1
|
Balducci E, Steimlé T, Smith C, Villarese P, Feroul M, Payet-Bornet D, Kaltenbach S, Couronné L, Lhermitte L, Touzart A, Dourthe ME, Simonin M, Baruchel A, Dombret H, Ifrah N, Boissel N, Nadel B, Macintyre E, Cieslak A, Asnafi V. TREC mediated oncogenesis in human immature T lymphoid malignancies preferentially involves ZFP36L2. Mol Cancer 2023; 22:108. [PMID: 37430263 DOI: 10.1186/s12943-023-01794-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/25/2023] [Indexed: 07/12/2023] Open
Abstract
The reintegration of excised signal joints resulting from human V(D)J recombination was described as a potent source of genomic instability in human lymphoid cancers. However, such molecular events have not been recurrently reported in clinical patient lymphoma/leukemia samples. Using a specifically designed NGS-capture pipeline, we here demonstrated the reintegration of T-cell receptor excision circles (TRECs) in 20/1533 (1.3%) patients with T-cell acute lymphoblastic leukemia (T-ALL) and T-cell lymphoblastic lymphoma (T-LBL). Remarkably, the reintegration of TREC recurrently targeted the tumor suppressor gene, ZFP36L2, in 17/20 samples. Thus, our data identified a new and hardly detectable mechanism of gene deregulation in lymphoid cancers providing new insights in human oncogenesis.
Collapse
Affiliation(s)
- Estelle Balducci
- Laboratory of Onco-Hematology, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Université Paris Cité, CNRS, INSERM U1151, Institut Necker Enfants Malades (INEM), Paris, France
| | - Thomas Steimlé
- Laboratory of Onco-Hematology, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Université Paris Cité, CNRS, INSERM U1151, Institut Necker Enfants Malades (INEM), Paris, France
- TAGC, UMR 1090, Aix-Marseille University, INSERM, Marseille, France
| | - Charlotte Smith
- Laboratory of Onco-Hematology, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Université Paris Cité, CNRS, INSERM U1151, Institut Necker Enfants Malades (INEM), Paris, France
| | - Patrick Villarese
- Laboratory of Onco-Hematology, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Université Paris Cité, CNRS, INSERM U1151, Institut Necker Enfants Malades (INEM), Paris, France
| | - Mélanie Feroul
- Laboratory of Onco-Hematology, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Université Paris Cité, CNRS, INSERM U1151, Institut Necker Enfants Malades (INEM), Paris, France
| | | | - Sophie Kaltenbach
- Laboratory of Onco-Hematology, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Université Paris Cité, CNRS, INSERM U1151, Institut Necker Enfants Malades (INEM), Paris, France
| | - Lucile Couronné
- Laboratory of Onco-Hematology, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Université Paris Cité, CNRS, INSERM U1151, Institut Necker Enfants Malades (INEM), Paris, France
| | - Ludovic Lhermitte
- Laboratory of Onco-Hematology, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Université Paris Cité, CNRS, INSERM U1151, Institut Necker Enfants Malades (INEM), Paris, France
| | - Aurore Touzart
- Laboratory of Onco-Hematology, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Université Paris Cité, CNRS, INSERM U1151, Institut Necker Enfants Malades (INEM), Paris, France
| | - Marie-Emilie Dourthe
- Laboratory of Onco-Hematology, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Université Paris Cité, CNRS, INSERM U1151, Institut Necker Enfants Malades (INEM), Paris, France
| | - Mathieu Simonin
- Laboratory of Onco-Hematology, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Université Paris Cité, CNRS, INSERM U1151, Institut Necker Enfants Malades (INEM), Paris, France
| | - André Baruchel
- Department of Pediatric Hematology and Immunology, University Hospital Robert Debré, Assistance Publique des Hôpitaux de Paris (APHP), Paris, France
- Institut Universitaire d'Hématologie, EA-3518, University Hospital Saint-Louis, Assistance Publique des Hôpitaux de Paris (APHP), Paris, France
| | - Hervé Dombret
- Université Paris Diderot, Institut Universitaire d'Hématologie, EA-3518, Assistance Publique-Hôpitaux de Paris, University Hospital Saint-Louis, 75010, Paris, France
| | - Norbert Ifrah
- PRES LUNAM, CHU Angers Service Des Maladies du Sang, INSERM U 892, 49933, Angers, France
| | - Nicolas Boissel
- Université Paris Diderot, Institut Universitaire d'Hématologie, EA-3518, Assistance Publique-Hôpitaux de Paris, University Hospital Saint-Louis, 75010, Paris, France
| | - Bertrand Nadel
- Aix Marseille Université, CNRS, INSERM, CIML, Marseille, France
| | - Elizabeth Macintyre
- Laboratory of Onco-Hematology, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Université Paris Cité, CNRS, INSERM U1151, Institut Necker Enfants Malades (INEM), Paris, France
| | - Agata Cieslak
- Laboratory of Onco-Hematology, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.
- Université Paris Cité, CNRS, INSERM U1151, Institut Necker Enfants Malades (INEM), Paris, France.
| | - Vahid Asnafi
- Laboratory of Onco-Hematology, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.
