1
|
Kline EM, Jernigan JE, Scharer CD, Maurer J, Hicks SL, Herrick MK, Wallings RL, Kelly SD, Chang J, Menees KB, McFarland NR, Boss JM, Tansey MG, Joers V. MHCII reduction is insufficient to protect mice from alpha-synuclein-induced degeneration and the Parkinson's HLA locus exhibits epigenetic regulation. Sci Rep 2025; 15:13705. [PMID: 40258905 PMCID: PMC12012047 DOI: 10.1038/s41598-025-95679-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 03/24/2025] [Indexed: 04/23/2025] Open
Abstract
Major histocompatibility complex class II (MHCII) molecules are antigen presentation proteins and increased in post-mortem Parkinson's disease (PD) brain. Attempts to decrease MHCII expression have led to neuroprotection in PD mouse models. Our group reported that a single nucleotide polymorphism (SNP) at rs3129882 in the MHCII gene Human Leukocyte Antigen (HLA) DRA is associated with increased MHCII transcripts and surface protein and increased risk for late-onset idiopathic PD. We therefore hypothesized that decreased MHCII may mitigate dopaminergic degeneration. During an ongoing α-synuclein lesion, mice with MHCII reduction in systemic and brain innate immune cells (LysMCre + I-Abfl/fl or CRE+) displayed brain T cell repertoire shifts and greater preservation of the dopaminergic phenotype in nigrostriatal terminals. Next, we investigated a human cohort to characterize the immunophenotype of subjects with and without the high-risk GG genotype at the rs3129882 SNP. We confirmed that the high-risk GG genotype is associated with peripheral changes in MHCII inducibility, frequency of CD4 + T cells, and differentially accessible chromatin regions within the MHCII locus. Although our mouse studies indicate that myeloid MHCII reduction coinciding with an intact adaptive immune system is insufficient to fully protect dopamine neurons from α-synuclein-induced degeneration, our data are consistent with the overwhelming evidence implicating antigen presentation in PD pathophysiology.
Collapse
Affiliation(s)
- Elizabeth M Kline
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Janna E Jernigan
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida Health, Gainesville, FL, USA
| | - Christopher D Scharer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Jeffrey Maurer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Sakeenah L Hicks
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Mary K Herrick
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida Health, Gainesville, FL, USA
| | - Rebecca L Wallings
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida Health, Gainesville, FL, USA
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sean D Kelly
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Jianjun Chang
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Kelly B Menees
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida Health, Gainesville, FL, USA
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nikolaus R McFarland
- Department of Neurology, University of Florida College of Medicine, Gainesville, FL, USA
- Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, USA
| | - Jeremy M Boss
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Malú Gámez Tansey
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida Health, Gainesville, FL, USA
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
- Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, USA
| | - Valerie Joers
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, USA.
- Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL, USA.
- McKnight Brain Institute, University of Florida Health, Gainesville, FL, USA.
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
2
|
Kline EM, Jernigan JE, Scharer CD, Maurer J, Hicks SL S, Herrick M MK, Wallings RL, Kelly SD, Chang J, Menees KB, McFarland NR, Boss JM, Tansey MG, Joers V. MHCII reduction is insufficient to protect mice from alpha-synuclein-induced degeneration and the Parkinson's HLA locus exhibits epigenetic regulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.08.31.610581. [PMID: 40093159 PMCID: PMC11908218 DOI: 10.1101/2024.08.31.610581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Major histocompatibility complex class II (MHCII) molecules are antigen presentation proteins and increased in post-mortem Parkinson's disease (PD) brain. Attempts to decrease MHCII expression have led to neuroprotection in PD mouse models. Our group reported that a SNP at rs3129882 in the MHCII gene Human leukocyte Antigen (HLA) DRA is associated with increased MHCII transcripts and surface protein and increased risk for late-onset idiopathic PD. We therefore hypothesized that decreased MHCII may mitigate dopaminergic degeneration. During an ongoing α-synuclein lesion, mice with MHCII reduction in systemic and brain innate immune cells (LysMCre+I-Abfl/fl or CRE+) displayed brain T cell repertoire shifts and greater preservation of the dopaminergic phenotype in nigrostriatal terminals. Next, we investigated a human cohort to characterize the immunophenotype of subjects with and without the high-risk GG genotype at the rs3129882 SNP. We confirmed that the high-risk GG genotype is associated with peripheral changes in MHCII inducibility, frequency of CD4+ T cells, and differentially accessible chromatin regions within the MHCII locus. Although our mouse studies indicate that myeloid MHCII reduction coinciding with an intact adaptive immune system is insufficient to fully protect dopamine neurons from α-synuclein-induced degeneration, our data are consistent with the overwhelming evidence implicating antigen presentation in PD pathophysiology.
Collapse
Affiliation(s)
- Elizabeth M Kline
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT USA
| | - Janna E Jernigan
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL USA
| | - Christopher D Scharer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA USA
| | - Jeffrey Maurer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA USA
| | - Sakeenah Hicks SL
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA USA
| | - Mary K Herrick M
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL USA
| | - Rebecca L Wallings
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL USA
| | - Sean D Kelly
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Jianjun Chang
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Kelly B Menees
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL USA
| | - Nikolaus R McFarland
- Department of Neurology, University of Florida College of Medicine, Gainesville, FL USA
- Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL USA
| | - Jeremy M Boss
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA USA
| | - Malú Gámez Tansey
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL USA
- Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL USA
- McKnight Brain Institute, University of Florida Health, Gainesville, FL USA
| | - Valerie Joers
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL USA
- McKnight Brain Institute, University of Florida Health, Gainesville, FL USA
| |
Collapse
|
3
|
Ghodke-Puranik Y, Olferiev M, Crow MK. Systemic lupus erythematosus genetics: insights into pathogenesis and implications for therapy. Nat Rev Rheumatol 2024; 20:635-648. [PMID: 39232240 DOI: 10.1038/s41584-024-01152-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2024] [Indexed: 09/06/2024]
Abstract
Systemic lupus erythematosus (SLE) is a prime example of how the interplay between genetic and environmental factors can trigger systemic autoimmunity, particularly in young women. Although clinical disease can take years to manifest, risk is established by the unique genetic makeup of an individual. Genome-wide association studies have identified almost 200 SLE-associated risk loci, yet unravelling the functional effect of these loci remains a challenge. New analytic tools have enabled researchers to delve deeper, leveraging DNA sequencing and cell-specific and immune pathway analysis to elucidate the immunopathogenic mechanisms. Both common genetic variants and rare non-synonymous mutations can interact to increase SLE risk. Notably, variants strongly associated with SLE are often located in genome super-enhancers that regulate MHC class II gene expression. Additionally, the 3D conformations of DNA and RNA contribute to genome regulation and innate immune system activation. Improved therapies for SLE are urgently needed and current and future knowledge from genetic and genomic research should provide new tools to facilitate patient diagnosis, enhance the identification of therapeutic targets and optimize testing of agents.
Collapse
Affiliation(s)
- Yogita Ghodke-Puranik
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery and Weill Cornell Medicine, New York, NY, USA
| | - Mikhail Olferiev
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery and Weill Cornell Medicine, New York, NY, USA
| | - Mary K Crow
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery and Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
4
|
Bose S, Saha S, Goswami H, Shanmugam G, Sarkar K. Involvement of CCCTC-binding factor in epigenetic regulation of cancer. Mol Biol Rep 2023; 50:10383-10398. [PMID: 37840067 DOI: 10.1007/s11033-023-08879-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 10/03/2023] [Indexed: 10/17/2023]
Abstract
A major global health burden continues to be borne by the complex and multifaceted disease of cancer. Epigenetic changes, which are essential for the emergence and spread of cancer, have drawn a huge amount of attention recently. The CCCTC-binding factor (CTCF), which takes part in a wide range of cellular processes including genomic imprinting, X chromosome inactivation, 3D chromatin architecture, local modifications of histone, and RNA polymerase II-mediated gene transcription, stands out among the diverse array of epigenetic regulators. CTCF not only functions as an architectural protein but also modulates DNA methylation and histone modifications. Epigenetic regulation of cancer has already been the focus of plenty of studies. Understanding the role of CTCF in the cancer epigenetic landscape may lead to the development of novel targeted therapeutic strategies for cancer. CTCF has already earned its status as a tumor suppressor gene by acting like a homeostatic regulator of genome integrity and function. Moreover, CTCF has a direct effect on many important transcriptional regulators that control the cell cycle, apoptosis, senescence, and differentiation. As we learn more about CTCF-mediated epigenetic modifications and transcriptional regulations, the possibility of utilizing CTCF as a diagnostic marker and therapeutic target for cancer will also increase. Thus, the current review intends to promote personalized and precision-based therapeutics for cancer patients by shedding light on the complex interplay between CTCF and epigenetic processes.
Collapse
Affiliation(s)
- Sayani Bose
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Srawsta Saha
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Harsita Goswami
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Geetha Shanmugam
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Koustav Sarkar
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India.
| |
Collapse
|
5
|
Siegler BH, Thon JN, Altvater M, Schenz J, Larmann J, Weigand MA, Weiterer S. Abdominal surgery induces long-lasting changes in expression and binding of CTCF with impact on Major Histocompatibility Complex II transcription in circulating human monocytes. PLoS One 2023; 18:e0293347. [PMID: 37878653 PMCID: PMC10599505 DOI: 10.1371/journal.pone.0293347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 10/11/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND Postoperative immunosuppression has been recognized as an important driver of surgery-related morbidity and mortality. It is characterized by lymphocyte depression and impaired monocyte capability to present foreign antigens to T-cells via Major Histocompatibility Complex, Class II (MHC-II) molecules. In patients with postoperative abdominal sepsis, we previously detected a persisting differential binding of the CCCTC-Binding Factor (CTCF), a superordinate regulator of transcription, inside the MHC-II region with specific impact on human leucocyte antigen (HLA) gene expression. In this prospective exploratory study, we investigated to which extent major surgery affects the MHC-II region of circulating CD14+-monocytes. RESULTS In non-immunocompromised patients undergoing elective major abdominal surgery, a postoperative loss of monocyte HLA-DR surface receptor density was accompanied by a decline in the transcription levels of the classical MHC-II genes HLA-DRA, HLA-DRB1, HLA-DPA1 and HLA-DPB1. The surgical event decreased the expression of the transcriptional MHC-II regulators CIITA and CTCF and led to a lower CTCF enrichment at an intergenic sequence within the HLA-DR subregion. During the observation period, we found a slow and only incomplete restoration of monocyte HLA-DR surface receptor density as well as a partial recovery of CIITA, HLA-DRA and HLA-DRB1 expression. In contrast, transcription of HLA-DPA1, HLA-DPB1, CTCF and binding of CTCF within the MHC-II remained altered. CONCLUSION In circulating monocytes, major surgery does not globally affect MHC-II transcription but rather induces specific changes in the expression of selected HLA genes, followed by differential recovery patterns and accompanied by a prolonged reduction of CTCF expression and binding within the MHC-II region. Our results hint toward a long-lasting impact of a major surgical intervention on monocyte functionality, possibly mediated by epigenetic changes that endure the life span of the individual cell.
