1
|
Liang Z, Zhang L. Research Progress of Plasma Cell Mastitis. Immun Inflamm Dis 2025; 13:e70199. [PMID: 40289384 PMCID: PMC12034746 DOI: 10.1002/iid3.70199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 02/25/2025] [Accepted: 04/17/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND Plasma cell mastitis (PCM), also termed mammary duct ectasia, is a chronic nonbacterial inflammatory disease characterized by mammary duct dilation and plasma cell infiltration. Due to its varied and nonspecific clinical presentation, PCM is frequently misdiagnosed as breast cancer, complicating clinical management. OBJECTIVES This review aims to summarize recent advances in the understanding of PCM, focusing on its etiology, clinical manifestations, diagnosis, and treatment strategies, as well as clarifying differential diagnostic points with granulomatous mastitis (GLM). METHODS We reviewed recent literature highlighting clinical characteristics, diagnostic approaches, and therapeutic options related to PCM, including comparative studies addressing differences between PCM and GLM. DISCUSSION Recent progress has enhanced understanding of PCM's clinical and pathological features, yet distinguishing PCM from GLM remains clinically challenging due to overlapping presentations. An integrated approach involving clinical evaluation, imaging modalities, and histopathological examination is recommended to improve diagnostic accuracy and clinical outcomes. CONCLUSION Further investigation into the pathogenesis of PCM is essential for developing more precise diagnostic criteria and effective treatments, ultimately improving patient prognosis and reducing misdiagnosis.
Collapse
Affiliation(s)
- Zhebin Liang
- Department of General SurgeryThe Fourth Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Lifeng Zhang
- Department of General SurgeryThe Fourth Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| |
Collapse
|
2
|
Harimoto K, Nishio Y, Someya H, Sato T, Ito M, Takeuchi M. Anti-inflammatory actions of ripasudil ameliorate experimental autoimmune uveoretinitis in the acute phase. BMJ Open Ophthalmol 2025; 10:e001981. [PMID: 40021201 PMCID: PMC11873326 DOI: 10.1136/bmjophth-2024-001981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 02/08/2025] [Indexed: 03/03/2025] Open
Abstract
INTRODUCTION Rho-associated protein kinases (ROCKs) are a key regulator of T cell function, influencing a wide range of processes from activation to differentiation. Experimental autoimmune uveoretinitis (EAU) is an animal model of human non-infectious uveitis. This study aimed to evaluate the suppressive effects of ripasudil, a ROCK inhibitor, on ocular inflammation when administered from the onset of EAU and to elucidate the underlying mechanisms of its inhibitory effects. METHODS EAU was induced in wild-type C57BL/6 mice by immunisation with IRBP peptide. Ripasudil or its vehicle, PBS, was intraperitoneally administered daily starting from 8 days post-immunisation. Clinical and histopathological examinations and analysis of T cell activation state were conducted. In addition, T cell gene expression profiles in the relevant immune functions were identified using single-cell RNA sequencing (scRNA-seq). RESULTS The development of EAU was significantly attenuated and T cell activation and Th1 cell differentiation were significantly inhibited in mice with ripasudil (RIP-EAU) compared with mice with PBS (PBS-EAU), scRNA-seq using splenic T cells indicated that genes involved in the ROCK signalling pathway were highly expressed in low-differentiated Th1/Th17 cells, intermediate Th1 cells and differentiated Th1 cells. In addition, although differentiated Th1 and Th17 cells constituted similar proportions between PBS-EAU and RIP-EAU mice, RIP-EAU mice exhibited fewer low-differentiated Th1/Th17 cells and intermediate Th1 cells compared with PBS-EAU mice. CONCLUSION Ripasudil suppressed EAU when administered from the onset of the disease by inhibiting cells that strongly express genes involved in the ROCK signalling pathway and differentiate into Th1 cells.
Collapse
Affiliation(s)
- Kozo Harimoto
- Department of Ophthalmology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Yoshiaki Nishio
- Department of Ophthalmology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Hideaki Someya
- Department of Ophthalmology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Tomohito Sato
- Department of Ophthalmology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Masataka Ito
- Developmental Anatomy and Regenerative Biology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Masaru Takeuchi
- Department of Ophthalmology, National Defense Medical College, Tokorozawa, Saitama, Japan
| |
Collapse
|
3
|
Ji J, Xiong C, Yang H, Jiang Z, Zhang Y, Wang X, Yu T, Li Q, Zhu S, Zhou Y. The aryl hydrocarbon receptor: A crucial mediator in ocular disease pathogenesis and therapeutic target. Exp Eye Res 2024; 249:110144. [PMID: 39486499 DOI: 10.1016/j.exer.2024.110144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/07/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
The aryl hydrocarbon receptor (AHR) is a pivotal nuclear receptor involved in mediating cellular responses to a wide range of environmental pollutants and endogenous ligands. AHR plays a central role in regulating essential physiological processes, including xenobiotic metabolism, immune response modulation, cell cycle control, tumorigenesis, and developmental events. Recent studies have identified AHR as a critical mediator and a potential therapeutic target in the pathogenesis of ocular diseases. This review provides a thorough analysis of the various functions of AHR signalling in the ocular environment, with a specific emphasis on its effects on the retina, retinal pigment epithelium (RPE), choroid, and cornea. We provide a detailed discussion on the molecular mechanisms through which AHR integrates environmental and endogenous signals, influencing the development and progression of age-related macular degeneration (AMD), retinitis pigmentosa, uveitis, and other major ocular disorders. Furthermore, we evaluate the therapeutic potential of modulating AHR activity through novel ligands and agonists as a strategy for treating eye diseases. Understanding the molecular mechanisms of AHR in ocular tissues may facilitate the development of AHR-targeted therapies, which is crucial for addressing the pressing clinical demand for novel treatment strategies in ocular diseases.
Collapse
Affiliation(s)
- Juanjuan Ji
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Genome Sequencing Center, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Chanyu Xiong
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Genome Sequencing Center, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Huining Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Genome Sequencing Center, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhilin Jiang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Genome Sequencing Center, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yun Zhang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Genome Sequencing Center, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiao Wang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Genome Sequencing Center, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Tianshu Yu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Genome Sequencing Center, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Qiong Li
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Genome Sequencing Center, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Shikai Zhu
- Organ Transplant Center, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yu Zhou
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Genome Sequencing Center, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
4
|
Takeuchi M, Nishio Y, Someya H, Sato T, Yoshimura A, Ito M, Harimoto K. Autoimmune uveitis attenuated in diabetic mice through imbalance of Th1/Th17 differentiation via suppression of AP-1 signaling pathway in Th cells. Front Immunol 2024; 15:1347018. [PMID: 38887289 PMCID: PMC11180723 DOI: 10.3389/fimmu.2024.1347018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/18/2024] [Indexed: 06/20/2024] Open
Abstract
Purpose Inflammation is involved in the pathogenesis of diabetes, however the impact of diabetes on organ-specific autoimmune diseases remains unexplored. Experimental autoimmune uveoretinitis (EAU) is a widely accepted animal model of human endogenous uveitis. In this study, we investigated the effects of diabetic conditions on the development of EAU using a mouse diabetes model. Methods EAU was induced in wild-type C57BL/6 (WT) mice and Ins2Akita (Akita) mice with spontaneous diabetes by immunization with IRBP peptide. Clinical and histopathological examinations, and analysis of T cell activation state were conducted. In addition, alternations in the composition of immune cell types and gene expression profiles of relevant immune functions were identified using single-cell RNA sequencing. Results The development of EAU was significantly attenuated in immunized Akita (Akita-EAU) mice compared with immunized WT (WT-EAU) mice, although T cells were fully activated in Akita-EAU mice, and the differentiation into Th17 cells and regulatory T (Treg) cells was promoted. However, Th1 cell differentiation was inhibited in Akita-EAU mice, and single-cell analysis indicated that gene expression associated AP-1 signaling pathway (JUN, FOS, and FOSB) was downregulated not only in Th1 cells but also in Th17, and Treg cells in Akita-EAU mice at the onset of EAU. Conclusions In diabetic mice, EAU was significantly attenuated. This was related to selective inhibition of Th1 cell differentiation and downregulated AP-1 signaling pathway in both Th1 and Th17 cells.
Collapse
Affiliation(s)
- Masaru Takeuchi
- Department of Ophthalmology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Yoshiaki Nishio
- Department of Ophthalmology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Hideaki Someya
- Department of Ophthalmology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Tomohito Sato
- Department of Ophthalmology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Masataka Ito
- Department of Developmental Anatomy and Regenerative Biology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Kozo Harimoto
- Department of Ophthalmology, National Defense Medical College, Tokorozawa, Saitama, Japan
| |
Collapse
|
5
|
Sun X, Hou J, Ni T, Xu Z, Yan W, Kong L, Zhang Q. MCC950 attenuates plasma cell mastitis in an MDSC-dependent manner. Int Immunopharmacol 2024; 131:111803. [PMID: 38460298 DOI: 10.1016/j.intimp.2024.111803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/18/2024] [Accepted: 03/03/2024] [Indexed: 03/11/2024]
Abstract
Plasma cell mastitis (PCM) is a sterile inflammatory condition primarily characterized by periductal inflammation and ductal ectasia. Currently, there is a lack of non-invasive or minimally invasive treatment option other than surgical intervention. The NLRP3 inflammasome has been implicated in the pathogenesis and progression of various inflammatory diseases, however, its involvement in PCM has not yet been reported. In this study, we initially observed the pronounced upregulation of NLRP3 in both human and mouse PCM tissue and elucidated the mechanism underlying the attenuation of PCM through inhibition of NLRP3. We established the PCM murine model and collected samples on day 14, when inflammation reached its peak, for subsequent research purposes. MCC950, an NLRP3 inhibitor, was utilized to effectively ameliorate PCM by significantly reducing plasma cell infiltration in mammary tissue, as well as attenuate the expression of pro-inflammatory cytokines including IL-1β, TNF-α, IL-2, and IL-6. Mechanistically, we observed that MCC950 augmented the function of myeloid-derived suppressor cells (MDSCs), which in turn inhibited the infiltration of plasma cells. Furthermore, it was noted that depleting MDSCs greatly compromised the therapeutic efficacy of MCC950. Collectively, our findings suggest that the administration of MCC950 has the potential to impede the progression of PCM by augmenting MDSCs both numerically and functionally, ultimately treating PCM effectively. This study provides valuable insights into the utilization of pharmacological agents for PCM treatment.