- Université Paris Cité, CNRS, INSERM U1151, Institut Necker Enfants Malades (INEM), Paris, France.
| |
Collapse
|
2
|
Abstract
Adaptive immunity in jawed vertebrates relies on the assembly of antigen receptor genes by the recombination activating gene 1 (RAG1)-RAG2 (collectively RAG) recombinase in a reaction known as V(D)J recombination. Extensive biochemical and structural evidence indicates that RAG and V(D)J recombination evolved from the components of a RAG-like (RAGL) transposable element through a process known as transposon molecular domestication. This Review describes recent advances in our understanding of the functional and structural transitions that occurred during RAG evolution. We use the structures of RAG and RAGL enzymes to trace the evolutionary adaptations that yielded a RAG recombinase with exquisitely regulated cleavage activity and a multilayered array of mechanisms to suppress transposition. We describe how changes in modes of DNA binding, alterations in the dynamics of protein-DNA complexes, single amino acid mutations and a modular design likely enabled RAG family enzymes to survive and spread in the genomes of eukaryotes. These advances highlight the insight that can be gained from viewing evolution of vertebrate immunity through the lens of comparative genome analyses coupled with structural biology and biochemistry.
Collapse
|
3
|
Zhang Y, Corbett E, Wu S, Schatz DG. Structural basis for the activation and suppression of transposition during evolution of the RAG recombinase. EMBO J 2020; 39:e105857. [PMID: 32945578 DOI: 10.15252/embj.2020105857] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/17/2020] [Accepted: 08/20/2020] [Indexed: 11/09/2022] Open
Abstract
Jawed vertebrate adaptive immunity relies on the RAG1/RAG2 (RAG) recombinase, a domesticated transposase, for assembly of antigen receptor genes. Using an integration-activated form of RAG1 with methionine at residue 848 and cryo-electron microscopy, we determined structures that capture RAG engaged with transposon ends and U-shaped target DNA prior to integration (the target capture complex) and two forms of the RAG strand transfer complex that differ based on whether target site DNA is annealed or dynamic. Target site DNA base unstacking, flipping, and melting by RAG1 methionine 848 explain how this residue activates transposition, how RAG can stabilize sharp bends in target DNA, and why replacement of residue 848 by arginine during RAG domestication led to suppression of transposition activity. RAG2 extends a jawed vertebrate-specific loop to interact with target site DNA, and functional assays demonstrate that this loop represents another evolutionary adaptation acquired during RAG domestication to inhibit transposition. Our findings identify mechanistic principles of the final step in cut-and-paste transposition and the molecular and structural logic underlying the transformation of RAG from transposase to recombinase.
Collapse
Affiliation(s)
- Yuhang Zhang
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Elizabeth Corbett
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Shenping Wu
- Department of Pharmacology, Yale School of Medicine West Haven, New Haven, CT, USA
| | - David G Schatz
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
4
|
Thomson DW, Shahrin NH, Wang PPS, Wadham C, Shanmuganathan N, Scott HS, Dinger ME, Hughes TP, Schreiber AW, Branford S. Aberrant RAG-mediated recombination contributes to multiple structural rearrangements in lymphoid blast crisis of chronic myeloid leukemia. Leukemia 2020; 34:2051-2063. [PMID: 32076119 DOI: 10.1038/s41375-020-0751-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/08/2020] [Accepted: 02/06/2020] [Indexed: 11/10/2022]
Abstract
Blast crisis of chronic myeloid leukemia is associated with poor survival and the accumulation of genomic lesions. Using whole-exome and/or RNA sequencing of patients at chronic phase (CP, n = 49), myeloid blast crisis (MBC, n = 19), and lymphoid blast crisis (LBC, n = 20), we found 25 focal gene deletions and 14 fusions in 24 patients in BC. Deletions predominated in LBC (83% of structural variants). Transcriptional analysis identified the upregulation of genes involved in V(D)J recombination, including RAG1/2 and DNTT in LBC. RAG recombination is a reported mediator of IKZF1 deletion. We investigated the extent of RAG-mediated genomic lesions in BC. Molecular hallmarks of RAG activity; DNTT-mediated nucleotide insertions and a RAG-binding motif at structural variants were exclusively found in patients with high RAG expression. Structural variants in 65% of patients in LBC displayed these hallmarks compared with only 5% in MBC. RAG-mediated events included focal deletion and novel fusion of genes associated with hematologic cancer: IKZF1, RUNX1, CDKN2A/B, and RB1. Importantly, 8/8 patients with elevated DNTT at CP diagnosis progressed to LBC by 12 months, potentially enabling early prediction of LBC. This work confirms the central mutagenic role of RAG in LBC and describes potential clinical utility in CML management.
Collapse
Affiliation(s)
- Daniel W Thomson
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, SA Pathology, Adelaide, SA, Australia
- School of Pharmacy and Medical Science, Division of Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Nur Hezrin Shahrin
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, SA Pathology, Adelaide, SA, Australia
- School of Pharmacy and Medical Science, Division of Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Paul P S Wang
- School of Pharmacy and Medical Science, Division of Health Sciences, University of South Australia, Adelaide, SA, Australia
- Australian Cancer Research Foundation Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, SA, Australia
| | - Carol Wadham
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, SA Pathology, Adelaide, SA, Australia
- School of Pharmacy and Medical Science, Division of Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Naranie Shanmuganathan
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, SA Pathology, Adelaide, SA, Australia
- School of Pharmacy and Medical Science, Division of Health Sciences, University of South Australia, Adelaide, SA, Australia
- School of Medicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Hamish S Scott
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, SA Pathology, Adelaide, SA, Australia
- School of Pharmacy and Medical Science, Division of Health Sciences, University of South Australia, Adelaide, SA, Australia
- Australian Cancer Research Foundation Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, SA, Australia
- School of Medicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Marcel E Dinger
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington Campus, Sydney, NSW, Australia
| | - Timothy P Hughes
- School of Medicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Andreas W Schreiber
- School of Pharmacy and Medical Science, Division of Health Sciences, University of South Australia, Adelaide, SA, Australia
- Australian Cancer Research Foundation Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, SA, Australia
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Susan Branford
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, SA Pathology, Adelaide, SA, Australia.