Collapse
Affiliation(s)
- Benedikt Hermann Siegler
- Medical Faculty Heidelberg, Department of Anesthesiology, Heidelberg University, Heidelberg, Baden-Württemberg, Germany
| | - Jan Niklas Thon
- Medical Faculty Heidelberg, Department of Anesthesiology, Heidelberg University, Heidelberg, Baden-Württemberg, Germany
| | - Marc Altvater
- Medical Faculty Heidelberg, Department of Anesthesiology, Heidelberg University, Heidelberg, Baden-Württemberg, Germany
| | - Judith Schenz
- Medical Faculty Heidelberg, Department of Anesthesiology, Heidelberg University, Heidelberg, Baden-Württemberg, Germany
| | - Jan Larmann
- Medical Faculty Heidelberg, Department of Anesthesiology, Heidelberg University, Heidelberg, Baden-Württemberg, Germany
| | - Markus Alexander Weigand
- Medical Faculty Heidelberg, Department of Anesthesiology, Heidelberg University, Heidelberg, Baden-Württemberg, Germany
| | - Sebastian Weiterer
- Medical Faculty Heidelberg, Department of Anesthesiology, Heidelberg University, Heidelberg, Baden-Württemberg, Germany
| |
Collapse
|
6
|
Crow MK. Pathogenesis of systemic lupus erythematosus: risks, mechanisms and therapeutic targets. Ann Rheum Dis 2023; 82:999-1014. [PMID: 36792346 DOI: 10.1136/ard-2022-223741] [Citation(s) in RCA: 151] [Impact Index Per Article: 75.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/01/2023] [Indexed: 02/17/2023]
Abstract
Research elucidating the pathogenesis of systemic lupus erythematosus (SLE) has defined two critical families of mediators, type I interferon (IFN-I) and autoantibodies targeting nucleic acids and nucleic acid-binding proteins, as fundamental contributors to the disease. On the fertile background of significant genetic risk, a triggering stimulus, perhaps microbial, induces IFN-I, autoantibody production or most likely both. When innate and adaptive immune system cells are engaged and collaborate in the autoimmune response, clinical SLE can develop. This review describes recent data from genetic analyses of patients with SLE, along with current studies of innate and adaptive immune function that contribute to sustained IFN-I pathway activation, immune activation and autoantibody production, generation of inflammatory mediators and tissue damage. The goal of these studies is to understand disease mechanisms, identify therapeutic targets and stimulate development of therapeutics that can achieve improved outcomes for patients.
Collapse
Affiliation(s)
- Mary K Crow
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery, New York, New York, USA
| |
Collapse
|
7
|
Martino S, Carollo PS, Barra V. A Glimpse into Chromatin Organization and Nuclear Lamina Contribution in Neuronal Differentiation. Genes (Basel) 2023; 14:genes14051046. [PMID: 37239406 DOI: 10.3390/genes14051046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
During embryonic development, stem cells undergo the differentiation process so that they can specialize for different functions within the organism. Complex programs of gene transcription are crucial for this process to happen. Epigenetic modifications and the architecture of chromatin in the nucleus, through the formation of specific regions of active as well as inactive chromatin, allow the coordinated regulation of the genes for each cell fate. In this mini-review, we discuss the current knowledge regarding the regulation of three-dimensional chromatin structure during neuronal differentiation. We also focus on the role the nuclear lamina plays in neurogenesis to ensure the tethering of the chromatin to the nuclear envelope.
Collapse
Affiliation(s)
- Salvatore Martino
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy
| | - Pietro Salvatore Carollo
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), 90015 Cefalù, Italy
| | - Viviana Barra
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy
| |
Collapse
|
8
|
Kawasaki A, Kusumawati PA, Kawamura Y, Kondo Y, Kusaoi M, Amano H, Kusanagi Y, Itoh K, Fujimoto T, Tamura N, Hashimoto H, Matsumoto I, Sumida T, Tsuchiya N. Genetic dissection of HLA-DRB1*15:01 and XL9 region variants in Japanese patients with systemic lupus erythematosus: primary role for HLA-DRB1*15:01. RMD Open 2023; 9:rmdopen-2023-003214. [PMID: 37258043 DOI: 10.1136/rmdopen-2023-003214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 05/12/2023] [Indexed: 06/02/2023] Open
Abstract
OBJECTIVE Major histocompatibility complex strongly contributes to susceptibility to systemic lupus erythematosus (SLE). In the European populations, HLA-DRB1*03:01 and DRB1*15:01 are susceptibility alleles, but C4 locus was reported to account for the association of DRB1*03:01. With respect to DRB1*15:01, strong linkage disequilibrium with a variant rs2105898T in the XL9 region, located between DRB1 and DQA1 and regulates HLA-class II expression levels, was reported; however, the causative allele remains to be determined. Leveraging the genetic background of the Japanese population, where DRB1*15:01 and DRB1*15:02 are commonly present and only DRB1*15:01 is associated with SLE, this study aimed to distinguish the genetic contribution of DRB1*15:01 and XL9 variants. METHODS Among the XL9 variants, two (rs2105898 and rs9271593) previously associated variants in the European populations and two (rs9271375 and rs9271378) which showed a trend towards association in a Japanese Genome-Wide Association Study were selected. Associations of the XL9 variants and HLA-DRB1 were examined in 442 Japanese SLE patients and 779 controls. Genotyping of the XL9 variants was performed by TaqMan SNP Genotyping Assay and direct sequencing. HLA-DRB1 alleles were determined by PCR-reverse sequence-specific oligonucleotide probes. RESULTS Among the XL9 variants, associations of rs2105898T and rs9271593C were replicated in the Japanese population. However, these associations became no longer significant when conditioned on DRB1*15:01. In contrast, the association of DRB1*15:01 remained significant after conditioning on the XL9 variants. CONCLUSION In the Japanese population, HLA-DRB1*15:01 was found to be primarily associated with SLE, and to account for the apparent association of XL9 region.
Collapse
Affiliation(s)
- Aya Kawasaki
- Molecular and Genetic Epidemiology Laboratory, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
- Master's Program in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
- College of Medical Sciences, University of Tsukuba, Tsukuba, Japan
| | - Premita Ari Kusumawati
- Molecular and Genetic Epidemiology Laboratory, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
- Master's Program in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Yuka Kawamura
- Molecular and Genetic Epidemiology Laboratory, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
- College of Medical Sciences, University of Tsukuba, Tsukuba, Japan
| | - Yuya Kondo
- Department of Rheumatology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Makio Kusaoi
- Department of Internal Medicine and Rheumatology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Hirofumi Amano
- Department of Internal Medicine and Rheumatology, Faculty of Medicine, Juntendo University, Tokyo, Japan
- Department of Internal Medicine and Rheumatology, Juntendo University Nerima Hospital, Tokyo, Japan
| | - Yasuyoshi Kusanagi
- Division of Hematology and Rheumatology, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Kenji Itoh
- Division of Hematology and Rheumatology, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Takashi Fujimoto
- Department of General Medicine, Nara Medical University, Kashihara, Japan
| | - Naoto Tamura
- Department of Internal Medicine and Rheumatology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | | | - Isao Matsumoto
- Department of Rheumatology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Takayuki Sumida
- Department of Rheumatology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Naoyuki Tsuchiya
- Molecular and Genetic Epidemiology Laboratory, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
- Master's Program in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
- College of Medical Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
9
|
Zhao J, Huai J. Role of primary aging hallmarks in Alzheimer´s disease. Theranostics 2023; 13:197-230. [PMID: 36593969 PMCID: PMC9800733 DOI: 10.7150/thno.79535] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/15/2022] [Indexed: 12/03/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease, which severely threatens the health of the elderly and causes significant economic and social burdens. The causes of AD are complex and include heritable but mostly aging-related factors. The primary aging hallmarks include genomic instability, telomere wear, epigenetic changes, and loss of protein stability, which play a dominant role in the aging process. Although AD is closely associated with the aging process, the underlying mechanisms involved in AD pathogenesis have not been well characterized. This review summarizes the available literature about primary aging hallmarks and their roles in AD pathogenesis. By analyzing published literature, we attempted to uncover the possible mechanisms of aberrant epigenetic markers with related enzymes, transcription factors, and loss of proteostasis in AD. In particular, the importance of oxidative stress-induced DNA methylation and DNA methylation-directed histone modifications and proteostasis are highlighted. A molecular network of gene regulatory elements that undergoes a dynamic change with age may underlie age-dependent AD pathogenesis, and can be used as a new drug target to treat AD.
Collapse
|
10
|
The Role of Dynamic DNA Methylation in Liver Transplant Rejection in Children. Transplant Direct 2022; 8:e1394. [PMID: 36259078 PMCID: PMC9575761 DOI: 10.1097/txd.0000000000001394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/14/2022] [Indexed: 11/04/2022] Open
Abstract
Transcriptional regulation of liver transplant (LT) rejection may reveal novel predictive and therapeutic targets. The purpose of this article is to test the role of differential DNA methylation in children with biopsy-proven acute cellular rejection after LT.
Collapse
|
11
|
Dehingia B, Milewska M, Janowski M, Pękowska A. CTCF shapes chromatin structure and gene expression in health and disease. EMBO Rep 2022; 23:e55146. [PMID: 35993175 PMCID: PMC9442299 DOI: 10.15252/embr.202255146] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/31/2022] [Accepted: 07/14/2022] [Indexed: 11/09/2022] Open
Abstract
CCCTC-binding factor (CTCF) is an eleven zinc finger (ZF), multivalent transcriptional regulator, that recognizes numerous motifs thanks to the deployment of distinct combinations of its ZFs. The great majority of the ~50,000 genomic locations bound by the CTCF protein in a given cell type is intergenic, and a fraction of these sites overlaps with transcriptional enhancers. Furthermore, a proportion of the regions bound by CTCF intersect genes and promoters. This suggests multiple ways in which CTCF may impact gene expression. At promoters, CTCF can directly affect transcription. At more distal sites, CTCF may orchestrate interactions between regulatory elements and help separate eu- and heterochromatic areas in the genome, exerting a chromatin barrier function. In this review, we outline how CTCF contributes to the regulation of the three-dimensional structure of chromatin and the formation of chromatin domains. We discuss how CTCF binding and architectural functions are regulated. We examine the literature implicating CTCF in controlling gene expression in development and disease both by acting as an insulator and a factor facilitating regulatory elements to efficiently interact with each other in the nuclear space.
Collapse
Affiliation(s)
- Bondita Dehingia
- Dioscuri Centre for Chromatin Biology and Epigenomics, Nencki Institute of Experimental BiologyPolish Academy of SciencesWarsawPoland
| | - Małgorzata Milewska
- Dioscuri Centre for Chromatin Biology and Epigenomics, Nencki Institute of Experimental BiologyPolish Academy of SciencesWarsawPoland
| | - Marcin Janowski
- Dioscuri Centre for Chromatin Biology and Epigenomics, Nencki Institute of Experimental BiologyPolish Academy of SciencesWarsawPoland
| | - Aleksandra Pękowska
- Dioscuri Centre for Chromatin Biology and Epigenomics, Nencki Institute of Experimental BiologyPolish Academy of SciencesWarsawPoland
| |
Collapse
|
12
|
Sun X, Zhang J, Cao C. CTCF and Its Partners: Shaper of 3D Genome during Development. Genes (Basel) 2022; 13:genes13081383. [PMID: 36011294 PMCID: PMC9407368 DOI: 10.3390/genes13081383] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 02/06/2023] Open
Abstract
The 3D genome organization and its dynamic modulate genome function, playing a pivotal role in cell differentiation and development. CTCF and cohesin, acting as the core architectural components involved in chromatin looping and genome folding, can also recruit other protein or RNA partners to fine-tune genome structure during development. Moreover, systematic screening for partners of CTCF has been performed through high-throughput approaches. In particular, several novel protein and RNA partners, such as BHLHE40, WIZ, MAZ, Aire, MyoD, YY1, ZNF143, and Jpx, have been identified, and these partners are mostly implicated in transcriptional regulation and chromatin remodeling, offering a unique opportunity for dissecting their roles in higher-order chromatin organization by collaborating with CTCF and cohesin. Here, we review the latest advancements with an emphasis on features of CTCF partners and also discuss the specific functions of CTCF-associated complexes in chromatin structure modulation, which may extend our understanding of the functions of higher-order chromatin architecture in developmental processes.
Collapse
Affiliation(s)
- Xiaoyue Sun
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510275, China; (X.S.); (J.Z.)
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510275, China
- Center for Reproductive Genetics and Reproductive Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510275, China
| | - Jing Zhang
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510275, China; (X.S.); (J.Z.)
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510275, China
- Center for Reproductive Genetics and Reproductive Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510275, China
| | - Chunwei Cao
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510275, China; (X.S.); (J.Z.)
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510275, China
- Center for Reproductive Genetics and Reproductive Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510275, China
- Guangzhou Laboratory, Guangzhou 510320, China
- Correspondence:
| |
Collapse
|
13
|
Boss JM. The Regulation of Immunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2450-2455. [PMID: 35595305 DOI: 10.4049/jimmunol.2290007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Abstract
In their AAI President's Addresses reproduced in this issue, Jeremy M. Boss, Ph.D. (AAI '94; AAI president 2019–2020), and Jenny P.-Y. Ting, Ph.D. (AAI '97; AAI president 2020–2021), welcomed attendees to the AAI annual meeting, Virtual IMMUNOLOGY2021™. Due to the SARS-CoV-2 pandemic and the cancellation of IMMUNOLOGY2020™, Dr. Boss and Dr. Ting each presented their respective president's address to open the meeting.
