1
|
Zhao L, Wang H, Cao Z, Li Q, Li Z, Zhao L, Liu Y, Huang Z, Lv E. Two medicinal molecules Hydralazine and Isoniazid have the potential to control wheat crown rot by combing with a N-acetyltransferase FDB2. Biochem Biophys Res Commun 2024; 736:150893. [PMID: 39461008 DOI: 10.1016/j.bbrc.2024.150893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 10/23/2024] [Indexed: 10/28/2024]
Abstract
Fusarium pseudograminearum is the main pathogen that causes wheat crown rot (WCR), causing serious harm to wheat production. Wheat secretes Benzoxazolinones (Bxs) as fungicidins to prevent F. pseudograminearum infection. Fusarium Detoxification of Bx 2 (FDB2) can degrade Bx to non-fungitoxic N-(2-hydroxyphenyl) malonamic acid. Therefore, FDB2 may be a potential drug target for WCR. In the present study, the structure of FDB2 was determined using the molecular replacement method. The overall FDB2 structure displayed a typical N-acetyltransferase (NAT1) conformation. Unlike other NAT1s, the active site cleft is divided into two parts by a long loop (A135MSPYPDVRKNQA147). Hydralazine, Isoniazid, and 2,4'-dibromoacetanilide were screened out as potential inhibitors of FDB2 by structure alignment. Affinity measurements by MST showed that FDB2 prefers to combine Isoniazid and Hydralazine rather than its natural substrate, 2-aminophenol. Wheat seedling infection assays showed that Isoniazid and Hydralazine suppress F. pseudograminearum invasion in wheat. Our study found that Hydralazine and Isoniazid have the potential to control WCR. This article provides a new idea for the application of medicine, which has serious adverse effects, on plant disease control to reduce research costs and make obsolete drugs shine with vitality.
Collapse
Affiliation(s)
- Li Zhao
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, 253023, China.
| | - Huizheng Wang
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China
| | - Zanxia Cao
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, 253023, China
| | - Qiang Li
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, 253023, China
| | - Zhenghua Li
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, 253023, China
| | - Liling Zhao
- College of Physics and Electronic Information, Dezhou University, Dezhou, 253023, China
| | - Ying Liu
- College of Medicine and Nursing, Dezhou University, Dezhou, 253023, China
| | - Zhenling Huang
- Bureau of Agriculture and Rural Affairs of Dezhou City, Shandong Province, Dezhou, 253016, China
| | - Enguang Lv
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, 253023, China.
| |
Collapse
|
2
|
Mistretta M, Cimino M, Campagne P, Volant S, Kornobis E, Hebert O, Rochais C, Dallemagne P, Lecoutey C, Tisnerat C, Lepailleur A, Ayotte Y, LaPlante SR, Gangneux N, Záhorszká M, Korduláková J, Vichier-Guerre S, Bonhomme F, Pokorny L, Albert M, Tinevez JY, Manina G. Dynamic microfluidic single-cell screening identifies pheno-tuning compounds to potentiate tuberculosis therapy. Nat Commun 2024; 15:4175. [PMID: 38755132 PMCID: PMC11099131 DOI: 10.1038/s41467-024-48269-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/25/2024] [Indexed: 05/18/2024] Open
Abstract
Drug-recalcitrant infections are a leading global-health concern. Bacterial cells benefit from phenotypic variation, which can suggest effective antimicrobial strategies. However, probing phenotypic variation entails spatiotemporal analysis of individual cells that is technically challenging, and hard to integrate into drug discovery. In this work, we develop a multi-condition microfluidic platform suitable for imaging two-dimensional growth of bacterial cells during transitions between separate environmental conditions. With this platform, we implement a dynamic single-cell screening for pheno-tuning compounds, which induce a phenotypic change and decrease cell-to-cell variation, aiming to undermine the entire bacterial population and make it more vulnerable to other drugs. We apply this strategy to mycobacteria, as tuberculosis poses a major public-health threat. Our lead compound impairs Mycobacterium tuberculosis via a peculiar mode of action and enhances other anti-tubercular drugs. This work proves that harnessing phenotypic variation represents a successful approach to tackle pathogens that are increasingly difficult to treat.
Collapse
Affiliation(s)
- Maxime Mistretta
- Institut Pasteur, Université Paris Cité, Microbial Individuality and Infection Laboratory, 75015, Paris, France
| | - Mena Cimino
- Institut Pasteur, Université Paris Cité, Microbial Individuality and Infection Laboratory, 75015, Paris, France
| | - Pascal Campagne
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, 75015, Paris, France
| | - Stevenn Volant
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, 75015, Paris, France
| | - Etienne Kornobis
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, 75015, Paris, France
- Institut Pasteur, Université Paris Cité, Biomics Platform, 75015, Paris, France
| | | | | | | | | | | | | | - Yann Ayotte
- Institut National de la Recherche Scientifique-Armand-Frappier Santé Biotechnologie Research Centre, Laval, Quebec, H7V 1B7, Canada
| | - Steven R LaPlante
- Institut National de la Recherche Scientifique-Armand-Frappier Santé Biotechnologie Research Centre, Laval, Quebec, H7V 1B7, Canada
| | - Nicolas Gangneux
- Institut Pasteur, Université Paris Cité, Microbial Individuality and Infection Laboratory, 75015, Paris, France
| | - Monika Záhorszká
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15, Bratislava, Slovakia
| | - Jana Korduláková
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15, Bratislava, Slovakia
| | - Sophie Vichier-Guerre
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Epigenetic Chemical Biology Unit, 75015, Paris, France
| | - Frédéric Bonhomme
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Epigenetic Chemical Biology Unit, 75015, Paris, France
| | - Laura Pokorny
- Institut Pasteur, Université Paris Cité, Microbial Individuality and Infection Laboratory, 75015, Paris, France
| | - Marvin Albert
- Institut Pasteur, Université Paris Cité, Image Analysis Hub, 75015, Paris, France
| | - Jean-Yves Tinevez
- Institut Pasteur, Université Paris Cité, Image Analysis Hub, 75015, Paris, France
| | - Giulia Manina
- Institut Pasteur, Université Paris Cité, Microbial Individuality and Infection Laboratory, 75015, Paris, France.
| |
Collapse
|
3
|
Zheng M, Lupoli TJ. Counteracting antibiotic resistance enzymes and efflux pumps. Curr Opin Microbiol 2023; 75:102334. [PMID: 37329679 DOI: 10.1016/j.mib.2023.102334] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/02/2023] [Accepted: 05/17/2023] [Indexed: 06/19/2023]
Abstract
Bacterial pathogens are constantly evolving new resistance mechanisms against antibiotics; hence, strategies to potentiate existing antibiotics or combat mechanisms of resistance using adjuvants are always in demand. Recently, inhibitors have been identified that counteract enzymatic modification of the drugs isoniazid and rifampin, which have implications in the study of multi-drug-resistant mycobacteria. A wealth of structural studies on efflux pumps from diverse bacteria has also fueled the design of new small-molecule and peptide-based agents to prevent the active transport of antibiotics. We envision that these findings will inspire microbiologists to apply existing adjuvants to clinically relevant resistant strains, or to use described platforms to discover novel antibiotic adjuvant scaffolds.
Collapse
Affiliation(s)
- Meng Zheng
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Tania J Lupoli
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003, USA.
| |
Collapse
|
4
|
Liu X, Liu Y, Zhao G, Zhang Y, Liu L, Wang J, Wang Y, Zhang S, Li X, Guo D, Wang P, Xu X. Biochemical Characterization of Arylamine N-acetyltransferases From Vibrio vulnificus. Front Microbiol 2021; 11:595083. [PMID: 33537010 PMCID: PMC7847940 DOI: 10.3389/fmicb.2020.595083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/09/2020] [Indexed: 12/03/2022] Open
Abstract
Vibrio vulnificus is a zoonotic bacterium that is capable of causing highly lethal diseases in humans; this pathogen is responsible for 95% of all seafood-related deaths in the United States. Arylamine N-acetyltransferases (NAT, E.C. 2.3.1.5) is a major family of xenobiotic-metabolizing enzymes that can biotransform aromatic amine chemicals. In this research, to evaluate the effect of NAT on acetyl group transformation in arylamine antibiotics, we first used sequence alignment to study the structure of V. vulnificus NAT [(VIBVN)NAT]. The nat gene encodes a protein of 260 amino acids, which has an approximate molecular mass of 30 kDa. Then we purified recombinant (VIBVN)NAT and determined the enzyme activity by PNPA and DTNB methods. The DTNB method indicates that this prokaryotic NAT has a particular substrate specificity towards aromatic substrates. However, (VIBVN)NAT lost most of its activity after treatment with high concentrations of urea and H2O2. In addition, we also explored the stability of the enzyme at different temperatures and pH values. In analyzing the influence of metal ions, the enzyme activity was significantly inhibited by Zn2+ and Cu2+. The kinetic parameters Km and Vmax were determined using hydralazine, isoniazid, 4-amino salicylic acid, and 4-chloro-3-methylaniline as substrates, and the Tm, Tagg and size distribution of (VIBVN)NAT were observed. In particular, a molecular docking study on the structure of (VIBVN)NAT was conducted to understand its biochemical traits. These results showed that (VIBVN)NAT could acetylate various aromatic amine substrates and contribute to arylamine antibiotic resistance in V. vulnificus.
Collapse
Affiliation(s)
- Xinning Liu
- Marine Drug Screening and Evaluation Platform (QNLM), School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Center for Innovation Marine Drug Screening & Evaluation, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,Institute of Bioinformatics and Medical Engineering, Jiangsu University of Technology, Changzhou, China
| | - Yuanchang Liu
- Quality Control Department, Qilu Children's Hospital of Shandong University, Jinan, China
| | - Guangjian Zhao
- Marine Drug Screening and Evaluation Platform (QNLM), School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Yidan Zhang
- Marine Drug Screening and Evaluation Platform (QNLM), School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Lu Liu
- Marine Drug Screening and Evaluation Platform (QNLM), School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Juan Wang
- Marine Drug Screening and Evaluation Platform (QNLM), School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Yifan Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Siyu Zhang
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Xin Li
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Dongliang Guo
- School of Information Science and Engineering, Yanshan University, Qinhuangdao, China
| | - Peng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Ximing Xu
- Marine Drug Screening and Evaluation Platform (QNLM), School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Center for Innovation Marine Drug Screening & Evaluation, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,Institute of Bioinformatics and Medical Engineering, Jiangsu University of Technology, Changzhou, China
| |
Collapse
|
5
|
Comprehensive analysis of protein acetyltransferases of human pathogen Mycobacterium tuberculosis. Biosci Rep 2020; 39:221456. [PMID: 31820790 PMCID: PMC6923341 DOI: 10.1042/bsr20191661] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 11/20/2019] [Accepted: 11/26/2019] [Indexed: 12/12/2022] Open
Abstract
Tuberculosis (TB), a leading infectious disease caused by Mycobacterium tuberculosis strain, takes four human lives every minute globally. Paucity of knowledge on M. tuberculosis virulence and antibiotic resistance is the major challenge for tuberculosis control. We have identified 47 acetyltransferases in the M. tuberculosis, which use diverse substrates including antibiotic, amino acids, and other chemical molecules. Through comparative analysis of the protein file of the virulent M. tuberculosis H37Rv strain and the avirulent M. tuberculosis H37Ra strain, we identified one acetyltransferase that shows significant variations with N-terminal deletion, possibly influencing its physicochemical properties. We also found that one acetyltransferase has three types of post-translation modifications (lysine acetylation, succinylation, and glutarylation). The genome context analysis showed that many acetyltransferases with their neighboring genes belong to one operon. By data mining from published transcriptional profiles of M. tuberculosis exposed to diverse treatments, we revealed that several acetyltransferases may be functional during M. tuberculosis infection. Insights obtained from the present study can potentially provide clues for developing novel TB therapeutic interventions.
