1
|
Wang W, Yuan J, Zhu Y, Li R, Zhang J. Traditional Chinese medicine (TCM) enhances the therapeutic efficiency of a gemcitabine-loaded injectable hydrogel on postoperative breast cancer through modulating the microenvironment. J Mater Chem B 2025; 13:4864-4878. [PMID: 40171620 DOI: 10.1039/d4tb02776k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Local injection of the drug-loaded hydrogel at the surgery site is promising for postoperative breast cancer. However, the postoperative changes in the tumor microenvironment, such as inflammation, abnormal angiogenesis and hypoxia, inhibit drug perfusion and contribute to breast cancer recurrence (BCR). Normalizing the abnormal blood vessels can effectively improve perfusion and reduce hypoxia. Here, we encapsulated gemcitabine (GEM) in a PLGA-PEG-PLGA hydrogel (GEM-hydrogel) for local treatment of postoperative breast cancer. The GEM-hydrogel can be injected into the surgery cavity allowing sustained release of the drug. Meanwhile, traditional Chinese medicine (TCM) Shexiang Baoxin Pill (SBP) was given to normalize the blood vessels to enhance drug perfusion. The results suggest that the combination of SBP enhances the therapeutic efficiency of the GEM-hydrogel, inhibiting tumor recurrence. Mechanism studies reveal that SBP works by promoting PDGFB expression in macrophages, subsequently recruiting pericytes, and normalizing blood vessels, finally alleviating hypoxia. This study demonstrates that the combination of TCM and chemotherapeutics is promising for suppressing postoperative tumor recurrence.
Collapse
Affiliation(s)
- Wenxu Wang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Jixiang Yuan
- Urology Centre, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200000, China
| | - Yuying Zhu
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Ruixiang Li
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Jiange Zhang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
2
|
An P, Tong Y, Mu R, Han L. Wnt-Regulated Therapeutics for Blood-Brain Barrier Modulation and Cancer Therapy. Bioconjug Chem 2025; 36:136-145. [PMID: 39680846 DOI: 10.1021/acs.bioconjchem.4c00537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
The Wnt signaling pathway has a significant regulatory part in tissue development and homeostasis. Dysregulation of the Wnt signaling pathway has been associated with many diseases including cancers and various brain diseases, making this signaling pathway a promising therapeutic target for these diseases. In this review, we describe the roles of the Wnt signaling pathway in the blood-brain barrier (BBB) in intracranial tumors and peripheral tumors, from preclinical and clinical perspectives, introduce Wnt-regulated therapeutics including various types of drugs and nanomedicines as BBB modulators for brain-oriented drug delivery and as therapeutic drugs for cancer treatments, and finally discuss limitations and future perspectives for Wnt-regulated therapeutics.
Collapse
Affiliation(s)
- Pei An
- Jiangsu Key Laboratory of Neuropsychiatric Diseases Research, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Yang Tong
- Jiangsu Key Laboratory of Neuropsychiatric Diseases Research, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Rui Mu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases Research, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Liang Han
- Jiangsu Key Laboratory of Neuropsychiatric Diseases Research, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou 215123, China
| |
Collapse
|
3
|
Sebo DJ, Ali I, Fetsko AR, Trimbach AA, Taylor MR. Activation of Wnt/β-catenin in neural progenitor cells regulates blood-brain barrier development and promotes neuroinflammation. Sci Rep 2025; 15:3496. [PMID: 39875426 PMCID: PMC11775206 DOI: 10.1038/s41598-025-85784-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 01/06/2025] [Indexed: 01/30/2025] Open
Abstract
The central nervous system (CNS) requires specialized blood vessels to support neural function within specific microenvironments. During neurovascular development, endothelial Wnt/β-catenin signaling is required for BBB development within the brain parenchyma, whereas fenestrated blood vessels that lack BBB properties do not require Wnt/β-catenin signaling. Here, we used zebrafish to further characterize this phenotypic heterogeneity of the CNS vasculature. Using transgenic reporters of Wnt/β-catenin transcriptional activity, we found an inverse correlation between activated Wnt/β-catenin signaling in endothelial cells (ECs) versus non-ECs within these distinct microenvironments. Our results indicated that the level of Wnt/β-catenin signaling in non-ECs may regulate Wnt/β-catenin activity in adjacent ECs. To further test this concept, we generated a transgenic Tet-On inducible system to drive constitutively active β-catenin expression in neural progenitor cells (NPCs). We found that dose-dependent activation of Wnt/β-catenin in NPCs caused severe deficiency in CNS angiogenesis and BBB development. Additionally, we discovered a significant increase in the proliferation of microglia and infiltration of peripheral neutrophils indicative of a stereotypical neuroinflammatory response. In conclusion, our results demonstrate the importance of proper Wnt/β-catenin signaling within specific CNS microenvironments and highlights the potentially deleterious consequences of aberrant Wnt activation.