Collapse
Affiliation(s)
- Jeremy M Boss
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322
| |
Collapse
|
14
|
Farina F, Pisapia L, Laezza M, Serena G, Rispo A, Ricciolino S, Gianfrani C, Fasano A, Del Pozzo G. Effect of Gliadin Stimulation on HLA-DQ2.5 Gene Expression in Macrophages from Adult Celiac Disease Patients. Biomedicines 2021; 10:biomedicines10010063. [PMID: 35052743 PMCID: PMC8773327 DOI: 10.3390/biomedicines10010063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 11/16/2022] Open
Abstract
Macrophages play an important role in the pathogenesis of celiac disease (CD) because they are involved in both inflammatory reaction and antigen presentation. We analyzed the expression of CD-associated HLA-DQ2.5 risk alleles on macrophages isolated by two cohorts of adult patients, from the U.S. and Italy, at different stages of disease and with different genotypes. After isolating and differentiating macrophages from PBMC, we assessed the HLA genotype and quantified the HLA-DQ2.5 mRNAs by qPCR, before and after gliadin stimulation. The results confirmed the differences in expression between DQA1*05:01 and DQB1*02:01 predisposing alleles and the non-CD associated alleles, as previously shown on other types of APCs. The gliadin challenge confirmed the differentiation of macrophages toward a proinflammatory phenotype, but above all, it triggered an increase of DQA1*05:01 mRNA, as well as a decrease of the DQB1*02:01 transcript. Furthermore, we observed a decrease in the DRB1 genes expression and a downregulation of the CIITA transactivator. In conclusion, our findings provide new evidences on the non-coordinated regulation of celiac disease DQ2.5 risk genes and support the hypothesis that gliadin could interfere in the three-dimensional arrangement of chromatin at the HLA locus.
Collapse
Affiliation(s)
- Federica Farina
- Institute of Genetics and Biophysics “A. Buzzati-Traverso”, Italian National Council of Research (CNR), 80131 Naples, Italy; (F.F.); (L.P.); (M.L.)
| | - Laura Pisapia
- Institute of Genetics and Biophysics “A. Buzzati-Traverso”, Italian National Council of Research (CNR), 80131 Naples, Italy; (F.F.); (L.P.); (M.L.)
| | - Mariavittoria Laezza
- Institute of Genetics and Biophysics “A. Buzzati-Traverso”, Italian National Council of Research (CNR), 80131 Naples, Italy; (F.F.); (L.P.); (M.L.)
| | - Gloria Serena
- Division of Pediatric Gastroenterology and Nutrition, Center for Celiac Research, Mucosal Immunology and Biology Research Center, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA; (G.S.); (A.F.)
| | - Antonio Rispo
- Gastroenterology, Department of Clinical Medicine and Surgery, School of Medicine Federico II of Naples, 80131 Naples, Italy; (A.R.); (S.R.)
| | - Simona Ricciolino
- Gastroenterology, Department of Clinical Medicine and Surgery, School of Medicine Federico II of Naples, 80131 Naples, Italy; (A.R.); (S.R.)
| | - Carmen Gianfrani
- Institute of Biochemistry and Cell Biology, Italian National Council of Research (CNR), 80131 Naples, Italy;
| | - Alessio Fasano
- Division of Pediatric Gastroenterology and Nutrition, Center for Celiac Research, Mucosal Immunology and Biology Research Center, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA; (G.S.); (A.F.)
| | - Giovanna Del Pozzo
- Institute of Genetics and Biophysics “A. Buzzati-Traverso”, Italian National Council of Research (CNR), 80131 Naples, Italy; (F.F.); (L.P.); (M.L.)
- Correspondence:
| |
Collapse
|
15
|
Wang H, Yang B, Cai X, Cheng X, Shen N, Liu L, Li J, Wang Y, He H, Ying P, Li B, Lu Z, Yang N, Wang X, Zhang F, Li Y, Wang W, Ning C, Zhu Y, Chang J, Miao X, Tian J, Zhong R. Hepatocellular carcinoma risk variant modulates lncRNA HLA-DQB1-AS1 expression via a long-range enhancer-promoter interaction. Carcinogenesis 2021; 42:1347-1356. [PMID: 34665859 DOI: 10.1093/carcin/bgab095] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/15/2021] [Accepted: 10/18/2021] [Indexed: 01/01/2023] Open
Abstract
Substantial evidence highlighted the critical role of long non-coding RNAs (lncRNA) in driving hepatocarcinogenesis. We hypothesized that functional variants in genome-wide association studies (GWASs) associated loci might alter the expression levels of lncRNAs and contribute to the development of hepatocellular carcinoma (HCC). Here, we prioritized potentially cis-expression quantitative trait loci-based single nucleotide polymorphism (SNP)-lncRNA association together with the physical interaction by the analyses from Hi-C data in GWAS loci of chronic hepatitis B and HCC. Subsequently, by leveraging two-stage case-control study (1738 hepatitis B [HBV]) related HCC cases and 1988 HBV persistent carriers) and biological assays, we identified that rs2647046 was significantly associated with HCC risk (odds ratio = 1.26, 95% CI = 1.11 to 1.43, P = 4.14 × 10-4). Luciferase reporter assays and electrophoretic mobility shift assays showed that rs2647046 A allele significantly increased transcriptional activity via influencing transcript factor binding affinity. Allele-specific chromosome conformation capture assays revealed that enhancer with rs2647046 interacted with the HLA-DQB1-AS1 promoter to allele-specifically influence its expression by CTCF-mediated long-range loop. Cell proliferation assays indicated that HLA-DQB1-AS1 is a potential oncogene in HCC. Our study showed HLA-DQB1-AS1 regulated by a causal SNP in a long-range interaction manner conferred the susceptibility to HCC, suggesting an important mechanism of modulating lncRNA expression for risk-associated SNPs in the etiology of HCC.
Collapse
Affiliation(s)
- Haoxue Wang
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Beifang Yang
- Hubei Institute for Infectious Disease Control and Prevention, Hubei Provincial Center for Disease Control and Prevention, Wuhan, Hubei, China
| | - Xiaomin Cai
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Xiang Cheng
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Na Shen
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Li Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiaoyuan Li
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ying Wang
- Department of Virology, Wuhan Centers for Disease Prevention and Control, Wuhan, Hubei, China
| | - Heng He
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Pingting Ying
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Bin Li
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Zequn Lu
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Nan Yang
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Xiaoyang Wang
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Fuwei Zhang
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Yanmin Li
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Wenzhuo Wang
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Caibo Ning
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Ying Zhu
- School of Health Sciences, Wuhan University, Wuhan 430071, Hubei, China
| | - Jiang Chang
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Xiaoping Miao
- School of Health Sciences, Wuhan University, Wuhan 430071, Hubei, China
| | - Jianbo Tian
- School of Health Sciences, Wuhan University, Wuhan 430071, Hubei, China
| | - Rong Zhong
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| |
Collapse
|
16
|
Patterson DG, Kania AK, Zuo Z, Scharer CD, Boss JM. Epigenetic gene regulation in plasma cells. Immunol Rev 2021; 303:8-22. [PMID: 34010461 PMCID: PMC8387415 DOI: 10.1111/imr.12975] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 04/23/2021] [Indexed: 12/12/2022]
Abstract
Humoral immunity provides protection from pathogenic infection and is mediated by antibodies following the differentiation of naive B cells (nBs) to antibody-secreting cells (ASCs). This process requires substantial epigenetic and transcriptional rewiring to ultimately repress the nB program and replace it with one conducive to ASC physiology and function. Notably, these reprogramming events occur within the framework of cell division. Efforts to understand the relationship of cell division with reprogramming and ASC differentiation in vivo have uncovered the timing and scope of reprogramming, as well as key factors that influence these events. Herein, we discuss the unique physiology of ASC and how nBs undergo epigenetic and genome architectural reorganization to acquire the necessary functions to support antibody production. We also discuss the stage-wise manner in which reprogramming occurs across cell divisions and how key molecular determinants can influence B cell fate outcomes.
Collapse
Affiliation(s)
- Dillon G. Patterson
- Department of Microbiology and Immunology, Emory University, Atlanta GA 30322
| | - Anna K. Kania
- Department of Microbiology and Immunology, Emory University, Atlanta GA 30322
| | - Zhihong Zuo
- Department of Microbiology and Immunology, Emory University, Atlanta GA 30322
- Xiangya School of Medicine, Central South University, Changsha, 410008, China
| | | | - Jeremy M. Boss
- Department of Microbiology and Immunology, Emory University, Atlanta GA 30322
| |
Collapse
|
17
|
Nosova O, Bazov I, Karpyak V, Hallberg M, Bakalkin G. Epigenetic and Transcriptional Control of the Opioid Prodynorphine Gene: In-Depth Analysis in the Human Brain. Molecules 2021; 26:molecules26113458. [PMID: 34200173 PMCID: PMC8201134 DOI: 10.3390/molecules26113458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/26/2021] [Accepted: 06/01/2021] [Indexed: 12/19/2022] Open
Abstract
Neuropeptides serve as neurohormones and local paracrine regulators that control neural networks regulating behavior, endocrine system and sensorimotor functions. Their expression is characterized by exceptionally restricted profiles. Circuit-specific and adaptive expression of neuropeptide genes may be defined by transcriptional and epigenetic mechanisms controlled by cell type and subtype sequence-specific transcription factors, insulators and silencers. The opioid peptide dynorphins play a critical role in neurological and psychiatric disorders, pain processing and stress, while their mutations cause profound neurodegeneration in the human brain. In this review, we focus on the prodynorphin gene as a model for the in-depth epigenetic and transcriptional analysis of expression of the neuropeptide genes. Prodynorphin studies may provide a framework for analysis of mechanisms relevant for regulation of neuropeptide genes in normal and pathological human brain.
Collapse
Affiliation(s)
- Olga Nosova
- Department of Pharmaceutical Biosciences, Uppsala University, 75124 Uppsala, Sweden; (I.B.); (M.H.)
- Correspondence: (O.N.); (G.B.)
| | - Igor Bazov
- Department of Pharmaceutical Biosciences, Uppsala University, 75124 Uppsala, Sweden; (I.B.); (M.H.)
| | | | - Mathias Hallberg
- Department of Pharmaceutical Biosciences, Uppsala University, 75124 Uppsala, Sweden; (I.B.); (M.H.)
| | - Georgy Bakalkin
- Department of Pharmaceutical Biosciences, Uppsala University, 75124 Uppsala, Sweden; (I.B.); (M.H.)
- Correspondence: (O.N.); (G.B.)
| |
Collapse
|
18
|
Li F, Zhu M, Niu B, Liu L, Peng X, Yang H, Qin B, Wang M, Ren X, Zhou X. Generation and expression analysis of BAC humanized mice carrying HLA-DP401 haplotype. Animal Model Exp Med 2021; 4:116-128. [PMID: 34179719 PMCID: PMC8212823 DOI: 10.1002/ame2.12158] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 12/17/2020] [Indexed: 11/13/2022] Open
Abstract
Background Human leukocyte antigen (HLA)-DP is much less studied than other HLA class II antigens, that is, HLA-DR and HLA-DQ, etc. However, the accumulating data have suggested the important roles of DP-restricted responses in the context of cancer, allergy, and infectious disease. Lack of animal models expressing these genes as authentic cis-haplotypes blocks our understanding for the role of HLA-DP haplotypes in immunity. Methods To explore the potential cis-acting control elements involved in the transcriptional regulation of the HLA-DPA1/DPB1 gene, we performed the expression analysis using bacterial artificial chromosome (BAC)-based transgenic humanized mice in the C57BL/6 background, which carried the entire HLA-DP401 gene locus. We further developed a mouse model of Staphylococcus aureus pneumonia in HLA-DP401 humanized transgenic mice, and performed the analysis on the expression pattern of HLA-DP401 and immunological responses in the model. Results In this study, we screened and identified a BAC clone spanning the entire HLA-DP gene locus. DNA from this clone was analyzed for integrity by pulsed-field gel electrophoresis and then microinjected into fertilized mouse oocytes to produce transgenic founder animals. Nine sets of PCR primers for regional markers with an average distance of 15 kb between each primer were used to confirm the integrity of the transgene in the five transgenic lines carrying the HLA-DPA1/DPB1 gene. Transgene copy numbers were determined by real-time PCR analysis. HLA-DP401 gene expression was analyzed at the mRNA and protein level. Although infection with S aureus Newman did not alter the percentage of immune cells in the spleen and thymus from the HLA-DP401-H2-Aβ1 humanized mice. Increased expression of HLA-DP401 was observed in the thymus of the humanized mice infected by S aureus. Conclusions We generated several BAC transgenic mice, and analyzed the expression of HLA-DPA1/DPB1 in those mice. A model of Saureus-induced pneumonia in the HLA-DP401-H2-Aβ1-/- humanized mice was further developed, and S aureus infection upregulated the HLA-DP401 expression in thymus of those humanized mice. These findings demonstrate the potential of those HLA-DPA1/DPB1 transgenic humanized mice for developing animal models of infectious diseases and MHC-associated immunological diseases.
