128/jvi.01225-07] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A subset of cellular DNA hairpins at double-strand breaks is processed by DNA-dependent protein kinase catalytic subunit (DNA-PKcs)- and Artemis-associated endonuclease. DNA hairpin termini of adeno-associated virus (AAV) are processed by DNA repair machinery; however, how and what cellular factors are involved in the process remain elusive. Here, we show that DNA-PKcs and Artemis open AAV inverted terminal repeat (ITR) hairpin loops in a tissue-dependent manner. We investigated recombinant AAV (rAAV) genome metabolism in various tissues of DNA-PKcs- or Artemis-proficient or -deficient mice. In the absence of either factor, ITR hairpin opening was impaired, resulting in accumulation of double-stranded linear rAAV genomes capped with covalently closed hairpins at termini. The 5' end of 3-base hairpin loops of the ITR was the primary target for DNA-PKcs- and Artemis-mediated cleavage. In the muscle, heart, and kidney, DNA-PKcs- and Artemis-dependent hairpin opening constituted a significant pathway, while in the liver, undefined alternative pathways effectively processed hairpins. In addition, our study revealed a Holliday junction resolvase-like activity in the liver that cleaved T-shaped ITR hairpin shoulders by making nicks at diametrically opposed sites. Thus, our approach furthers our understanding of not only rAAV biology but also fundamental DNA repair systems in various tissues of living animals.
Collapse
Affiliation(s)
- Katsuya Inagaki
- Department of Molecular Genetics & Biochemistry, University of Pittsburgh School of Medicine, W1244 BSTWR, 200 Lothrop St., Pittsburgh, PA 15261, USA
| | | | | | | | | |
Collapse
|
18
|
Reeves R, Adair JE. Role of high mobility group (HMG) chromatin proteins in DNA repair. DNA Repair (Amst) 2005; 4:926-38. [PMID: 15916927 DOI: 10.1016/j.dnarep.2005.04.010] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2005] [Indexed: 12/29/2022]
Abstract
While the structure and composition of chromatin not only influences the type and extent of DNA damage incurred by eukaryotic cells, it also poses a major obstacle to the efficient repair of genomic lesions. Understanding how DNA repair processes occur in the context of nuclear chromatin is a current experimental challenge, especially in mammalian cells where the powerful tools of genetic analysis that have been so successful in elucidating repair mechanisms in yeast have seen only limited application. Even so, work over the last decade with both yeast and mammalian cells has provided a rather detailed description of how nucleosomes, the basic subunit of chromatin, influence both DNA damage and repair in all eukaryotic cells. The picture that has emerged is, nonetheless, incomplete since mammalian chromatin is far more complex than simply consisting of vast arrays of histone-containing nucleosome core particles. Members of the "High Mobility Group" (HMG) of non-histone proteins are essential, and highly dynamic, constituents of mammalian chromosomes that participate in all aspects of chromatin structure and function, including DNA repair processes. Yet comparatively little is known about how HMG proteins participate in the molecular events of DNA repair in vivo. What information is available, however, indicates that all three major families of mammalian HMG proteins (i.e., HMGA, HMGB and HMGN) participate in various DNA repair processes, albeit in different ways. For example, HMGN proteins have been shown to stimulate nucleotide excision repair (NER) of ultraviolet light (UV)-induced cyclobutane pyrimidine dimer (CPD) lesions of DNA in vivo. In contrast, HMGA proteins have been demonstrated to preferentially bind to, and inhibit NER of, UV-induced CPDs in stretches of AT-rich DNA both in vitro and in vivo. HMGB proteins, on the other hand, have been shown to both selectively bind to, and inhibit NER of, cisplatin-induced DNA intrastrand cross-links and to bind to misincorporated nucleoside analogs and, depending on the biological circumstances, either promote lesion repair or induce cellular apoptosis. Importantly, from a medical perspective, the ability of the HMGA and HMGB proteins to inhibit DNA repair in vivo suggests that they may be intimately involved with the accumulation of genetic mutations and chromosome instabilities frequently observed in cancers. Not surprisingly, therefore, the HMG proteins are being actively investigated as potential new therapeutic drug targets for the treatment of cancers and other diseases.