Collapse
Affiliation(s)
- Dylan J Sebo
- School of Pharmacy, Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Irshad Ali
- School of Pharmacy, Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Audrey R Fetsko
- School of Pharmacy, Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Aubrey A Trimbach
- School of Pharmacy, Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael R Taylor
- School of Pharmacy, Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
4
|
Karamanolis NN, Kounatidis D, Vallianou NG, Dimitriou K, Tsaroucha E, Tsioulos G, Anastasiou IA, Mavrothalassitis E, Karampela I, Dalamaga M. Unraveling the Anti-Cancer Mechanisms of Antibiotics: Current Insights, Controversies, and Future Perspectives. Antibiotics (Basel) 2024; 14:9. [PMID: 39858295 PMCID: PMC11762948 DOI: 10.3390/antibiotics14010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/18/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
Cancer persists as a significant global health challenge, claiming millions of lives annually despite remarkable strides in therapeutic innovation. Challenges such as drug resistance, toxicity, and suboptimal efficacy underscore the need for novel treatment paradigms. In this context, the repurposing of antibiotics as anti-cancer agents has emerged as an attractive prospect for investigation. Diverse classes of antibiotics have exhibited promising anti-cancer properties in both in vitro and in vivo studies. These mechanisms include the induction of apoptosis and cell cycle arrest, generation of reactive oxygen species, and inhibition of key regulators of cell proliferation and migration. Additional effects involve the disruption of angiogenesis and modulation of pivotal processes such as inflammation, immune response, mitochondrial dynamics, ferroptosis, and autophagy. Furthermore, antibiotics have demonstrated the potential to enhance the efficacy of conventional modalities like chemotherapy and radiotherapy, while alleviating treatment-induced toxicities. Nevertheless, the integration of antibiotics into oncological applications remains contentious, with concerns centered on their disruption of gut microbiota, interference with immunotherapeutic strategies, contribution to microbial resistance, and potential association with tumorigenesis. This narrative review explores the mechanisms of antibiotics' anti-cancer activity, addresses controversies about their dual role in cancer biology, and envisions future perspectives that include the development of novel derivatives and innovative frameworks for their incorporation into cancer treatment paradigms.
Collapse
Affiliation(s)
- Nikolaos Nektarios Karamanolis
- Second Department of Internal Medicine, Hippokratio General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (N.N.K.); (K.D.)
| | - Dimitris Kounatidis
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.K.); (I.A.A.)
| | - Natalia G. Vallianou
- First Department of Internal Medicine, Sismanogleio General Hospital, 15126 Athens, Greece; (N.G.V.); (E.T.); (E.M.)
| | - Krystalia Dimitriou
- Second Department of Internal Medicine, Hippokratio General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (N.N.K.); (K.D.)
| | - Eleni Tsaroucha
- First Department of Internal Medicine, Sismanogleio General Hospital, 15126 Athens, Greece; (N.G.V.); (E.T.); (E.M.)
| | - Georgios Tsioulos
- Fourth Department of Internal Medicine, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Ioanna A. Anastasiou
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.K.); (I.A.A.)
| | - Evangelos Mavrothalassitis
- First Department of Internal Medicine, Sismanogleio General Hospital, 15126 Athens, Greece; (N.G.V.); (E.T.); (E.M.)
| | - Irene Karampela
- Second Department of Critical Care, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, 12461 Athens, Greece;
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
5
|
Sadanandan J, Thomas S, Mathew IE, Huang Z, Blackburn SL, Tandon N, Lokhande H, McCrea PD, Bresnick EH, Dash PK, McBride DW, Harmanci A, Ahirwar LK, Jose D, Dienel AC, Zeineddine HA, Hong S, Kumar T P. Key epigenetic and signaling factors in the formation and maintenance of the blood-brain barrier. eLife 2024; 12:RP86978. [PMID: 39670988 PMCID: PMC11643625 DOI: 10.7554/elife.86978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024] Open
Abstract
The blood-brain barrier (BBB) controls the movement of molecules into and out of the central nervous system (CNS). Since a functional BBB forms by mouse embryonic day E15.5, we reasoned that gene cohorts expressed in CNS endothelial cells (EC) at E13.5 contribute to BBB formation. In contrast, adult gene signatures reflect BBB maintenance mechanisms. Supporting this hypothesis, transcriptomic analysis revealed distinct cohorts of EC genes involved in BBB formation and maintenance. Here, we demonstrate that epigenetic regulator's histone deacetylase 2 (HDAC2) and polycomb repressive complex 2 (PRC2) control EC gene expression for BBB development and prevent Wnt/β-catenin (Wnt) target genes from being expressed in adult CNS ECs. Low Wnt activity during development modifies BBB genes epigenetically for the formation of functional BBB. As a Class-I HDAC inhibitor induces adult CNS ECs to regain Wnt activity and BBB genetic signatures that support BBB formation, our results inform strategies to promote BBB repair.