Collapse
Affiliation(s)
- Feng Li
- Department of Laboratory Animal ScienceShanghai Public Health Clinical CenterFudan UniveristyShanghaiChina
| | - Meng‐min Zhu
- Department of Laboratory Animal ScienceShanghai Public Health Clinical CenterFudan UniveristyShanghaiChina
| | - Bo‐wen Niu
- Department of Laboratory Animal ScienceShanghai Public Health Clinical CenterFudan UniveristyShanghaiChina
| | - Ling‐ling Liu
- Department of Laboratory Animal ScienceShanghai Public Health Clinical CenterFudan UniveristyShanghaiChina
| | - Xiu‐hua Peng
- Department of Laboratory Animal ScienceShanghai Public Health Clinical CenterFudan UniveristyShanghaiChina
| | - Hua Yang
- Department of Laboratory Animal ScienceShanghai Public Health Clinical CenterFudan UniveristyShanghaiChina
| | - Bo‐yin Qin
- Department of Laboratory Animal ScienceShanghai Public Health Clinical CenterFudan UniveristyShanghaiChina
| | - Meixiang Wang
- Department of Scientific ResearchShanghai Public Health Clinical CenterFudan UniveristyShanghaiChina
| | - Xiaonan Ren
- Department of Laboratory Animal ScienceShanghai Public Health Clinical CenterFudan UniveristyShanghaiChina
| | - Xiaohui Zhou
- Department of Laboratory Animal ScienceShanghai Public Health Clinical CenterFudan UniveristyShanghaiChina
| |
Collapse
|
19
|
Scourzic L, Salataj E, Apostolou E. Deciphering the Complexity of 3D Chromatin Organization Driving Lymphopoiesis and Lymphoid Malignancies. Front Immunol 2021; 12:669881. [PMID: 34054841 PMCID: PMC8160312 DOI: 10.3389/fimmu.2021.669881] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/26/2021] [Indexed: 12/18/2022] Open
Abstract
Proper lymphopoiesis and immune responses depend on the spatiotemporal control of multiple processes, including gene expression, DNA recombination and cell fate decisions. High-order 3D chromatin organization is increasingly appreciated as an important regulator of these processes and dysregulation of genomic architecture has been linked to various immune disorders, including lymphoid malignancies. In this review, we present the general principles of the 3D chromatin topology and its dynamic reorganization during various steps of B and T lymphocyte development and activation. We also discuss functional interconnections between architectural, epigenetic and transcriptional changes and introduce major key players of genomic organization in B/T lymphocytes. Finally, we present how alterations in architectural factors and/or 3D genome organization are linked to dysregulation of the lymphopoietic transcriptional program and ultimately to hematological malignancies.
Collapse
Affiliation(s)
| | | | - Effie Apostolou
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
20
|
Postoperative abdominal sepsis induces selective and persistent changes in CTCF binding within the MHC-II region of human monocytes. PLoS One 2021; 16:e0250818. [PMID: 33939725 PMCID: PMC8092803 DOI: 10.1371/journal.pone.0250818] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 04/14/2021] [Indexed: 01/01/2023] Open
Abstract
Background Postoperative abdominal infections belong to the most common triggers of sepsis and septic shock in intensive care units worldwide. While monocytes play a central role in mediating the initial host response to infections, sepsis-induced immune dysregulation is characterized by a defective antigen presentation to T-cells via loss of Major Histocompatibility Complex Class II DR (HLA-DR) surface expression. Here, we hypothesized a sepsis-induced differential occupancy of the CCCTC-Binding Factor (CTCF), an architectural protein and superordinate regulator of transcription, inside the Major Histocompatibility Complex Class II (MHC-II) region in patients with postoperative sepsis, contributing to an altered monocytic transcriptional response during critical illness. Results Compared to a matched surgical control cohort, postoperative sepsis was associated with selective and enduring increase in CTCF binding within the MHC-II. In detail, increased CTCF binding was detected at four sites adjacent to classical HLA class II genes coding for proteins expressed on monocyte surface. Gene expression analysis revealed a sepsis-associated decreased transcription of (i) the classical HLA genes HLA-DRA, HLA-DRB1, HLA-DPA1 and HLA-DPB1 and (ii) the gene of the MHC-II master regulator, CIITA (Class II Major Histocompatibility Complex Transactivator). Increased CTCF binding persisted in all sepsis patients, while transcriptional recovery CIITA was exclusively found in long-term survivors. Conclusion Our experiments demonstrate differential and persisting alterations of CTCF occupancy within the MHC-II, accompanied by selective changes in the expression of spatially related HLA class II genes, indicating an important role of CTCF in modulating the transcriptional response of immunocompromised human monocytes during critical illness.
Collapse
|
21
|
Majumder P, Lee JT, Barwick BG, Patterson DG, Bally APR, Scharer CD, Boss JM. The Murine MHC Class II Super Enhancer IA/IE-SE Contains a Functionally Redundant CTCF-Binding Component and a Novel Element Critical for Maximal Expression. THE JOURNAL OF IMMUNOLOGY 2021; 206:2221-2232. [PMID: 33863790 DOI: 10.4049/jimmunol.2001089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 03/01/2021] [Indexed: 11/19/2022]
Abstract
In both humans and mice, CTCF-binding elements form a series of interacting loops across the MHC class II (MHC-II) locus, and CTCF is required for maximal MHC-II gene expression. In humans, a CTCF-bound chromatin insulator termed XL9 and a super enhancer (SE) DR/DQ-SE situated in the intergenic region between HLA-DRB1 and HLA-DQA1 play critical roles in regulating MHC-II expression. In this study, we identify a similar SE, termed IA/IE-SE, located between H2-Eb1 and H2-Aa of the mouse that contains a CTCF site (C15) and a novel region of high histone H3K27 acetylation. A genetic knockout of C15 was created and its role on MHC-II expression tested on immune cells. We found that C15 deletion did not alter MHC-II expression in B cells, macrophages, and macrophages treated with IFN-γ because of functional redundancy of the remaining MHC-II CTCF sites. Surprisingly, embryonic fibroblasts derived from C15-deleted mice failed to induce MHC-II gene expression in response to IFN-γ, suggesting that at least in this developmental lineage, C15 was required. Examination of the three-dimensional interactions with C15 and the H2-Eb1 and H2-Aa promoters identified interactions within the novel region of high histone acetylation within the IA/IE-SE (termed N1) that contains a PU.1 binding site. CRISPR/Cas9 deletion of N1 altered chromatin interactions across the locus and resulted in reduced MHC-II expression. Together, these data demonstrate the functional redundancy of the MHC-II CTCF elements and identify a functionally conserved SE that is critical for maximal expression of MHC-II genes.
Collapse
Affiliation(s)
- Parimal Majumder
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| | - Joshua T Lee
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| | - Benjamin G Barwick
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| | - Dillon G Patterson
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| | - Alexander P R Bally
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| | - Christopher D Scharer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| | - Jeremy M Boss
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
22
|
León Machado JA, Steimle V. The MHC Class II Transactivator CIITA: Not (Quite) the Odd-One-Out Anymore among NLR Proteins. Int J Mol Sci 2021; 22:1074. [PMID: 33499042 PMCID: PMC7866136 DOI: 10.3390/ijms22031074] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 12/14/2022] Open
Abstract
In this review, we discuss the major histocompatibility complex (MHC) class II transactivator (CIITA), which is the master regulator of MHC class II gene expression. CIITA is the founding member of the mammalian nucleotide-binding and leucine-rich-repeat (NLR) protein family but stood apart for a long time as the only transcriptional regulator. More recently, it was found that its closest homolog, NLRC5 (NLR protein caspase activation and recruitment domain (CARD)-containing 5), is a regulator of MHC-I gene expression. Both act as non-DNA-binding activators through multiple protein-protein interactions with an MHC enhanceosome complex that binds cooperatively to a highly conserved combinatorial cis-acting module. Thus, the regulation of MHC-II expression is regulated largely through the differential expression of CIITA. In addition to the well-defined role of CIITA in MHC-II GENE regulation, we will discuss several other aspects of CIITA functions, such as its role in cancer, its role as a viral restriction element contributing to intrinsic immunity, and lastly, its very recently discovered role as an inhibitor of Ebola and SARS-Cov-2 virus replication. We will briefly touch upon the recently discovered role of NLRP3 as a transcriptional regulator, which suggests that transcriptional regulation is, after all, not such an unusual feature for NLR proteins.
Collapse
Affiliation(s)
| | - Viktor Steimle
- Département de Biologie, Université de Sherbrooke, 2500 Boul., Sherbrooke, QC J1K 2R1, Canada;
| |
Collapse
|
23
|
Wiggins KJ, Scharer CD. Roadmap to a plasma cell: Epigenetic and transcriptional cues that guide B cell differentiation. Immunol Rev 2020; 300:54-64. [PMID: 33278036 DOI: 10.1111/imr.12934] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/06/2020] [Accepted: 11/16/2020] [Indexed: 12/11/2022]
Abstract
Antibody-secreting cells (ASCs) or plasma cells secrete antibodies and form a cornerstone of humoral immunity. B cells that receive activation signals in the presence or absence of T cells initiate a differentiation program that requires epigenetic and transcriptional reprogramming in order to ultimately form ASC. Reprogramming is accomplished through the interplay of transcription factors that initiate gene expression programs and epigenetic mechanisms that maintain these programs and cell fates. An important consideration is that all of these factors are operating in the context of cell division. Recent technical advances now allow mechanistic studies to move beyond genetic studies to identify the promoters and enhancer repertoires that are regulated by epigenetic mechanisms and transcription factors in rare cell types and differentiation stages in vivo. This review will detail efforts to integrate transcriptional and epigenetic changes during B cell differentiation with cell division in vivo. What has emerged is a multiphased differentiation model that requires distinct transcription factors and epigenetic programs at each step. The identification of markers that define each phase will help facilitate the manipulation of B cell differentiation for vaccine development or to treat diseases where antibodies are a component.
Collapse
Affiliation(s)
- Keenan J Wiggins
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Christopher D Scharer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
24
|
Valletta M, Russo R, Baglivo I, Russo V, Ragucci S, Sandomenico A, Iaccarino E, Ruvo M, De Feis I, Angelini C, Iachettini S, Biroccio A, Pedone PV, Chambery A. Exploring the Interaction between the SWI/SNF Chromatin Remodeling Complex and the Zinc Finger Factor CTCF. Int J Mol Sci 2020; 21:E8950. [PMID: 33255744 PMCID: PMC7728349 DOI: 10.3390/ijms21238950] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/19/2020] [Accepted: 11/22/2020] [Indexed: 12/18/2022] Open
Abstract
The transcription factor CCCTC-binding factor (CTCF) modulates pleiotropic functions mostly related to gene expression regulation. The role of CTCF in large scale genome organization is also well established. A unifying model to explain relationships among many CTCF-mediated activities involves direct or indirect interactions with numerous protein cofactors recruited to specific binding sites. The co-association of CTCF with other architectural proteins such as cohesin, chromodomain helicases, and BRG1, further supports the interplay between master regulators of mammalian genome folding. Here, we report a comprehensive LC-MS/MS mapping of the components of the switch/sucrose nonfermentable (SWI/SNF) chromatin remodeling complex co-associated with CTCF including subunits belonging to the core, signature, and ATPase modules. We further show that the localization patterns of representative SWI/SNF members significantly overlap with CTCF sites on transcriptionally active chromatin regions. Moreover, we provide evidence of a direct binding of the BRK-BRG1 domain to the zinc finger motifs 4-8 of CTCF, thus, suggesting that these domains mediate the interaction of CTCF with the SWI/SNF complex. These findings provide an updated view of the cooperative nature between CTCF and the SWI/SNF ATP-dependent chromatin remodeling complexes, an important step for understanding how these architectural proteins collaborate to shape the genome.