- School of Pharmacy and Medical Science, Division of Health Sciences, University of South Australia, Adelaide, SA, Australia.
- School of Medicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia.
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
5
|
Smith AL, Scott JNF, Boyes J. The ESC: The Dangerous By-Product of V(D)J Recombination. Front Immunol 2019; 10:1572. [PMID: 31333681 PMCID: PMC6620893 DOI: 10.3389/fimmu.2019.01572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/24/2019] [Indexed: 11/18/2022] Open
Abstract
V(D)J recombination generates antigen receptor diversity by mixing and matching individual variable (V), diversity (D), and joining (J) gene segments. An obligate by-product of many of these reactions is the excised signal circle (ESC), generated by excision of the DNA from between the gene segments. Initially, the ESC was believed to be inert and formed to protect the genome from reactive broken DNA ends but more recent work suggests that the ESC poses a substantial threat to genome stability. Crucially, the recombinase re-binds to the ESC, which can result in it being re-integrated back into the genome, to cause potentially oncogenic insertion events. In addition, very recently, the ESC/recombinase complex was found to catalyze breaks at recombination signal sequences (RSSs) throughout the genome, via a “cut-and-run” mechanism. Remarkably, the ESC/recombinase complex triggers these breaks at key leukemia driver genes, implying that this reaction could be a significant cause of lymphocyte genome instability. Here, we explore these alternate pathways and discuss their relative dangers to lymphocyte genome stability.
Collapse
Affiliation(s)
- Alastair L Smith
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - James N F Scott
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Joan Boyes
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
6
|
Kirkham CM, Boyes J. Genome instability triggered by the V(D)J recombination by-product. Mol Cell Oncol 2019; 6:1610323. [PMID: 31211241 DOI: 10.1080/23723556.2019.1610323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 04/18/2019] [Accepted: 04/18/2019] [Indexed: 10/26/2022]
Abstract
A newly identified process by which mistargeted V(D)J recombination could cause genome instability in childhood leukemia has been discovered. In this mechanism, called cut-and-run, the excised DNA by-products of V(D)J recombination are re-bound by the recombinase proteins and erroneously trigger double-strand breaks at multiple locations throughout the genome. Many of these breakpoints co-localize with known chromosome alterations in acute lymphoblastic leukemia (ALL).
Collapse
Affiliation(s)
| | - Joan Boyes
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| |
Collapse
|
7
|
Zhang Y, Cheng TC, Huang G, Lu Q, Surleac MD, Mandell JD, Pontarotti P, Petrescu AJ, Xu A, Xiong Y, Schatz DG. Transposon molecular domestication and the evolution of the RAG recombinase. Nature 2019; 569:79-84. [PMID: 30971819 PMCID: PMC6494689 DOI: 10.1038/s41586-019-1093-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 03/07/2019] [Indexed: 12/11/2022]
Abstract
Domestication of a transposon (a DNA sequence that can change its position in a genome) to give rise to the RAG1-RAG2 recombinase (RAG) and V(D)J recombination, which produces the diverse repertoire of antibodies and T cell receptors, was a pivotal event in the evolution of the adaptive immune system of jawed vertebrates. The evolutionary adaptations that transformed the ancestral RAG transposase into a RAG recombinase with appropriately regulated DNA cleavage and transposition activities are not understood. Here, beginning with cryo-electron microscopy structures of the amphioxus ProtoRAG transposase (an evolutionary relative of RAG), we identify amino acid residues and domains the acquisition or loss of which underpins the propensity of RAG for coupled cleavage, its preference for asymmetric DNA substrates and its inability to perform transposition in cells. In particular, we identify two adaptations specific to jawed-vertebrates-arginine 848 in RAG1 and an acidic region in RAG2-that together suppress RAG-mediated transposition more than 1,000-fold. Our findings reveal a two-tiered mechanism for the suppression of RAG-mediated transposition, illuminate the evolution of V(D)J recombination and provide insight into the principles that govern the molecular domestication of transposons.
Collapse
Affiliation(s)
- Yuhang Zhang
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Tat Cheung Cheng
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | | | - Qingyi Lu
- Beijing University of Chinese Medicine, Beijing, China
| | - Marius D Surleac
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Jeffrey D Mandell
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Pierre Pontarotti
- Aix Marseille Univ IRD, APHM, MEPHI, IHU Méditerranée Infection, Marseille, France.,Centre National de la Recherche Scientifique, Marseille, France
| | - Andrei J Petrescu
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Anlong Xu
- Beijing University of Chinese Medicine, Beijing, China. .,State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou, China.