Collapse
Affiliation(s)
- Jayanarayanan Sadanandan
- The Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center McGovern Medical SchoolHoustonUnited States
| | - Sithara Thomas
- The Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center McGovern Medical SchoolHoustonUnited States
| | - Iny Elizabeth Mathew
- The Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center McGovern Medical SchoolHoustonUnited States
| | - Zhen Huang
- Departments of Neurology & Neuroscience, University of Wisconsin School of Medicine and Public HealthMadisonUnited States
| | - Spiros L Blackburn
- The Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center McGovern Medical SchoolHoustonUnited States
| | - Nitin Tandon
- The Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center McGovern Medical SchoolHoustonUnited States
| | | | - Pierre D McCrea
- Department of Genetics, TheUniversity of Texas MD Anderson Cancer CenterHoustonUnited States
| | - Emery H Bresnick
- Wisconsin Blood Cancer Research Institute, University of Wisconsin School of Medicine and Public HealthMadisonUnited States
| | - Pramod K Dash
- The Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center McGovern Medical SchoolHoustonUnited States
| | - Devin W McBride
- The Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center McGovern Medical SchoolHoustonUnited States
| | - Arif Harmanci
- UTHealth School of Biomedical InformaticsHoustonUnited States
| | - Lalit K Ahirwar
- The Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center McGovern Medical SchoolHoustonUnited States
| | - Dania Jose
- The Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center McGovern Medical SchoolHoustonUnited States
| | - Ari C Dienel
- The Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center McGovern Medical SchoolHoustonUnited States
| | - Hussein A Zeineddine
- The Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center McGovern Medical SchoolHoustonUnited States
| | - Sungha Hong
- The Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center McGovern Medical SchoolHoustonUnited States
| | - Peeyush Kumar T
- The Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center McGovern Medical SchoolHoustonUnited States
| |
Collapse
|
6
|
Liu W, Hardaway BD, Kim E, Pauli J, Wettich JL, Yalcinkaya M, Hsu CC, Xiao T, Reilly MP, Tabas I, Maegdefessel L, Schlepckow K, Haass C, Wang N, Tall AR. Inflammatory crosstalk impairs phagocytic receptors and aggravates atherosclerosis in clonal hematopoiesis in mice. J Clin Invest 2024; 135:e182939. [PMID: 39531316 PMCID: PMC11684819 DOI: 10.1172/jci182939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
Clonal hematopoiesis (CH) increases inflammasome-linked atherosclerosis, but the mechanisms by which CH mutant cells transmit inflammatory signals to nonmutant cells are largely unknown. To address this question, we transplanted 1.5% Jak2V617F (Jak2VF) bone marrow (BM) cells with 98.5% WT BM cells into hyperlipidemic Ldlr-/- mice. Low-allele-burden (LAB) mice showed accelerated atherosclerosis with increased features of plaque instability, decreased levels of the macrophage phagocytic receptors c-Mer tyrosine kinase (MERTK) and triggering receptor expressed on myeloid cells 2 (TREM2), and increased neutrophil extracellular traps (NETs). These changes were reversed when Jak2VF BM was transplanted with Il1r1-/- BM. LAB mice with noncleavable MERTK in WT BM showed improvements in necrotic core and fibrous cap formation and reduced NETs. An agonistic TREM2 antibody (4D9) markedly increased fibrous caps in both control and LAB mice, eliminating the difference between the groups. Mechanistically, 4D9 increased TREM2+PDGFB+ macrophages and PDGF receptor-α+ fibroblast-like cells in the cap region. TREM2 and PDGFB mRNA levels were positively correlated in human carotid plaques and coexpressed in macrophages. In summary, low frequencies of Jak2VF mutations promoted atherosclerosis via IL-1 signaling from Jak2VF to WT macrophages and neutrophils, promoting cleavage of phagocytic receptors and features of plaque instability. Therapeutic approaches that stabilize MERTK or TREM2 could promote plaque stabilization, especially in CH- and inflammasome-driven atherosclerosis.
Collapse
Affiliation(s)
- Wenli Liu
- Division of Molecular Medicine, Department of Medicine, and
| | | | - Eunyoung Kim
- Division of Cardiology, Department of Medicine, Columbia University, New York, New York, USA
| | - Jessica Pauli
- Institute of Molecular Vascular Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Germany
| | - Justus Leonard Wettich
- Institute of Molecular Vascular Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Germany
| | | | | | - Tong Xiao
- Division of Molecular Medicine, Department of Medicine, and
| | - Muredach P. Reilly
- Division of Cardiology, Department of Medicine, Columbia University, New York, New York, USA
| | - Ira Tabas
- Division of Molecular Medicine, Department of Medicine, and
| | - Lars Maegdefessel
- Institute of Molecular Vascular Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Germany
- Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Kai Schlepckow
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Christian Haass
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Metabolic Biochemistry, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians University, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Nan Wang
- Division of Molecular Medicine, Department of Medicine, and
| | - Alan R. Tall
- Division of Molecular Medicine, Department of Medicine, and
| |
Collapse
|
7
|
Zhang ZS, Gao ZX, He JJ, Ma C, Tao HT, Zhu FY, Cheng YN, Xie CQ, Li JQ, Liu ZZ, Hou LL, Sun H, Xie SQ, Fang D. Andrographolide sensitizes glioma to temozolomide by inhibiting DKK1 expression. Br J Cancer 2024; 131:1387-1398. [PMID: 39266624 PMCID: PMC11473956 DOI: 10.1038/s41416-024-02842-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/17/2024] [Accepted: 08/28/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND Temozolomide (TMZ) is the first-line chemotherapeutic drug for gliomas treatment. However, the clinical efficacy of TMZ in glioma patients was very limited. Therefore, it is urgently needed to discover a novel approach to increase the sensitivity of glioma cells to TMZ. METHODS Western blot, immunohistochemical staining, and qRT-PCR assays were used to explore the mechanisms underlying TMZ promoting DKK1 expression and andrographolide (AND) inhibiting DKK1 expression. HPLC was used to detect the ability of andrographolide (AND) to penetrate the blood-brain barrier. MTT assay, bioluminescence images, magnetic resonance imaging (MRI) and H&E staining were employed to measure the proliferative activity of glioma cells and the growth of intracranial tumors. RESULTS TMZ can promote DKK1 expression in glioma cells and brain tumors of an orthotopic model of glioma. DKK1 could promote glioma cell proliferation and tumor growth in an orthotopic model of glioma. Mechanistically, TMZ increased EGFR expression and subsequently induced the activation of its downstream MEK-ERK and PI3K-Akt pathways, thereby promoting DKK1 expression in glioma cells. Andrographolide inhibited TMZ-induced DKK1 expression through inactivating MEK-ERK and PI3K-Akt pathways. Andrographolide can cross the blood-brain barrier, the combination of TMZ and andrographolide not only improved the anti-tumor effects of TMZ but also showed a survival benefit in an orthotopic model of glioma. CONCLUSION Andrographolide can enhance anti-tumor activity of TMZ against glioma by inhibiting DKK1 expression.