Collapse
Affiliation(s)
- Mariangela Valletta
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy; (M.V.); (R.R.); (I.B.); (V.R.); (S.R.)
| | - Rosita Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy; (M.V.); (R.R.); (I.B.); (V.R.); (S.R.)
| | - Ilaria Baglivo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy; (M.V.); (R.R.); (I.B.); (V.R.); (S.R.)
| | - Veronica Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy; (M.V.); (R.R.); (I.B.); (V.R.); (S.R.)
| | - Sara Ragucci
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy; (M.V.); (R.R.); (I.B.); (V.R.); (S.R.)
| | - Annamaria Sandomenico
- Istituto di Biostrutture e Bioimmagini IBB, National Research Council, 80134 Napoli, Italy; (A.S.); (E.I.); (M.R.)
| | - Emanuela Iaccarino
- Istituto di Biostrutture e Bioimmagini IBB, National Research Council, 80134 Napoli, Italy; (A.S.); (E.I.); (M.R.)
| | - Menotti Ruvo
- Istituto di Biostrutture e Bioimmagini IBB, National Research Council, 80134 Napoli, Italy; (A.S.); (E.I.); (M.R.)
| | - Italia De Feis
- Istituto per le Applicazioni del Calcolo IAC ‘M. Picone’, National Research Council, 80131 Napoli, Italy; (I.D.F.); (C.A.)
| | - Claudia Angelini
- Istituto per le Applicazioni del Calcolo IAC ‘M. Picone’, National Research Council, 80131 Napoli, Italy; (I.D.F.); (C.A.)
| | - Sara Iachettini
- Oncogenomic and Epigenetic Unit, IRCCS-Regina Elena National Cancer Institute, 00144 Roma, Italy; (S.I.); (A.B.)
| | - Annamaria Biroccio
- Oncogenomic and Epigenetic Unit, IRCCS-Regina Elena National Cancer Institute, 00144 Roma, Italy; (S.I.); (A.B.)
| | - Paolo Vincenzo Pedone
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy; (M.V.); (R.R.); (I.B.); (V.R.); (S.R.)
| | - Angela Chambery
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy; (M.V.); (R.R.); (I.B.); (V.R.); (S.R.)
| |
Collapse
|
25
|
Hua J, Chen Y, Fu B, Chen X, Xu XJ, Yang SH, Chen C, Xu YJ. Downregulation of p53 by Insufficient CTCF in CD4 + T Cells Is an Important Factor Inducing Acute Graft-Versus-Host Disease. Front Immunol 2020; 11:568637. [PMID: 33133081 PMCID: PMC7550539 DOI: 10.3389/fimmu.2020.568637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/26/2020] [Indexed: 01/10/2023] Open
Abstract
Recent evidence indicates that p53 plays a protective role against various systemic autoimmune diseases by suppressing pro-inflammatory cytokine production and reducing the number of pathogenic T cells. However, whether abnormal p53 expression participates in the development of acute graft-versus-host disease (aGVHD) remains unclear. In this study, we demonstrated that p53 was downregulated in CD4+ T cells from patients with aGVHD compared with the non-aGVHD group. Furthermore, we confirmed that low expression of CCCTC-binding factor (CTCF) in CD4+ T cells from aGVHD cases is an important factor affecting histone H3K9/K14 hypoacetylation in the p53 promoter and p53 downregulation. Restoring CTCF expression in CD4+ T cells from aGVHD patients increased p53 amounts and corrected the imbalance of Th17 cells/Tregs. Taken together, these results provide novel insights into p53 downregulation in CD4+ T cells from aGVHD patients.
Collapse
Affiliation(s)
- Juan Hua
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Yan Chen
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Bin Fu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Xu Chen
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Xue-Jun Xu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Shuang-Hui Yang
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Cong Chen
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Ya-Jing Xu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
26
|
Hu G, Dong X, Gong S, Song Y, Hutchins AP, Yao H. Systematic screening of CTCF binding partners identifies that BHLHE40 regulates CTCF genome-wide distribution and long-range chromatin interactions. Nucleic Acids Res 2020; 48:9606-9620. [PMID: 32885250 PMCID: PMC7515718 DOI: 10.1093/nar/gkaa705] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 07/27/2020] [Accepted: 08/14/2020] [Indexed: 11/14/2022] Open
Abstract
CTCF plays a pivotal role in mediating chromatin interactions, but it does not do so alone. A number of factors have been reported to co-localize with CTCF and regulate CTCF loops, but no comprehensive analysis of binding partners has been performed. This prompted us to identify CTCF loop participants and regulators by co-localization analysis with CTCF. We screened all factors that had ChIP-seq data in humans by co-localization analysis with human super conserved CTCF (hscCTCF) binding sites, and identified many new factors that overlapped with hscCTCF binding sites. Combined with CTCF loop information, we observed that clustered factors could promote CTCF loops. After in-depth mining of each factor, we found that many factors might have the potential to promote CTCF loops. Our data further demonstrated that BHLHE40 affected CTCF loops by regulating CTCF binding. Together, this study revealed that many factors have the potential to participate in or regulate CTCF loops, and discovered a new role for BHLHE40 in modulating CTCF loop formation.
Collapse
Affiliation(s)
- Gongcheng Hu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health GuangDong Laboratory), Guangzhou 510005, China.,Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaotao Dong
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health GuangDong Laboratory), Guangzhou 510005, China.,Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shixin Gong
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health GuangDong Laboratory), Guangzhou 510005, China.,Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yawei Song
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health GuangDong Laboratory), Guangzhou 510005, China.,Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Andrew P Hutchins
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hongjie Yao
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health GuangDong Laboratory), Guangzhou 510005, China.,Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
27
|
Lu X, Guo Y, Huang W. Characterization of the cHS4 insulator in mouse embryonic stem cells. FEBS Open Bio 2020; 10:644-656. [PMID: 32087050 PMCID: PMC7137798 DOI: 10.1002/2211-5463.12818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/09/2020] [Accepted: 02/21/2020] [Indexed: 01/16/2023] Open
Abstract
Synthetic biology circuits are often constructed with multiple gene expression units assembled in close proximity, and they can be used to perform complex functions in embryonic stem cells (ESCs). However, mutual interference between transcriptional units has not been well studied in mouse ESCs. To assess the efficiency of insulators at suppressing promoter interference in mouse ESCs, we used an evaluation scheme in which a tunable tetracycline response element promoter is connected to a constant Nanog promoter. The chicken hypersensitive site 4 (cHS4) insulator, widely used both for enhancer blocking and for barrier insulation in vitro and in vivo, was positioned between the two expression units for assessment. By inserting the cassette into various loci of the mouse ESC genome with PiggyBac transposon, we were able to quantitatively examine the protective effect of cHS4 by gradually increasing the transcriptional activity of the tetracycline response element promoter with doxycycline and then measuring the transcriptional activity of the Nanog promoter. Our results indicate that the cHS4 insulator has minimal insulating effects on promoter interference in mouse ESCs. Further studies show that the cHS4 insulation effect may be promoter specific and related to interaction with CCCTC-binding factor-mediated loop formation. In addition, we also compared DNA transposition and transgene expression with or without the cHS4 insulator using well-established ESC reporters. The results indicate that cHS4 has no apparent effects on DNA transposition and transgene expression levels, but exerts modest protective effects on long-term transgene silencing.
Collapse
Affiliation(s)
- Xi‐bin Lu
- Core Research FacilitiesSouthern University of Science and TechnologyShenzhenChina
| | - Yu‐han Guo
- Forward Pharmaceuticals Limited Co.ShenzhenChina
| | - Wei Huang
- Department of BiologySouthern University of Science and TechnologyShenzhenChina
| |
Collapse
|
28
|
Majumder P, Lee JT, Rahmberg AR, Kumar G, Mi T, Scharer CD, Boss JM. A super enhancer controls expression and chromatin architecture within the MHC class II locus. J Exp Med 2020; 217:e20190668. [PMID: 31753848 PMCID: PMC7041702 DOI: 10.1084/jem.20190668] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 09/05/2019] [Accepted: 10/14/2019] [Indexed: 12/30/2022] Open
Abstract
Super enhancers (SEs) play critical roles in cell type-specific gene regulation. The mechanisms by which such elements work are largely unknown. Two SEs termed DR/DQ-SE and XL9-SE are situated within the human MHC class II locus between the HLA-DRB1 and HLA-DQA1 genes and are highly enriched for disease-causing SNPs. To test the function of these elements, we used CRISPR/Cas9 to generate a series of mutants that deleted the SE. Deletion of DR/DQ-SE resulted in reduced expression of HLA-DRB1 and HLA-DQA1 genes. The SEs were found to interact with each other and the promoters of HLA-DRB1 and HLA-DQA1. DR/DQ-SE also interacted with neighboring CTCF binding sites. Importantly, deletion of DR/DQ-SE reduced the local chromatin interactions, implying that it functions as the organizer for the local three-dimensional architecture. These data provide direct mechanisms by which an MHC-II SE contributes to expression of the locus and suggest how variation in these SEs may contribute to human disease and altered immunity.
Collapse
Affiliation(s)
- Parimal Majumder
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| | - Joshua T Lee
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| | - Andrew R Rahmberg
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| | - Gaurav Kumar
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| | - Tian Mi
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| | - Christopher D Scharer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| | - Jeremy M Boss
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
29
|
Constitutively bound CTCF sites maintain 3D chromatin architecture and long-range epigenetically regulated domains. Nat Commun 2020; 11:54. [PMID: 31911579 PMCID: PMC6946690 DOI: 10.1038/s41467-019-13753-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 11/25/2019] [Indexed: 12/19/2022] Open
Abstract
The architectural protein CTCF is a mediator of chromatin conformation, but how CTCF binding to DNA is orchestrated to maintain long-range gene expression is poorly understood. Here we perform RNAi knockdown to reduce CTCF levels and reveal a shared subset of CTCF-bound sites are robustly resistant to protein depletion. The ‘persistent’ CTCF sites are enriched at domain boundaries and chromatin loops constitutive to all cell types. CRISPR-Cas9 deletion of 2 persistent CTCF sites at the boundary between a long-range epigenetically active (LREA) and silenced (LRES) region, within the Kallikrein (KLK) locus, results in concordant activation of all 8 KLK genes within the LRES region. CTCF genome-wide depletion results in alteration in Topologically Associating Domain (TAD) structure, including the merging of TADs, whereas TAD boundaries are not altered where persistent sites are maintained. We propose that the subset of essential CTCF sites are involved in cell-type constitutive, higher order chromatin architecture. The architectural protein CTCF is a mediator of chromatin conformation, but how CTCF binding to DNA is regulated remains poorly understood. Here the authors find that there is a shared subset of CTCF-bound sites resistant to protein depletion in different cell lines, which are enriched at domain boundaries and chromatin loops constitutive to all cell types.
Collapse
|
30
|
Campbell MJ. Tales from topographic oceans: topologically associated domains and cancer. Endocr Relat Cancer 2019; 26:R611-R626. [PMID: 31505466 PMCID: PMC7664306 DOI: 10.1530/erc-19-0348] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 09/09/2019] [Indexed: 01/03/2023]
Abstract
The 3D organization of the genome within the cell nucleus has come into sharp focus over the last decade. This has largely arisen because of the application of genomic approaches that have revealed numerous levels of genomic and chromatin interactions, including topologically associated domains (TADs). The current review examines how these domains were identified, are organized, how their boundaries arise and are regulated, and how genes within TADs are coordinately regulated. There are many examples of the disruption to TAD structure in cancer and the altered regulation, structure and function of TADs are discussed in the context of hormone responsive cancers, including breast, prostate and ovarian cancer. Finally, some aspects of the statistical insight and computational skills required to interrogate TAD organization are considered and future directions discussed.