Collapse
|
6
|
Agre N, Tawari N, Maitra A, Gupta A, Munshi T, Degani M, Bhakta S. 3-(5-Nitrofuran-2-yl)prop-2-en-1-one Derivatives, with Potent Antituberculosis Activity, Inhibit A Novel Therapeutic Target, Arylamine N-acetyltransferase, in Mycobacteria. Antibiotics (Basel) 2020; 9:E368. [PMID: 32630175 PMCID: PMC7400135 DOI: 10.3390/antibiotics9070368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/28/2020] [Accepted: 06/30/2020] [Indexed: 12/26/2022] Open
Abstract
In this study, the inhibitory potential of 3-(5-nitrofuran-2-yl)prop-2-en-1-one derivatives was evaluated against a panel of bacteria, as well as mammalian cell lines to determine their therapeutic index. In addition, we investigated the mechanism of antibiotic action of the derivatives to identify their therapeutic target. We discovered compound 2 to be an extremely potent inhibitor of Mycobacterium tuberculosis H37Rv growth (MIC: 0.031 mg/L) in vitro, performing better than the currently used first-line antituberculosis drugs such as isoniazid, rifampicin, ethambutol, and pretomanid in vitro. Furthermore, compound 3 was equipotent to pretomanid against a multidrug-resistant M. tuberculosis clinical isolate. The derivatives were selective and bactericidal towards slow-growing mycobacteria. They showed low cytotoxicity towards murine RAW 264.7 and human THP-1 cell lines, with high selectivity indices. Compound 1 effectively eliminated the intracellular mycobacteria in a mycobacteria-infected macrophage model. The derivatives were assessed for their potential to inhibit mycobacterial arylamine N-acetyltransferase (NAT) and were identified as good inhibitors of recombinant mycobacterial NAT, a novel target essential for the intracellular survival of M. tuberculosis. This study provided hits for designing new potent and selective antituberculosis leads, having mycobacterial NAT inhibition as their possible endogenous mechanisms of action.
Collapse
Affiliation(s)
- Neha Agre
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai 400019, India; (N.A.); (N.T.)
- Department of Biological Sciences, The Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK; (A.M.); (A.G.)
| | - Nilesh Tawari
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai 400019, India; (N.A.); (N.T.)
| | - Arundhati Maitra
- Department of Biological Sciences, The Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK; (A.M.); (A.G.)
| | - Antima Gupta
- Department of Biological Sciences, The Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK; (A.M.); (A.G.)
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Tulika Munshi
- Institute for Infection and Immunity, St George’s, University of London, Cranmer Terrace, London SW17 0RE, UK;
| | - Mariam Degani
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai 400019, India; (N.A.); (N.T.)
| | - Sanjib Bhakta
- Department of Biological Sciences, The Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK; (A.M.); (A.G.)
| |
Collapse
|
7
|
Shukla SD, Swaroop Vanka K, Chavelier A, Shastri MD, Tambuwala MM, Bakshi HA, Pabreja K, Mahmood MQ, O’Toole RF. Chronic respiratory diseases: An introduction and need for novel drug delivery approaches. TARGETING CHRONIC INFLAMMATORY LUNG DISEASES USING ADVANCED DRUG DELIVERY SYSTEMS 2020. [PMCID: PMC7499075 DOI: 10.1016/b978-0-12-820658-4.00001-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Globally, chronic respiratory diseases (CRDs), both communicable and noncommunicable, are among the leading causes of mortality, morbidity, economic and societal burden, and disability-adjusted life years (DALYs). CRDs affect multiple components of respiratory system, including the airways, parenchyma, and pulmonary vasculature. Although noncommunicable respiratory diseases, such as asthma, chronic obstructive pulmonary disease (COPD), interstitial lung disease (ILD), cystic fibrosis (CF), and lung cancer (LC), account for enormous disease burden, the currently available therapies only focus on alleviating the symptoms of diseases rather than providing optimal treatment and/or prevention. Similarly a major respiratory communicable disease, that is, tuberculosis (TB), is associated with the challenge of increasingly developing antibiotic resistance in the bacterial pathogen Mycobacterium tuberculosis. In light of these challenges, we aim to summarize the underlying molecular and cellular mechanisms that lead to hallmark pathophysiology of CRDs. Moreover, we will also highlight the limitations of current therapeutic strategies and explore novel drug delivery options that may be potentially more effective in the management of CRDs.
Collapse
|
8
|
The actinobacterium Tsukamurella paurometabola has a functionally divergent arylamine N-acetyltransferase (NAT) homolog. World J Microbiol Biotechnol 2019; 35:174. [PMID: 31673919 DOI: 10.1007/s11274-019-2755-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/24/2019] [Indexed: 12/23/2022]
Abstract
Actinobacteria in the Tsukamurella genus are aerobic, high-GC, Gram-positive mycolata, considered as opportunistic pathogens and isolated from various environmental sources, including sites contaminated with oil, urban or industrial waste and pesticides. Although studies look into xenobiotic biotransformation by Tsukamurella isolates, the relevant enzymes remain uncharacterized. We investigated the arylamine N-acetyltransferase (NAT) enzyme family, known for its role in the xenobiotic metabolism of prokaryotes and eukaryotes. Xenobiotic sensitivity of Tsukamurella paurometabola type strain DSM 20162T was assessed, followed by cloning, recombinant expression and functional characterization of its single NAT homolog (TSUPD)NAT1. The bacterium appeared quite robust against chloroanilines, but more sensitive to 4-anisidine and 2-aminophenol. However, metabolic activity was not evident towards those compounds, presumably due to mechanisms protecting cells from xenobiotic entry. Of the pharmaceutical arylhydrazines tested, hydralazine was toxic, but the bacterium was less sensitive to isoniazid, a drug targeting mycolic acid biosynthesis in mycobacteria. Although (TSUPD)NAT1 protein has an atypical Cys-His-Glu (instead of the expected Cys-His-Asp) catalytic triad, it is enzymatically active, suggesting that this deviation is likely due to evolutionary adaptation potentially serving a different function. The protein was indeed found to use malonyl-CoA, instead of the archetypal acetyl-CoA, as its preferred donor substrate. Malonyl-CoA is important for microbial biosynthesis of fatty acids (including mycolic acids) and polyketide chains, and the corresponding enzymatic systems have common evolutionary histories, also linked to xenobiotic metabolism. This study adds to accummulating evidence suggesting broad phylogenetic and functional divergence of microbial NAT enzymes that goes beyond xenobiotic metabolism and merits investigation.
Collapse
|
9
|
Agre N, Khambete M, Maitra A, Gupta A, Munshi T, Bhakta S, Degani M. Exploration of 5‐(5‐nitrothiophen‐2‐yl)‐4,5‐dihydro‐1H‐pyrazoles as selective, multitargeted antimycobacterial agents. Chem Biol Drug Des 2019; 95:192-199. [DOI: 10.1111/cbdd.13624] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 09/07/2019] [Accepted: 09/21/2019] [Indexed: 11/28/2022]
Affiliation(s)
- Neha Agre
- Department of Pharmaceutical Sciences and Technology Institute of Chemical Technology Mumbai India
- Department of Biological Sciences The Institute of Structural and Molecular Biology Birkbeck, University of London London UK
| | - Mihir Khambete
- Department of Pharmaceutical Sciences and Technology Institute of Chemical Technology Mumbai India
| | - Arundhati Maitra
- Department of Biological Sciences The Institute of Structural and Molecular Biology Birkbeck, University of London London UK
| | - Antima Gupta
- Department of Biological Sciences The Institute of Structural and Molecular Biology Birkbeck, University of London London UK
| | - Tulika Munshi
- Department of Infection and Immunity St George’s, University of London London UK
| | - Sanjib Bhakta
- Department of Biological Sciences The Institute of Structural and Molecular Biology Birkbeck, University of London London UK
| | - Mariam Degani
- Department of Pharmaceutical Sciences and Technology Institute of Chemical Technology Mumbai India
| |
Collapse
|
10
|
Arthur PK, Amarh V, Cramer P, Arkaifie GB, Blessie EJS, Fuseini MS, Carilo I, Yeboah R, Asare L, Robertson BD. Characterization of Two New Multidrug-Resistant Strains of Mycobacterium smegmatis: Tools for Routine In Vitro Screening of Novel Anti-Mycobacterial Agents. Antibiotics (Basel) 2019; 8:antibiotics8010004. [PMID: 30609766 PMCID: PMC6466533 DOI: 10.3390/antibiotics8010004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/07/2018] [Accepted: 12/07/2018] [Indexed: 11/25/2022] Open
Abstract
Mycobacterium tuberculosis is a pathogen of global public health concern. This threat is exacerbated by the emergence of multidrug-resistant and extremely-drug-resistant strains of the pathogen. We have obtained two distinct clones of multidrug-resistant Mycobacterium smegmatis after gradual exposure of Mycobacterium smegmatis mc2 155 to increasing concentrations of erythromycin. The resulting resistant strains of Mycobacterium smegmatis exhibited robust viability in the presence of high concentrations of erythromycin and were found to be resistant to a wide range of other antimicrobials. They also displayed a unique growth phenotype in comparison to the parental drug-susceptible Mycobacterium smegmatis mc2 155, and a distinct colony morphology in the presence of cholesterol. We propose that these two multidrug-resistant clones of Mycobacterium smegmatis could be used as model organisms at the inceptive phase of routine in vitro screening of novel antimicrobial agents targeted against multidrug-resistant Mycobacterial tuberculosis.