Collapse
Affiliation(s)
- Zhan-Sheng Zhang
- Department of Pharmacy, The First Afffliated Hospital of Henan University, N. Jinming Ave, Kaifeng, 475004, China
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Zi-Xuan Gao
- Department of Pharmacy, The First Afffliated Hospital of Henan University, N. Jinming Ave, Kaifeng, 475004, China
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Jin-Jin He
- Department of Pharmacy, The First Afffliated Hospital of Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Can Ma
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Hang-Tian Tao
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Feng-Yi Zhu
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Yu-Na Cheng
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Cui-Qing Xie
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Ji-Qin Li
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Zhuang-Zhuang Liu
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Li-Li Hou
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Hua Sun
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China.
| | - Song-Qiang Xie
- Department of Pharmacy, The First Afffliated Hospital of Henan University, N. Jinming Ave, Kaifeng, 475004, China.
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China.
- Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Kaifeng, 475004, China.
| | - Dong Fang
- Department of Pharmacy, The First Afffliated Hospital of Henan University, N. Jinming Ave, Kaifeng, 475004, China.
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China.
- Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Kaifeng, 475004, China.
| |
Collapse
|
8
|
Huang X, Wei P, Fang C, Yu M, Yang S, Qiu L, Wang Y, Xu A, Hoo RLC, Chang J. Compromised endothelial Wnt/β-catenin signaling mediates the blood-brain barrier disruption and leads to neuroinflammation in endotoxemia. J Neuroinflammation 2024; 21:265. [PMID: 39427196 PMCID: PMC11491032 DOI: 10.1186/s12974-024-03261-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024] Open
Abstract
The blood-brain barrier (BBB) is a critical interface that maintains the central nervous system homeostasis by controlling the exchange of substances between the blood and the brain. Disruption of the BBB plays a vital role in the development of neuroinflammation and neurological dysfunction in sepsis, but the mechanisms by which the BBB becomes disrupted during sepsis are not well understood. Here, we induced endotoxemia, a major type of sepsis, in mice by intraperitoneal injection of lipopolysaccharide (LPS). LPS acutely increased BBB permeability, activated microglia, and heightened inflammatory responses in brain endothelium and parenchyma. Concurrently, LPS or proinflammatory cytokines activated the NF-κB pathway, inhibiting Wnt/β-catenin signaling in brain endothelial cells in vitro and in vivo. Cell culture study revealed that NF-κB p65 directly interacted with β-catenin to suppress Wnt/β-catenin signaling. Pharmacological NF-κB pathway inhibition restored brain endothelial Wnt/β-catenin signaling activity and mitigated BBB disruption and neuroinflammation in septic mice. Furthermore, genetic or pharmacological activation of brain endothelial Wnt/β-catenin signaling substantially alleviated LPS-induced BBB leakage and neuroinflammation, while endothelial conditional ablation of the Wnt7a/7b co-receptor Gpr124 exacerbated the BBB leakage caused by LPS. Mechanistically, Wnt/β-catenin signaling activation rectified the reduced expression levels of tight junction protein ZO-1 and transcytosis suppressor Mfsd2a in brain endothelial cells of mice with endotoxemia, inhibiting both paracellular and transcellular permeability of the BBB. Our findings demonstrate that endotoxemia-associated systemic inflammation decreases endothelial Wnt/β-catenin signaling through activating NF-κB pathway, resulting in acute BBB disruption and neuroinflammation. Targeting the endothelial Wnt/β-catenin signaling may offer a promising therapeutic strategy for preserving BBB integrity and treating neurological dysfunction in sepsis.
Collapse
Affiliation(s)
- Xiaowen Huang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Xueyuan Avenue 1068, Nanshan, Shenzhen, Guangdong, 518055, China
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
- State Key Laboratory of Pharmacological Biotechnology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Pengju Wei
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Xueyuan Avenue 1068, Nanshan, Shenzhen, Guangdong, 518055, China
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China
| | - Cheng Fang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Xueyuan Avenue 1068, Nanshan, Shenzhen, Guangdong, 518055, China
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China
| | - Min Yu
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Xueyuan Avenue 1068, Nanshan, Shenzhen, Guangdong, 518055, China
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China
| | - Shilun Yang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Xueyuan Avenue 1068, Nanshan, Shenzhen, Guangdong, 518055, China
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China
| | - Linhui Qiu
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Xueyuan Avenue 1068, Nanshan, Shenzhen, Guangdong, 518055, China
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China
| | - Yu Wang
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
- State Key Laboratory of Pharmacological Biotechnology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Aimin Xu
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
- State Key Laboratory of Pharmacological Biotechnology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Ruby Lai Chong Hoo
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
- State Key Laboratory of Pharmacological Biotechnology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Junlei Chang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Xueyuan Avenue 1068, Nanshan, Shenzhen, Guangdong, 518055, China.