Collapse
Affiliation(s)
- Moray J Campbell
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
31
|
Petersdorf EW, O'hUigin C. The MHC in the era of next-generation sequencing: Implications for bridging structure with function. Hum Immunol 2019; 80:67-78. [PMID: 30321633 PMCID: PMC6542361 DOI: 10.1016/j.humimm.2018.10.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/24/2018] [Accepted: 10/01/2018] [Indexed: 12/19/2022]
Abstract
The MHC continues to have the most disease-associations compared to other regions of the human genome, even in the genome-wide association study (GWAS) and single nucleotide polymorphism (SNP) era. Analysis of non-coding variation and their impact on the level of expression of HLA allotypes has shed new light on the potential mechanisms underlying HLA disease associations and alloreactivity in transplantation. Next-generation sequencing (NGS) technology has the capability of delineating the phase of variants in the HLA antigen-recognition site (ARS) with non-coding regulatory polymorphisms. These relationships are critical for understanding the qualitative and quantitative implications of HLA gene diversity. This article summarizes current understanding of non-coding region variation of HLA loci, the consequences of regulatory variation on HLA expression, the role for evolution in shaping lineage-specific expression, and the impact of HLA expression on disease susceptibility and transplantation outcomes. A role for phased sequencing methods for the MHC, and perspectives for future directions in basic and applied immunogenetic studies of the MHC are presented.
Collapse
Affiliation(s)
- Effie W Petersdorf
- University of Washington, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, D4-115, Seattle, WA 98109, United States.
| | - Colm O'hUigin
- Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Microbiome and Genetics Core, Building 37, Room 4140B, Bethesda, MD 20852, United States.
| |
Collapse
|
32
|
Nyaga DM, Vickers MH, Jefferies C, Perry JK, O’Sullivan JM. Type 1 Diabetes Mellitus-Associated Genetic Variants Contribute to Overlapping Immune Regulatory Networks. Front Genet 2018; 9:535. [PMID: 30524468 PMCID: PMC6258722 DOI: 10.3389/fgene.2018.00535] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/22/2018] [Indexed: 01/01/2023] Open
Abstract
Type 1 diabetes (T1D) is a chronic metabolic disorder characterized by the autoimmune destruction of insulin-producing pancreatic islet beta cells in genetically predisposed individuals. Genome-wide association studies (GWAS) have identified over 60 risk regions across the human genome, marked by single nucleotide polymorphisms (SNPs), which confer genetic predisposition to T1D. There is increasing evidence that disease-associated SNPs can alter gene expression through spatial interactions that involve distal loci, in a tissue- and development-specific manner. Here, we used three-dimensional (3D) genome organization data to identify genes that physically co-localized with DNA regions that contained T1D-associated SNPs in the nucleus. Analysis of these SNP-gene pairs using the Genotype-Tissue Expression database identified a subset of SNPs that significantly affected gene expression. We identified 246 spatially regulated genes including HLA-DRB1, LAT, MICA, BTN3A2, CTLA4, CD226, NOTCH1, TRIM26, PTEN, TYK2, CTSH, and FLRT3, which exhibit tissue-specific effects in multiple tissues. We observed that the T1D-associated variants interconnect through networks that form part of the immune regulatory pathways, including immune-cell activation, cytokine signaling, and programmed cell death protein-1 (PD-1). Our results implicate T1D-associated variants in tissue and cell-type specific regulatory networks that contribute to pancreatic beta cell inflammation and destruction, adaptive immune signaling, and immune-cell proliferation and activation. A number of other regulatory changes we identified are not typically considered to be central to the pathology of T1D. Collectively, our data represent a novel resource for the hypothesis-driven development of diagnostic, prognostic, and therapeutic interventions in T1D.
Collapse
Affiliation(s)
- Denis M. Nyaga
- The Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Mark H. Vickers
- The Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Craig Jefferies
- The Liggins Institute, The University of Auckland, Auckland, New Zealand
- Starship Children’s Health, Auckland, New Zealand
| | - Jo K. Perry
- The Liggins Institute, The University of Auckland, Auckland, New Zealand
| | | |
Collapse
|
33
|
A conserved enhancer regulates Il9 expression in multiple lineages. Nat Commun 2018; 9:4803. [PMID: 30442929 PMCID: PMC6237898 DOI: 10.1038/s41467-018-07202-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 10/23/2018] [Indexed: 12/12/2022] Open
Abstract
Cytokine genes are regulated by multiple regulatory elements that confer tissue-specific and activation-dependent expression. The cis-regulatory elements of the gene encoding IL-9, a cytokine that promotes allergy, autoimmune inflammation and tumor immunity, have not been defined. Here we identify an enhancer (CNS-25) upstream of the Il9 gene that binds most transcription factors (TFs) that promote Il9 gene expression. Deletion of the enhancer in the mouse germline alters transcription factor binding to the remaining Il9 regulatory elements, and results in diminished IL-9 production in multiple cell types including Th9 cells, and attenuates IL-9-dependent immune responses. Moreover, deletion of the homologous enhancer (CNS-18) in primary human Th9 cultures results in significant decrease of IL-9 production. Thus, Il9 CNS-25/IL9 CNS-18 is a critical and conserved regulatory element for IL-9 production. Interleukin-9 (IL-9) is important for allergy, autoimmunity and tumor immunity, but how its expression is regulated is unclear. Here the authors show the essential function of an enhancer, CNS-25 in mouse and CNS-18 in human, for IL-9 expression, with the deletion of this enhancer severely hampering IL-9 production in mice or human cells.
Collapse
|
34
|
Kai Y, Andricovich J, Zeng Z, Zhu J, Tzatsos A, Peng W. Predicting CTCF-mediated chromatin interactions by integrating genomic and epigenomic features. Nat Commun 2018; 9:4221. [PMID: 30310060 PMCID: PMC6181989 DOI: 10.1038/s41467-018-06664-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 09/17/2018] [Indexed: 01/27/2023] Open
Abstract
The CCCTC-binding zinc-finger protein (CTCF)-mediated network of long-range chromatin interactions is important for genome organization and function. Although this network has been considered largely invariant, we find that it exhibits extensive cell-type-specific interactions that contribute to cell identity. Here, we present Lollipop, a machine-learning framework, which predicts CTCF-mediated long-range interactions using genomic and epigenomic features. Using ChIA-PET data as benchmark, we demonstrate that Lollipop accurately predicts CTCF-mediated chromatin interactions both within and across cell types, and outperforms other methods based only on CTCF motif orientation. Predictions are confirmed computationally and experimentally by Chromatin Conformation Capture (3C). Moreover, our approach identifies other determinants of CTCF-mediated chromatin wiring, such as gene expression within the loops. Our study contributes to a better understanding about the underlying principles of CTCF-mediated chromatin interactions and their impact on gene expression. CTCF mediates long-range chromatin interactions which are important for genome organization and function. Here, the authors demonstrate that CTCF-mediated interactome exhibits extensive plasticity and present Lollipop, a machine-learning framework which predicts CTCF-mediated long-range interactions using genomic and epigenomic features.
Collapse
Affiliation(s)
- Yan Kai
- Department of Physics, George Washington University (GWU), Washington, DC, 20052, USA.,Department of Anatomy and Cell Biology, Cancer Epigenetics Laboratory, GWU, Washington, DC, 20052, USA.,GWU Cancer Center, GWU School of Medicine and Health Sciences, Washington, DC, 20052, USA
| | - Jaclyn Andricovich
- Department of Anatomy and Cell Biology, Cancer Epigenetics Laboratory, GWU, Washington, DC, 20052, USA.,GWU Cancer Center, GWU School of Medicine and Health Sciences, Washington, DC, 20052, USA
| | - Zhouhao Zeng
- Department of Physics, George Washington University (GWU), Washington, DC, 20052, USA
| | - Jun Zhu
- Systems Biology Center, National Heart Lung and Blood Institute, National Institute of Health, Bethesda, MD, 20892, USA
| | - Alexandros Tzatsos
- Department of Anatomy and Cell Biology, Cancer Epigenetics Laboratory, GWU, Washington, DC, 20052, USA. .,GWU Cancer Center, GWU School of Medicine and Health Sciences, Washington, DC, 20052, USA.
| | - Weiqun Peng
- Department of Physics, George Washington University (GWU), Washington, DC, 20052, USA.
| |
Collapse
|
35
|
Siegler BH, Uhle F, Lichtenstern C, Arens C, Bartkuhn M, Weigand MA, Weiterer S. Impact of human sepsis on CCCTC-binding factor associated monocyte transcriptional response of Major Histocompatibility Complex II components. PLoS One 2018; 13:e0204168. [PMID: 30212590 PMCID: PMC6136812 DOI: 10.1371/journal.pone.0204168] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 09/03/2018] [Indexed: 12/12/2022] Open
Abstract
Background Antigen presentation on monocyte surface to T-cells by Major Histocompatibility Complex, Class II (MHC-II) molecules is fundamental for pathogen recognition and efficient host response. Accordingly, loss of Major Histocompatibility Complex, Class II, DR (HLA-DR) surface expression indicates impaired monocyte functionality in patients suffering from sepsis-induced immunosuppression. Besides the impact of Class II Major Histocompatibility Complex Transactivator (CIITA) on MHC-II gene expression, X box-like (XL) sequences have been proposed as further regulatory elements. These elements are bound by the DNA-binding protein CCCTC-Binding Factor (CTCF), a superordinate modulator of gene transcription. Here, we hypothesized a differential interaction of CTCF with the MHC-II locus contributing to an altered monocyte response in immunocompromised septic patients. Methods We collected blood from six patients diagnosed with sepsis and six healthy controls. Flow cytometric analysis was used to identify sepsis-induced immune suppression, while inflammatory cytokine levels in blood were determined via ELISA. Isolation of CD14++ CD16—monocytes was followed by (i) RNA extraction for gene expression analysis and (ii) chromatin immunoprecipitation to assess the distribution of CTCF and chromatin modifications in selected MHC-II regions. Results Compared to healthy controls, CD14++ CD16—monocytes from septic patients with immune suppression displayed an increased binding of CTCF within the MHC-II locus combined with decreased transcription of CIITA gene. In detail, enhanced CTCF enrichment was detected on the intergenic sequence XL9 separating two subregions coding for MHC-II genes. Depending on the relative localisation to XL9, gene expression of both regions was differentially affected in patients with sepsis. Conclusion Our experiments demonstrate for the first time that differential CTCF binding at XL9 is accompanied by uncoupled MHC-II expression as well as transcriptional and epigenetic alterations of the MHC-II regulator CIITA in septic patients. Overall, our findings indicate a sepsis-induced enhancer blockade mediated by variation of CTCF at the intergenic sequence XL9 in altered monocytes during immunosuppression.
Collapse
Affiliation(s)
- Benedikt Hermann Siegler
- Department of Anesthesiology, Heidelberg University Hospital, Im Neuenheimer Feld 110, Heidelberg, Baden-Württemberg, Germany
| | - Florian Uhle
- Department of Anesthesiology, Heidelberg University Hospital, Im Neuenheimer Feld 110, Heidelberg, Baden-Württemberg, Germany
| | - Christoph Lichtenstern
- Department of Anesthesiology, Heidelberg University Hospital, Im Neuenheimer Feld 110, Heidelberg, Baden-Württemberg, Germany
| | - Christoph Arens
- Department of Anesthesiology, Heidelberg University Hospital, Im Neuenheimer Feld 110, Heidelberg, Baden-Württemberg, Germany
| | - Marek Bartkuhn
- Institute for Genetics, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 58–62, Giessen, Hessen, Germany
| | - Markus Alexander Weigand
- Department of Anesthesiology, Heidelberg University Hospital, Im Neuenheimer Feld 110, Heidelberg, Baden-Württemberg, Germany
| | - Sebastian Weiterer
- Department of Anesthesiology, Heidelberg University Hospital, Im Neuenheimer Feld 110, Heidelberg, Baden-Württemberg, Germany
- * E-mail:
| |
Collapse
|
36
|
DNA methylation as a mediator of HLA-DRB1*15:01 and a protective variant in multiple sclerosis. Nat Commun 2018; 9:2397. [PMID: 29921915 PMCID: PMC6008330 DOI: 10.1038/s41467-018-04732-5] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 05/17/2018] [Indexed: 01/28/2023] Open
Abstract
The human leukocyte antigen (HLA) haplotype DRB1*15:01 is the major risk factor for multiple sclerosis (MS). Here, we find that DRB1*15:01 is hypomethylated and predominantly expressed in monocytes among carriers of DRB1*15:01. A differentially methylated region (DMR) encompassing HLA-DRB1 exon 2 is particularly affected and displays methylation-sensitive regulatory properties in vitro. Causal inference and Mendelian randomization provide evidence that HLA variants mediate risk for MS via changes in the HLA-DRB1 DMR that modify HLA-DRB1 expression. Meta-analysis of 14,259 cases and 171,347 controls confirms that these variants confer risk from DRB1*15:01 and also identifies a protective variant (rs9267649, p < 3.32 × 10-8, odds ratio = 0.86) after conditioning for all MS-associated variants in the region. rs9267649 is associated with increased DNA methylation at the HLA-DRB1 DMR and reduced expression of HLA-DRB1, suggesting a modulation of the DRB1*15:01 effect. Our integrative approach provides insights into the molecular mechanisms of MS susceptibility and suggests putative therapeutic strategies targeting a methylation-mediated regulation of the major risk gene.