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
| | - David G Schatz
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
8
|
Cut-and-Run: A Distinct Mechanism by which V(D)J Recombination Causes Genome Instability. Mol Cell 2019; 74:584-597.e9. [PMID: 30905508 PMCID: PMC6509286 DOI: 10.1016/j.molcel.2019.02.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 12/20/2018] [Accepted: 02/14/2019] [Indexed: 12/28/2022]
Abstract
V(D)J recombination is essential to generate antigen receptor diversity but is also a potent cause of genome instability. Many chromosome alterations that result from aberrant V(D)J recombination involve breaks at single recombination signal sequences (RSSs). A long-standing question, however, is how such breaks occur. Here, we show that the genomic DNA that is excised during recombination, the excised signal circle (ESC), forms a complex with the recombinase proteins to efficiently catalyze breaks at single RSSs both in vitro and in vivo. Following cutting, the RSS is released while the ESC-recombinase complex remains intact to potentially trigger breaks at further RSSs. Consistent with this, chromosome breaks at RSSs increase markedly in the presence of the ESC. Notably, these breaks co-localize with those found in acute lymphoblastic leukemia patients and occur at key cancer driver genes. We have named this reaction “cut-and-run” and suggest that it could be a significant cause of lymphocyte genome instability. A complex between the recombination by-product and RAGs triggers multiple DNA breaks The breaks co-localize with chromosome breakpoints in acute lymphoblastic leukemias The breaks occur at many frequently mutated genes in acute lymphoblastic leukemia Cut-and-run may underpin the most common types of lymphocyte chromosome instabilities
Collapse
|
9
|
The RAG transposon is active through the deuterostome evolution and domesticated in jawed vertebrates. Immunogenetics 2017; 69:391-400. [PMID: 28451741 DOI: 10.1007/s00251-017-0979-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/15/2017] [Indexed: 10/19/2022]
Abstract
RAG1 and RAG2 are essential subunits of the V(D)J recombinase required for the generation of the variability of antibodies and T cell receptors in jawed vertebrates. It was demonstrated that the amphioxus homologue of RAG1-RAG2 is encoded in an active transposon, belonging to the transposase DDE superfamily. The data provided support the possibility that the RAG transposon has been active through the deuterostome evolution and is still active in several lineages. The RAG transposon corresponds to several families present in deuterostomes. RAG1-RAG2 V(D)J recombinase evolved from one of them, partially due to the new ability of the transposon to interact with the cellular reparation machinery. Considering the fact that the RAG transposon survived millions of years in many different lineages, in multiple copies, and that DDE transposases evolved their association with proteins involved in repair mechanisms, we propose that the apparition of V(D)J recombination machinery could be a predictable genetic event.
Collapse
|
10
|
Rommel PC, Oliveira TY, Nussenzweig MC, Robbiani DF. RAG1/2 induces genomic insertions by mobilizing DNA into RAG1/2-independent breaks. J Exp Med 2017; 214:815-831. [PMID: 28179379 PMCID: PMC5339680 DOI: 10.1084/jem.20161638] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/09/2016] [Accepted: 12/12/2016] [Indexed: 11/23/2022] Open
Abstract
Rommel et al. reveal a novel RAG1/2-mediated insertion pathway, which has the potential to destabilize the lymphocyte genome and shares features with DNA insertions observed in human cancer. The RAG recombinase (RAG1/2) plays an essential role in adaptive immunity by mediating V(D)J recombination in developing lymphocytes. In contrast, aberrant RAG1/2 activity promotes lymphocyte malignancies by causing chromosomal translocations and DNA deletions at cancer genes. RAG1/2 can also induce genomic DNA insertions by transposition and trans-V(D)J recombination, but only few such putative events have been documented in vivo. We used next-generation sequencing techniques to examine chromosomal rearrangements in primary murine B cells and discovered that RAG1/2 causes aberrant insertions by releasing cleaved antibody gene fragments that subsequently reintegrate into DNA breaks induced on a heterologous chromosome. We confirmed that RAG1/2 also mobilizes genomic DNA into independent physiological breaks by identifying similar insertions in human lymphoma and leukemia. Our findings reveal a novel RAG1/2-mediated insertion pathway distinct from DNA transposition and trans-V(D)J recombination that destabilizes the genome and shares features with reported oncogenic DNA insertions.
Collapse
Affiliation(s)
- Philipp C Rommel
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065
| | - Thiago Y Oliveira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065 .,Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065
| | - Davide F Robbiani
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065
| |
Collapse
|
11
|
Carmona LM, Schatz DG. New insights into the evolutionary origins of the recombination-activating gene proteins and V(D)J recombination. FEBS J 2017; 284:1590-1605. [PMID: 27973733 PMCID: PMC5459667 DOI: 10.1111/febs.13990] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 11/10/2016] [Accepted: 12/08/2016] [Indexed: 12/26/2022]
Abstract
The adaptive immune system of jawed vertebrates relies on V(D)J recombination as one of the main processes to generate the diverse array of receptors necessary for the recognition of a wide range of pathogens. The DNA cleavage reaction necessary for the assembly of the antigen receptor genes from an array of potential gene segments is mediated by the recombination-activating gene proteins RAG1 and RAG2. The RAG proteins have been proposed to originate from a transposable element (TE) as they share mechanistic and structural similarities with several families of transposases and are themselves capable of mediating transposition. A number of RAG-like proteins and TEs with sequence similarity to RAG1 and RAG2 have been identified, but only recently has their function begun to be characterized, revealing mechanistic links to the vertebrate RAGs. Of particular significance is the discovery of ProtoRAG, a transposon superfamily found in the genome of the basal chordate amphioxus. ProtoRAG has many of the sequence and mechanistic features predicted for the ancestral RAG transposon and is likely to be an evolutionary relative of RAG1 and RAG2. In addition, early observations suggesting that RAG1 is able to mediate V(D)J recombination in the absence of RAG2 have been confirmed, implying independent evolutionary origins for the two RAG genes. Here, recent progress in identifying and characterizing RAG-like proteins and the TEs that encode them is summarized and a refined model for the evolution of V(D)J recombination and the RAG proteins is presented.