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
9
|
Cunha S, Bicker J, Sereno J, Falcão A, Fortuna A. Blood brain barrier dysfunction in healthy aging and dementia: Why, how, what for? Ageing Res Rev 2024; 99:102395. [PMID: 38950867 DOI: 10.1016/j.arr.2024.102395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 06/03/2024] [Accepted: 06/23/2024] [Indexed: 07/03/2024]
Abstract
The blood brain barrier (BBB) is an indispensable structure that maintains the central nervous system (CNS) microenvironment for a correct neuronal function. It is composed by highly specialized microvessels, surrounded by astrocytes, pericytes, neurons and microglia cells, which tightly control the influx and efflux of substances to the brain parenchyma. During aging, the BBB becomes impaired, and it may contribute to the development of neurodegenerative and neurological disorders including Alzheimer's disease and other dementias. Restoring the BBB can be a strategy to prevent disease onset and development, reducing the symptoms of these conditions. This work critically reviews the major mechanisms underlying BBB breakdown in healthy and unhealthy aging, as well as biomarkers and methodologies that accurately assess its impairment. Complementarily, potential therapeutic targets are discussed as new strategies to restore the normal function of the BBB in aging.
Collapse
Affiliation(s)
- Susana Cunha
- Faculty of Pharmacy, FFUC, University of Coimbra, Coimbra 3000-548, Portugal
| | - Joana Bicker
- Faculty of Pharmacy, FFUC, University of Coimbra, Coimbra 3000-548, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - José Sereno
- CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Amílcar Falcão
- Faculty of Pharmacy, FFUC, University of Coimbra, Coimbra 3000-548, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Ana Fortuna
- Faculty of Pharmacy, FFUC, University of Coimbra, Coimbra 3000-548, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
10
|
Fonódi M, Nagy L, Boratkó A. Role of Protein Phosphatases in Tumor Angiogenesis: Assessing PP1, PP2A, PP2B and PTPs Activity. Int J Mol Sci 2024; 25:6868. [PMID: 38999976 PMCID: PMC11241275 DOI: 10.3390/ijms25136868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Tumor angiogenesis, the formation of new blood vessels to support tumor growth and metastasis, is a complex process regulated by a multitude of signaling pathways. Dysregulation of signaling pathways involving protein kinases has been extensively studied, but the role of protein phosphatases in angiogenesis within the tumor microenvironment remains less explored. However, among angiogenic pathways, protein phosphatases play critical roles in modulating signaling cascades. This review provides a comprehensive overview of the involvement of protein phosphatases in tumor angiogenesis, highlighting their diverse functions and mechanisms of action. Protein phosphatases are key regulators of cellular signaling pathways by catalyzing the dephosphorylation of proteins, thereby modulating their activity and function. This review aims to assess the activity of the protein tyrosine phosphatases and serine/threonine phosphatases. These phosphatases exert their effects on angiogenic signaling pathways through various mechanisms, including direct dephosphorylation of angiogenic receptors and downstream signaling molecules. Moreover, protein phosphatases also crosstalk with other signaling pathways involved in angiogenesis, further emphasizing their significance in regulating tumor vascularization, including endothelial cell survival, sprouting, and vessel maturation. In conclusion, this review underscores the pivotal role of protein phosphatases in tumor angiogenesis and accentuate their potential as therapeutic targets for anti-angiogenic therapy in cancer.
Collapse
Affiliation(s)
| | | | - Anita Boratkó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (M.F.); (L.N.)
| |
Collapse
|
11
|
Fetsko AR, Sebo DJ, Budzynski LB, Scharbarth A, Taylor MR. IL-1β disrupts the initiation of blood-brain barrier development by inhibiting endothelial Wnt/β-catenin signaling. iScience 2024; 27:109651. [PMID: 38638574 PMCID: PMC11025013 DOI: 10.1016/j.isci.2024.109651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/06/2024] [Accepted: 03/29/2024] [Indexed: 04/20/2024] Open
Abstract
During neuroinflammation, the proinflammatory cytokine interleukin-1β (IL-1β) impacts blood-brain barrier (BBB) function by disrupting brain endothelial tight junctions, promoting vascular permeability, and increasing transmigration of immune cells. Here, we examined the effects of Il-1β on the in vivo initiation of BBB development. We generated doxycycline-inducible transgenic zebrafish to secrete Il-1β in the CNS. To validate the utility of our model, we showed Il-1β dose-dependent mortality, recruitment of neutrophils, and expansion of microglia. Using live imaging, we discovered that Il-1β causes a significant reduction in CNS angiogenesis and barriergenesis. To demonstrate specificity, we rescued the Il-1β induced phenotypes by targeting the zebrafish il1r1 gene using CRISPR-Cas9. Mechanistically, we determined that Il-1β disrupts the initiation of BBB development by decreasing Wnt/β-catenin transcriptional activation in brain endothelial cells. Given that several neurodevelopmental disorders are associated with inflammation, our findings support further investigation into the connections between proinflammatory cytokines, neuroinflammation, and neurovascular development.