Collapse
Affiliation(s)
- Raymond Reeves
- School of Molecular Biosciences, Washington State University Pullman, WA 99164-4660, USA.
| | | |
Collapse
|
19
|
Sawchuk DJ, Mansilla-Soto J, Alarcon C, Singha NC, Langen H, Bianchi ME, Lees-Miller SP, Nussenzweig MC, Cortes P. Ku70/Ku80 and DNA-dependent Protein Kinase Catalytic Subunit Modulate RAG-mediated Cleavage. J Biol Chem 2004; 279:29821-31. [PMID: 15123719 DOI: 10.1074/jbc.m403706200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 12/23 rule is a critical step for regulation of V(D)J recombination. To date, only the RAG proteins and high mobility group protein 1 or 2 have been implicated in 12/23 regulation. Through protein fractionation and biochemical experiments, we find that Ku70/Ku80 and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) modulate RAG-mediated cleavage. Modulation of cleavage by Ku70/80 and DNA-PKcs results in preferential inhibition of 12/12 and 23/23 DNA cleavage, thus increasing 12/23 rule specificity. This observation indicates that DNA repair factors, Ku70/80 and DNA-PKcs, might be present upstream of the DNA cleavage events and not recruited downstream as is currently thought, assigning new nonrepair functions to the DNA-dependent protein kinase.
Collapse
Affiliation(s)
- Dennis J Sawchuk
- Laboratory of Molecular Immunology and Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10021, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Yu J, Marshall K, Yamaguchi M, Haber JE, Weil CF. Microhomology-dependent end joining and repair of transposon-induced DNA hairpins by host factors in Saccharomyces cerevisiae. Mol Cell Biol 2004; 24:1351-64. [PMID: 14729978 PMCID: PMC321453 DOI: 10.1128/mcb.24.3.1351-1364.2004] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2003] [Revised: 10/15/2003] [Accepted: 10/31/2003] [Indexed: 12/20/2022] Open
Abstract
The maize, cut-and-paste transposon Ac/Ds is mobile in Saccharomyces cerevisiae, and DNA sequences of repair products provide strong genetic evidence that hairpin intermediates form in host DNA during this transposition, similar to those formed for V(D)J coding joints in vertebrates. Both DNA strands must be broken for Ac/Ds to excise, suggesting that double-strand break (DSB) repair pathways should be involved in repair of excision sites. In the absence of homologous template, as expected, Ac excisions are repaired by nonhomologous end joining (NHEJ) that can involve microhomologies close to the broken ends. However, unlike repair of endonuclease-induced DSBs, repair of Ac excisions in the presence of homologous template occurs by gene conversion only about half the time, the remainder being NHEJ events. Analysis of transposition in mutant yeast suggests roles for the Mre11/Rad50 complex, SAE2, NEJ1, and the Ku complex in repair of excision sites. Separation-of-function alleles of MRE11 suggest that its endonuclease function is more important in this repair than either its exonuclease or Rad50-binding properties. In addition, the interstrand cross-link repair gene PSO2 plays a role in end joining hairpin ends that is not seen in repair of linearized plasmids and may be involved in positioning transposase cleavage at the transposon ends.
Collapse
Affiliation(s)
- Jianhua Yu
- Department of Agronomy, Purdue University, West Lafayette, Indiana 47907-1150, USA
| | | | | | | | | |
Collapse
|
21
|
Abstract
Chromosome breakage--a dangerous event that has triggered the evolution of several double-strand break repair pathways--has been co-opted by the immune system as an integral part of B- and T-cell development. This is a daring strategy, as improper repair can be deadly for the cell, if not for the whole organism. Even more daring, however, is the choice of a promiscuous transposase as the nuclease responsible for chromosome breakage, as the possibility of transposition brings an entirely new set of risks. What mechanisms constrain the dangerous potential of the recombinase and preserve genomic integrity during immune-system development?
Collapse
Affiliation(s)
- David B Roth
- Department of Pathology, Program in Molecular Pathogenesis, Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York 10016, USA.
| |
Collapse
|