Collapse
Affiliation(s)
- Xiaowei Sun
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu, PR China
| | - Junchen Hou
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu, PR China
| | - Tianyi Ni
- Department of Plastic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu, PR China
| | - Zibo Xu
- Hepatobiliary/Liver Transplantation Center, the First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing 210000, Jiangsu, PR China
| | - Wei Yan
- Department of Plastic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu, PR China
| | - Lianbao Kong
- Hepatobiliary/Liver Transplantation Center, the First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing 210000, Jiangsu, PR China
| | - Qian Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu, PR China.
| |
Collapse
|
6
|
Fukui C, Yamana S, Xue Y, Shirane M, Tsutsui H, Asahara K, Yoshitomi K, Ito T, Lestari T, Hasegawa E, Yawata N, Takeda A, Sonoda KH, Shibata K. Functions of mucosal associated invariant T cells in eye diseases. Front Immunol 2024; 15:1341180. [PMID: 38440736 PMCID: PMC10911089 DOI: 10.3389/fimmu.2024.1341180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/29/2024] [Indexed: 03/06/2024] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are a unique subset of T cells that recognizes metabolites derived from the vitamin B2 biosynthetic pathway. Since the identification of cognate antigens for MAIT cells, knowledge of the functions of MAIT cells in cancer, autoimmunity, and infectious diseases has been rapidly expanding. Recently, MAIT cells have been found to contribute to visual protection against autoimmunity in the eye. The protective functions of MAIT cells are induced by T-cell receptor (TCR)-mediated activation. However, the underlying mechanisms remain unclear. Thus, this mini-review aims to discuss our findings and the complexity of MAIT cell-mediated immune regulation in the eye.
Collapse
Affiliation(s)
- Chihiro Fukui
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Satoshi Yamana
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yanqi Xue
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Mariko Shirane
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroki Tsutsui
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kenichiro Asahara
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Keiko Yoshitomi
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takako Ito
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tantri Lestari
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Eiichi Hasegawa
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Nobuyo Yawata
- Department of Ocular Pathology and Imaging Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Atsunobu Takeda
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koh-Hei Sonoda
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kensuke Shibata
- Department of Ocular Pathology and Imaging Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Microbiology and Immunology, Graduate School of Medicine, Yamaguchi University, Ube, Japan
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| |
Collapse
|
7
|
Xing M, Zhang S, Zha X, Zhang J. Current Understanding and Management of Plasma Cell Mastitis: Can We Benefit from What We Know? Breast Care (Basel) 2022; 17:321-329. [PMID: 35949416 PMCID: PMC9247483 DOI: 10.1159/000517572] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 04/20/2021] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Plasma cell mastitis (PCM), also known as mammary duct ectasia, is a chronic nonbacterial breast inflammation characterized by duct expansion and plasma cell infiltration. The severe and intense clinical manifestations profoundly affect the quality of life of female patients. Although the pathological process of PCM is known to include four stages (duct dilatation, inflammation, abscess and fistula), there is still lack of imaging techniques and serum markers with high specificity in clinical practice. Due to recurrent acute attacks and the prolonged healing process of the disease, most patients choose to accept mastectomy. SUMMARY We searched for studies, reports and reviews referring to PCM in the past 20 years; more than half of the results were related to animal studies, and little attention has been paid to human beings, which may explain the frequent misdiagnosis of PCM as breast cancer and the limited treatment options. This review focuses on the current diagnostic methods and markers for PCM and hierarchically discusses the typical clinical features, etiological causes and relevant molecular mechanisms of PCM. KEY MESSAGES We herein highlight the urgent need to develop more specific and sensitive biomarkers in the clinical laboratory. It will help to establish a standardized flowchart for the diagnosis and treatment of PCM in order to improve recovery for female patients.
Collapse
Affiliation(s)
- Mengying Xing
- Department of Laboratory Medicine, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shichang Zhang
- Department of Laboratory Medicine, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoming Zha
- Department of Breast Surgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiexin Zhang
- Department of Laboratory Medicine, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
8
|
Lee AY, Foulsham W. Regulatory T Cells: Therapeutic Opportunities in Uveitis. FRONTIERS IN OPHTHALMOLOGY 2022; 2:901144. [PMID: 38983511 PMCID: PMC11182269 DOI: 10.3389/fopht.2022.901144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/28/2022] [Indexed: 07/11/2024]
Abstract
Regulatory T cells (Tregs) are critical for the maintenance of immune tolerance and the suppression of excessive inflammation. Many inflammatory autoimmune disorders, including autoimmune uveitis, involve the loss of the suppressive capacities of Tregs. Over the past decade, Tregs' therapeutic potential in uveitis has garnered increasing attention. Specific subsets of Tregs, including TIGIT+ and PD-1+ Tregs, have emerged as potent immunosuppressors that may be particularly well-suited to cell-based therapeutics. Studies have elucidated the interaction between Treg development and the gut microbiome as well as various intracellular signaling pathways. Numerous cell-based therapies and therapeutic molecules have been proposed and investigated using the murine experimental autoimmune uveitis (EAU) model. However, certain challenges remain to be addressed. Studies involving the use of Tregs in human patients with uveitis are lacking, and there are concerns regarding Tregs' production and purification for practical use, their plasticity towards inflammatory phenotypes, immunogenicity, and tumorigenicity. Nevertheless, recent research has brought Tregs closer to yielding viable treatment options for uveitis.
Collapse
Affiliation(s)
| | - William Foulsham
- Department of Ophthalmology, Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
9
|
Conrady CD, Yeh S. A Review of Ocular Drug Delivery Platforms and Drugs for Infectious and Noninfectious Uveitis: The Past, Present, and Future. Pharmaceutics 2021; 13:1224. [PMID: 34452185 PMCID: PMC8399730 DOI: 10.3390/pharmaceutics13081224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 12/11/2022] Open
Abstract
Uveitis refers to a broad group of inflammatory disorders of the eye that often require medical and surgical management to improve or stabilize vision and prevent vision-threatening pathological changes to the eye. Drug delivery to the eye to combat inflammation and subsequent complications from uveitic conditions is complex as there are multiple barriers to absorption limiting availability of the needed drug in the affected tissues. As such, there has been substantial interest in developing new drugs and drug delivery platforms to help reduce intraocular inflammation and its complications. In this review, we discuss the challenges of drug delivery, novel technologies recently approved for uveitis patient care and promising drug delivery platforms for uveitis and sequelae of ocular inflammation.
Collapse
Affiliation(s)
- Christopher D. Conrady
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Center, University of Nebraska Medical Center, Omaha, NE 68105, USA
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA
| | - Steven Yeh
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Center, University of Nebraska Medical Center, Omaha, NE 68105, USA
| |
Collapse
|
10
|
Sato Y, Keino H, Nakayama M, Kano M, Okada AA. Effect of In Vivo Expansion of Regulatory T Cells with IL-2/anti-IL-2 Antibody Complex Plus Rapamycin on Experimental Autoimmune Uveoretinitis. Ocul Immunol Inflamm 2020; 29:1520-1529. [PMID: 32459545 DOI: 10.1080/09273948.2020.1757119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Purpose: To determine the effect of injection of IL-2/anti-IL-2 antibody (IL-2 complex) together with rapamycin on the development of experimental autoimmune uveoretinitis (EAU).Methods: C57BL/6J mice were immunized with human interphotoreceptor retinoid-binding protein peptide. The immunized mice were injected intraperitoneally with PBS, IL-2 complex, rapamycin, or IL-2 complex/rapamycin on days 1, 2, 3, and 4 (induction phase) or days 10, 11, 12, and 13 (effector phase) after immunization.Results: Expansion of CD4+Foxp3+ regulatory T cells in draining lymph nodes was observed in IL-2 complex and IL-2 complex/rapamycin-treated mice. Although injection of IL-2 complex alone was not capable of decreasing the clinical score of EAU, injection of IL-2 complex/rapamycin significantly delayed the onset of EAU. In contrast, the treatment with IL-2 complex alone or IL-2 complex/rapamycin during effector phase failed to suppress EAU.Conclusions: These findings suggest the potential limitations of IL-2 complex or IL-2 complex/rapamycin during EAU.
Collapse
Affiliation(s)
- Yasuhiko Sato
- Department of Ophthalmology, Kyorin University School of Medicine, Mitaka, Tokyo, Japan.,Division of Radioisotope Research, Kyorin University School of Medicine, Tokyo, Japan
| | - Hiroshi Keino
- Department of Ophthalmology, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Makiko Nakayama
- Department of Ophthalmology, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Mirai Kano
- Department of Ophthalmology, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Annabelle A Okada
- Department of Ophthalmology, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| |
Collapse
|
11
|
He X, Liu R, Fan T, Huang X, Wu C, Su W, Wang T, Ruan Q. Treating Autoimmune Diseases by Targeting IL-23 with Gene-Silencing Pyrrole-Imidazole Polyamide. THE JOURNAL OF IMMUNOLOGY 2020; 204:2053-2063. [PMID: 32169850 DOI: 10.4049/jimmunol.1901215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/27/2020] [Indexed: 12/28/2022]
Abstract
Autoimmune diseases are a physiological state that immune responses are directed against and damage the body's own tissues. Numerous studies have demonstrated promising therapeutic effects in certain autoimmune diseases by targeting IL-23/IL-17 axis, mostly through using Abs against IL-23 or IL-17A. Pyrrole-imidazole polyamides are nuclease-resistant compounds that inhibit gene expression through binding to the minor groove of DNA. To develop a novel gene-silencing agent that targets IL-23/IL-17 axis, we designed polyamide that specifically binds to the transcription factor c-Rel-binding site located in the promoter of IL-23p19 subunit. Our study showed that this polyamide is capable of entering into nucleus with high efficiency in dendritic cells and macrophage. In addition, it prevented the binding of c-Rel to the promoter of IL-23p19 in vivo and specifically inhibited the expression of IL-23. More importantly, we demonstrated that this polyamide is therapeutically effective using both the imiquimod-induced psoriasis and experimental autoimmune uveitis mouse models. Taken together, these results indicate that pyrrole-imidazole polyamide targeting IL-23p19 could be a novel and feasible therapeutic strategy for patients with autoimmune diseases.