Collapse
Affiliation(s)
- Patrick K Arthur
- West African Center for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, University of Ghana, P. O. Box LG 54, Accra, Ghana.
| | - Vincent Amarh
- West African Center for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, University of Ghana, P. O. Box LG 54, Accra, Ghana.
| | - Precious Cramer
- West African Center for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, University of Ghana, P. O. Box LG 54, Accra, Ghana.
| | - Gloria B Arkaifie
- West African Center for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, University of Ghana, P. O. Box LG 54, Accra, Ghana.
| | - Ethel J S Blessie
- West African Center for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, University of Ghana, P. O. Box LG 54, Accra, Ghana.
| | - Mohammed-Sherrif Fuseini
- West African Center for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, University of Ghana, P. O. Box LG 54, Accra, Ghana.
| | - Isaac Carilo
- West African Center for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, University of Ghana, P. O. Box LG 54, Accra, Ghana.
| | - Rebecca Yeboah
- West African Center for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, University of Ghana, P. O. Box LG 54, Accra, Ghana.
| | - Leonard Asare
- West African Center for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, University of Ghana, P. O. Box LG 54, Accra, Ghana.
| | - Brian D Robertson
- Centre for Molecular Microbiology and Infection, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
11
|
Role of Oxidative Stress in the Pathology and Management of Human Tuberculosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:7695364. [PMID: 30405878 PMCID: PMC6201333 DOI: 10.1155/2018/7695364] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 08/23/2018] [Indexed: 02/04/2023]
Abstract
Tuberculosis (TB), caused by the bacterium Mycobacterium tuberculosis, is the leading cause of mortality worldwide due to a single infectious agent. The pathogen spreads primarily via aerosols and especially infects the alveolar macrophages in the lungs. The lung has evolved various biological mechanisms, including oxidative stress (OS) responses, to counteract TB infection. M. tuberculosis infection triggers the generation of reactive oxygen species by host phagocytic cells (primarily macrophages). The development of resistance to commonly prescribed antibiotics poses a challenge to treat TB; this commonly manifests as multidrug resistant tuberculosis (MDR-TB). OS and antioxidant defense mechanisms play key roles during TB infection and treatment. For instance, several established first-/second-line antitubercle antibiotics are administered in an inactive form and subsequently transformed into their active form by components of the OS responses of both host (nitric oxide, S-oxidation) and pathogen (catalase/peroxidase enzyme, EthA). Additionally, M. tuberculosis has developed mechanisms to survive high OS burden in the host, including the increased bacterial NADH/NAD+ ratio and enhanced intracellular survival (Eis) protein, peroxiredoxin, superoxide dismutases, and catalases. Here, we review the interplay between lung OS and its effects on both activation of antitubercle antibiotics and the strategies employed by M. tuberculosis that are essential for survival of both drug-susceptible and drug-resistant bacterial subtypes. We then outline potential new therapies that are based on combining standard antitubercular antibiotics with adjuvant agents that could limit the ability of M. tuberculosis to counter the host's OS response.
Collapse
|
12
|
McNeil MJ, Porter RB, Rainford L, Dunbar O, Francis S, Laurieri N, Delgoda R. Chemical composition and biological activities of the essential oil from Cleome rutidosperma DC. Fitoterapia 2018; 129:191-197. [DOI: 10.1016/j.fitote.2018.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/04/2018] [Accepted: 07/04/2018] [Indexed: 01/17/2023]
|
13
|
Cheng LZ, Qin FY, Ma XC, Wang SM, Yan YM, Cheng YX. Cytotoxic and N-Acetyltransferase Inhibitory Meroterpenoids from Ganoderma cochlear. Molecules 2018; 23:molecules23071797. [PMID: 30037018 PMCID: PMC6100301 DOI: 10.3390/molecules23071797] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 07/15/2018] [Accepted: 07/18/2018] [Indexed: 11/16/2022] Open
Abstract
Seven compounds, including two pairs of new meroterpenoids, (+)- and (−)-gancochlearol C (1), (+)- and (−)-cochlearoid Q (3), and a new meroterpenoid gancochlearol D (2), together with four known meroterpenoids were isolated from the aqueous EtOH extract of the fruiting bodies of Ganoderma cochlear. Their structures were determined by spectroscopic data. The isolated compounds were evaluated for their cytotoxic activity against three human lung cancer cells (H1975, PC9, A549) and N-acetyltransferase inhibitory property. The results show that (+)-gancochlearol C could inhibit N-acetyltransferase with an IC50 value of 5.29 μM. In addition, ganomycin F was found to show moderate activity against the H1975 human lung cancer cell line, with an IC50 value of 19.47 μM.
Collapse
Affiliation(s)
- Li-Zhi Cheng
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China.
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen 518060, China.
| | - Fu-Ying Qin
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen 518060, China.
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| | - Xiao-Chi Ma
- School of Pharmaceutical Sciences, Dalian Medical University, Dalian 116044, China.
| | - Shu-Mei Wang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Yong-Ming Yan
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen 518060, China.
| | - Yong-Xian Cheng
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China.
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen 518060, China.
| |
Collapse
|
14
|
Molecular epidemiology of tuberculosis in Tasmania and genomic characterisation of its first known multi-drug resistant case. PLoS One 2018; 13:e0192351. [PMID: 29466411 PMCID: PMC5821347 DOI: 10.1371/journal.pone.0192351] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/22/2018] [Indexed: 11/25/2022] Open
Abstract
Background The origin and spread of tuberculosis (TB) in Tasmania and the types of strains of Mycobacterium tuberculosis complex (MTBC) present in the population are largely unknown. Objective The aim of this study was to perform the first genomic analysis of MTBC isolates from Tasmania to better understand the epidemiology of TB in the state. Methods Whole-genome sequencing was performed on cultured isolates of MTBC collected from 2014–2016. Single-locus variant analysis was applied to determine the phylogeny of the isolates and the presence of drug-resistance mutations. The genomic data were then cross-referenced against public health surveillance records on each of the cases. Results We determined that 83.3% of TB cases in Tasmania from 2014–2016 occurred in non-Australian born individuals. Two possible TB clusters were identified based on single locus variant analysis, one from November-December 2014 (n = 2), with the second from May-August 2015 (n = 4). We report here the first known isolate of multi-drug resistant (MDR) M. tuberculosis in Tasmania from 2016 for which we established its drug resistance mutations and potential overseas origin. In addition, we characterised a case of M. bovis TB in a Tasmanian-born person who presented in 2014, approximately 40 years after the last confirmed case in the state’s bovids. Conclusions TB in Tasmania is predominantly of overseas origin with genotypically-unique drug-susceptible isolates of M. tuberculosis. However, the state also exhibits features of TB that are observed in other jurisdictions, namely, the clustering of cases, and drug resistance. Early detection of TB and contact tracing, particularly of overseas-born cases, coordinated with rapid laboratory drug-susceptibility testing and molecular typing, will be essential for Tasmania to reach the World Health Organisation’s TB eradication goals for low-incidence settings.
Collapse
|
15
|
Unissa AN, Sukumar S, Hanna LE. The Role of N-Acetyl Transferases on Isoniazid Resistance from Mycobacterium tuberculosis and Human: An In Silico Approach. Tuberc Respir Dis (Seoul) 2017; 80:255-264. [PMID: 28747958 PMCID: PMC5526952 DOI: 10.4046/trd.2017.80.3.255] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 04/10/2017] [Accepted: 05/08/2017] [Indexed: 11/30/2022] Open
Abstract
Background N-acetyl transferase (NAT) inactivates the pro-drug isoniazid (INH) to N-acetyl INH through a process of acetylation, and confers low-level resistance to INH in Mycobacterium tuberculosis (MTB). Similar to NAT of MTB, NAT2 in humans performs the same function of acetylation. Rapid acetylators, may not respond to INH treatment efficiently, and could be a potential risk factor, for the development of INH resistance in humans. Methods To understand the contribution of NAT of MTB and NAT2 of humans in developing INH resistance using in silico approaches, in this study, the wild type (WT) and mutant (MT)-NATs of MTB, and humans, were modeled and docked, with substrates and product (acetyl CoA, INH, and acetyl INH). The MT models were built, using templates 4BGF of MTB, and 2PFR of humans. Results On the basis of docking results of MTB-NAT, it can be suggested that in comparison to the WT, binding affinity of MT-G207R, was found to be lower with acetyl CoA, and higher with acetyl-INH and INH. In case of MT-NAT2 from humans, the pattern of score with respect to acetyl CoA and acetyl-INH, was similar to MT-NAT of MTB, but revealed a decrease in INH score. Conclusion In MTB, MT-NAT revealed high affinity towards acetyl-INH, which can be interpreted as increased formation of acetyl-INH, and therefore, may lead to INH resistance through inactivation of INH. Similarly, in MT-NAT2 (rapid acetylators), acetylation occurs rapidly, serving as a possible risk factor for developing INH resistance in humans.
Collapse
Affiliation(s)
- Ameeruddin Nusrath Unissa
- Department of Biomedical Informatics, National Institute for Research in Tuberculosis (NIRT), Indian Council of Medical Research (ICMR), Chennai, India
| | - Swathi Sukumar
- Department of Biomedical Informatics, National Institute for Research in Tuberculosis (NIRT), Indian Council of Medical Research (ICMR), Chennai, India
| | - Luke Elizabeth Hanna
- Department of Biomedical Informatics, National Institute for Research in Tuberculosis (NIRT), Indian Council of Medical Research (ICMR), Chennai, India
| |
Collapse
|
16
|
Ryan A, Polycarpou E, Lack NA, Evangelopoulos D, Sieg C, Halman A, Bhakta S, Eleftheriadou O, McHugh TD, Keany S, Lowe ED, Ballet R, Abuhammad A, Jacobs WR, Ciulli A, Sim E. Investigation of the mycobacterial enzyme HsaD as a potential novel target for anti-tubercular agents using a fragment-based drug design approach. Br J Pharmacol 2017; 174:2209-2224. [PMID: 28380256 PMCID: PMC5481647 DOI: 10.1111/bph.13810] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 03/22/2017] [Accepted: 03/24/2017] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE With the emergence of extensively drug-resistant tuberculosis, there is a need for new anti-tubercular drugs that work through novel mechanisms of action. The meta cleavage product hydrolase, HsaD, has been demonstrated to be critical for the survival of Mycobacterium tuberculosis in macrophages and is encoded in an operon involved in cholesterol catabolism, which is identical in M. tuberculosis and M. bovis BCG. EXPERIMENTAL APPROACH We generated a mutant strain of M. bovis BCG with a deletion of hsaD and tested its growth on cholesterol. Using a fragment based approach, over 1000 compounds were screened by a combination of differential scanning fluorimetry, NMR spectroscopy and enzymatic assay with pure recombinant HsaD to identify potential inhibitors. We used enzymological and structural studies to investigate derivatives of the inhibitors identified and to test their effects on growth of M. bovis BCG and M. tuberculosis. KEY RESULTS The hsaD deleted strain was unable to grow on cholesterol as sole carbon source but did grow on glucose. Of seven chemically distinct 'hits' from the library, two chemical classes of fragments were found to bind in the vicinity of the active site of HsaD by X-ray crystallography. The compounds also inhibited growth of M. tuberculosis on cholesterol. The most potent inhibitor of HsaD was also found to be the best inhibitor of mycobacterial growth on cholesterol-supplemented minimal medium. CONCLUSIONS AND IMPLICATIONS We propose that HsaD is a novel therapeutic target, which should be fully exploited in order to design and discover new anti-tubercular drugs. LINKED ARTICLES This article is part of a themed section on Drug Metabolism and Antibiotic Resistance in Micro-organisms. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.14/issuetoc.