Collapse
Affiliation(s)
- Lina Marcela Carmona
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - David G Schatz
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.,Howard Hughes Medical Institute, New Haven, CT, USA
| |
Collapse
|
12
|
Abstract
V(D)J recombination, the mechanism responsible for generating antigen receptor diversity, has the potential to generate aberrant DNA rearrangements in developing lymphocytes. Indeed, the recombinase has been implicated in several different kinds of errors leading to oncogenic transformation. Here we review the basic aspects of V(D)J recombination, mechanisms underlying aberrant DNA rearrangements, and the types of aberrant events uncovered in recent genomewide analyses of lymphoid neoplasms.
Collapse
|
13
|
Abstract
The modular, noncontiguous architecture of the antigen receptor genes necessitates their assembly through V(D)J recombination. This program of DNA breakage and rejoining occurs during early lymphocyte development, and depends on the RAG1 and RAG2 proteins, whose collaborative endonuclease activity targets specific DNA motifs enriched in the antigen receptor loci. This essential gene shuffling reaction requires lymphocytes to traverse several developmental stages wherein DNA breakage is tolerated, while minimizing the expense to overall genome integrity. Thus, RAG activity is subject to stringent temporal and spatial regulation. The RAG proteins themselves also contribute autoregulatory properties that coordinate their DNA cleavage activity with target chromatin structure, cell cycle status, and DNA repair pathways. Even so, lapses in regulatory restriction of RAG activity are apparent in the aberrant V(D)J recombination events that underlie many lymphomas. In this review, we discuss the current understanding of the RAG endonuclease, its widespread binding in the lymphocyte genome, its noncleavage activities that restrain its enzymatic potential, and the growing evidence of its evolution from an ancient transposase.
Collapse
|
14
|
Site- and allele-specific polycomb dysregulation in T-cell leukaemia. Nat Commun 2015; 6:6094. [PMID: 25615415 PMCID: PMC4317503 DOI: 10.1038/ncomms7094] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 12/11/2014] [Indexed: 12/14/2022] Open
Abstract
T-cell acute lymphoblastic leukaemias (T-ALL) are aggressive malignant proliferations characterized by high relapse rates and great genetic heterogeneity. TAL1 is amongst the most frequently deregulated oncogenes. Yet, over half of the TAL1(+) cases lack TAL1 lesions, suggesting unrecognized (epi)genetic deregulation mechanisms. Here we show that TAL1 is normally silenced in the T-cell lineage, and that the polycomb H3K27me3-repressive mark is focally diminished in TAL1(+) T-ALLs. Sequencing reveals that >20% of monoallelic TAL1(+) patients without previously known alterations display microinsertions or RAG1/2-mediated episomal reintegration in a single site 5' to TAL1. Using 'allelic-ChIP' and CrispR assays, we demonstrate that such insertions induce a selective switch from H3K27me3 to H3K27ac at the inserted but not the germline allele. We also show that, despite a considerable mechanistic diversity, the mode of oncogenic TAL1 activation, rather than expression levels, impact on clinical outcome. Altogether, these studies establish site-specific epigenetic desilencing as a mechanism of oncogenic activation.
Collapse
|
15
|
Begum NA, Honjo T. Evolutionary comparison of the mechanism of DNA cleavage with respect to immune diversity and genomic instability. Biochemistry 2012; 51:5243-56. [PMID: 22712724 DOI: 10.1021/bi3005895] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It is generally assumed that the genetic mechanism for immune diversity is unique and distinct from that for general genome diversity, in part because of the high efficiency and strict regulation of immune diversity. This expectation was partially met by the discovery of RAG1 and -2, which catalyze V(D)J recombination to generate the immune repertoire of B and T lymphocyte receptors. RAG1 and -2 were later shown to be derived from a transposon. On the other hand, activation-induced cytidine deaminase (AID), which mediates both somatic hypermutation (SHM) and the class-switch recombination (CSR) of the immunoglobulin genes, evolved earlier than RAG1 and -2 in jawless vertebrates. This review compares immune diversity and general genome diversity from an evolutionary perspective, shedding light on the roles of DNA-cleaving enzymes and target recognition markers. This comparison revealed that AID-mediated SHM and CSR share the cleaving enzyme topoisomerase 1 with transcription-associated mutation (TAM) and triplet contraction, which is involved in many genetic diseases. These genome-altering events appear to target DNA with non-B structure, which is induced by the inefficient correction of the excessive supercoiling that is caused by active transcription. Furthermore, an epigenetic modification on chromatin (histone H3K4 trimethylation) is used as a mark for DNA cleavage sites in meiotic recombination, V(D)J recombination, CSR, and SHM. We conclude that acquired immune diversity evolved via the appearance of an AID orthologue that utilized a preexisting mechanism for genomic instability, such as TAM.