Collapse
Affiliation(s)
- Xiaozhen He
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao 266071, People's Republic of China
| | - Ruiling Liu
- Center for Antibody Drug, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China; and
| | - Tingting Fan
- Center for Antibody Drug, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Xiaowen Huang
- Center for Antibody Drug, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China; and
| | - Chunlei Wu
- Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Wu Su
- Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Ting Wang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao 266071, People's Republic of China;
| | - Qingguo Ruan
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao 266071, People's Republic of China; .,Center for Antibody Drug, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| |
Collapse
|
12
|
Liu R, He X, Geng W, Wang T, Ruan Q. Loss of TIPE2 Has Opposing Effects on the Pathogenesis of Autoimmune Diseases. Front Immunol 2019; 10:2284. [PMID: 31616442 PMCID: PMC6769042 DOI: 10.3389/fimmu.2019.02284] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 09/10/2019] [Indexed: 11/13/2022] Open
Abstract
Autoimmune diseases are a physiological state wherein immune responses are directed against and damage the body's own tissues. Cytokines secreted by infiltrated inflammatory cells contribute to the pathogenesis of autoimmune diseases. TIPE2, one of the four family members of Tumor necrosis factor-α induced protein-8 (TNFAIP8), is a negative regulator of innate and adaptive immunity and plays essential roles in the maintenance of immune tolerance. However, studies on the role of TIPE2 during the development of autoimmune diseases have generated contradictory results. In the current study, we sought to determine the role of TIPE2 during the development of IMQ-induced psoriasis and Experimental Autoimmune Uveitis (EAU) in mice. Our study revealed that, while TIPE2-deficiency alleviates psoriasis, it exacerbates the development of EAU. Further studies demonstrated that, although TIPE2-deficient T cells produced more IL-17A, they do not migrate efficiently to the local inflammatory site, i.e., the skin. This in turn led to the decreased IL-17A production in the skin and consequently reduced the severity of psoriasis in TIPE2-deficient mice. However, although TIPE2-deficient T cells still produced more IL-17A in EAU model, they migrate into the inflamed eye as efficient as TIPE2-sufficient T cells, and consequently exacerbates the development of EAU in TIPE2-deficient mice. Taken together, these results indicate that TIPE2 may either promote or suppress autoimmunity depending on the specific inflammatory microenvironment in different types of autoimmune diseases.
Collapse
Affiliation(s)
- Ruiling Liu
- Center for Antibody Drug, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaozhen He
- School of Medicine and Life Sciences, University of Jinan, Shandong Academy of Medical Sciences, Jinan, China
| | - Wenwen Geng
- School of Medicine and Life Sciences, University of Jinan, Shandong Academy of Medical Sciences, Jinan, China
| | - Ting Wang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Qingguo Ruan
- Center for Antibody Drug, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| |
Collapse
|
13
|
Controlled release of corticosteroid with biodegradable nanoparticles for treating experimental autoimmune uveitis. J Control Release 2019; 296:68-80. [PMID: 30660629 DOI: 10.1016/j.jconrel.2019.01.018] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/07/2019] [Accepted: 01/15/2019] [Indexed: 12/30/2022]
Abstract
Noninfectious uveitis is a potentially blinding ocular condition that often requires treatment with corticosteroids to prevent inflammation-related ocular complications. Severe forms of uveitis such as panuveitis that affects the whole eye often require a combination of topical and either regional or systemic corticosteroid. Regional corticosteroids are currently delivered inside the eye by intravitreal injection (e.g. Ozurdex®, an intravitreal dexamethasone implant). Intravitreal injection is associated with rare but potentially serious side effects, including endophthalmitis, retinal and vitreous hemorrhage, and retinal detachment. Subconjunctival (SCT) injection is a less invasive option that is a common route used for post-surgical drug administration and treatment of infection and severe inflammation. However, it is the water soluble form of dexamethasone, dexamethasone sodium phosphate (DSP), that has been demonstrated to achieve high intraocular penetration with subconjunctival injection. It is difficult to load highly water soluble drugs, such as DSP, and achieve sustained drug release using conventional encapsulation methods. We found that use of carboxyl-terminated poly(lactic-co-glycolic acid) (PLGA) allowed encapsulation of DSP into biodegradable nanoparticles (NP) with relatively high drug content (6% w/w) if divalent zinc ions were used as an ionic "bridge" between the PLGA and DSP. DSP-Zn-NP had an average diameter of 210 nm, narrow particle size distribution (polydispersity index ~0.1), and near neutral surface charge (-9 mV). DSP-Zn-NP administered by SCT injection provided detectable DSP levels in both the anterior chamber and vitreous chamber of the eye for at least 3 weeks. In a rat model of experimental autoimmune uveitis (EAU), inflammation was significantly reduced in both the front and back of the eye in animals that received a single SCT injection of DSP-Zn-NP as compared to animals that received either aqueous DSP solution or phosphate buffered saline (PBS). DSP-Zn-NP efficacy was evidenced by a reduced clinical disease score, decreased expression of various inflammatory cytokines, and preserved retinal structure and function. Furthermore, SCT DSP-Zn-NP significantly reduced microglia cell density in the retina, a hallmark of EAU in rats. DSP-Zn-NP hold promise as a new strategy to treat noninfectious uveitis and potentially other ocular inflammatory disorders.
Collapse
|
14
|
Abstract
Inflammatory intraocular eye diseases, grouped under the term uveitis are blinding conditions, believed to be mediated by pathogenic autoimmune processes that overcome the protective mechanisms of the immune privilege status of the eye. An animal model for these diseases, named experimental autoimmune uveitis (EAU), is induced by initiation of immunity against ocular-specific antigens, or it develops spontaneously in mice with T-cells that transgenically express TCR specific to the target eye antigen(s). T-Cells specific to ocular antigens are generated in the thymus and their majority are eliminated by exposure to their target antigen expressed in this organ. T-cells that escape this negative selection acquire pathogenicity by their activation with the target antigen. In spontaneous EAU, the microbiota play crucial roles in the acquisition of pathogenicity by providing both antigenic stimulation, by molecules that mimic the target ocular antigen, and an additional stimulation that allows invasion of tissues that harbor the target antigen. The pathogenic process is physiologically inhibited by the peripheral tolerance, composed of antigen-specific T-regulatory (Treg) lymphocytes. Deleting the Tregs enhances the ocular inflammation, whereas adoptively transferring them suppresses the pathogenic response. Potential usage of Treg cells for suppression of autoimmune diseases in humans is under intensive investigation.
Collapse
Affiliation(s)
- Igal Gery
- Laboratory of Immunology, National Eye Institute, Bethesda, MD, United States
| | | |
Collapse
|
15
|
Pohar J, Simon Q, Fillatreau S. Antigen-Specificity in the Thymic Development and Peripheral Activity of CD4 +FOXP3 + T Regulatory Cells. Front Immunol 2018; 9:1701. [PMID: 30083162 PMCID: PMC6064734 DOI: 10.3389/fimmu.2018.01701] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/10/2018] [Indexed: 01/12/2023] Open
Abstract
CD4+Foxp3+ T regulatory cells (Treg) are essential for the life of the organism, in particular because they protect the host against its own autoaggressive CD4+Foxp3- T lymphocytes (Tconv). Treg distinctively suppress autoaggressive immunity while permitting efficient defense against infectious diseases. This split effect indicates that Treg activity is controlled in an antigen-specific manner. This specificity is achieved first by the formation of the Treg repertoire during their development, and second by their activation in the periphery. This review presents novel information on the antigen-specificity of Treg development in the thymus, and Treg function in the periphery. These aspects have so far remained imprecisely understood due to the lack of knowledge of the actual antigens recognized by Treg during the different steps of their life, so that most previous studies have been performed using artificial antigens. However, recent studies identified some antigens mediating the positive selection of autoreactive Treg in the thymus, and the function of Treg in the periphery in autoimmune and allergic disorders. These investigations emphasized the remarkable specificity of Treg development and function. Indeed, the development of autoreactive Treg in the thymus was found to be mediated by single autoantigens, so that the absence of one antigen led to a dramatic loss of Treg reacting toward that antigen. The specificity of Treg development is important because the constitution of the Treg repertoire, and especially the presence of holes in this repertoire, was found to crucially influence human immunopathology. Indeed, it was found that the development of human immunopathology was permitted by the lack of Treg against the antigens driving the autoimmune or allergic T cell responses rather than by the impairment of Treg activation or function. The specificity of Treg suppression in the periphery is therefore intimately associated with the mechanisms shaping the formation of the Treg repertoire during their development. This novel information refines significantly our understanding of the antigen-specificity of Treg protective function, which is required to envision how these cells distinctively regulate unwanted immune responses as well as for the development of appropriate approaches to optimally harness them therapeutically in autoimmune, malignant, and infectious diseases.
Collapse
Affiliation(s)
- Jelka Pohar
- Institut Necker-Enfants Malades, INSERM U1151-CNRS UMR 8253, Paris, France
| | - Quentin Simon
- Institut Necker-Enfants Malades, INSERM U1151-CNRS UMR 8253, Paris, France
| | - Simon Fillatreau
- Institut Necker-Enfants Malades, INSERM U1151-CNRS UMR 8253, Paris, France.,Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,AP-HP, Hôpital Necker Enfants Malades, Paris, France
| |
Collapse
|
16
|
Immune Privilege and Eye-Derived T-Regulatory Cells. J Immunol Res 2018; 2018:1679197. [PMID: 29888291 PMCID: PMC5985108 DOI: 10.1155/2018/1679197] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 04/18/2018] [Indexed: 02/08/2023] Open
Abstract
Certain cellular components of the eye, such as neural retina, are unable to regenerate and replicate after destructive inflammation. Ocular immune privilege provides the eye with immune protection against intraocular inflammation in order to minimize the risk to vision integrity. The eye and immune system use strategies to maintain the ocular immune privilege by regulating the innate and adaptive immune response, which includes immunological ignorance, peripheral tolerance to eye-derived antigens, and intraocular immunosuppressive microenvironment. In this review, we summarize current knowledge regarding the molecular mechanism responsible for the development and maintenance of ocular immune privilege via regulatory T cells (Tregs), which are generated by the anterior chamber-associated immune deviation (ACAID), and ocular resident cells including corneal endothelial (CE) cells, ocular pigment epithelial (PE) cells, and aqueous humor. Furthermore, we examined the therapeutic potential of Tregs generated by RPE cells that express transforming growth factor beta (TGF-β), cytotoxic T lymphocyte-associated antigen-2 alpha (CTLA-2α), and retinoic acid for autoimmune uveoretinitis and evaluated a new strategy using human RPE-induced Tregs for clinical application in inflammatory ocular disease. We believe that a better understanding of the ocular immune privilege associated with Tregs might offer a new approach with regard to therapeutic interventions for ocular autoimmunity.