Collapse
|
37
|
Chen XF, Zhu DL, Yang M, Hu WX, Duan YY, Lu BJ, Rong Y, Dong SS, Hao RH, Chen JB, Chen YX, Yao S, Thynn HN, Guo Y, Yang TL. An Osteoporosis Risk SNP at 1p36.12 Acts as an Allele-Specific Enhancer to Modulate LINC00339 Expression via Long-Range Loop Formation. Am J Hum Genet 2018; 102:776-793. [PMID: 29706346 PMCID: PMC5986728 DOI: 10.1016/j.ajhg.2018.03.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 02/28/2018] [Indexed: 01/10/2023] Open
Abstract
Genome-wide association studies (GWASs) have reproducibly associated variants within intergenic regions of 1p36.12 locus with osteoporosis, but the functional roles underlying these noncoding variants are unknown. Through an integrative functional genomic and epigenomic analyses, we prioritized rs6426749 as a potential causal SNP for osteoporosis at 1p36.12. Dual-luciferase assay and CRISPR/Cas9 experiments demonstrate that rs6426749 acts as a distal allele-specific enhancer regulating expression of a lncRNA (LINC00339) (∼360 kb) via long-range chromatin loop formation and that this loop is mediated by CTCF occupied near rs6426749 and LINC00339 promoter region. Specifically, rs6426749-G allele can bind transcription factor TFAP2A, which efficiently elevates the enhancer activity and increases LINC00339 expression. Downregulation of LINC00339 significantly increases the expression of CDC42 in osteoblast cells, which is a pivotal regulator involved in bone metabolism. Our study provides mechanistic insight into how a noncoding SNP affects osteoporosis by long-range interaction, a finding that could indicate promising therapeutic targets for osteoporosis.
Collapse
Affiliation(s)
- Xiao-Feng Chen
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Dong-Li Zhu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Man Yang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Wei-Xin Hu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yuan-Yuan Duan
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Bing-Jie Lu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yu Rong
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Shan-Shan Dong
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Ruo-Han Hao
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Jia-Bin Chen
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yi-Xiao Chen
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Shi Yao
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Hlaing Nwe Thynn
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yan Guo
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| | - Tie-Lin Yang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| |
Collapse
|
38
|
Arzate-Mejía RG, Recillas-Targa F, Corces VG. Developing in 3D: the role of CTCF in cell differentiation. Development 2018; 145:dev137729. [PMID: 29567640 PMCID: PMC5897592 DOI: 10.1242/dev.137729] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
CTCF is a highly conserved zinc-finger DNA-binding protein that mediates interactions between distant sequences in the genome. As a consequence, CTCF regulates enhancer-promoter interactions and contributes to the three-dimensional organization of the genome. Recent studies indicate that CTCF is developmentally regulated, suggesting that it plays a role in cell type-specific genome organization. Here, we review these studies and discuss how CTCF functions during the development of various cell and tissue types, ranging from embryonic stem cells and gametes, to neural, muscle and cardiac cells. We propose that the lineage-specific control of CTCF levels, and its partnership with lineage-specific transcription factors, allows for the control of cell type-specific gene expression via chromatin looping.
Collapse
Affiliation(s)
- Rodrigo G Arzate-Mejía
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Ciudad de México, México
| | - Félix Recillas-Targa
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Ciudad de México, México
| | - Victor G Corces
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
39
|
Gianfrani C, Pisapia L, Picascia S, Strazzullo M, Del Pozzo G. Expression level of risk genes of MHC class II is a susceptibility factor for autoimmunity: New insights. J Autoimmun 2018; 89:1-10. [PMID: 29331322 DOI: 10.1016/j.jaut.2017.12.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/28/2017] [Accepted: 12/29/2017] [Indexed: 02/08/2023]
Abstract
To date, the study of the impact of major hystocompatibility complex on autoimmunity has been prevalently focused on structural diversity of MHC molecules in binding and presentation of (auto)antigens to cognate T cells. Recently, a number of experimental evidences suggested new points of view to investigate the complex relationships between MHC gene expression and the individual predisposition to autoimmune diseases. Irrespective of the nature of the antigen, a threshold of MHC-peptide complexes needs to be reached, as well as a threshold of T cell receptors engaged is required, for the activation and proliferation of autoantigen-reactive T cells. Moreover, it is well known that increased expression of MHC class II molecules may alter the T cell receptor repertoire during thymic development, and affect the survival and expansion of mature T cells. Many evidences confirmed that the level of both transcriptional and post-transcriptional regulation are involved in the modulation of the expression of MHC class II genes and that both contribute to the predisposition to autoimmune diseases. Here, we aim to focus some of these regulative aspects to better clarify the role of MHC class II genes in predisposition and development of autoimmunity.
Collapse
Affiliation(s)
- Carmen Gianfrani
- Institute of Protein Biochemistry-CNR, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Laura Pisapia
- Institute of Genetics and Biophysics-CNR, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Stefania Picascia
- Institute of Protein Biochemistry-CNR, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Maria Strazzullo
- Institute of Genetics and Biophysics-CNR, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Giovanna Del Pozzo
- Institute of Genetics and Biophysics-CNR, Via Pietro Castellino 111, 80131, Naples, Italy.
| |
Collapse
|
40
|
Marina-Zárate E, Pérez-García A, Ramiro AR. CCCTC-Binding Factor Locks Premature IgH Germline Transcription and Restrains Class Switch Recombination. Front Immunol 2017; 8:1076. [PMID: 28928744 PMCID: PMC5591319 DOI: 10.3389/fimmu.2017.01076] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 08/18/2017] [Indexed: 01/02/2023] Open
Abstract
In response to antigenic stimulation B cells undergo class switch recombination (CSR) at the immunoglobulin heavy chain (IgH) to replace the primary IgM/IgD isotypes by IgG, IgE, or IgA. CSR is initiated by activation-induced cytidine deaminase (AID) through the deamination of cytosine residues at the switch (S) regions of IgH. B cell stimulation promotes germline transcription (GLT) of specific S regions, a necessary event prior to CSR because it facilitates AID access to S regions. Here, we show that CCCTC-binding factor (CTCF)-deficient mice are severely impaired in the generation of germinal center B cells and plasma cells after immunization in vivo, most likely due to impaired cell survival. Importantly, we find that CTCF-deficient B cells have an increased rate of CSR under various stimulation conditions in vitro. This effect is not secondary to altered cell proliferation or AID expression in CTCF-deficient cells. Instead, we find that CTCF-deficient B cells harbor an increased mutation frequency at switch regions, probably reflecting an increased accessibility of AID to IgH in the absence of CTCF. Moreover, CTCF deficiency triggers premature GLT of S regions in naïve B cells. Our results indicate that CTCF restricts CSR by enforcing GLT silencing and limiting AID access to IgH.
Collapse
Affiliation(s)
- Ester Marina-Zárate
- B Lymphocyte Biology Laboratory, Fundacion Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Arantxa Pérez-García
- B Lymphocyte Biology Laboratory, Fundacion Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Almudena R Ramiro
- B Lymphocyte Biology Laboratory, Fundacion Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| |
Collapse
|
41
|
Ishihara K, Nakamoto M, Nakao M. DNA methylation-independent removable insulator controls chromatin remodeling at the HOXA locus via retinoic acid signaling. Hum Mol Genet 2017; 25:5383-5394. [PMID: 27798106 DOI: 10.1093/hmg/ddw354] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 10/12/2016] [Indexed: 11/14/2022] Open
Abstract
Chromatin insulators partition the genome into functional units to control gene expression, particularly in complex chromosomal regions. The CCCTC-binding factor (CTCF) is an insulator-binding protein that functions in transcriptional regulation and higher-order chromatin formation. Variable CTCF-binding sites have been identified to be cell type-specific partly due to differential DNA methylation. Here, we show that DNA methylation-independent removable CTCF insulator is responsible for retinoic acid (RA)-mediated higher-order chromatin remodeling in the human HOXA gene locus. Detailed chromatin analysis characterized multiple CTCF-enriched sites and RA-responsive enhancers at this locus. These regulatory elements and transcriptionally silent HOXA genes are closely positioned under basal conditions. Notably, upon RA signaling, the RAR/RXR transcription factor induced loss of adjacent CTCF binding and changed the higher-order chromatin conformation of the overall locus. Targeted disruption of a CTCF site by genome editing with zinc finger nucleases and CRISPR/Cas9 system showed that the site is required for chromatin conformations that maintain the initial associations among insulators, enhancers and promoters. The results indicate that the initial chromatin conformation affects subsequent RA-induced HOXA gene activation. Our study uncovers that a removable insulator spatiotemporally switches higher-order chromatin and multiple gene activities via cooperation of CTCF and key transcription factors.
Collapse
Affiliation(s)
- Ko Ishihara
- Priority Organization for Innovation and Excellence, Kumamoto University, Kumamoto, Japan.,Core Research for Evolutionary Science and Technology (CREST), Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Masafumi Nakamoto
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Mitsuyoshi Nakao
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan.,Core Research for Evolutionary Science and Technology (CREST), Japan Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|
42
|
Ferreira LMR, Meissner TB, Tilburgs T, Strominger JL. HLA-G: At the Interface of Maternal-Fetal Tolerance. Trends Immunol 2017; 38:272-286. [PMID: 28279591 DOI: 10.1016/j.it.2017.01.009] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/23/2017] [Accepted: 01/27/2017] [Indexed: 12/22/2022]
Abstract
During pregnancy, semiallogeneic fetal extravillous trophoblasts (EVT) invade the uterine mucosa without being rejected by the maternal immune system. Several mechanisms were initially proposed by Peter Medawar half a century ago to explain this apparent violation of the laws of transplantation. Then, three decades ago, an unusual human leukocyte antigen (HLA) molecule was identified: HLA-G. Uniquely expressed in EVT, HLA-G has since become the center of the present understanding of fetus-induced immune tolerance. Despite slow progress in the field, the last few years have seen an explosion in our knowledge of HLA-G biology. Here, we critically review new insights into the mechanisms controlling the expression and function of HLA-G at the maternal-fetal interface, and discuss their relevance for fetal tolerance.
Collapse
Affiliation(s)
- Leonardo M R Ferreira
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Torsten B Meissner
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Tamara Tilburgs
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Jack L Strominger
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
43
|
Suzuki K, Luo Y. Histone Acetylation and the Regulation of Major Histocompatibility Class II Gene Expression. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017; 106:71-111. [PMID: 28057216 DOI: 10.1016/bs.apcsb.2016.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Major histocompatibility complex (MHC) class II molecules are essential for processing and presenting exogenous pathogen antigens to activate CD4+ T cells. Given their central role in adaptive immune responses, MHC class II genes are tightly regulated in a tissue- and activation-specific manner. The regulation of MHC class II gene expression involves various transcription factors that interact with conserved proximal cis-acting regulatory promoter elements, as well as MHC class II transactivator that interacts with a variety of chromatin remodeling machineries. Recent studies also identified distal regulatory elements within MHC class II gene locus that provide enormous insight into the long-range coordination of MHC class II gene expression. Novel therapeutic modalities that can modify MHC class II genes at the epigenetic level are emerging and are currently in preclinical and clinical trials. This review will focus on the role of chromatin remodeling, particularly remodeling that involves histone acetylation, in the constitutive and inducible regulation of MHC class II gene expression.