Collapse
Affiliation(s)
- Audrey R. Fetsko
- School of Pharmacy, Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Dylan J. Sebo
- School of Pharmacy, Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Lilyana B. Budzynski
- School of Pharmacy, Pharmacology and Toxicology Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Alli Scharbarth
- School of Pharmacy, Pharmacology and Toxicology Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Michael R. Taylor
- School of Pharmacy, Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI 53705, USA
- School of Pharmacy, Pharmacology and Toxicology Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
12
|
Lu L, Li J, Jiang X, Bai R. CXCR4/CXCL12 axis: "old" pathway as "novel" target for anti-inflammatory drug discovery. Med Res Rev 2024; 44:1189-1220. [PMID: 38178560 DOI: 10.1002/med.22011] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/25/2023] [Accepted: 12/16/2023] [Indexed: 01/06/2024]
Abstract
Inflammation is the body's defense response to exogenous or endogenous stimuli, involving complex regulatory mechanisms. Discovering anti-inflammatory drugs with both effectiveness and long-term use safety is still the direction of researchers' efforts. The inflammatory pathway was initially identified to be involved in tumor metastasis and HIV infection. However, research in recent years has proved that the CXC chemokine receptor type 4 (CXCR4)/CXC motif chemokine ligand 12 (CXCL12) axis plays a critical role in the upstream of the inflammatory pathway due to its chemotaxis to inflammatory cells. Blocking the chemotaxis of inflammatory cells by CXCL12 at the inflammatory site may block and alleviate the inflammatory response. Therefore, developing CXCR4 antagonists has become a novel strategy for anti-inflammatory therapy. This review aimed to systematically summarize and analyze the mechanisms of action of the CXCR4/CXCL12 axis in more than 20 inflammatory diseases, highlighting its crucial role in inflammation. Additionally, the anti-inflammatory activities of CXCR4 antagonists were discussed. The findings might help generate new perspectives for developing anti-inflammatory drugs targeting the CXCR4/CXCL12 axis.
Collapse
Affiliation(s)
- Liuxin Lu
- Department of Medicinal Chemistry, School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Junjie Li
- Department of Medicinal Chemistry, School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Xiaoying Jiang
- Department of Medicinal Chemistry, School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Renren Bai
- Department of Medicinal Chemistry, School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| |
Collapse
|
13
|
Bian F, Goda C, Wang G, Lan YW, Deng Z, Gao W, Acharya A, Reza AA, Gomez-Arroyo J, Merjaneh N, Ren X, Goveia J, Carmeliet P, Kalinichenko VV, Kalin TV. FOXF1 promotes tumor vessel normalization and prevents lung cancer progression through FZD4. EMBO Mol Med 2024; 16:1063-1090. [PMID: 38589650 PMCID: PMC11099127 DOI: 10.1038/s44321-024-00064-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/10/2024] Open
Abstract
Cancer cells re-program normal lung endothelial cells (EC) into tumor-associated endothelial cells (TEC) that form leaky vessels supporting carcinogenesis. Transcriptional regulators that control the reprogramming of EC into TEC are poorly understood. We identified Forkhead box F1 (FOXF1) as a critical regulator of EC-to-TEC transition. FOXF1 was highly expressed in normal lung vasculature but was decreased in TEC within non-small cell lung cancers (NSCLC). Low FOXF1 correlated with poor overall survival of NSCLC patients. In mice, endothelial-specific deletion of FOXF1 decreased pericyte coverage, increased vessel permeability and hypoxia, and promoted lung tumor growth and metastasis. Endothelial-specific overexpression of FOXF1 normalized tumor vessels and inhibited the progression of lung cancer. FOXF1 deficiency decreased Wnt/β-catenin signaling in TECs through direct transcriptional activation of Fzd4. Restoring FZD4 expression in FOXF1-deficient TECs through endothelial-specific nanoparticle delivery of Fzd4 cDNA rescued Wnt/β-catenin signaling in TECs, normalized tumor vessels and inhibited the progression of lung cancer. Altogether, FOXF1 increases tumor vessel stability, and inhibits lung cancer progression by stimulating FZD4/Wnt/β-catenin signaling in TECs. Nanoparticle delivery of FZD4 cDNA has promise for future therapies in NSCLC.