Collapse
Affiliation(s)
- Ali Ryan
- Faculty of Science, Engineering and ComputingKingston University LondonKingston upon ThamesUK
| | - Elena Polycarpou
- Faculty of Science, Engineering and ComputingKingston University LondonKingston upon ThamesUK
| | - Nathan A Lack
- Department of PharmacologyUniversity of OxfordOxfordUK
- School of MedicineKoç UniversityIstanbulTurkey
| | - Dimitrios Evangelopoulos
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological SciencesBirkbeck, University of LondonLondonUK
- Centre for Clinical MicrobiologyUniversity College London, Royal Free CampusLondonUK
- Mycobacterial Metabolism and Antibiotic Research LaboratoryThe Francis Crick Institute, Mill Hill LaboratoryLondonUK
| | - Christian Sieg
- Faculty of Science, Engineering and ComputingKingston University LondonKingston upon ThamesUK
| | - Alice Halman
- Faculty of Science, Engineering and ComputingKingston University LondonKingston upon ThamesUK
| | - Sanjib Bhakta
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological SciencesBirkbeck, University of LondonLondonUK
| | - Olga Eleftheriadou
- Faculty of Science, Engineering and ComputingKingston University LondonKingston upon ThamesUK
| | - Timothy D McHugh
- Centre for Clinical MicrobiologyUniversity College London, Royal Free CampusLondonUK
| | | | - Edward D Lowe
- Department of BiochemistryUniversity of OxfordOxfordUK
| | - Romain Ballet
- Department of PharmacologyUniversity of OxfordOxfordUK
| | | | - William R Jacobs
- Department of Microbiology and ImmunologyHoward Hughes Medical Institute, Albert Einstein College of MedicineBronxNew YorkUSA
| | - Alessio Ciulli
- Department of ChemistryUniversity of CambridgeCambridgeUK
- Division of Biological Chemistry & Drug Discovery, School of Life SciencesUniversity of Dundee, James Black CentreDundeeUK
| | - Edith Sim
- Faculty of Science, Engineering and ComputingKingston University LondonKingston upon ThamesUK
- Department of PharmacologyUniversity of OxfordOxfordUK
| |
Collapse
|
17
|
Guy CS, Tichauer E, Kay GL, Phillips DJ, Bailey TL, Harrison J, Furze CM, Millard AD, Gibson MI, Pallen MJ, Fullam E. Identification of the anti-mycobacterial functional properties of piperidinol derivatives. Br J Pharmacol 2017; 174:2183-2193. [PMID: 28195652 PMCID: PMC5481654 DOI: 10.1111/bph.13744] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 02/06/2017] [Accepted: 02/10/2017] [Indexed: 11/26/2022] Open
Abstract
Background and Purpose Tuberculosis (TB) remains a major global health threat and is now the leading cause of death from a single infectious agent worldwide. The current TB drug regimen is inadequate, and new anti‐tubercular agents are urgently required to be able to successfully combat the increasing prevalence of drug‐resistant TB. The purpose of this study was to investigate a piperidinol compound derivative that is highly active against the Mycobacterium tuberculosis bacillus. Experimental Approach The antibacterial properties of the piperidinol compound and its corresponding bis‐Mannich base analogue were evaluated against M. smegmatis and Gram‐negative organisms. Cytotoxicity studies were undertaken in order to determine the selectivity index for these compounds. Spontaneous resistant mutants of M. smegmatis were generated against the piperidinol and corresponding bis‐Mannich base lead derivatives and whole genome sequencing employed to determine the genetic modifications that lead to selection pressure in the presence of these compounds. Key Results The piperidinol and the bis‐Mannich base analogue were found to be selective for mycobacteria and rapidly kill this organism with a cytotoxicity selectivity index for mycobacteria of >30‐fold. Whole genome sequencing of M. smegmatis strains resistant to the lead compounds led to the identification of a number of single nucleotide polymorphisms indicating multiple targets. Conclusion and Implications Our results indicate that the piperidinol moiety represents an attractive compound class in the pursuit of novel anti‐tubercular agents. Linked Articles This article is part of a themed section on Drug Metabolism and Antibiotic Resistance in Micro‐organisms. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.14/issuetoc
Collapse
Affiliation(s)
- Collette S Guy
- School of Life Sciences, University of Warwick, Coventry, UK.,Department of Chemistry, University of Warwick, Coventry, UK
| | - Esther Tichauer
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Gemma L Kay
- Medical School, University of Warwick, Coventry, UK
| | | | - Trisha L Bailey
- Department of Chemistry, University of Warwick, Coventry, UK
| | - James Harrison
- School of Life Sciences, University of Warwick, Coventry, UK
| | | | | | - Matthew I Gibson
- Department of Chemistry, University of Warwick, Coventry, UK.,Medical School, University of Warwick, Coventry, UK
| | | | | |
Collapse
|
18
|
Abuhammad A. Cholesterol metabolism: a potential therapeutic target in Mycobacteria. Br J Pharmacol 2017; 174:2194-2208. [PMID: 28002883 DOI: 10.1111/bph.13694] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 11/06/2016] [Accepted: 12/16/2016] [Indexed: 12/14/2022] Open
Abstract
Tuberculosis (TB), although a curable disease, is still one of the most difficult infections to treat. Mycobacterium tuberculosis infects 10 million people worldwide and kills 1.5 million people each year. Reactivation of a latent infection is the major cause of TB. Cholesterol is a critical carbon source during latent infection. Catabolism of cholesterol contributes to the pool of propionyl-CoA, a precursor that is incorporated into lipid virulence factors. The M. tuberculosis genome contains a large regulon of cholesterol catabolic genes suggesting that the microorganism can utilize host sterol for infection and persistence. The protein products of these genes present ideal targets for rational drug discovery programmes. This review summarizes the development of enzyme inhibitors targeting the cholesterol pathway in M. tuberculosis. This knowledge is essential for the discovery of novel agents to treat M. tuberculosis infection. LINKED ARTICLES This article is part of a themed section on Drug Metabolism and Antibiotic Resistance in Micro-organisms. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.14/issuetoc.
Collapse
|
19
|
Overview on mechanisms of isoniazid action and resistance in Mycobacterium tuberculosis. INFECTION GENETICS AND EVOLUTION 2016; 45:474-492. [DOI: 10.1016/j.meegid.2016.09.004] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 09/02/2016] [Accepted: 09/03/2016] [Indexed: 12/17/2022]
|
20
|
Wakefield L, Cornish V, Broackes-Carter F, Sim E. ArylamineN-acetyltransferase 2 Expression in the Developing Heart. J Histochem Cytochem 2016; 53:583-92. [PMID: 15872051 DOI: 10.1369/jhc.4a6496.2005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Murine arylamine N-acetyltransferase 2 (NAT2) is expressed in the developing heart and in the neural tube at the time of closure. Classically described as a xenobiotic metabolizing enzyme, there is increasing evidence for a distinct biological role for murine NAT2. We have characterized the expression of arylamine N-acetyltransferase 2 during cardiogenesis, mapping its expression in vivo, using a lacZ insertion deletion, and also in vitro, by measuring NAT2 enzyme activity. These findings show that cardiac Nat2 expression is both temporally and spatially regulated during development. In neonatal mice, cardiac Nat2 expression is most extensive in the central fibrous body and is evident in the atrioventricular valves and the valves of the great vessels. Whereas Nat2 expression is not detected in ventricular myocardial cells, Nat2 is strongly expressed in scattered cells in the region of the sinus node, the epicardium of the right atrial appendage, and in the pulmonary artery. Expression of active NAT2 protein is maximal when the developing heart attains the adult circulation pattern and moves from metabolizing glucose to fatty acids. NAT2 acetylating activity in cardiac tissue from Nat2−/-and Nat2+/-mice indicates a lack of compensating acetylating activity either from other acetylating enzymes or by NAT2 encoded by the wild-type Nat2 allele in Nat2+/-heterozygotes. The temporal and spatial control of murine Nat2 expression points to an endogenous role distinct from xenobiotic metabolism and indicates that Nat2 expression may be useful as a marker in cardiac development.
Collapse
Affiliation(s)
- Larissa Wakefield
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | | | | | | |
Collapse
|
21
|
Resistance to Isoniazid and Ethionamide in Mycobacterium tuberculosis: Genes, Mutations, and Causalities. Microbiol Spectr 2016; 2:MGM2-0014-2013. [PMID: 26104204 DOI: 10.1128/microbiolspec.mgm2-0014-2013] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Isoniazid (INH) is the cornerstone of tuberculosis (TB) chemotherapy, used for both treatment and prophylaxis of TB. The antimycobacterial activity of INH was discovered in 1952, and almost as soon as its activity was published, the first INH-resistant Mycobacterium tuberculosis strains were reported. INH and its structural analog and second-line anti-TB drug ethionamide (ETH) are pro-drugs. INH is activated by the catalase-peroxidase KatG, while ETH is activated by the monooxygenase EthA. The resulting active species reacts with NAD+ to form an INH-NAD or ETH-NAD adduct, which inhibits the enoyl ACP reductase InhA, leading to mycolic acid biosynthesis inhibition and mycobacterial cell death. The major mechanism of INH resistance is mutation in katG, encoding the activator of INH. One specific KatG variant, S315T, is found in 94% of INH-resistant clinical isolates. The second mechanism of INH resistance is a mutation in the promoter region of inhA (c-15t), which results in inhA overexpression and leads to titration of the drug. Mutations in the inhA open reading frame and promoter region are also the major mechanism of resistance to ETH, found more often in ETH-resistant clinical isolates than mutations in the activator of ETH. Other mechanisms of resistance to INH and ETH include expression changes of the drugs' activators, redox alteration, drug inactivation, and efflux pump activation. In this article, we describe each known mechanism of resistance to INH and ETH and its importance in M. tuberculosis clinical isolates.
Collapse
|
22
|
Danquah CA, Maitra A, Gibbons S, Faull J, Bhakta S. HT-SPOTi: A Rapid Drug Susceptibility Test (DST) to Evaluate Antibiotic Resistance Profiles and Novel Chemicals for Anti-Infective Drug Discovery. ACTA ACUST UNITED AC 2016; 40:17.8.1-17.8.12. [PMID: 26855282 DOI: 10.1002/9780471729259.mc1708s40] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Antibiotic resistance is one of the major threats to global health and well-being. The past decade has seen an alarming rise in the evolution and spread of drug-resistant strains of pathogenic microbes. The emergence of extensively drug resistant (XDR) strains of Mycobacterium tuberculosis and antimicrobial resistance among the ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa, and Enterobacter species) as well as fungal pathogens (such as certain species of Candida, Aspergillus, Cryptococcus, and Trichophyton) poses a significant 21st century scientific challenge. With an extremely limited arsenal of efficacious antibiotics, techniques that can (a) identify novel antimicrobials and (b) detect antimicrobial resistance are becoming increasingly important. In this article, we illustrate the HT-SPOTi, an assay that is principally based on the growth of an organism on agar medium containing a range of different concentrations of drugs or inhibitors. The simple methodology makes this assay ideal for evaluating novel antimicrobial compounds as well as profiling an organism's antibiotic resistance profile.