Collapse
|
17
|
Grajewski RS, Barahmand Pour N, Burian K, Caramoy A, Kirchhof B, Cursiefen C, Heindl LM. Analysis of the impact of allergy and atopy on new onset of uveitis. Acta Ophthalmol 2017; 95:e236-e241. [PMID: 27682154 DOI: 10.1111/aos.13239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 07/25/2016] [Indexed: 01/01/2023]
Abstract
PURPOSE The inappropriate immune response to harmless foreign and self-antigens is a common feature of allergy, atopy and autoimmune disease. The influence of environmental factors in the initiation of autoimmunity is not well understood. It is conceivable that immune responses to allergens may also serve as a trigger of bystander immune reactions, including autoimmunity such as uveitis. Therefore, we wanted to investigate the prevalence of allergies and atopy in patients with different types of uveitis in comparison to a control cohort. METHODS In total, 530 consecutive patients with new-onset anterior, intermediate, posterior and panuveitis were compared to a non-uveitis control cohort consisting of 1.060 consecutive new-referral patients who attended our specialized outpatient clinics for other reasons than uveitis. Allergy and atopy status as well as demographic data (age, gender and ethnicity) were obtained by standardized interviewer-assisted questionnaires. RESULTS Uveitis case cohort and control cohort did not differ significantly in the allergy status (p = 0.910), such as the history of pollen allergy (p = 0.671), history of drug allergy (p = 0.920), history of food allergy (p = 0.941), history of house dust mite allergy (p = 0.197) or history of other allergens (p = 0.593), nor in the atopy status (p = 0.802), such as the history of atopic dermatitis (p = 0.365), history of asthma (p = 0.430) or history of allergic rhinitis (p = 0.115). CONCLUSIONS Our results argue against a substantial influence of allergies and atopy on the onset of uveitis.
Collapse
Affiliation(s)
| | | | - Katja Burian
- Department of Ophthalmology; University of Cologne; Cologne Germany
| | - Albert Caramoy
- Department of Ophthalmology; University of Cologne; Cologne Germany
| | - Bernd Kirchhof
- Department of Ophthalmology; University of Cologne; Cologne Germany
| | - Claus Cursiefen
- Department of Ophthalmology; University of Cologne; Cologne Germany
| | - Ludwig M. Heindl
- Department of Ophthalmology; University of Cologne; Cologne Germany
| |
Collapse
|
18
|
Dry eye disease and uveitis: A closer look at immune mechanisms in animal models of two ocular autoimmune diseases. Autoimmun Rev 2016; 15:1181-1192. [DOI: 10.1016/j.autrev.2016.09.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 07/08/2016] [Indexed: 12/13/2022]
|
19
|
Grégoire S, Terrada C, Martin GH, Fourcade G, Baeyens A, Marodon G, Fisson S, Billiard F, Lucas B, Tadayoni R, Béhar-Cohen F, Levacher B, Galy A, LeHoang P, Klatzmann D, Bodaghi B, Salomon BL. Treatment of Uveitis by In Situ Administration of Ex Vivo–Activated Polyclonal Regulatory T Cells. THE JOURNAL OF IMMUNOLOGY 2016; 196:2109-18. [DOI: 10.4049/jimmunol.1501723] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 12/21/2015] [Indexed: 02/05/2023]
|
20
|
Fang S, Meng X, Zhang Z, Wang Y, Liu Y, You C, Yan H. Vorinostat Modulates the Imbalance of T Cell Subsets, Suppresses Macrophage Activity, and Ameliorates Experimental Autoimmune Uveoretinitis. Neuromolecular Med 2016; 18:134-45. [PMID: 26798022 DOI: 10.1007/s12017-016-8383-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 01/05/2016] [Indexed: 12/14/2022]
Abstract
The purpose of the study was to investigate the anti-inflammatory efficiency of vorinostat, a histone deacetylase inhibitor, in experimental autoimmune uveitis (EAU). EAU was induced in female C57BL/6J mice immunized with interphotoreceptor retinoid-binding protein peptide. Vorinostat or the control treatment, phosphate-buffered saline, was administrated orally from 3 days before immunization until euthanasia at day 21 after immunization. The clinical and histopathological scores of mice were graded, and the integrity of the blood-retinal barrier was examined by Evans blue staining. T helper cell subsets were measured by flow cytometry, and the macrophage functions were evaluated with immunohistochemistry staining and immunofluorescence assays. The mRNA levels of tight junction proteins were measured by qRT-PCR. The expression levels of intraocular cytokines and transcription factors were examined by western blotting. Vorinostat relieved both clinical and histopathological manifestations of EAU in our mouse model, and the BRB integrity was maintained in vorinostat-treated mice, which had less vasculature leakage and higher mRNA and protein expressions of tight junction proteins than controls. Moreover, vorinostat repressed Th1 and Th17 cells and increased Th0 and Treg cells. Additionally, the INF-γ and IL-17A expression levels were significantly decreased, while the IL-10 level was increased by vorinostat treatment. Furthermore, due to the reduced TNF-α level, the macrophage activity was considerably inhibited in EAU mice. Finally, transcription factors, including STAT1, STAT3, and p65, were greatly suppressed by vorinostat treatment. Our data suggest that vorinostat might be a potential anti-inflammatory agent in the management of uveitis and other autoimmune inflammatory diseases.
Collapse
Affiliation(s)
- Sijie Fang
- Department of Ophthalmology, Tianjin Medical University General Hospital, No. 154, Anshan Road, Tianjin, 300052, China
| | - Xiangda Meng
- Department of Ophthalmology, Tianjin Medical University General Hospital, No. 154, Anshan Road, Tianjin, 300052, China
| | - Zhuhong Zhang
- Department of Ophthalmology, Tianjin Medical University General Hospital, No. 154, Anshan Road, Tianjin, 300052, China
| | - Yang Wang
- Department of Ophthalmology, Tianjin Medical University General Hospital, No. 154, Anshan Road, Tianjin, 300052, China
| | - Yuanyuan Liu
- Department of Ophthalmology, Tianjin Medical University General Hospital, No. 154, Anshan Road, Tianjin, 300052, China
| | - Caiyun You
- Department of Ophthalmology, Tianjin Medical University General Hospital, No. 154, Anshan Road, Tianjin, 300052, China
| | - Hua Yan
- Department of Ophthalmology, Tianjin Medical University General Hospital, No. 154, Anshan Road, Tianjin, 300052, China.
| |
Collapse
|
21
|
Galectin-8 Ameliorates Murine Autoimmune Ocular Pathology and Promotes a Regulatory T Cell Response. PLoS One 2015; 10:e0130772. [PMID: 26126176 PMCID: PMC4488339 DOI: 10.1371/journal.pone.0130772] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 05/23/2015] [Indexed: 01/13/2023] Open
Abstract
Galectins have emerged as potent immunoregulatory agents that control chronic inflammation through distinct mechanisms. Here, we report that treatment with Galectin-8 (Gal-8), a tandem-repeat member of the galectin family, reduces retinal pathology and prevents photoreceptor cell damage in a murine model of experimental autoimmune uveitis. Gal-8 treatment increased the number of regulatory T cells (Treg) in both the draining lymph node (dLN) and the inflamed retina. Moreover, a greater percentage of Treg cells in the dLN and retina of Gal-8 treated animals expressed the inhibitory coreceptor cytotoxic T lymphocyte antigen (CTLA)-4, the immunosuppressive cytokine IL-10, and the tissue-homing integrin CD103. Treg cells in the retina of Gal-8-treated mice were primarily inducible Treg cells that lack the expression of neuropilin-1. In addition, Gal-8 treatment blunted production of inflammatory cytokines by retinal T helper type (TH) 1 and TH17 cells. The effect of Gal-8 on T cell differentiation and/or function was specific for tissues undergoing an active immune response, as Gal-8 treatment had no effect on T cell populations in the spleen. Given the need for rational therapies for managing human uveitis, Gal-8 emerges as an attractive therapeutic candidate not only for treating retinal autoimmune diseases, but also for other TH1- and TH17-mediated inflammatory disorders.
Collapse
|
22
|
Prete M, Dammacco R, Fatone MC, Racanelli V. Autoimmune uveitis: clinical, pathogenetic, and therapeutic features. Clin Exp Med 2015; 16:125-36. [PMID: 25820692 DOI: 10.1007/s10238-015-0345-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 03/07/2015] [Indexed: 01/18/2023]
Abstract
Autoimmune uveitis (AU), an inflammatory non-infectious process of the vascular layer of the eye, can lead to visual impairment and, in the absence of a timely diagnosis and suitable therapy, can even result in total blindness. The majority of AU cases are idiopathic, whereas fewer than 20 % are associated with systemic diseases. The clinical severity of AU depends on whether the anterior, intermediate, or posterior part of the uvea is involved and may range from almost asymptomatic to rapidly sight-threatening forms. Race, genetic background, and environmental factors can also influence the clinical picture. The pathogenetic mechanism of AU is still poorly defined, given its remarkable heterogeneity and the many discrepancies between experimental and human uveitis. Even so, the onset of AU is thought to be related to an aberrant T cell-mediated immune response, triggered by inflammation and directed against retinal or cross-reactive antigens. B cells may also play a role in uveal antigen presentation and in the subsequent activation of T cells. The management of AU remains a challenge for clinicians, especially because of the paucity of randomized clinical trials that have systematically evaluated the effectiveness of different drugs. In addition to topical treatment, several different therapeutic options are available, although a standardized regimen is thus far lacking. Current guidelines recommend corticosteroids as the first-line therapy for patients with active AU. Immunosuppressive drugs may be subsequently required to treat steroid-resistant AU and for steroid-sparing purposes. The recent introduction of biological agents, such as those targeting tumor necrosis factor-α, is expected to remarkably increase the percentages of responders and to prevent irreversible sight impairment. This paper reviews the clinical features of AU and its crucial pathogenetic targets in relation to the current therapeutic perspectives. Also, the largest clinical trials conducted in the last 12 years for the treatment of AU are summarized and critically discussed.