Collapse
Affiliation(s)
- Nasim A Begum
- Department of Immunology and Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | | |
Collapse
|
16
|
Ataxia telangiectasia-mutated protein and DNA-dependent protein kinase have complementary V(D)J recombination functions. Proc Natl Acad Sci U S A 2011; 108:2028-33. [PMID: 21245310 DOI: 10.1073/pnas.1019293108] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Antigen receptor variable region exons are assembled during lymphocyte development from variable (V), diversity (D), and joining (J) gene segments. Each germ-line gene segment is flanked by recombination signal sequences (RSs). Recombination-activating gene endonuclease initiates V(D)J recombination by cleaving a pair of gene segments at their junction with flanking RSs to generate covalently sealed (hairpinned) coding ends (CEs) and blunt 5'-phosphorylated RS ends (SEs). Subsequently, nonhomologous end joining (NHEJ) opens, processes, and fuses CEs to form coding joins (CJs) and precisely joins SEs to form signal joins (SJs). DNA-dependent protein kinase catalytic subunit (DNA-PKcs) activates Artemis endonuclease to open and process hairpinned CEs before their fusion into CJs by other NHEJ factors. Although DNA-PKcs is absolutely required for CJs, SJs are formed to variable degrees and with variable fidelity in different DNA-PKcs-deficient cell types. Thus, other factors may compensate for DNA-PKcs function in SJ formation. DNA-PKcs and the ataxia telangiectasia-mutated (ATM) kinase are members of the same family, and they share common substrates in the DNA damage response. Although ATM deficiency compromises chromosomal V(D)J CJ formation, it has no reported role in SJ formation in normal cells. Here, we report that DNA-PKcs and ATM have redundant functions in SJ formation. Thus, combined DNA-PKcs and ATM deficiency during V(D)J recombination leads to accumulation of unjoined SEs and lack of SJ fidelity. Moreover, treatment of DNA-PKcs- or ATM-deficient cells, respectively, with specific kinase inhibitors for ATM or DNA-PKcs recapitulates SJ defects, indicating that the overlapping V(D)J recombination functions of ATM and DNA-PKcs are mediated through their kinase activities.
Collapse
|
17
|
Ataxia telangiectasia mutated (Atm) and DNA-PKcs kinases have overlapping activities during chromosomal signal joint formation. Proc Natl Acad Sci U S A 2011; 108:2022-7. [PMID: 21245316 DOI: 10.1073/pnas.1013295108] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Lymphocyte antigen receptor gene assembly occurs through the process of V(D)J recombination, which is initiated when the RAG endonuclease introduces DNA DSBs at two recombining gene segments to form broken DNA coding end pairs and signal end pairs. These paired DNA ends are joined by proteins of the nonhomologous end-joining (NHEJ) pathway of DSB repair to form a coding joint and signal joint, respectively. RAG DSBs are generated in G1-phase developing lymphocytes, where they activate the ataxia telangiectasia mutated (Atm) and DNA-PKcs kinases to orchestrate diverse cellular DNA damage responses including DSB repair. Paradoxically, although Atm and DNA-PKcs both function during coding joint formation, Atm appears to be dispensible for signal joint formation; and although some studies have revealed an activity for DNA-PKcs during signal joint formation, others have not. Here we show that Atm and DNA-PKcs have overlapping catalytic activities that are required for chromosomal signal joint formation and for preventing the aberrant resolution of signal ends as potentially oncogenic chromosomal translocations.
Collapse
|
18
|
Ta VBT, de Haan AB, de Bruijn MJW, Dingjan GM, Hendriks RW. Pre-B-cell leukemias in Btk/Slp65-deficient mice arise independently of ongoing V(D)J recombination activity. Leukemia 2010; 25:48-56. [PMID: 21030983 DOI: 10.1038/leu.2010.246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The adapter protein Slp65 and Bruton's tyrosine kinase (Btk) are key components of the precursor-B (pre-B) cell receptor (pre-BCR) signaling pathway. Slp65-deficient mice spontaneously develop pre-B-cell leukemia, expressing high levels of the pre-BCR on their cell surface. As leukemic Slp65-deficient pre-B cells express the recombination activating genes (Rag)1 and Rag2, and manifest ongoing immunoglobulin (Ig) light-chain rearrangement, it has been hypothesized that deregulated recombinase activity contributes to malignant transformation. In this report, we investigated whether Rag-induced DNA damage is involved in oncogenic transformation of Slp65-deficient B cells. We employed Btk/Slp65 double-deficient mice carrying an autoreactive 3-83μδ BCR transgene. When developing B cells in their bone marrow express this BCR, the V(D)J recombination machinery will be activated, allowing for secondary Ig light-chain gene rearrangements to occur. This phenomenon, called receptor editing, will rescue autoreactive B cells from apoptosis. We observed that 3-83μδ transgenic Btk/Slp65 double-deficient mice developed B-cell leukemias expressing both the 3-83μδ BCR and the pre-BCR components λ5/VpreB. Importantly, such leukemias were found at similar frequencies in mice concomitantly deficient for Rag1 or the non-homologous end-joining factor DNA-PKcs. We therefore conclude that malignant transformation of Btk/Slp65 double-deficient pre-B cells is independent of deregulated V(D)J recombination activity.
Collapse
Affiliation(s)
- V B T Ta
- Department of Pulmonary Medicine, Erasmus MC Rotterdam, Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
19
|
Ramsden DA, Weed BD, Reddy YVR. V(D)J recombination: Born to be wild. Semin Cancer Biol 2010; 20:254-60. [PMID: 20600921 PMCID: PMC2942997 DOI: 10.1016/j.semcancer.2010.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 06/08/2010] [Accepted: 06/24/2010] [Indexed: 11/22/2022]
Abstract
Vertebrates employ V(D)J recombination to generate diversity for an adaptive immune response. Born of a transposon, V(D)J recombination could conceivably cause more trouble than its worth. However, of the two steps required for transposon mobility (excision and integration) this particular transposon's integration step appears mostly blocked in cells. The employment of a transposon as raw material to develop adaptive immunity was thus a less-risky choice than it might have been … but is it completely risk-free?