Collapse
Affiliation(s)
- Fenghua Bian
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229, USA
| | - Chinmayee Goda
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229, USA
| | - Guolun Wang
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229, USA
| | - Ying-Wei Lan
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229, USA
- Department of Child Health, Phoenix Children's Research Institute, University of Arizona College of Medicine-Phoenix, 475 N 5th Street, Phoenix, AZ, 85004, USA
| | - Zicheng Deng
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229, USA
- Department of Child Health, Phoenix Children's Research Institute, University of Arizona College of Medicine-Phoenix, 475 N 5th Street, Phoenix, AZ, 85004, USA
| | - Wen Gao
- Department of Child Health, Phoenix Children's Research Institute, University of Arizona College of Medicine-Phoenix, 475 N 5th Street, Phoenix, AZ, 85004, USA
| | - Anusha Acharya
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229, USA
| | - Abid A Reza
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229, USA
| | - Jose Gomez-Arroyo
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229, USA
| | - Nawal Merjaneh
- Center for Cancer and Blood Disorders, Phoenix Children's Hospital, 1919 E Thomas Rd., Phoenix, AZ, 85016, USA
| | - Xiaomeng Ren
- Division of Asthma Research of Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229, USA
| | - Jermaine Goveia
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, Leuven, 3000, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, Leuven, 3000, Belgium
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, UAE
| | - Vladimir V Kalinichenko
- Department of Child Health, Phoenix Children's Research Institute, University of Arizona College of Medicine-Phoenix, 475 N 5th Street, Phoenix, AZ, 85004, USA
- Division of Neonatology, Phoenix Children's Hospital, 1919 E Thomas Rd., Phoenix, AZ, 85016, USA
| | - Tanya V Kalin
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229, USA.
- Department of Child Health, Phoenix Children's Research Institute, University of Arizona College of Medicine-Phoenix, 475 N 5th Street, Phoenix, AZ, 85004, USA.
- Center for Cancer and Blood Disorders, Phoenix Children's Hospital, 1919 E Thomas Rd., Phoenix, AZ, 85016, USA.
- Department of Internal Medicine, Division of Pulmonary and Critical Care, University of Arizona College of Medicine-Phoenix, 475 N 5th Street, Phoenix, AZ, 85004, USA.
| |
Collapse
|
14
|
Ma S, Tian Z, Liu L, Zhu J, Wang J, Zhao S, Zhu Y, Zhu J, Wang W, Jiang R, Qu Y, Lei J, Zhao J, Jiang T. Cold to Hot: Tumor Immunotherapy by Promoting Vascular Normalization Based on PDGFB Nanocomposites. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308638. [PMID: 38018295 DOI: 10.1002/smll.202308638] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/04/2023] [Indexed: 11/30/2023]
Abstract
Immunotherapy is a promising cancer therapeutic strategy. However, the "cold" tumor immune microenvironment (TIME), characterized by insufficient immune cell infiltration and immunosuppressive status, limits the efficacy of immunotherapy. Tumor vascular abnormalities due to defective pericyte coverage are gradually recognized as a profound determinant in "cold" TIME establishment by hindering immune cell trafficking. Recently, several vascular normalization strategies by improving pericyte coverage have been reported, whereas have unsatisfactory efficacy and high rates of resistance. Herein, a combinatorial strategy to induce tumor vasculature-targeted pericyte recruitment and zinc ion-mediated immune activation with a platelet-derived growth factor B (PDGFB)-loaded, cyclo (Arg-Gly-Asp-D-Phe-Lys)-modified zeolitic imidazolate framework 8 (PDGFB@ZIF8-RGD) nanoplatform is proposed. PDGFB@ZIF8-RGD effectively induced tumor vascular normalization, which facilitated trafficking and infiltration of immune effector cells, including natural killer (NK) cells, M1-like macrophages and CD8+ T cells, into tumor microenvironment. Simultaneously, vascular normalization promoted the accumulation of zinc ions inside tumors to trigger effector cell immune activation and effector molecule production. The synergy between these two effects endowed PDGFB@ZIF8-RGD with superior capabilities in reprogramming the "cold" TIME to a "hot" TIME, thereby initiating robust antitumor immunity and suppressing tumor growth. This combinatorial strategy for improving immune effector cell infiltration and activation is a promising paradigm for solid tumor immunotherapy.
Collapse
Affiliation(s)
- Shouzheng Ma
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Zhimin Tian
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Lei Liu
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi Province, 710032, China
| | - Jun Zhu
- The Southern Theater Air Force Hospital, Guangzhou, 510000, China
| | - Jing Wang
- Department of Immunology, Air Force Medical University, Xi'an, 710032, China
| | - Shoujie Zhao
- Department of General Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Yejing Zhu
- Department of General Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Jianfei Zhu
- Department of Thoracic Surgery, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Wenchen Wang
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Runmin Jiang
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Yongquan Qu
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Jie Lei
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Junlong Zhao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Medical Genetics and Development Biology, Air Force Medical University, Xi'an, 710032, China
- Department of Pediatrics, Tangdu Hospital, Air Force Medical University, Xi'an, 710000, China
| | - Tao Jiang
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| |
Collapse
|
15
|
Lu Y, Zhao M, Chen L, Wang Y, Liu T, Liu H. cGAS: action in the nucleus. Front Immunol 2024; 15:1380517. [PMID: 38515746 PMCID: PMC10954897 DOI: 10.3389/fimmu.2024.1380517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 02/23/2024] [Indexed: 03/23/2024] Open
Abstract
As a canonical cytoplasmic DNA sensor, cyclic GMP-AMP synthase (cGAS) plays a key role in innate immunity. In recent years, a growing number of studies have shown that cGAS can also be located in the nucleus and plays new functions such as regulating DNA damage repair, nuclear membrane repair, chromosome fusion, DNA replication, angiogenesis and other non-canonical functions. Meanwhile, the mechanisms underlying the nucleo-cytoplasmic transport and the regulation of cGAS activation have been revealed in recent years. Based on the current understanding of the structure, subcellular localization and canonical functions of cGAS, this review focuses on summarizing the mechanisms underlying nucleo-cytoplasmic transport, activity regulation and non-canonical functions of cGAS in the nucleus. We aim to provide insights into exploring the new functions of cGAS in the nucleus and advance its clinical translation.