Collapse
Affiliation(s)
- Marcella Prete
- Internal Medicine Unit, Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari Medical School, Piazza G. Cesare 11, 70124, Bari, Italy.
| | - Rosanna Dammacco
- Department of Otorhinolaryngology and Ophthalmology, University of Bari Medical School, Bari, Italy
| | - Maria Celeste Fatone
- Internal Medicine Unit, Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari Medical School, Piazza G. Cesare 11, 70124, Bari, Italy
| | - Vito Racanelli
- Internal Medicine Unit, Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari Medical School, Piazza G. Cesare 11, 70124, Bari, Italy
| |
Collapse
|
23
|
Schewitz-Bowers LP, Lee RWJ, Dick AD. Immune mechanisms of intraocular inflammation. EXPERT REVIEW OF OPHTHALMOLOGY 2014. [DOI: 10.1586/eop.09.68] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
24
|
Nanke Y, Kotake S, Goto M, Ujihara H, Matsubara M, Kamatani N. Decreased percentages of regulatory T cells in peripheral blood of patients with Behcet’s disease before ocular attack: a possible predictive marker of ocular attack. Mod Rheumatol 2014. [DOI: 10.3109/s10165-008-0064-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Yuki Nanke
- Institute of Rheumatology, Tokyo Women’s Medical University, 10-22 Kawada-cho, Shinjuku-ku, Tokyo 162-0054, Japan
| | - Shigeru Kotake
- Institute of Rheumatology, Tokyo Women’s Medical University, 10-22 Kawada-cho, Shinjuku-ku, Tokyo 162-0054, Japan
| | - Mari Goto
- Department of Ophthalmology, Medical Center East, Tokyo Women’s Medical University, Tokyo, Japan
| | - Hiroshi Ujihara
- Department of Ophthalmology, Medical Center East, Tokyo Women’s Medical University, Tokyo, Japan
| | - Masao Matsubara
- Department of Ophthalmology, Medical Center East, Tokyo Women’s Medical University, Tokyo, Japan
| | - Naoyuki Kamatani
- Institute of Rheumatology, Tokyo Women’s Medical University, 10-22 Kawada-cho, Shinjuku-ku, Tokyo 162-0054, Japan
| |
Collapse
|
25
|
Chen J, Qian H, Horai R, Chan CC, Falick Y, Caspi RR. Comparative analysis of induced vs. spontaneous models of autoimmune uveitis targeting the interphotoreceptor retinoid binding protein. PLoS One 2013; 8:e72161. [PMID: 24015215 PMCID: PMC3756070 DOI: 10.1371/journal.pone.0072161] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 07/07/2013] [Indexed: 12/31/2022] Open
Abstract
Animal models of autoimmunity to the retina mimic specific features of human uveitis, but no model by itself reproduces the full spectrum of human disease. We compared three mouse models of uveitis that target the interphotoreceptor retinoid binding protein (IRBP): (i) the "classical" model of experimental autoimmune uveitis (EAU) induced by immunization with IRBP; (ii) spontaneous uveitis in IRBP T cell receptor transgenic mice (R161H) and (iii) spontaneous uveitis in Autoimmune Regulator (AIRE)(-/-) mice. Disease course and severity, pathology and changes in visual function were studied using fundus imaging and histological examinations, optical coherence tomography and electroretinography. All models were on the B10.RIII background. Unlike previously reported, IRBP-induced EAU in B10.RIII mice exhibited two distinct patterns of disease depending on clinical scores developed after onset: severe monophasic with extensive destruction of the retina and rapid loss of visual signal, or lower grade with a prolonged chronic phase culminating after several months in retinal degeneration and loss of vision. R161H and AIRE(-/-) mice spontaneously developed chronic progressive inflammation; visual function declined gradually as retinal degeneration developed. Spontaneous uveitis in R161H mice was characterized by persistent cellular infiltrates and lymphoid aggregation, whereas AIRE(-/-) mice characteristically developed multi-focal infiltrates and severe choroidal inflammation. These data demonstrate variability and unique distinguishing features in the different models of uveitis, suggesting that each one can represent distinct aspects of uveitis in humans.
Collapse
Affiliation(s)
- Jun Chen
- Immunoregulation Section, Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Haohua Qian
- Visual Function Core, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Reiko Horai
- Immunoregulation Section, Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Chi-Chao Chan
- Immunopathology Section, Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Yishay Falick
- Immunoregulation Section, Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Rachel R. Caspi
- Immunoregulation Section, Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
26
|
Chen J, Qian H, Horai R, Chan CC, Caspi RR. Use of optical coherence tomography and electroretinography to evaluate retinal pathology in a mouse model of autoimmune uveitis. PLoS One 2013; 8:e63904. [PMID: 23691112 PMCID: PMC3653843 DOI: 10.1371/journal.pone.0063904] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Accepted: 04/08/2013] [Indexed: 12/11/2022] Open
Abstract
Experimental autoimmune uveoretinitis (EAU) in mice is a model for human autoimmune uveitis. Longitudinal follow-up is only possible by non-invasive techniques, but the information obtained by visual fundus examination can be limited. We therefore evaluated the efficacy of optical coherence tomography (OCT) and electroretinography (ERG) to monitor pathological and functional changes of the retina in vivo. OCT imaging and ERG recording as a measure of visual function were compared with visual fundoscopic imaging and histology findings in the same mouse. Our results showed that OCT imaging of the retina was well correlated with clinical and histological observations in mice during EAU. However, OCT imaging was more sensitive than fundoscopic imaging in detecting the cell infiltrates at the early phase of disease onset. Furthermore, by allowing multi-layer cross- and horizontal-sectional visualizations of retinal lesions longitudinally in a noninvasive fashion, OCT added information that could not be obtained by fundoscopic and histological examinations. Lastly, retinal thickness obtained by OCT imaging provided a key indicator reflecting disease activity, which showed a close association with visual dysfunction as measured by ERG recordings in EAU mice. Thus, our findings demonstrate that OCT is a highly sensitive and reliable technique, and a valuable method for the semi-quantitative evaluation of retinal inflammation in vivo in the mouse.
Collapse
Affiliation(s)
- Jun Chen
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United Sates of America
| | - Haohua Qian
- Vision Function Core, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United Sates of America
| | - Reiko Horai
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United Sates of America
| | - Chi-Chao Chan
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United Sates of America
| | - Rachel R. Caspi
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United Sates of America
| |
Collapse
|
27
|
London A, Benhar I, Mattapallil MJ, Mack M, Caspi RR, Schwartz M. Functional macrophage heterogeneity in a mouse model of autoimmune central nervous system pathology. THE JOURNAL OF IMMUNOLOGY 2013; 190:3570-8. [PMID: 23447691 DOI: 10.4049/jimmunol.1202076] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Functional macrophage heterogeneity is well appreciated outside the CNS in wound healing and cancer, and was recently also demonstrated in several CNS compartments after "sterile" insults. Yet, such heterogeneity was largely overlooked in the context of inflammatory autoimmune pathology, in which macrophages were mainly associated with disease induction and propagation. In this article, we show the diversity of monocyte-derived macrophages along the course of experimental autoimmune uveitis, an inflammatory condition affecting the ocular system, serving as a model for CNS autoimmune pathology. Disease induction resulted in the appearance of a distinct myeloid population in the retina, and in the infiltration of monocyte-derived macrophages that were absent from control eyes. During the disease course, the frequency of CX3CR1(high) infiltrating macrophages that express markers associated with inflammation-resolving activity was increased, along with a decrease in the frequency of inflammation-associated Ly6C(+) macrophages. Inhibition of monocyte infiltration at the induction phase of experimental autoimmune uveitis prevented disease onset, whereas monocyte depletion at the resolution phase resulted in a decrease in Foxp3(+) regulatory T cells and in exacerbated disease. Thus, monocyte-derived macrophages display distinct phenotypes throughout the disease course, even in an immune-induced pathology, reflecting their differential roles in disease induction and resolution.
Collapse
Affiliation(s)
- Anat London
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel 76100
| | | | | | | | | | | |
Collapse
|
28
|
Angeles-Han ST, Yeh S, Vogler LB. Updates on the risk markers and outcomes of severe juvenile idiopathic arthritis-associated uveitis. ACTA ACUST UNITED AC 2013; 8. [PMID: 24187594 DOI: 10.2217/ijr.12.83] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Uveitis is the most common extra-articular manifestation of juvenile idiopathic arthritis, which is the most common systemic cause of uveitis in children. Known risk factors for uveitis include antinuclear antibody seropositivity, young age of arthritis onset, specific juvenile idiopathic arthritis subtype and short duration of disease. Risk markers for severe ocular disease include gender, age and complications at initial visit. Due to the risk for vision-compromising sequelae such as cataracts, band keratopathy, glaucoma, vision loss and blindness, an understanding of the risk factors for uveitis development and severe ocular disease is crucial to help prevent serious visual disability and complications. This paper reviews the pathogenesis of uveitis, known risk factors for uveitis development and severe visual outcome, and addresses the need for additional biomarkers of uveitis risk, prognosis and remission.