Collapse
Affiliation(s)
- Cynthia A Danquah
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck, University of London, London, United Kingdom.,Research Department of Pharmaceutical and Biological Chemistry, UCL School of Pharmacy, London, United Kingdom.,These authors contributed equally
| | - Arundhati Maitra
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck, University of London, London, United Kingdom.,These authors contributed equally
| | - Simon Gibbons
- Research Department of Pharmaceutical and Biological Chemistry, UCL School of Pharmacy, London, United Kingdom
| | - Jane Faull
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck, University of London, London, United Kingdom
| | - Sanjib Bhakta
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck, University of London, London, United Kingdom
| |
Collapse
|
23
|
Homologues of xenobiotic metabolizing N-acetyltransferases in plant-associated fungi: Novel functions for an old enzyme family. Sci Rep 2015; 5:12900. [PMID: 26245863 PMCID: PMC4542470 DOI: 10.1038/srep12900] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 07/06/2015] [Indexed: 12/23/2022] Open
Abstract
Plant-pathogenic fungi and their hosts engage in chemical warfare, attacking each other with toxic products of secondary metabolism and defending themselves via an arsenal of xenobiotic metabolizing enzymes. One such enzyme is homologous to arylamine N-acetyltransferase (NAT) and has been identified in Fusarium infecting cereal plants as responsible for detoxification of host defence compound 2-benzoxazolinone. Here we investigate functional diversification of NAT enzymes in crop-compromising species of Fusarium and Aspergillus, identifying three groups of homologues: Isoenzymes of the first group are found in all species and catalyse reactions with acetyl-CoA or propionyl-CoA. The second group is restricted to the plant pathogens and is active with malonyl-CoA in Fusarium species infecting cereals. The third group generates minimal activity with acyl-CoA compounds that bind non-selectively to the proteins. We propose that fungal NAT isoenzymes may have evolved to perform diverse functions, potentially relevant to pathogen fitness, acetyl-CoA/propionyl-CoA intracellular balance and secondary metabolism.
Collapse
|
24
|
Maitra A, Danquah CA, Scotti F, Howard TK, Kamil TK, Bhakta S. Tackling tuberculosis: Insights from an international TB Summit in London. Virulence 2015; 6:661-72. [PMID: 26151309 PMCID: PMC4720247 DOI: 10.1080/21505594.2015.1060396] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Tuberculosis (TB) poses a grave predicament to the world as it is not merely a scientific challenge but a socio-economic burden as well. A prime cause of mortality in human due to an infectious disease; the malady and its cause, Mycobacterium tuberculosis have remained an enigma with many questions that remain unanswered. The ability of the pathogen to survive and switch between varied physiological states necessitates a protracted therapeutic regimen that exerts an excessive strain on low-resource countries. To complicate things further, there has been a significant rise of antimicrobial resistance. Existing control measures, including treatment regimens have remained fairly uniform globally for at least half a century and require reinvention. Overcoming the societal and scientific challenges requires an increase in dialog to identify key regions that need attention and effective partners with whom successful collaborations can be fostered. In this report, we explore the discussions held at the International TB Summit 2015 hosted by EuroSciCon, which served as an excellent platform for researchers to share their recent findings. Ground-breaking results require outreach to affect policy design, governance and control of the disease. Hence, we feel it is important that meetings such as these reach a wider, global audience.
Collapse
Affiliation(s)
- Arundhati Maitra
- a Mycobacteria Research Laboratory ; Institute of Structural and Molecular Biology; Birkbeck ; University of London , Malet Street, Bloomsbury, London WC1E 7HX , United Kingdom
| | - Cynthia A Danquah
- a Mycobacteria Research Laboratory ; Institute of Structural and Molecular Biology; Birkbeck ; University of London , Malet Street, Bloomsbury, London WC1E 7HX , United Kingdom
| | - Francesca Scotti
- a Mycobacteria Research Laboratory ; Institute of Structural and Molecular Biology; Birkbeck ; University of London , Malet Street, Bloomsbury, London WC1E 7HX , United Kingdom
| | - Tracey K Howard
- a Mycobacteria Research Laboratory ; Institute of Structural and Molecular Biology; Birkbeck ; University of London , Malet Street, Bloomsbury, London WC1E 7HX , United Kingdom
| | - Tengku K Kamil
- a Mycobacteria Research Laboratory ; Institute of Structural and Molecular Biology; Birkbeck ; University of London , Malet Street, Bloomsbury, London WC1E 7HX , United Kingdom
| | - Sanjib Bhakta
- a Mycobacteria Research Laboratory ; Institute of Structural and Molecular Biology; Birkbeck ; University of London , Malet Street, Bloomsbury, London WC1E 7HX , United Kingdom
| |
Collapse
|
25
|
Xu X, Li de la Sierra-Gallay I, Kubiak X, Duval R, Chaffotte AF, Dupret JM, Haouz A, Rodrigues-Lima F. Insight into cofactor recognition in arylamine N-acetyltransferase enzymes: structure of Mesorhizobium loti arylamine N-acetyltransferase in complex with coenzyme A. ACTA ACUST UNITED AC 2015; 71:266-73. [PMID: 25664736 DOI: 10.1107/s139900471402522x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 11/17/2014] [Indexed: 01/05/2023]
Abstract
Arylamine N-acetyltransferases (NATs) are xenobiotic metabolizing enzymes that catalyze the acetyl-CoA-dependent acetylation of arylamines. To better understand the mode of binding of the cofactor by this family of enzymes, the structure of Mesorhizobium loti NAT1 [(RHILO)NAT1] was determined in complex with CoA. The F42W mutant of (RHILO)NAT1 was used as it is well expressed in Escherichia coli and displays enzymatic properties similar to those of the wild type. The apo and holo structures of (RHILO)NAT1 F42W were solved at 1.8 and 2 Å resolution, respectively. As observed in the Mycobacterium marinum NAT1-CoA complex, in (RHILO)NAT1 CoA binding induces slight structural rearrangements that are mostly confined to certain residues of its `P-loop'. Importantly, it was found that the mode of binding of CoA is highly similar to that of M. marinum NAT1 but different from the modes reported for Bacillus anthracis NAT1 and Homo sapiens NAT2. Therefore, in contrast to previous data, this study shows that different orthologous NATs can bind their cofactors in a similar way, suggesting that the mode of binding CoA in this family of enzymes is less diverse than previously thought. Moreover, it supports the notion that the presence of the `mammalian/eukaryotic insertion loop' in certain NAT enzymes impacts the mode of binding CoA by imposing structural constraints.
Collapse
Affiliation(s)
- Ximing Xu
- Université Paris Diderot, Sorbonne Paris Cité, Unité BFA, CNRS UMR 8251, 75013 Paris, France
| | - Inés Li de la Sierra-Gallay
- Université Paris-Sud, Institut de Biochimie et Biophysique Moléculaire et Cellulaire, CNRS UMR 8619, 91405 Orsay, France
| | - Xavier Kubiak
- Université Paris Diderot, Sorbonne Paris Cité, Unité BFA, CNRS UMR 8251, 75013 Paris, France
| | - Romain Duval
- Université Paris Diderot, Sorbonne Paris Cité, Unité BFA, CNRS UMR 8251, 75013 Paris, France
| | - Alain F Chaffotte
- Institut Pasteur, Unité de Résonance Magnétique Nucléaire des Biomolécules, 75015 Paris, France
| | - Jean Marie Dupret
- Université Paris Diderot, Sorbonne Paris Cité, Unité BFA, CNRS UMR 8251, 75013 Paris, France
| | - Ahmed Haouz
- Institut Pasteur, Plateforme de Cristallographie, CNRS UMR 3528, 75015 Paris, France
| | - Fernando Rodrigues-Lima
- Université Paris Diderot, Sorbonne Paris Cité, Unité BFA, CNRS UMR 8251, 75013 Paris, France
| |
Collapse
|
26
|
Sim E, Abuhammad A, Ryan A. Arylamine N-acetyltransferases: from drug metabolism and pharmacogenetics to drug discovery. Br J Pharmacol 2014; 171:2705-25. [PMID: 24467436 PMCID: PMC4158862 DOI: 10.1111/bph.12598] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 08/15/2013] [Accepted: 08/26/2013] [Indexed: 12/12/2022] Open
Abstract
Arylamine N-acetyltransferases (NATs) are polymorphic drug-metabolizing enzymes, acetylating arylamine carcinogens and drugs including hydralazine and sulphonamides. The slow NAT phenotype increases susceptibility to hydralazine and isoniazid toxicity and to occupational bladder cancer. The two polymorphic human NAT loci show linkage disequilibrium. All mammalian Nat genes have an intronless open reading frame and non-coding exons. The human gene products NAT1 and NAT2 have distinct substrate specificities: NAT2 acetylates hydralazine and human NAT1 acetylates p-aminosalicylate (p-AS) and the folate catabolite para-aminobenzoylglutamate (p-abaglu). Human NAT2 is mainly in liver and gut. Human NAT1 and its murine homologue are in many adult tissues and in early embryos. Human NAT1 is strongly expressed in oestrogen receptor-positive breast cancer and may contribute to folate and acetyl CoA homeostasis. NAT enzymes act through a catalytic triad of Cys, His and Asp with the architecture of the active site-modulating specificity. Polymorphisms may cause unfolded protein. The C-terminus helps bind acetyl CoA and differs among NATs including prokaryotic homologues. NAT in Salmonella typhimurium supports carcinogen activation and NAT in mycobacteria metabolizes isoniazid with polymorphism a minor factor in isoniazid resistance. Importantly, nat is in a gene cluster essential for Mycobacterium tuberculosis survival inside macrophages. NAT inhibitors are a starting point for novel anti-tuberculosis drugs. Human NAT1-specific inhibitors may act in biomarker detection in breast cancer and in cancer therapy. NAT inhibitors for co-administration with 5-aminosalicylate (5-AS) in inflammatory bowel disease has prompted ongoing investigations of azoreductases in gut bacteria which release 5-AS from prodrugs including balsalazide.
Collapse
Affiliation(s)
- E Sim
- Faculty of Science Engineering and Computing, Kingston University, Kingston, UK; Department of Pharmacology, Oxford University, Oxford, UK
| | | | | |
Collapse
|
27
|
Evangelopoulos D, Gupta A, Lack NA, Maitra A, ten Bokum AM, Kendall S, Sim E, Bhakta S. Characterisation of a putative AraC transcriptional regulator from Mycobacterium smegmatis. Tuberculosis (Edinb) 2014; 94:664-71. [PMID: 25443504 PMCID: PMC4266540 DOI: 10.1016/j.tube.2014.08.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 08/09/2014] [Accepted: 08/13/2014] [Indexed: 11/16/2022]
Abstract
MSMEG_0307 is annotated as a transcriptional regulator belonging to the AraC protein family and is located adjacent to the arylamine N-acetyltransferase (nat) gene in Mycobacterium smegmatis, in a gene cluster, conserved in most environmental mycobacterial species. In order to elucidate the function of the AraC protein from the nat operon in M. smegmatis, two conserved palindromic DNA motifs were identified using bioinformatics and tested for protein binding using electrophoretic mobility shift assays with a recombinant form of the AraC protein. We identified the formation of a DNA:AraC protein complex with one of the motifs as well as the presence of this motif in 20 loci across the whole genome of M. smegmatis, supporting the existence of an AraC controlled regulon. To characterise the effects of AraC in the regulation of the nat operon genes, as well as to gain further insight into its function, we generated a ΔaraC mutant strain where the araC gene was replaced by a hygromycin resistance marker. The level of expression of the nat and MSMEG_0308 genes was down-regulated in the ΔaraC strain when compared to the wild type strain indicating an activator effect of the AraC protein on the expression of the nat operon genes.