Collapse
Affiliation(s)
- Dale A Ramsden
- Lineberger Comprehensive Cancer Center, Department of Biochemistry and Biophysics and Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States.
| | | | | |
Collapse
|
20
|
Nussenzweig A, Nussenzweig MC. Origin of chromosomal translocations in lymphoid cancer. Cell 2010; 141:27-38. [PMID: 20371343 DOI: 10.1016/j.cell.2010.03.016] [Citation(s) in RCA: 236] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 01/13/2010] [Accepted: 03/16/2010] [Indexed: 11/26/2022]
Abstract
Aberrant fusions between heterologous chromosomes are among the most prevalent cytogenetic abnormalities found in cancer cells. Oncogenic chromosomal translocations provide cells with a proliferative or survival advantage. They may either initiate transformation or be acquired secondarily as a result of genomic instability. Here, we highlight recent advances toward understanding the origin of chromosomal translocations in incipient lymphoid cancers and how tumor-suppressive pathways normally limit the frequency of these aberrant recombination events. Deciphering the mechanisms that mediate chromosomal fusions will open new avenues for developing therapeutic strategies aimed at eliminating lesions that lead to the initiation, maintenance, and progression of cancer.
Collapse
Affiliation(s)
- André Nussenzweig
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
21
|
Abstract
Many human cancers are associated with characteristic chromosomal rearrangements, especially hematopoietic cancers such as leukemias and lymphomas. The first and most critical step in the rearrangement process is the induction of two DNA double-strand breaks (DSB). In all cases, at least one of the two DSBs is generated by a pathologic process, such as (1) randomly-positioned breaks due to ionizing radiation, free radical oxidative damage, or spontaneous hydrolysis; (2) breaks associated with topoisomerase inhibitor treatment; or (3) breaks at direct or inverted repeat sequences, mediated by unidentified strand breakage mechanisms. In lymphoid cells, one of the two requisite DSBs is often physiologic, the result of V(D)J recombination or class switch recombination (CSR) at the lymphoid antigen receptor loci. The RAG complex, which causes the DSBs in V(D)J recombination, can cause (4) sequence-specific, pathologic DSBs at sites that fit the consensus of their normal V(D)J recombination signal targets; or (5) structure-specific, pathologic DSBs at regions of single- to double-strand transition. CSR occurs specifically in the B-cell lineage, and requires (6) activation-induced cytidine deaminase (AID) action at sites of single-stranded DNA, which may occur pathologically outside of the normal target loci of class switch recombination regions and somatic hypermutation (SHM) zones. Recent work proposes a seventh mechanism: the sequential action of AID and the RAG complex at CpG sites provides a coherent model for the pathologic DSBs at some of the most common sites of translocation in human lymphoma – the bcl-2 gene in follicular lymphoma and diffuse large B-cell lymphoma, and the bcl-1 gene in mantle cell lymphoma.
Collapse
Affiliation(s)
- Albert G Tsai
- USC Norris Comprehensive Cancer Ctr, Rm. 5428 Departments of Pathology, Biochemistry & Molecular Biology, Molecular Microbiology & Immunology, and of Biological Sciences (Section of Molecular & Computational Biology), University of Southern California, Los Angeles, CA 90089-9176, USA.
| | | |
Collapse
|
22
|
Aberrantly resolved RAG-mediated DNA breaks in Atm-deficient lymphocytes target chromosomal breakpoints in cis. Proc Natl Acad Sci U S A 2009; 106:18339-44. [PMID: 19820166 DOI: 10.1073/pnas.0902545106] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Canonical chromosomal translocations juxtaposing antigen receptor genes and oncogenes are a hallmark of many lymphoid malignancies. These translocations frequently form through the joining of DNA ends from double-strand breaks (DSBs) generated by the recombinase activating gene (RAG)-1 and -2 proteins at lymphocyte antigen receptor loci and breakpoint targets near oncogenes. Our understanding of chromosomal breakpoint target selection comes primarily from the analyses of these lesions, which are selected based on their transforming properties. RAG DSBs are rarely resolved aberrantly in wild-type developing lymphocytes. However, in ataxia telangiectasia mutated (ATM)-deficient lymphocytes, RAG breaks are frequently joined aberrantly, forming chromosomal lesions such as translocations that predispose (ATM)-deficient mice and humans to the development of lymphoid malignancies. Here, an approach that minimizes selection biases is used to isolate a large cohort of breakpoint targets of aberrantly resolved RAG DSBs in Atm-deficient lymphocytes. Analyses of this cohort revealed that frequently, the breakpoint targets for aberrantly resolved RAG breaks are other DSBs. Moreover, these nonselected lesions exhibit a bias for using breakpoints in cis, forming small chromosomal deletions, rather than breakpoints in trans, forming chromosomal translocations.
Collapse
|
23
|
Abstract
In a recent issue of Molecular Cell, Shimazaki et al. (2009) show that an interaction between RAG2 and a methylated histone might play a critical regulatory role in V(D)J recombination by enhancing DNA binding and enzymatic activity of the V(D)J recombinase.
Collapse
Affiliation(s)
- Mark S Schlissel
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| | | | | |
Collapse
|
24
|
A mouse model for chronic lymphocytic leukemia based on expression of the SV40 large T antigen. Blood 2009; 114:119-27. [DOI: 10.1182/blood-2009-01-198937] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Abstract
The simian virus 40 (SV40) T antigen is a potent oncogene able to transform many cell types and has been implicated in leukemia and lymphoma. In this report, we have achieved sporadic SV40 T-antigen expression in mature B cells in mice, by insertion of a SV40 T antigen gene in opposite transcriptional orientation in the immunoglobulin (Ig) heavy (H) chain locus between the D and JH segments. SV40 T-antigen expression appeared to result from retention of the targeted germline allele and concomitant antisense transcription of SV40 large T in mature B cells, leading to chronic lymphocytic leukemia (CLL). Although B-cell development was unperturbed in young mice, aging mice showed accumulation of a monoclonal B-cell population in which the targeted IgH allele was in germline configuration and the wild-type IgH allele had a productive V(D)J recombination. These leukemic B cells were IgDlowCD5+ and manifested nonrandom usage of V, D, and J segments. VH regions were either unmutated, with preferential usage of the VH11 family, or manifested extensive somatic hypermutation. Our findings provide an animal model for B-CLL and show that pathways activated by SV40 T antigen play important roles in the pathogenesis of B-CLL.