Collapse
Affiliation(s)
- Sheila T Angeles-Han
- Emory University, Atlanta, GA 30322, USA ; Children's Healthcare of Atlanta, Atlanta, GA, USA
| | | | | |
Collapse
|
29
|
Mochizuki M, Sugita S, Kamoi K. Immunological homeostasis of the eye. Prog Retin Eye Res 2012; 33:10-27. [PMID: 23108335 DOI: 10.1016/j.preteyeres.2012.10.002] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 10/05/2012] [Accepted: 10/05/2012] [Indexed: 12/22/2022]
Abstract
Uveitis is a sight-threatening disease caused by autoimmune or infection-related immune responses. Studies in experimental autoimmune uveitis and in human diseases imply that activated CD4(+) T cells, Th1 and Th17 cells, play an effector role in ocular inflammation. The eye has a unique regional immune system to protect vision-related cells and tissues from these effector T cells. The immunological balance between the pathogenic CD4(+) T cells and regional immune system in the eye contributes to the maintenance of ocular homeostasis and good vision. Current studies have demonstrated that ocular parenchymal cells at the inner surface of the blood-ocular barrier, i.e. corneal endothelial (CE) cells, iris pigment epithelial (PE) cells, ciliary body PE cells, and retinal PE cells, contribute to the regional immune system of the eye. Murine ocular resident cells directly suppress activation of bystander T cells and production of inflammatory cytokines. The ocular resident cells possess distinct properties of immunoregulation that are related to disparate anatomical location. CE cells and iris PE cells, which are located at the anterior segment of the eye and face the aqueous humor, suppress activation of T cells via cell-to-cell contact mechanisms, whereas retinal PE cells suppress the activation of T cells via soluble factors. In addition to direct immune suppression, the ocular resident cells have another unique immunosuppressive property, the induction of CD25(+)Foxp3(+) Treg cells that also suppress the activation of bystander T cells. Iris PE cells convert CD8(+) T cells into Treg cells, while retinal PE cells convert CD4(+) T cells greatly and CD8(+) T cells moderately into Treg cells. CE cells also convert both CD4(+) T cells and CD8(+) T cells into Treg cells. The immunomodulation by ocular resident cells is mediated by various soluble or membrane-bound molecules that include TGF-β TSP-1, B7-2 (CD86), CTLA-2α, PD-L1 (B7-H1), galectin 1, pigment epithelial-derived factor PEDF), GIRTL, and retinoic acid. Human retinal PE cells also possess similar immune properties to induce Treg cells. Although there are many issues to be answered, human Treg cells induced by ocular resident cells such as retinal PE cells and related immunosuppressive molecules can be applied as immune therapy for refractive autoimmune uveitis in humans in the future.
Collapse
Affiliation(s)
- Manabu Mochizuki
- Department of Ophthalmology & Visual Science, Tokyo Medical and Dental University, 1-5-45 Yushima, Tokyo 113-8519, Japan.
| | | | | |
Collapse
|
30
|
McPherson SW, Heuss ND, Gregerson DS. Regulation of CD8(+) T Cell Responses to Retinal Antigen by Local FoxP3(+) Regulatory T Cells. Front Immunol 2012; 3:166. [PMID: 22737153 PMCID: PMC3380377 DOI: 10.3389/fimmu.2012.00166] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 06/03/2012] [Indexed: 02/06/2023] Open
Abstract
While pathogenic CD4 T cells are well known mediators of autoimmune uveoretinitis, CD8 T cells can also be uveitogenic. Since preliminary studies indicated that C57BL/6 mice were minimally susceptible to autoimmune uveoretinitis induction by CD8 T cells, the basis of the retinal disease resistance was sought. Mice that express β-galactosidase (βgal) on a retina-specific promoter (arrβgal mice) were backcrossed to mice expressing green fluorescent protein (GFP) and diphtheria toxin (DTx) receptor (DTR) under control of the Foxp3 promoter (Foxp3-DTR/GFP mice), and to T cell receptor transgenic mice that produce βgal-specific CD8 T cells (BG1 mice). These mice were used to explore the role of regulatory T cells in the resistance to retinal autoimmune disease. Experiments with T cells from double transgenic BG1 × Foxp3-DTR/GFP mice transferred into Foxp3-DTR/GFP × arrβgal mice confirmed that the retina was well protected from attempts to induce disease by adoptive transfer of activated BG1 T cells. The successful induction of retinal disease following unilateral intraocular administration of DTx to deplete regulatory T cells showed that the protective activity was dependent on local, toxin-sensitive regulatory T cells; the opposite, untreated eye remained disease-free. Although there were very few Foxp3(+) regulatory T cells in the parenchyma of quiescent retina, and they did not accumulate in retina, their depletion by local toxin administration led to disease susceptibility. We propose that these regulatory T cells modulate the pathogenic activity of βgal-specific CD8 T cells in the retinas of arrβgal mice on a local basis, allowing immuno regulation to be responsive to local conditions.
Collapse
Affiliation(s)
- Scott W McPherson
- Department of Ophthalmology, University of Minnesota Minneapolis, MN, USA
| | | | | |
Collapse
|
31
|
Servat JJ, Mears KA, Black EH, Huang JJ. Biological agents for the treatment of uveitis. Expert Opin Biol Ther 2012; 12:311-28. [PMID: 22339439 DOI: 10.1517/14712598.2012.658366] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION The conventional treatment of uveitis includes corticosteroids and immunosuppressive agents, which are highly efficacious, but can be associated with serious systemic side effects. Over the last two decades, advances in the understanding of the pathogenesis of inflammatory diseases, as well as improved biotechnology, have enabled selective targeting of the chemical mediators of diseases. Recently, a new class of drugs called biologics, that target the various mediators of the inflammation cascade, may potentially provide more effective and less toxic treatment. AREAS COVERED This article is a review and summary of the peer-reviewed evidence for biologic agents in the treatment of various forms of ocular inflammation and it focuses on the potential use of other biologic agents that have been tested in experimental autoimmune uveitis. Pubmed was used as our main tool for our literature search. Some additional references were taken from books written on the subject. EXPERT OPINION There are a wide variety of new and emerging biological agents currently being used in the treatment of uveitis which has expanded the therapeutic horizons far beyond previous limitations.
Collapse
Affiliation(s)
- Juan Javier Servat
- Yale University School of Medicine, Department of Ophthalmology and Visual Science, 40 Temple Street, NH 06510, USA
| | | | | | | |
Collapse
|
32
|
Tasso R, Ilengo C, Quarto R, Cancedda R, Caspi RR, Pennesi G. Mesenchymal stem cells induce functionally active T-regulatory lymphocytes in a paracrine fashion and ameliorate experimental autoimmune uveitis. Invest Ophthalmol Vis Sci 2012; 53:786-93. [PMID: 22232435 DOI: 10.1167/iovs.11-8211] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
PURPOSE Mesenchymal stem/progenitor cells (MSCs) have regenerative and immunomodulatory properties, exerted by cell-cell contact and in a paracrine fashion. Part of their immunosuppressive activity has been ascribed to their ability to promote the induction of CD4+CD25+FoxP3+ T lymphocytes with regulatory functions (Treg). Here the authors studied the effect of MSCs on the induction of Treg and on the development of autoimmunity, and they examined the possibility that MSC-mediated Treg induction could be attributed to the secretion of soluble factors. METHODS The authors induced experimental autoimmune uveitis (EAU) in mice by immunization with the 1-20 peptide of the intraphotoreceptor binding protein. At the same time, some of the animals were treated intraperitoneally with syngeneic MSCs. The authors checked T-cell responses and in vitro Treg conversion by cell proliferation and blocking assays, in cell-cell contact and transwell settings. TGFβ and TGFβ receptor gene expression analyses were performed by real-time PCR. RESULTS The authors found that a single intraperitoneal injection of MSCs was able to significantly attenuate EAU and that a significantly higher percentage of adaptive Treg was present in MSC-treated mice than in MSC-untreated animals. In vitro blocking of antigen presentation by major histocompatibility complex class II precluded priming and clonal expansion of antigen-specific Treg, whereas blockade of TGFβ impaired the expression of FoxP3, preventing the conversion of CD4+ T cells into functionally active Treg. CONCLUSIONS The authors demonstrated that MSCs can inhibit EAU and that their immunomodulatory function is due at least in part to the induction of antigen-specific Treg in a paracrine fashion by secreting TGFβ.
Collapse
Affiliation(s)
- Roberta Tasso
- Department of Oncology, Biology, and Genetics, University of Genoa, Genoa, Italy.
| | | | | | | | | | | |
Collapse
|
33
|
Liposomes for intravitreal drug delivery: a state of the art. J Control Release 2012; 161:628-34. [PMID: 22289436 DOI: 10.1016/j.jconrel.2012.01.019] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 01/14/2012] [Accepted: 01/16/2012] [Indexed: 12/16/2022]
Abstract
Intravitreal administration of drugs has raised a large interest during the last two decades improving the treatment of infectious diseases of the posterior segment of the eye or edematous maculopathies. This route of administration allows achieving high drug concentrations in the vitreous and avoiding adverse effects resulting from systemic administration. However, many drugs are rapidly cleared from the vitreous humor; therefore, to reach and to maintain effective therapy, repeated administrations are necessary. Unfortunately, frequent intravitreal injections increase the risk of endophthalmitis, damage to lens, retinal detachment. Moreover, some drugs provoke a local toxicity at their effective dose inducing side-effects and possible retinal lesions. This is the reason why new drug delivery systems, among which liposomes, have been developed to improve the intravitreal administration of drugs. Liposomes can reduce the toxicity and increase the residence time of several active molecules in the eye. In vivo, they can protect poorly-stable drugs such as peptides and nucleic acids from degradation. Successful reports have shown their potential for improving the treatment of retinitis induced by cytomegalovirus in human and more recently for the treatment of uveitis in rats. Moreover, recent preliminary studies about the trafficking of liposomes in ocular tissues and fluids following intravitreal injection attempted to elucidate their fate. All the data discussed in this review support the large interest raised by these colloidal carriers for intravitreal drug delivery.
Collapse
|
34
|
Sehrawat S, Rouse BT. Tregs and infections: on the potential value of modifying their function. J Leukoc Biol 2011; 90:1079-87. [PMID: 21914856 DOI: 10.1189/jlb.0611271] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
CD4(+) T cells, which express a master transcription factor, Foxp3, have been recognized as bona fide Tregs. These cells are essential to maintain immune homeostasis in healthy as well as infected mice and humans. Extensive investigations in the last decade have provided ways to manipulate the Foxp3(+) Treg response therapeutically so the role of such cells in microbe-induced inflammatory reactions can be evaluated. This review focuses on our current understanding of the mechanisms required for the generation and sustenance of Tregs in vivo and the potential value of modulating Tregs to control microbe-induced immunopathological responses.