Collapse
Affiliation(s)
- Dimitrios Evangelopoulos
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Antima Gupta
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Nathan A. Lack
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Arundhati Maitra
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Annemieke M.C. ten Bokum
- Department of Pathology and Infectious Diseases, The Royal Veterinary College, Royal College Street, London NW1 0TU, UK
| | - Sharon Kendall
- Department of Pathology and Infectious Diseases, The Royal Veterinary College, Royal College Street, London NW1 0TU, UK
| | - Edith Sim
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Sanjib Bhakta
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
- Corresponding author. Tel.: +44 (0)20 7631 6355 (office), +44 (0)20 7079 0799 (lab); fax: +44 (0)20 7631 6246.
| |
Collapse
|
28
|
Cocaign A, Kubiak X, Xu X, Garnier G, Li de la Sierra-Gallay I, Chi-Bui L, Dairou J, Busi F, Abuhammad A, Haouz A, Dupret JM, Herrmann JL, Rodrigues-Lima F. Structural and functional characterization of an arylamineN-acetyltransferase from the pathogenMycobacterium abscessus: differences from other mycobacterial isoforms and implications for selective inhibition. ACTA ACUST UNITED AC 2014; 70:3066-79. [DOI: 10.1107/s1399004714021282] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 09/24/2014] [Indexed: 11/10/2022]
Abstract
Mycobacterium abscessusis the most pathogenic rapid-growing mycobacterium and is one of the most resistant organisms to chemotherapeutic agents. However, structural and functional studies ofM. abscessusproteins that could modify/inactivate antibiotics remain nonexistent. Here, the structural and functional characterization of an arylamineN-acetyltransferase (NAT) fromM. abscessus[(MYCAB)NAT1] are reported. This novel prokaryotic NAT displays significantN-acetyltransferase activity towards aromatic substrates, including antibiotics such as isoniazid andp-aminosalicylate. The enzyme is endogenously expressed and functional in both the rough and smoothM. abscessusmorphotypes. The crystal structure of (MYCAB)NAT1 at 1.8 Å resolution reveals that it is more closely related toNocardia farcinicaNAT than to mycobacterial isoforms. In particular, structural and physicochemical differences from other mycobacterial NATs were found in the active site. Peculiarities of (MYCAB)NAT1 were further supported by kinetic and docking studies showing that the enzyme was poorly inhibited by the piperidinol inhibitor of mycobacterial NATs. This study describes the first structure of an antibiotic-modifying enzyme fromM. abscessusand provides bases to better understand the substrate/inhibitor-binding specificities among mycobacterial NATs and to identify/optimize specific inhibitors. These data should also contribute to the understanding of the mechanisms that are responsible for the pathogenicity and extensive chemotherapeutic resistance ofM. abscessus.
Collapse
|
29
|
Abuhammad A, Fullam E, Bhakta S, Russell AJ, Morris GM, Finn PW, Sim E. Exploration of piperidinols as potential antitubercular agents. Molecules 2014; 19:16274-90. [PMID: 25310152 PMCID: PMC6271891 DOI: 10.3390/molecules191016274] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 09/09/2014] [Accepted: 09/24/2014] [Indexed: 12/23/2022] Open
Abstract
Novel drugs to treat tuberculosis are required and the identification of potential targets is important. Piperidinols have been identified as potential antimycobacterial agents (MIC < 5 μg/mL), which also inhibit mycobacterial arylamine N-acetyltransferase (NAT), an enzyme essential for mycobacterial survival inside macrophages. The NAT inhibition involves a prodrug-like mechanism in which activation leads to the formation of bioactive phenyl vinyl ketone (PVK). The PVK fragment selectively forms an adduct with the cysteine residue in the active site. Time dependent inhibition of the NAT enzyme from Mycobacterium marinum (M. marinum) demonstrates a covalent binding mechanism for all inhibitory piperidinol analogues. The structure activity relationship highlights the importance of halide substitution on the piperidinol benzene ring. The structures of the NAT enzymes from M. marinum and M. tuberculosis, although 74% identical, have different residues in their active site clefts and allow the effects of amino acid substitutions to be assessed in understanding inhibitory potency. In addition, we have used the piperidinol 3-dimensional shape and electrostatic properties to identify two additional distinct chemical scaffolds as inhibitors of NAT. While one of the scaffolds has anti-tubercular activity, both inhibit NAT but through a non-covalent mechanism.
Collapse
Affiliation(s)
- Areej Abuhammad
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Elizabeth Fullam
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Sanjib Bhakta
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Angela J Russell
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Garrett M Morris
- InhibOx, Oxford Centre for Innovation, New Road, Oxford OX1 1BY, UK
| | - Paul W Finn
- InhibOx, Oxford Centre for Innovation, New Road, Oxford OX1 1BY, UK
| | - Edith Sim
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK.
| |
Collapse
|
30
|
Maitra A, Bhakta S. TB Summit 2014: prevention, diagnosis, and treatment of tuberculosis-a meeting report of a Euroscicon conference. Virulence 2014; 5:638-44. [PMID: 25003368 PMCID: PMC4105315 DOI: 10.4161/viru.29803] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
World TB Day commemorates Dr Robert Koch’s first announcement on March 24, 1882, that the bacterium Mycobacterium tuberculosis is the causative agent of tuberculosis. Currently, the event comprises of several conferences, meetings and activities held all over the world with the singular intention of raising public awareness about the global health emergency.
In spite of having discovered the etiological agent of tuberculosis more than a century ago, a sizeable population still contract the disease every year and fall prey to it. In 2012, an estimated 8.6 million people developed the disease with 1.3 million succumbing to it. The number of TB deaths in children is unacceptably large, given that most are preventable. However, the challenge appears to be shifting toward attempts to control the rise and spread of the drug resistant variants of the microbe. To achieve this, a concerted effort from academia, clinical practice, and industry has been put forth.
The TB Summit 2014 attempted to raise awareness as well as bring together experts involved in different aspects of tuberculosis research to help establish a more collective approach to battle this age-old disease.
Collapse
Affiliation(s)
- Arundhati Maitra
- Mycobacteria Research Laboratory; Institute of Structural and Molecular Biology; University of London; London, UK
| | - Sanjib Bhakta
- Mycobacteria Research Laboratory; Institute of Structural and Molecular Biology; University of London; London, UK
| |
Collapse
|
31
|
Moreira JB, Mann J, Neidle S, McHugh TD, Taylor PW. Antibacterial activity of head-to-head bis-benzimidazoles. Int J Antimicrob Agents 2013; 42:361-6. [DOI: 10.1016/j.ijantimicag.2013.04.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 04/22/2013] [Accepted: 04/26/2013] [Indexed: 11/30/2022]
|
32
|
Maitra A, Bhakta S. Mycobacterium tuberculosis... Can we beat it? Report from a Euroscicon conference 2013. Virulence 2013; 4:499-503. [PMID: 23863609 PMCID: PMC5359728 DOI: 10.4161/viru.25397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 06/12/2013] [Accepted: 06/13/2013] [Indexed: 11/28/2022] Open
Affiliation(s)
- Arundhati Maitra
- Mycobacteria Research Laboratory; Institute of Structural and Molecular Biology; Department of Biological Sciences; Birkbeck; University of London; London, UK
| | - Sanjib Bhakta
- Mycobacteria Research Laboratory; Institute of Structural and Molecular Biology; Department of Biological Sciences; Birkbeck; University of London; London, UK
| |
Collapse
|
33
|
Abuhammad A, Lowe ED, McDonough MA, Shaw Stewart PD, Kolek SA, Sim E, Garman EF. Structure of arylamineN-acetyltransferase fromMycobacterium tuberculosisdetermined by cross-seeding with the homologous protein fromM. marinum: triumph over adversity. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:1433-46. [DOI: 10.1107/s0907444913015126] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 05/31/2013] [Indexed: 11/10/2022]
|
34
|
Guzman JD, Evangelopoulos D, Gupta A, Birchall K, Mwaigwisya S, Saxty B, McHugh TD, Gibbons S, Malkinson J, Bhakta S. Antitubercular specific activity of ibuprofen and the other 2-arylpropanoic acids using the HT-SPOTi whole-cell phenotypic assay. BMJ Open 2013; 3:e002672. [PMID: 23794563 PMCID: PMC3693423 DOI: 10.1136/bmjopen-2013-002672] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 05/01/2013] [Accepted: 05/14/2013] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Lead antituberculosis (anti-TB) molecules with novel mechanisms of action are urgently required to fuel the anti-TB drug discovery pipeline. The aim of this study was to validate the use of the high-throughput spot culture growth inhibition (HT-SPOTi) assay for screening libraries of compounds against Mycobacterium tuberculosis and to study the inhibitory effect of ibuprofen (IBP) and the other 2-arylpropanoic acids on the growth inhibition of M tuberculosis and other mycobacterial species. METHODS The HT-SPOTi method was validated not only with known drugs but also with a library of 47 confirmed anti-TB active compounds published in the ChEMBL database. Three over-the-counter non-steroidal anti-inflammatory drugs were also included in the screening. The 2-arylpropanoic acids, including IBP, were comprehensively evaluated against phenotypically and physiologically different strains of mycobacteria, and their cytotoxicity was determined against murine RAW264.7 macrophages. Furthermore, a comparative bioinformatic analysis was employed to propose a potential mycobacterial target. RESULTS IBP showed antitubercular properties while carprofen was the most potent among the 2-arylpropanoic class. A 3,5-dinitro-IBP derivative was found to be more potent than IBP but equally selective. Other synthetic derivatives of IBP were less active, and the free carboxylic acid of IBP seems to be essential for its anti-TB activity. IBP, carprofen and the 3,5-dinitro-IBP derivative exhibited activity against multidrug-resistant isolates and stationary phase bacilli. On the basis of the human targets of the 2-arylpropanoic analgesics, the protein initiation factor infB (Rv2839c) of M tuberculosis was proposed as a potential molecular target. CONCLUSIONS The HT-SPOTi method can be employed reliably and reproducibly to screen the antimicrobial potency of different compounds. IBP demonstrated specific antitubercular activity, while carprofen was the most selective agent among the 2-arylpropanoic class. Activity against stationary phase bacilli and multidrug-resistant isolates permits us to speculate a novel mechanism of antimycobacterial action. Further medicinal chemistry and target elucidation studies could potentially lead to new therapies against TB.