Collapse
Affiliation(s)
- K Suzuki
- Faculty of Medical Technology, Teikyo University, Itabashi, Japan.
| | - Y Luo
- Faculty of Medical Technology, Teikyo University, Itabashi, Japan
| |
Collapse
|
44
|
NF-Y and the immune response: Dissecting the complex regulation of MHC genes. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:537-542. [PMID: 27989934 DOI: 10.1016/j.bbagrm.2016.10.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/26/2016] [Accepted: 10/27/2016] [Indexed: 12/13/2022]
Abstract
Nuclear Factor Y (NF-Y) was first described as one of the CCAAT binding factors. Although CCAAT motifs were found to be present in various genes, NF-Y attracted a lot of interest early on, due to its role in Major Histocompatibility Complex (MHC) gene regulation. MHC genes are crucial in immune response and show peculiar expression patterns. Among other conserved elements on MHC promoters, an NF-Y binding CCAAT box was found to contribute to MHC transcriptional regulation. NF-Y along with other DNA binding factors assembles in a stereospecific manner to form a multiprotein scaffold, the MHC enhanceosome, which is necessary but not sufficient to drive transcription. Transcriptional activation is achieved by the recruitment of yet another factor, the class II transcriptional activator (CIITA). In this review, we briefly discuss basic findings on MHCII transcription regulation and we highlight NF-Y different modes of function in MHCII gene activation. This article is part of a Special Issue entitled: Nuclear Factor Y in Development and Disease, edited by Prof. Roberto Mantovani.
Collapse
|
45
|
Babu D, Fullwood MJ. 3D genome organization in health and disease: emerging opportunities in cancer translational medicine. Nucleus 2016; 6:382-93. [PMID: 26553406 PMCID: PMC4915485 DOI: 10.1080/19491034.2015.1106676] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Organizing the DNA to fit inside a spatially constrained nucleus is a challenging problem that has attracted the attention of scientists across all disciplines of science. Increasing evidence has demonstrated the importance of genome geometry in several cellular contexts that affect human health. Among several approaches, the application of sequencing technologies has substantially increased our understanding of this intricate organization, also known as chromatin interactions. These structures are involved in transcriptional control of gene expression by connecting distal regulatory elements with their target genes and regulating co-transcriptional splicing. In addition, chromatin interactions play pivotal roles in the organization of the genome, the formation of structural variants, recombination, DNA replication and cell division. Mutations in factors that regulate chromatin interactions lead to the development of pathological conditions, for example, cancer. In this review, we discuss key findings that have shed light on the importance of these structures in the context of cancers, and highlight the applicability of chromatin interactions as potential biomarkers in molecular medicine as well as therapeutic implications of chromatin interactions.
Collapse
Affiliation(s)
- Deepak Babu
- a Cancer Science Institute of Singapore: Singapore; National University of Singapore ; Singapore
| | - Melissa J Fullwood
- a Cancer Science Institute of Singapore: Singapore; National University of Singapore ; Singapore.,b School of Biological Sciences; Nanyang Technological University ; Singapore.,c Institute of Molecular and Cell Biology; Agency for Science; Technology and Research (A*STAR) ; Singapore.,d Yale-NUS Liberal Arts College ; Singapore
| |
Collapse
|
46
|
ATAC-seq on biobanked specimens defines a unique chromatin accessibility structure in naïve SLE B cells. Sci Rep 2016; 6:27030. [PMID: 27249108 PMCID: PMC4888756 DOI: 10.1038/srep27030] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 05/12/2016] [Indexed: 01/16/2023] Open
Abstract
Biobanking is a widespread practice for storing biological samples for future studies ranging from genotyping to RNA analysis. However, methods that probe the status of the epigenome are lacking. Here, the framework for applying the Assay for Transposase Accessible Sequencing (ATAC-seq) to biobanked specimens is described and was used to examine the accessibility landscape of naïve B cells from Systemic Lupus Erythematosus (SLE) patients undergoing disease flares. An SLE specific chromatin accessibility signature was identified. Changes in accessibility occurred at loci surrounding genes involved in B cell activation and contained motifs for transcription factors that regulate B cell activation and differentiation. These data provide evidence for an altered epigenetic programming in SLE B cells and identify loci and transcription factor networks that potentially impact disease. The ability to determine the chromatin accessibility landscape and identify cis-regulatory elements has broad application to studies using biorepositories and offers significant advantages to improve the molecular information obtained from biobanked samples.
Collapse
|
47
|
Park JH, Choi Y, Song MJ, Park K, Lee JJ, Kim HP. Dynamic Long-Range Chromatin Interaction Controls Expression of IL-21 in CD4+ T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 196:4378-89. [PMID: 27067007 DOI: 10.4049/jimmunol.1500636] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 03/14/2016] [Indexed: 12/16/2023]
Abstract
IL-21, a pleiotropic cytokine strongly linked with autoimmunity and inflammation, regulates diverse immune responses. IL-21 can be potently induced in CD4(+) T cells by IL-6; however, very little is known about the mechanisms underlying the transcriptional regulation of the Il21 gene at the chromatin level. In this study, we demonstrated that a conserved noncoding sequence located 49 kb upstream of the Il21 gene contains an enhancer element that can upregulate Il21 gene expression in a STAT3- and NFAT-dependent manner. Additionally, we identified enhancer-blocking insulator elements in the Il21 locus, which constitutively bind CTCF and cohesin. In naive CD4(+) T cells, these upstream and downstream CTCF binding sites interact with each other to make a DNA loop; however, the Il21 promoter does not interact with any cis-elements in the Il21 locus. In contrast, stimulation of CD4(+) T cells with IL-6 leads to recruitment of STAT3 to the promoter and novel distal enhancer region. This induces dynamic changes in chromatin configuration, bringing the promoter and the regulatory elements in close spatial proximity. The long-range interaction between the promoter and distal enhancer region was dependent on IL-6/STAT3 signaling pathway but was disrupted in regulatory T cells, where IL-21 expression was repressed. Thus, our work uncovers a novel topological chromatin framework underlying proper transcriptional regulation of the Il21 gene.
Collapse
Affiliation(s)
- Joo-Hong Park
- Department of Environmental Medical Biology, Yonsei University College of Medicine, Seoul 120-752, Korea; Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 120-752, Korea; and
| | - Yeeun Choi
- Department of Environmental Medical Biology, Yonsei University College of Medicine, Seoul 120-752, Korea; Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 120-752, Korea; and Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Min-Ji Song
- Department of Environmental Medical Biology, Yonsei University College of Medicine, Seoul 120-752, Korea; Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 120-752, Korea; and
| | - Keunhee Park
- Department of Environmental Medical Biology, Yonsei University College of Medicine, Seoul 120-752, Korea; Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 120-752, Korea; and
| | - Jong-Joo Lee
- Department of Environmental Medical Biology, Yonsei University College of Medicine, Seoul 120-752, Korea; Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 120-752, Korea; and Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Hyoung-Pyo Kim
- Department of Environmental Medical Biology, Yonsei University College of Medicine, Seoul 120-752, Korea; Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 120-752, Korea; and Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, Korea
| |
Collapse
|
48
|
A distant trophoblast-specific enhancer controls HLA-G expression at the maternal-fetal interface. Proc Natl Acad Sci U S A 2016; 113:5364-9. [PMID: 27078102 DOI: 10.1073/pnas.1602886113] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
HLA-G, a nonclassical HLA molecule uniquely expressed in the placenta, is a central component of fetus-induced immune tolerance during pregnancy. The tissue-specific expression of HLA-G, however, remains poorly understood. Here, systematic interrogation of the HLA-G locus using massively parallel reporter assay (MPRA) uncovered a previously unidentified cis-regulatory element 12 kb upstream of HLA-G with enhancer activity, Enhancer L Strikingly, clustered regularly-interspaced short palindromic repeats (CRISPR)/Cas9-mediated deletion of this enhancer resulted in ablation of HLA-G expression in JEG3 cells and in primary human trophoblasts isolated from placenta. RNA-seq analysis demonstrated that Enhancer L specifically controls HLA-G expression. Moreover, DNase-seq and chromatin conformation capture (3C) defined Enhancer L as a cell type-specific enhancer that loops into the HLA-G promoter. Interestingly, MPRA-based saturation mutagenesis of Enhancer L identified motifs for transcription factors of the CEBP and GATA families essential for placentation. These factors associate with Enhancer L and regulate HLA-G expression. Our findings identify long-range chromatin looping mediated by core trophoblast transcription factors as the mechanism controlling tissue-specific HLA-G expression at the maternal-fetal interface. More broadly, these results establish the combination of MPRA and CRISPR/Cas9 deletion as a powerful strategy to investigate human immune gene regulation.
Collapse
|
49
|
Yu N, Nützmann HW, MacDonald JT, Moore B, Field B, Berriri S, Trick M, Rosser SJ, Kumar SV, Freemont PS, Osbourn A. Delineation of metabolic gene clusters in plant genomes by chromatin signatures. Nucleic Acids Res 2016; 44:2255-65. [PMID: 26895889 PMCID: PMC4797310 DOI: 10.1093/nar/gkw100] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 01/20/2016] [Accepted: 02/09/2016] [Indexed: 12/26/2022] Open
Abstract
Plants are a tremendous source of diverse chemicals, including many natural product-derived drugs. It has recently become apparent that the genes for the biosynthesis of numerous different types of plant natural products are organized as metabolic gene clusters, thereby unveiling a highly unusual form of plant genome architecture and offering novel avenues for discovery and exploitation of plant specialized metabolism. Here we show that these clustered pathways are characterized by distinct chromatin signatures of histone 3 lysine trimethylation (H3K27me3) and histone 2 variant H2A.Z, associated with cluster repression and activation, respectively, and represent discrete windows of co-regulation in the genome. We further demonstrate that knowledge of these chromatin signatures along with chromatin mutants can be used to mine genomes for cluster discovery. The roles of H3K27me3 and H2A.Z in repression and activation of single genes in plants are well known. However, our discovery of highly localized operon-like co-regulated regions of chromatin modification is unprecedented in plants. Our findings raise intriguing parallels with groups of physically linked multi-gene complexes in animals and with clustered pathways for specialized metabolism in filamentous fungi.
Collapse
Affiliation(s)
- Nan Yu
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | | | - James T MacDonald
- Centre for Synthetic Biology and Innovation, Imperial College, South Kensington Campus, London, SW7 2AZ, UK
| | - Ben Moore
- Centre for Synthetic Biology and Innovation, Imperial College, South Kensington Campus, London, SW7 2AZ, UK
| | - Ben Field
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Souha Berriri
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Martin Trick
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Susan J Rosser
- School of Biological Sciences, University of Edinburgh, King's Building, Edinburgh, EH9 3JR, UK
| | - S Vinod Kumar
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Paul S Freemont
- Centre for Synthetic Biology and Innovation, Imperial College, South Kensington Campus, London, SW7 2AZ, UK
| | - Anne Osbourn
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
50
|
Refined mapping of autoimmune disease associated genetic variants with gene expression suggests an important role for non-coding RNAs. J Autoimmun 2016; 68:62-74. [PMID: 26898941 PMCID: PMC5391837 DOI: 10.1016/j.jaut.2016.01.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/28/2016] [Accepted: 01/31/2016] [Indexed: 12/17/2022]
Abstract
Genome-wide association and fine-mapping studies in 14 autoimmune diseases (AID) have implicated more than 250 loci in one or more of these diseases. As more than 90% of AID-associated SNPs are intergenic or intronic, pinpointing the causal genes is challenging. We performed a systematic analysis to link 460 SNPs that are associated with 14 AID to causal genes using transcriptomic data from 629 blood samples. We were able to link 71 (39%) of the AID-SNPs to two or more nearby genes, providing evidence that for part of the AID loci multiple causal genes exist. While 54 of the AID loci are shared by one or more AID, 17% of them do not share candidate causal genes. In addition to finding novel genes such as ULK3, we also implicate novel disease mechanisms and pathways like autophagy in celiac disease pathogenesis. Furthermore, 42 of the AID SNPs specifically affected the expression of 53 non-coding RNA genes. To further understand how the non-coding genome contributes to AID, the SNPs were linked to functional regulatory elements, which suggest a model where AID genes are regulated by network of chromatin looping/non-coding RNAs interactions. The looping model also explains how a causal candidate gene is not necessarily the gene closest to the AID SNP, which was the case in nearly 50% of cases.
Collapse
|