Collapse
Affiliation(s)
- Sharvan Sehrawat
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA.
| | | |
Collapse
|
35
|
Takeuchi M. Immune tolerance and autoimmune uveoretinitis: the role of the ocular microenvironment. Immunotherapy 2011; 3:1103-11. [PMID: 21913832 DOI: 10.2217/imt.11.101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Two major self-antigens, S-antigen and interphotoreceptor retinoid-binding protein, which can induce uveoretinitis, exist in the eye. However, immunologic tolerance to these self-antigens is generated and maintained. Two major mechanisms have been demonstrated by which tolerance to tissue-specific self-antigens is maintained. One is central tolerance in the thymus where autoreactive T cells are deleted by medullary thymic epithelial cells expressing the autoimmune regulator gene (Aire) and the other is peripheral tolerance mediated by regulatory T cells such as Foxp3(+)CD25(+)CD4(+) T cells. In addition, the eye is an immune privileged site where indigenous immunomodulatory mechanisms allow immune protection of the eye in a manner that is largely devoid of immunogenic inflammation.
Collapse
Affiliation(s)
- Masaru Takeuchi
- Department of Ophthalmology, National Defense Medical College, 3-2 Namiki Tokorozawa Saitama, 359-8513, Japan.
| |
Collapse
|
36
|
McPherson SW, Heuss ND, Lehman U, Gregerson DS. Generation of Regulatory T Cells to Antigen Expressed in the Retina. ACTA ACUST UNITED AC 2011; 7:344-349. [PMID: 25620898 DOI: 10.2174/157339511796196584] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Regulatory T cells (Tregs) are generated to antigens (Ag) found in the retina. Some Tregs are the result of ectopic expression of the retinal Ags in the thymus, where developing T cells are committed to enter the regulatory lineage. However, the generation of retinal Ag-specific Tregs independent of the thymus was uncertain. Our studies show that Tregs can be generated from mature, peripheral T cells based on exposure to retinal Ags. These peripherally induced Tregs limited immune responses and experimental autoimmune disease induced by retinal Ags and thus constitute a crucial component of retinal immune privilege.
Collapse
Affiliation(s)
- Scott W McPherson
- Department of Ophthalmology, University of Minnesota, Minneapolis, Minnesota 55455 USA
| | - Neal D Heuss
- Department of Ophthalmology, University of Minnesota, Minneapolis, Minnesota 55455 USA
| | - Ute Lehman
- Department of Ophthalmology, University of Minnesota, Minneapolis, Minnesota 55455 USA
| | - Dale S Gregerson
- Department of Ophthalmology, University of Minnesota, Minneapolis, Minnesota 55455 USA
| |
Collapse
|
37
|
T cell responses in experimental viral retinitis: Mechanisms, peculiarities and implications for gene therapy with viral vectors. Prog Retin Eye Res 2011; 30:275-84. [DOI: 10.1016/j.preteyeres.2011.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 04/17/2011] [Accepted: 04/18/2011] [Indexed: 11/20/2022]
|
38
|
Caspi RR. Understanding autoimmune uveitis through animal models. The Friedenwald Lecture. Invest Ophthalmol Vis Sci 2011; 52:1872-9. [PMID: 21450922 DOI: 10.1167/iovs.10-6909] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Rachel R Caspi
- National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892-1857, USA.
| |
Collapse
|
39
|
Commodaro AG, Bueno V, Belfort R, Rizzo LV. Autoimmune uveitis: The associated proinflammatory molecules and the search for immunoregulation. Autoimmun Rev 2011; 10:205-9. [DOI: 10.1016/j.autrev.2010.10.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 10/02/2010] [Indexed: 01/06/2023]
|
40
|
Bochot A, Lajavardi L, Camelo S, Bourges JL, Behar-Cohen F, de Kozak Y, Fattal E. [Potential of liposomes for the intravitreal injection of therapeutic molecules]. ANNALES PHARMACEUTIQUES FRANÇAISES 2011; 69:100-7. [PMID: 21440102 DOI: 10.1016/j.pharma.2010.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 11/24/2010] [Accepted: 11/24/2010] [Indexed: 01/26/2023]
Abstract
Intravitreal administration has been widely used since 20 years and has been shown to improve the treatment of diseases of the posterior segment of the eye with infectious origin or in edematous maculopathies. This route of administration allows to achieve high concentration of drug in the vitreous and avoids the problems resulting from systemic administration. However, two basic problems limit the use of intravitreal therapy. Many drugs are rapidly cleared from the vitreous humor; therefore, to reach and to maintain effective therapy repeated injections are necessary. Repeated intravitreal injections increase the risk of endophthalmitis, damage to lens, retinal detachment. Moreover, some drugs provoke a local toxicity at their effective dose inducing side-effects and possible retinal lesions. In this context, the development and the use of new drug delivery systems for intravitreal administration are necessary to treat chronic ocular diseases. Among them, particulate systems such as liposomes have been widely studied. Liposomes are easily injectable and permit to reduce the toxicity and to increase the residence time of several drugs in the eye. They are also able to protect in vivo poorly-stable molecules from degradation such as peptides and nucleic acids. Some promising results have been obtained for the treatment of retinitis induced by cytomegalovirus in human and more recently for the treatment of uveitis in animal. Finally, the fate of liposomes in ocular tissues and fluids after their injection into the vitreous and their elimination routes begin to be more known.
Collapse
Affiliation(s)
- A Bochot
- UMR CNRS « physico-chimie-pharmacotechnie-biopharmacie », faculté de pharmacie, université Paris-Sud, Châtenay-Malabry, France.
| | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Autoimmune and inflammatory uveitis are a group of potentially blinding intraocular inflammatory diseases that arise without a known infectious trigger and are often associated with immunological responses to unique retinal proteins. In the United States, about 10% of the cases of severe visual handicap are attributed to this group of disorders. As I discuss here, experimental models of ocular autoimmunity targeting retinal proteins have brought about a better understanding of the basic immunological mechanisms involved in the pathogenesis of uveitis and are serving as templates for the development of novel therapies.
Collapse
Affiliation(s)
- Rachel R Caspi
- Laboratory of Immunology, National Eye Institute, NIH, Bethesda, Maryland 20892, USA.
| |
Collapse
|
42
|
Forrester JV, Xu H, Kuffová L, Dick AD, McMenamin PG. Dendritic cell physiology and function in the eye. Immunol Rev 2010; 234:282-304. [PMID: 20193026 DOI: 10.1111/j.0105-2896.2009.00873.x] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The eye and the brain are immunologically privileged sites, a property previously attributed to the lack of a lymphatic circulation. However, recent tracking studies confirm that these organs have good communication through classical site-specific lymph nodes, as well as direct connection through the blood circulation with the spleen. In addition, like all tissues, they contain resident myeloid cell populations that play important roles in tissue homeostasis and the response to foreign antigens. Most of the macrophage and dendritic cell (DC) populations in the eye are restricted to the supporting connective tissues, including the cornea, while the neural tissue (the retina) contains almost no DCs, occasional macrophages (perivascularly distributed), and a specialized myeloid cell type, the microglial cell. Resident microglial cells are normally programmed for immunological tolerance. The privileged status of the eye, however, is relative, as it is susceptible to immune-mediated inflammatory disease, both infectious and autoimmune. Intraocular inflammation (uveitis and uveoretinitis) and corneal graft rejection constitute two of the more common inflammatory conditions affecting the eye leading to considerable morbidity (blindness). As corneal graft rejection occurs almost exclusively by indirect allorecognition, host DCs play a major role in this process and are likely to be modified in their behavior by the ocular microenvironment. Ocular surface disease, including allergy and atopy, also comprise a significant group of immune-mediated eye disorders in which DCs participate, while infectious disease such as herpes simplex keratitis is thought to be initiated via corneal DCs. Intriguingly, some more common conditions previously thought to be degenerative (e.g. age-related macular degeneration) may have an autoimmune component in which ocular DCs and macrophages are critically involved. Recently, the possibility of harnessing the tolerizing potential of DCs has been applied to experimental models of autoimmune uveoretinitis with good effect. This approach has considerable potential for use in translational clinical therapy to prevent sight-threatening disease caused by ocular inflammation.
Collapse
Affiliation(s)
- John V Forrester
- Section of Immunology and Infection, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK.
| | | | | | | | | |
Collapse
|
43
|
Horie S, Sugita S, Futagami Y, Yamada Y, Mochizuki M. Human retinal pigment epithelium-induced CD4+CD25+ regulatory T cells suppress activation of intraocular effector T cells. Clin Immunol 2010; 136:83-95. [PMID: 20350837 DOI: 10.1016/j.clim.2010.03.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 01/27/2010] [Accepted: 03/02/2010] [Indexed: 01/19/2023]
Abstract
Murine retinal pigment epithelial (RPE) cells suppress T-cell activation by releasing soluble inhibitory factors and promote the generation of regulatory T cells in vitro. These T cells exposed to RPE supernatants (RPE-induced Treg cells) can suppress the activation of bystander effector T cells via the production of transforming growth factor-beta (TGFbeta). In the present study, we showed that human RPE-induced Treg cells are also able to acquire regulatory function when human RPE cell lines were pretreated with recombinant TGF beta 2. These RPE-induced Treg cells produced TGF beta 1 and IL-10 but not IFN gamma, and they significantly suppressed the activation of target cell lines and intraocular T-cell clones established from patients with active uveitis. Moreover, CD4(+)CD25(+) RPE-induced Treg cells expressed CTLA-4 and Foxp3 molecules, and the CD25(+) Treg cells profoundly suppressed the T-cell activation. Thus, in vitro manipulated Treg cells acquire functions that participate in the establishment of immune tolerance in the eye.