Collapse
Affiliation(s)
- Juan D Guzman
- Department of Biological Sciences, Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Birkbeck, University of London, London, UK
- Department of Pharmaceutical and Biological Chemistry, UCL School of Pharmacy, London, UK
| | - Dimitrios Evangelopoulos
- Department of Biological Sciences, Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Birkbeck, University of London, London, UK
- Department of Infection, Centre for Clinical Microbiology, Royal Free Campus, University College London, London, UK
| | - Antima Gupta
- Department of Biological Sciences, Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Birkbeck, University of London, London, UK
| | | | - Solomon Mwaigwisya
- Department of Infection, Centre for Clinical Microbiology, Royal Free Campus, University College London, London, UK
| | - Barbara Saxty
- Centre for Therapeutics Discovery, MRC Technology, London, UK
| | - Timothy D McHugh
- Department of Infection, Centre for Clinical Microbiology, Royal Free Campus, University College London, London, UK
| | - Simon Gibbons
- Department of Pharmaceutical and Biological Chemistry, UCL School of Pharmacy, London, UK
| | - John Malkinson
- Department of Pharmaceutical and Biological Chemistry, UCL School of Pharmacy, London, UK
| | - Sanjib Bhakta
- Department of Biological Sciences, Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Birkbeck, University of London, London, UK
| |
Collapse
|
35
|
Matei L, Bleotu C, Baciu I, Draghici C, Ionita P, Paun A, Chifiriuc MC, Sbarcea A, Zarafu I. Synthesis and bioevaluation of some new isoniazid derivatives. Bioorg Med Chem 2013; 21:5355-61. [PMID: 23823011 DOI: 10.1016/j.bmc.2013.06.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 05/30/2013] [Accepted: 06/06/2013] [Indexed: 10/26/2022]
Abstract
The aim of the study was to synthesize some new compounds with potential anti-tuberculosis activity, containing isoniazid and α,β-unsaturated thiocinnamamide-like thioamides as precursors. The obtained derivatives were evaluated regarding their biological activity (antioxidant and antibacterial), as well as their influence on the eukaryotic cell cycle. The results suggested that the newly obtained derivatives of isoniazid exhibited different biological activities, depending on their structure; thus, the most active compound in terms of anti-oxidant and anti-Mycobacterium tuberculosis effects proved to be the isonicotinic acid N'-(1-amino-1-mercapto-3-phenyl-propen-1-yl)-hydrazide. This compound also increased the expression of NAT1 and NAT2 genes, which are implicated in the metabolism of the isoniazid, demonstrating that it could be rapidly metabolized, and thus well tolerated. The largest spectrum of antibacterial activity (excluding M. tuberculosis) was noticed for the isonicotinic acid N'-[1-amino-1-mercapto-3-(p-chloro-phenyl)-propen-1-yl]-hydrazide, which was also the most cytotoxic, especially at high concentrations, although not significantly affecting the cellular cycle phases. The obtained results showed that the new derivatives could represent potential candidates for the treatment of M. tuberculosis infections, but further research is needed in order to improve their pharmacological properties, by increasing their antimicrobial activity and reducing the risk of side-effects.
Collapse
Affiliation(s)
- Lilia Matei
- Stefan S. Nicolau Institute of Virology, 285 M. Bravu Ave., Bucharest 030304, Romania
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Zhang QF, Zhang Q, Gu J, Gong P, Wang XD, Wang X, Tu S, Bi LJ, Bi L, Yu ZN, Yu Z, Zhang ZP, Zhang Z, Cui ZQ, Cui Z, Wei HP, Wei H, Tao SC, Tao S, Zhang XE, Zhang X, Deng JY. Reversibly acetylated lysine residues play important roles in the enzymatic activity of Escherichia coli N-hydroxyarylamine O-acetyltransferase. FEBS J 2013; 280:1966-79. [PMID: 23452042 DOI: 10.1111/febs.12216] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 02/17/2013] [Accepted: 02/25/2013] [Indexed: 11/30/2022]
Abstract
CobB is a bacterial NAD(+)-dependent protein deacetylase. Although progress has been made in functional studies of this protein in recent years, its substrates and biological functions are still largely unclear. Using proteome microarray technology, potential substrates of Escherichia coli CobB were screened and nine proteins were identified, including N-hydroxyarylamine O-acetyltransferase (NhoA). In vitro acetylation/deacetylation of NhoA was verified by western blotting and mass spectrometry, and two acetylated lysine residues were identified. Site-specific mutagenesis experiments showed that mutation of each acetylated lysine decreased the acetylation level of NhoA in vitro. Further analysis showed that variant NhoA proteins carrying substitutions at the two acetylated lysine residues are involved in both the O-acetyltransferase and N-acetyltransferase activity of NhoA. Structural analyses were also performed to explore the effects of the acetylated lysine residues on the activity of NhoA. These results suggest that reversible acetylation may play a role in the activity of Escherichia coli NhoA.
Collapse
Affiliation(s)
- Qun-Fang Zhang
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Fullam E, Talbot J, Abuhammed A, Westwood I, Davies SG, Russell AJ, Sim E. Design, synthesis and structure-activity relationships of 3,5-diaryl-1H-pyrazoles as inhibitors of arylamine N-acetyltransferase. Bioorg Med Chem Lett 2013; 23:2759-64. [PMID: 23518278 DOI: 10.1016/j.bmcl.2013.02.052] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 02/08/2013] [Accepted: 02/12/2013] [Indexed: 10/27/2022]
Abstract
The synthesis and inhibitory potencies of a novel series of 3,5-diaryl-1H-pyrazoles as specific inhibitors of prokaryotic arylamine N-acetyltransferase enzymes is described. The series is based on hit compound 1 3,5-diaryl-1H-pyrazole identified from a high-throughout screen that has been carried out previously and found to inhibit the growth of Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Elizabeth Fullam
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK.
| | | | | | | | | | | | | |
Collapse
|
38
|
Kubiak X, Dairou J, Dupret JM, Rodrigues-Lima F. Crystal structure of arylamineN-acetyltransferases: insights into the mechanisms of action and substrate selectivity. Expert Opin Drug Metab Toxicol 2013; 9:349-62. [DOI: 10.1517/17425255.2013.742505] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
39
|
Abuhammad A, Fullam E, Lowe ED, Staunton D, Kawamura A, Westwood IM, Bhakta S, Garner AC, Wilson DL, Seden PT, Davies SG, Russell AJ, Garman EF, Sim E. Piperidinols that show anti-tubercular activity as inhibitors of arylamine N-acetyltransferase: an essential enzyme for mycobacterial survival inside macrophages. PLoS One 2012; 7:e52790. [PMID: 23285185 PMCID: PMC3532304 DOI: 10.1371/journal.pone.0052790] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 11/21/2012] [Indexed: 11/19/2022] Open
Abstract
Latent M. tuberculosis infection presents one of the major obstacles in the global eradication of tuberculosis (TB). Cholesterol plays a critical role in the persistence of M. tuberculosis within the macrophage during latent infection. Catabolism of cholesterol contributes to the pool of propionyl-CoA, a precursor that is incorporated into cell-wall lipids. Arylamine N-acetyltransferase (NAT) is encoded within a gene cluster that is involved in the cholesterol sterol-ring degradation and is essential for intracellular survival. The ability of the NAT from M. tuberculosis (TBNAT) to utilise propionyl-CoA links it to the cholesterol-catabolism pathway. Deleting the nat gene or inhibiting the NAT enzyme prevents intracellular survival and results in depletion of cell-wall lipids. TBNAT has been investigated as a potential target for TB therapies. From a previous high-throughput screen, 3-benzoyl-4-phenyl-1-methylpiperidinol was identified as a selective inhibitor of prokaryotic NAT that exhibited antimycobacterial activity. The compound resulted in time-dependent irreversible inhibition of the NAT activity when tested against NAT from M. marinum (MMNAT). To further evaluate the antimycobacterial activity and the NAT inhibition of this compound, four piperidinol analogues were tested. All five compounds exert potent antimycobacterial activity against M. tuberculosis with MIC values of 2.3-16.9 µM. Treatment of the MMNAT enzyme with this set of inhibitors resulted in an irreversible time-dependent inhibition of NAT activity. Here we investigate the mechanism of NAT inhibition by studying protein-ligand interactions using mass spectrometry in combination with enzyme analysis and structure determination. We propose a covalent mechanism of NAT inhibition that involves the formation of a reactive intermediate and selective cysteine residue modification. These piperidinols present a unique class of antimycobacterial compounds that have a novel mode of action different from known anti-tubercular drugs.
Collapse
Affiliation(s)
- Areej Abuhammad
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
- Faculty of Pharmacy, University of Jordan, Amman, Jordan
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Elizabeth Fullam
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Edward D. Lowe
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - David Staunton
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Akane Kawamura
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Isaac M. Westwood
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Sanjib Bhakta
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | | | - David L. Wilson
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Peter T. Seden
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Stephen G. Davies
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Angela J. Russell
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Elspeth F. Garman
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Edith Sim
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
- Faculty of Science, Engineering and Computing Kingston University, Kingston, United Kingdom
| |
Collapse
|
40
|
Characterization of an acetyltransferase that detoxifies aromatic chemicals in Legionella pneumophila. Biochem J 2012; 445:219-28. [PMID: 22545684 DOI: 10.1042/bj20120528] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Legionella pneumophila is an opportunistic pathogen and the causative agent of Legionnaires' disease. Despite being exposed to many chemical compounds in its natural and man-made habitats (natural aquatic biotopes and man-made water systems), L. pneumophila is able to adapt and survive in these environments. The molecular mechanisms by which this bacterium detoxifies these chemicals remain poorly understood. In particular, the expression and functions of XMEs (xenobiotic-metabolizing enzymes) that could contribute to chemical detoxification in L. pneumophila have been poorly documented at the molecular and functional levels. In the present paper we report the identification and biochemical and functional characterization of a unique acetyltransferase that metabolizes aromatic amine chemicals in three characterized clinical strains of L. pneumophila (Paris, Lens and Philadelphia). Strain-specific sequence variations in this enzyme, an atypical member of the arylamine N-acetyltransferase family (EC 2.3.1.5), produce enzymatic variants with different structural and catalytic properties. Functional inactivation and complementation experiments showed that this acetyltransferase allows L. pneumophila to detoxify aromatic amine chemicals and grow in their presence. The present study provides a new enzymatic mechanism by which the opportunistic pathogen L. pneumophila biotransforms and detoxifies toxic aromatic chemicals. These data also emphasize the role of XMEs in the environmental adaptation of certain prokaryotes.