Collapse
|
25
|
Wood CD, Thornton TM, Sabio G, Davis RA, Rincon M. Nuclear localization of p38 MAPK in response to DNA damage. Int J Biol Sci 2009; 5:428-37. [PMID: 19564926 PMCID: PMC2702826 DOI: 10.7150/ijbs.5.428] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Accepted: 06/10/2009] [Indexed: 01/09/2023] Open
Abstract
p38 MAP kinase (MAPK) is activated in response to environmental stress, cytokines and DNA damage, and mediates death, cell differentiation and cell cycle checkpoints. The intracellular localization of p38 MAPK upon activation remains unclear, and may depend on the stimulus. We show here that activation of p38 MAPK by stimuli that induce DNA double strand breaks (DSBs), but not other stimuli, leads to its nuclear translocation. In addition, naturally occurring DSBs generated through V(D)J recombination in immature thymocytes also promote nuclear accumulation of p38 MAPK. Nuclear translocation of p38 MAPK does not require its catalytic activity, but is induced by a conformational change of p38 MAPK triggered by phosphorylation within the active site. The selective nuclear accumulation of p38 MAPK in response to DNA damage could be a mechanism to facilitate the phosphorylation of p38 MAPK nuclear targets for the induction of a G2/M cell cycle checkpoint and DNA repair.
Collapse
Affiliation(s)
- C David Wood
- Department of Medicine/Immunobiology Program, University of Vermont, Burlington, 05405, USA
| | | | | | | | | |
Collapse
|
26
|
Mahowald GK, Baron JM, Sleckman BP. Collateral damage from antigen receptor gene diversification. Cell 2008; 135:1009-12. [PMID: 19070571 DOI: 10.1016/j.cell.2008.11.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Chromosomal translocations that juxtapose antigen receptor genes and oncogenes are frequently associated with lymphoid malignancies. In this issue, Robbiani et al. (2008) show that activation-induced deaminase (AID), an enzyme involved in antigen receptor gene diversification, generates DNA double-strand breaks (DSBs) in oncogenes, and Tsai et al. (2008) propose that AID and the recombinase-activating gene (RAG) endonuclease may collaborate to generate off-target DSBs.
Collapse
Affiliation(s)
- Grace K Mahowald
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
27
|
Curry JD, Schlissel MS. RAG2's non-core domain contributes to the ordered regulation of V(D)J recombination. Nucleic Acids Res 2008; 36:5750-62. [PMID: 18776220 PMCID: PMC2566892 DOI: 10.1093/nar/gkn553] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Variable (diversity) joining [V(D)J] recombination of immune gene loci proceeds in an ordered manner with D to J portions recombining first and then an upstream V joins that recombinant. We present evidence that the non-core domain of recombination activating gene (RAG) protein 2 is involved in the regulation of recombinatorial order. In mice lacking the non-core domain of RAG2 the ordered rearrangement is disturbed and direct V to D rearrangements are 10- to 1000-times increased in tri-partite immune gene loci. Some forms of inter-chromosomal translocations between TCRβ and TCRδ D gene segments are also increased in the core RAG2 animals as compared with their wild-type (WT) counterparts. In addition, the concise use of proper recombination signal sequences (RSSs) appears to be disturbed in the core RAG2 mice as compared with WT RAG2 animals.
Collapse
Affiliation(s)
- John D Curry
- Division of Immunology, Department of Molecular and Cell Biology, University of California at Berkeley, 439 Life Sciences Addition, Berkeley, CA 94720-3200, USA
| | | |
Collapse
|
28
|
Lu CP, Posey JE, Roth DB. Understanding how the V(D)J recombinase catalyzes transesterification: distinctions between DNA cleavage and transposition. Nucleic Acids Res 2008; 36:2864-73. [PMID: 18375979 PMCID: PMC2396405 DOI: 10.1093/nar/gkn128] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The Rag1 and Rag2 proteins initiate V(D)J recombination by introducing site-specific DNA double-strand breaks. Cleavage occurs by nicking one DNA strand, followed by a one-step transesterification reaction that forms a DNA hairpin structure. A similar reaction allows Rag transposition, in which the 3'-OH groups produced by Rag cleavage are joined to target DNA. The Rag1 active site DDE triad clearly plays a catalytic role in both cleavage and transposition, but no other residues in Rag1 responsible for transesterification have been identified. Furthermore, although Rag2 is essential for both cleavage and transposition, the nature of its involvement is unknown. Here, we identify basic amino acids in the catalytic core of Rag1 specifically important for transesterification. We also show that some Rag1 mutants with severe defects in hairpin formation nonetheless catalyze substantial levels of transposition. Lastly, we show that a catalytically defective Rag2 mutant is impaired in target capture and displays a novel form of coding flank sensitivity. These findings provide the first identification of components of Rag1 that are specifically required for transesterification and suggest an unexpected role for Rag2 in DNA cleavage and transposition.
Collapse
Affiliation(s)
- Catherine P Lu
- Program in Molecular Pathogenesis, Department of Pathology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | | | | |
Collapse
|