Collapse
Affiliation(s)
- Shintaro Horie
- Department of Ophthalmology & Visual Science, Tokyo Medical and Dental University, Graduate School of Medical and Dental Sciences, Tokyo, Japan
| | | | | | | | | |
Collapse
|
44
|
Liu X, Nguyen P, Liu W, Cheng C, Steeves M, Obenauer JC, Ma J, Geiger TL. T cell receptor CDR3 sequence but not recognition characteristics distinguish autoreactive effector and Foxp3(+) regulatory T cells. Immunity 2009; 31:909-20. [PMID: 20005134 DOI: 10.1016/j.immuni.2009.09.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 09/21/2009] [Accepted: 09/25/2009] [Indexed: 01/12/2023]
Abstract
The source, specificity, and plasticity of the forkhead box transcription factor 3 (Foxp3)(+) regulatory T (Treg) and conventional T (Tconv) cell populations active at sites of autoimmune pathology are not well characterized. To evaluate this, we combined global repertoire analyses and functional assessments of isolated T cell receptors (TCR) from TCRalpha retrogenic mice with autoimmune encephalomyelitis. Treg and Tconv cell TCR repertoires were distinct, and autoantigen-specific Treg and Tconv cells were enriched in diseased tissue. Autoantigen sensitivity and fine specificity of these cells intersected, implying that differences in responsiveness were not responsible for lineage specification. Notably, autoreactive Treg and Tconv cells could be fully distinguished by an acidic versus aliphatic variation at a single TCR CDR3 residue. Our results imply that ontogenically distinct Treg and Tconv cell repertoires with convergent specificities for autoantigen respond during autoimmunity and argue against more than limited plasticity between Treg and Tconv cells during autoimmune inflammation.
Collapse
Affiliation(s)
- Xin Liu
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Gregerson DS, Heuss ND, Lehmann U, McPherson SW. Peripheral induction of tolerance by retinal antigen expression. THE JOURNAL OF IMMUNOLOGY 2009; 183:814-22. [PMID: 19542366 DOI: 10.4049/jimmunol.0803748] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The contribution of peripheral expression of tissue-specific CNS Ags to the generation of tolerance is uncertain. To study this question, we examined mice transgenic (Tg) for expression of beta-galactosidase (beta gal) on the retinal photoreceptor cell arrestin promoter, in conjunction with TCR Tg mice producing CD4(+) T cells specific for beta gal (beta galTCR). Several strategies were used to test the hypothesis that betagal expressed in the retina supported thymus-independent tolerance and regulatory T cell development. Retinal expression generated an immunoregulatory response that depressed development of immune responses to beta gal following systemic immunization with beta gal. This regulation was transferable to naive mice by CD3(+)4(+)25(+) T cells from naive retinal beta gal(+) donors. Experiments that removed the beta gal(+) retina by enucleation showed that subsequent development of a regulatory response was lost. Adoptive transfer of CD25(-) beta galTCR T cells into retinal beta gal Tg mice on the Rag(-/-) background led to regulatory activity that limited lymphopenia-induced proliferation of beta galTCR T cells in mice with retinal expression of beta gal and inhibited the ear-swelling assay for delayed type hypersensitivity. These results show that retinal expression of very small amounts of a tissue-specific Ag can generate tolerance that includes regulatory T cells.
Collapse
Affiliation(s)
- Dale S Gregerson
- Department of Ophthalmology, University of Minnesota, Minneapolis, MN 55455, USA.
| | | | | | | |
Collapse
|
46
|
Abstract
Experimental autoimmune uveitis (EAU) in animals serves as a model of human uveitis. EAU can be induced in mice by immunization with the retinal antigen interphotoreceptor retinoid binding protein (IRBP) in complete Freund's adjuvant (CFA) or by IRBP-pulsed mature dendritic cells, and can be driven either by a Th17 or a Th1 effector response, depending on the model. The direction of the response is affected by conditions present during the exposure to antigen, including the quality/quantity of innate receptor stimulation and/or type of APC. IL-17 and IFN-gamma production by innate cells such as NKT may also affect the disease process. If exposure to antigen is via a hydrodynamic DNA vaccination with an IRBP-encoding plasmid, the response is directed to a regulatory phenotype, and disease is ameliorated or prevented. Our data shed light on effector and regulatory responses in autoimmune disease, provide balance to the Th1/Th17 paradigm and help to explain the clinical heterogeneity of human uveitis, which occurs in the face of responses to the same ocular antigen(s).
Collapse
Affiliation(s)
- Rachel Caspi
- NIH/UPenn Graduate Program, Laboratory of Immunology, National Eye Institute, National Institutes of Health, 10 Center Drive, Building 10, Room 10N222, Bethesda, MD, 20892, USA.
| |
Collapse
|
47
|
McPherson SW, Heuss ND, Gregerson DS. Lymphopenia-induced proliferation is a potent activator for CD4+ T cell-mediated autoimmune disease in the retina. THE JOURNAL OF IMMUNOLOGY 2009; 182:969-79. [PMID: 19124740 DOI: 10.4049/jimmunol.182.2.969] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
To study retinal immunity in a defined system, a CD4+ TCR transgenic mouse line (betagalTCR) specific for beta-galactosidase (betagal) was created and used with transgenic mice that expressed betagal in retinal photoreceptor cells (arrbetagal mice). Adoptive transfer of resting betagalTCR T cells, whether naive or Ag-experienced, into arrbetagal mice did not induce retinal autoimmune disease (experimental autoimmune uveoretinitis, EAU) and gave no evidence of Ag recognition. Generation of betagalTCR T cells in arrbetagal mice by use of bone marrow grafts, or double-transgenic mice, also gave no retinal disease or signs of Ag recognition. Arrbetagal mice were also resistant to EAU induction by adoptive transfer of in vitro-activated betagalTCR T cells, even though the T cells were pathogenic if the betagal was expressed elsewhere. In vitro manipulations to increase T cell pathogenicity before transfer did not result in EAU. The only strategy that induced a high frequency of severe EAU was transfer of naive, CD25-depleted, betagalTCR T cells into lymphopenic arrbetagal recipients, implicating regulatory T cells in the T cell inoculum, as well as in the recipients, in the resistance to EAU. Surprisingly, activation of the CD25-depleted betagalTCR T cells before transfer into the lymphopenic recipients reduced EAU. Taken together, the results suggest that endogenous regulatory mechanisms, as well as peripheral induction of regulatory T cells, play a role in the protection from EAU.
Collapse
Affiliation(s)
- Scott W McPherson
- Department of Ophthalmology, University of Minnesota, Minneapolis, MN 55455, USA.
| | | | | |
Collapse
|
48
|
|
49
|
Grajewski RS, Hansen AM, Agarwal RK, Kronenberg M, Sidobre S, Su SB, Silver PB, Tsuji M, Franck RW, Lawton AP, Chan CC, Caspi RR. Activation of invariant NKT cells ameliorates experimental ocular autoimmunity by a mechanism involving innate IFN-gamma production and dampening of the adaptive Th1 and Th17 responses. THE JOURNAL OF IMMUNOLOGY 2008; 181:4791-7. [PMID: 18802082 DOI: 10.4049/jimmunol.181.7.4791] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Invariant NKT cells (iNKT cells) have been reported to play a role not only in innate immunity but also to regulate several models of autoimmunity. Furthermore, iNKT cells are necessary for the generation of the prototypic eye-related immune regulatory phenomenon, anterior chamber associated immune deviation (ACAID). In this study, we explore the role of iNKT cells in regulation of autoimmunity to retina, using a model of experimental autoimmune uveitis (EAU) in mice immunized with a uveitogenic regimen of the retinal Ag, interphotoreceptor retinoid-binding protein. Natural strain-specific variation in iNKT number or induced genetic deficiencies in iNKT did not alter baseline susceptibility to EAU. However, iNKT function seemed to correlate with susceptibility and its pharmacological enhancement in vivo by treatment with iNKT TCR ligands at the time of uveitogenic immunization reproducibly ameliorated disease scores. Use of different iNKT TCR ligands revealed dependence on the elicited cytokine profile. Surprisingly, superior protection against EAU was achieved with alpha-C-GalCer, which induces a strong IFN-gamma but only a weak IL-4 production by iNKT cells, in contrast to the ligands alpha-GalCer (both IFN-gamma and IL-4) and OCH (primarily IL-4). The protective effect of alpha-C-GalCer was associated with a reduction of adaptive Ag-specific IFN-gamma and IL-17 production and was negated by systemic neutralization of IFN-gamma. These data suggest that pharmacological activation of iNKT cells protects from EAU at least in part by a mechanism involving innate production of IFN-gamma and a consequent dampening of the Th1 as well as the Th17 effector responses.
Collapse
Affiliation(s)
- Rafael S Grajewski
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Lathrop SK, Santacruz NA, Pham D, Luo J, Hsieh CS. Antigen-specific peripheral shaping of the natural regulatory T cell population. ACTA ACUST UNITED AC 2008; 205:3105-17. [PMID: 19064700 PMCID: PMC2605228 DOI: 10.1084/jem.20081359] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Although regulatory T (T reg) cells are thought to develop primarily in the thymus, the peripheral events that shape the protective T reg cell population are unclear. We analyzed the peripheral CD4(+) T cell receptor (TCR) repertoire by cellular phenotype and location in mice with a fixed TCRbeta chain. We found that T reg (Foxp3(+)) cells showed a marked skewing of TCR usage by anatomical location in a manner similar to antigen-experienced (CD44(hi)Foxp3(-)) but not naive (CD44(lo)Foxp3(-)) cells, even though CD44(hi) and T reg cells used mostly dissimilar TCRs. This was likely unrelated to peripheral conversion, which we estimate generates only a small percentage of peripheral T reg cells in adults. Conversion was readily observed, however, during the immune response induced by Foxp3(-) cells in lymphopenic hosts. Interestingly, the converted Foxp3(+) and expanded Foxp3(-) TCR repertoires were different, suggesting that generation of Foxp3(+) cells is not an automatic process upon antigen activation of Foxp3(-) T cells. Retroviral expression of these TCRs in primary monoclonal T cells confirmed that conversion did not require prior cellular conditioning. Thus, these data demonstrate that TCR specificity plays a crucial role in the process of peripheral conversion and in shaping the peripheral T reg cell population to the local antigenic landscape.
Collapse
Affiliation(s)
- Stephanie K Lathrop
- Department of Medicine, Division of Rheumatology, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|