Collapse
|
41
|
Gupta A, Bhakta S. An integrated surrogate model for screening of drugs against Mycobacterium tuberculosis. J Antimicrob Chemother 2012; 67:1380-91. [PMID: 22398649 DOI: 10.1093/jac/dks056] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES The intracellularly surviving and slow-growing pathogen, Mycobacterium tuberculosis, adapts the host cell environment for its active and dormant life cycle. It is evident that the lack of appropriate high-throughput screening of inhibitors within host cells is an impediment for the early stages of anti-tubercular drug discovery. We aimed to develop an integrated surrogate model that enhances the screening of large inhibitor libraries. METHODS Different mycobacterial species were compared for their growth, drug susceptibility and intracellular uptake. A 6-well plate solid agar-based spot culture growth inhibition (SPOTi) assay was developed into a higher throughput format. The uptake and intracellular survival of Mycobacterium aurum within mouse macrophage cells (RAW 264.7) were optimized using 24/96-well plate formats. RESULTS Fast-growing, non-pathogenic M. aurum was found to have an antibiotic-susceptibility profile similar to that of M. tuberculosis. The sensitivity to an acidic pH environment and the ability to multiply inside RAW 264.7 macrophages provided additional advantages for employing M. aurum in intracellular drug screening methods. A selection of anti-tubercular drugs inhibited the growth and viability of M. aurum inside the macrophages at different levels. CONCLUSIONS We present a rapid, convenient, high-throughput surrogate model, which provides a comprehensive evaluation platform for new chemical scaffolds against different physiological stages of mycobacteria within the primary cell environment of the host. The results using anti-tubercular drugs validate this model for screening libraries of existing and novel chemical entities.
Collapse
Affiliation(s)
- Antima Gupta
- Mycobacteria Research Laboratory, Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | | |
Collapse
|
42
|
Interaction of wild type, G68R and L125M isoforms of the arylamine-N-acetyltransferase from Mycobacterium tuberculosis with isoniazid: a computational study on a new possible mechanism of resistance. J Mol Model 2012; 18:4013-24. [DOI: 10.1007/s00894-012-1383-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 02/14/2012] [Indexed: 11/27/2022]
|
43
|
LIU FEI, SUN QIANQIAN, WANG LINGXIAO, NIE SHUANGSHUANG, LI JUN. Bioinformatics analysis of abnormal DNA methylation in muscle samples from monozygotic twins discordant for type 2 diabetes. Mol Med Rep 2012; 12:351-6. [DOI: 10.3892/mmr.2015.3452] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 02/06/2015] [Indexed: 11/05/2022] Open
|
44
|
Arylamine N-Acetyltransferases – from Drug Metabolism and Pharmacogenetics to Identification of Novel Targets for Pharmacological Intervention. CURRENT CONCEPTS IN DRUG METABOLISM AND TOXICOLOGY 2012; 63:169-205. [DOI: 10.1016/b978-0-12-398339-8.00005-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
45
|
Pluvinage B, Li de la Sierra-Gallay I, Kubiak X, Xu X, Dairou J, Dupret JM, Rodrigues-Lima F. The Bacillus anthracis arylamine N-acetyltransferase ((BACAN)NAT1) that inactivates sulfamethoxazole, reveals unusual structural features compared with the other NAT isoenzymes. FEBS Lett 2011; 585:3947-52. [PMID: 22062153 DOI: 10.1016/j.febslet.2011.10.041] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 10/25/2011] [Accepted: 10/25/2011] [Indexed: 11/28/2022]
Abstract
Arylamine N-acetyltransferases (NATs) are xenobiotic-metabolizing enzymes that biotransform arylamine drugs. The Bacillus anthracis (BACAN)NAT1 enzyme affords increased resistance to the antibiotic sulfamethoxazole through its acetylation. We report the structure of (BACAN)NAT1. Unexpectedly, endogenous coenzymeA was present in the active site. The structure suggests that, contrary to the other prokaryotic NATs, (BACAN)NAT1 possesses a 14-residue insertion equivalent to the "mammalian insertion", a structural feature considered unique to mammalian NATs. Moreover, (BACAN)NAT1 structure shows marked differences in the mode of binding and location of coenzymeA when compared to the other NATs. This suggests that the mechanisms of cofactor recognition by NATs is more diverse than expected and supports the cofactor-binding site as being a unique subsite to target in drug design against bacterial NATs.
Collapse
Affiliation(s)
- Benjamin Pluvinage
- Université Paris Diderot, Sorbonne Paris Cité, Unité BFA, EAC-CNRS 4413, Paris, France
| | | | | | | | | | | | | |
Collapse
|
46
|
Evangelopoulos D, Cronin N, Daviter T, Sim E, Keep NH, Bhakta S. Characterization of an oxidoreductase from the arylamine N-acetyltransferase operon in Mycobacterium smegmatis. FEBS J 2011; 278:4824-32. [PMID: 21972977 DOI: 10.1111/j.1742-4658.2011.08382.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mycobacterium tuberculosis, the most successful bacterial pathogen, causes tuberculosis, a disease that still causes more than 2 million deaths per year. Arylamine N-acetyltransferase is an enzyme that is conserved in most Mycobacterium spp. The nat gene belongs to an operon that is important for the intracellular survival of M. tuberculosis within macrophages. The nat operon in Mycobacterium smegmatis and other fast-growing mycobacterial species has a unique organization containing genes with uncharacterized function. Here, we describe the biochemical, biophysical and structural characterization of the MSMEG_0308 gene product (MS0308) of the M. smegmatis nat operon. While characterizing the function of MS0308, we validated the oxidoreductase property; however, we found that the enzyme was not utilizing dihydrofolate as its substrate, hence we first report that MS0308 is not a dihydrofolate reductase, as annotated in the genome. The structure of this oxidoreductase was solved at 2.0 Å in complex with the cofactor NADPH and has revealed the hydrophobic pocket where the endogenous substrate binds.
Collapse
Affiliation(s)
- Dimitrios Evangelopoulos
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, UK
| | | | | | | | | | | |
Collapse
|
47
|
Abuhammad A, Lack N, Schweichler J, Staunton D, Sim RB, Sim E. Improvement of the expression and purification of Mycobacterium tuberculosis arylamine N-acetyltransferase (TBNAT) a potential target for novel anti-tubercular agents. Protein Expr Purif 2011; 80:246-52. [PMID: 21767648 DOI: 10.1016/j.pep.2011.06.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 06/30/2011] [Indexed: 10/18/2022]
Abstract
Arylamine N-acetyltransferase from Mycobacterium tuberculosis (TBNAT) has been proposed as a drug target for latent tuberculosis treatment. The enzyme is essential for the survival of the mycobacterium in macrophages. However, TBNAT has been very difficult to generate as a soluble protein. In this work we describe production of soluble recombinant TBNAT at a reasonable yield achieved by subcloning the tbnat gene with a purification His-tag into the pVLT31 plasmid, and subsequent optimisation of the induction conditions. The expression system results in soluble protein optimised upon extended (60 h) low level isopropyl β-D-1-thiogalactopyranoside level induction (100 μM) at a temperature of 15 °C. The level of TBNAT expression obtained in E. coli has been significantly improved from ∼2 mg to a final yield of up to 16 mg per litre of culture at a purity level suitable for structural studies. The molecular mass of 31310 Da was confirmed using mass spectroscopy and the oligomerisation state was determined. The stability of TBNAT in different buffer systems was investigated by thermal shift assays and sufficient protein is now available for the screening of chemical libraries for inhibitors.
Collapse
Affiliation(s)
- Areej Abuhammad
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX13QT, UK
| | | | | | | | | | | |
Collapse
|
48
|
Almeida Da Silva PEA, Palomino JC. Molecular basis and mechanisms of drug resistance in Mycobacterium tuberculosis: classical and new drugs. J Antimicrob Chemother 2011; 66:1417-30. [PMID: 21558086 DOI: 10.1093/jac/dkr173] [Citation(s) in RCA: 331] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Tuberculosis (TB) remains one of the leading public health problems worldwide. Declared as a global emergency in 1993 by the WHO, its control is hampered by the emergence of multidrug resistance (MDR), defined as resistance to at least rifampicin and isoniazid, two key drugs in the treatment of the disease. More recently, severe forms of drug resistance such as extensively drug-resistant (XDR) TB have been described. After the discovery of several drugs with anti-TB activity, multidrug therapy became fundamental for control of the disease. Major advances in molecular biology and the availability of new information generated after sequencing the genome of Mycobacterium tuberculosis increased our knowledge of the mechanisms of resistance to the main anti-TB drugs. Better knowledge of the mechanisms of drug resistance in TB and the molecular mechanisms involved will help us to improve current techniques for rapid detection and will also stimulate the exploration of new targets for drug activity and drug development. This article presents an updated review of the mechanisms and molecular basis of drug resistance in M. tuberculosis. It also comments on the several gaps in our current knowledge of the molecular mechanisms of drug resistance to the main classical and new anti-TB drugs and briefly discusses some implications of the development of drug resistance and fitness, transmission and pathogenicity of M. tuberculosis.
Collapse
|
49
|
Fullam E, Abuhammad A, Wilson DL, Anderton MC, Davies SG, Russell AJ, Sim E. Analysis of β-amino alcohols as inhibitors of the potential anti-tubercular target N-acetyltransferase. Bioorg Med Chem Lett 2010; 21:1185-90. [PMID: 21251821 DOI: 10.1016/j.bmcl.2010.12.099] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 12/14/2010] [Accepted: 12/18/2010] [Indexed: 10/18/2022]
Abstract
The synthesis and inhibitory potencies of a novel series of β-amino alcohols, based on the hit-compound 3-[3'-(4''-cyclopent-2'''-en-1'''-ylphenoxy)-2'-hydroxypropyl]-5,5 dimethylimidazolidine-2,4-dione as specific inhibitors of mycobacterial N-acetyltransferase (NAT) enzymes are reported. Effects of synthesised compounds on growth of Mycobacterium tuberculosis have been determined.
Collapse
Affiliation(s)
- Elizabeth Fullam
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | | | | | | | | | | | | |
Collapse
|
50
|
Probing the architecture of the Mycobacterium marinum arylamine N-acetyltransferase active site. Protein Cell 2010; 1:384-392. [PMID: 21203950 DOI: 10.1007/s13238-010-0037-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Accepted: 03/15/2010] [Indexed: 10/19/2022] Open
Abstract
Treatment of latent tuberculosis infection remains an important goal of global TB eradication. To this end, targets that are essential for intracellular survival of Mycobacterium tuberculosis are particularly attractive. Arylamine N-acetyltransferase (NAT) represents such a target as it is, along with the enzymes encoded by the associated gene cluster, essential for mycobacterial survival inside macrophages and involved in cholesterol degradation. Cholesterol is likely to be the fuel for M. tuberculosis inside macrophages. Deleting the nat gene and inhibiting the NAT enzyme prevents survival of the microorganism in macrophages and induces cell wall alterations, rendering the mycobacterium sensitive to antibiotics to which it is normally resistant. To date, NAT from M. marinum (MMNAT) is considered the best available model for NAT from M. tuberculosis (TBNAT). The enzyme catalyses the acetylation and propionylation of arylamines and hydrazines. Hydralazine is a good acetyl and propionyl acceptor for both MMNAT and TBNAT. The MMNAT structure has been solved to 2.1 Å resolution following crystallisation in the presence of hydralazine and is compared to available NAT structures. From the mode of ligand binding, features of the binding pocket can be identified, which point to a novel mechanism for the acetylation reaction that results in a 3-methyltriazolo[3,4-a]phthalazine ring compound as product.
Collapse
|