Collapse
Affiliation(s)
- Yikai Lu
- Central Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Mengmeng Zhao
- Research Center of Translational Medicine, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Li Chen
- Central Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yan Wang
- Central Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Tianhao Liu
- Central Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Haipeng Liu
- Central Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
16
|
Yang H, Zhou H, Fu M, Xu H, Huang H, Zhong M, Zhang M, Hua W, Lv K, Zhu G. TMEM64 aggravates the malignant phenotype of glioma by activating the Wnt/β-catenin signaling pathway. Int J Biol Macromol 2024; 260:129332. [PMID: 38232867 DOI: 10.1016/j.ijbiomac.2024.129332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/05/2024] [Accepted: 01/06/2024] [Indexed: 01/19/2024]
Abstract
Transmembrane protein 64 (TMEM64), a member of the family of transmembrane protein, is an α-helical membrane protein. Its precise role in various types of tumors, including glioma, is unclear. This study used immunohistochemical (IHC) staining, western blotting, and quantitative reverse transcription polymerase chain reaction (qRT-PCR) techniques to show that TMEM64 expression was significantly higher in glioma cells and tissues compared to normal cells and tissues, respectively. Additionally, a correlation between high TMEM64 expression and higher grade as well as a worse prognosis was found. TMEM64 enhanced cell proliferation and tumorigenicity while inhibiting glioma cell apoptosis in vitro and in vivo, according to loss- and gain-of-function studies. Mechanistically, it was discovered that TMEM64 increased the malignant phenotype of gliomas by accelerating the translocation of β-catenin from the cytoplasm to the nucleus, thereby activating the Wnt/β-catenin signaling pathway. Stimulation with the Wnt/β-catenin signaling pathway activator CHIR-99021 successfully reversed the malignant phenotype of glioma; however, these effects were inhibited upon TMEM64 silencing. Stimulation with the Wnt/β-catenin signaling pathway inhibitor XAV-939 successfully rescued the malignant phenotype of glioma, which was promoted upon TMEM64 overexpression. Our results provide that TMEM64 as a novel prognostic biomarker and a potential treatment target for glioma.
Collapse
Affiliation(s)
- Hui Yang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241001, Anhui, China; Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation (Wannan Medical College), Wuhu 241001, Anhui, China; Auhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu 241001, Anhui, China
| | - Hanyu Zhou
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation (Wannan Medical College), Wuhu 241001, Anhui, China; Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College), Wuhu 241001, Anhui, China; Central Laboratory, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China; Clinical Research Center for Critical Respiratory Medicine of Anhui Province, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China
| | - Minjie Fu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China; Neurosurgical Institute of Fudan University, Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
| | - Hao Xu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China; Neurosurgical Institute of Fudan University, Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
| | - Haoyu Huang
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation (Wannan Medical College), Wuhu 241001, Anhui, China; Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College), Wuhu 241001, Anhui, China; Central Laboratory, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China; Clinical Research Center for Critical Respiratory Medicine of Anhui Province, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China
| | - Min Zhong
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation (Wannan Medical College), Wuhu 241001, Anhui, China; Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College), Wuhu 241001, Anhui, China; Central Laboratory, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China; Clinical Research Center for Critical Respiratory Medicine of Anhui Province, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China
| | - Mengying Zhang
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation (Wannan Medical College), Wuhu 241001, Anhui, China; Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College), Wuhu 241001, Anhui, China; Central Laboratory, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China; Clinical Research Center for Critical Respiratory Medicine of Anhui Province, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China
| | - Wei Hua
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China; Neurosurgical Institute of Fudan University, Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China.
| | - Kun Lv
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241001, Anhui, China; Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation (Wannan Medical College), Wuhu 241001, Anhui, China; Auhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu 241001, Anhui, China; Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College), Wuhu 241001, Anhui, China; Central Laboratory, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China.
| | - Guoping Zhu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241001, Anhui, China; Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation (Wannan Medical College), Wuhu 241001, Anhui, China; Auhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu 241001, Anhui, China.
| |
Collapse
|
17
|
Jain R, Krishnan S, Lee S, Amoozgar Z, Subudhi S, Kumar A, Posada J, Lindeman N, Lei P, Duquette M, Roberge S, Huang P, Andersson P, Datta M, Munn L, Fukumura D. Wnt inhibition alleviates resistance to immune checkpoint blockade in glioblastoma. RESEARCH SQUARE 2023:rs.3.rs-3707472. [PMID: 38234841 PMCID: PMC10793505 DOI: 10.21203/rs.3.rs-3707472/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Wnt signaling plays a critical role in the progression and treatment outcome of glioblastoma (GBM). Here, we identified WNT7b as a heretofore unknown mechanism of resistance to immune checkpoint inhibition (αPD1) in GBM patients and murine models. Acquired resistance to αPD1 was found to be associated with the upregulation of Wnt7b and β-catenin protein levels in GBM in patients and in a clinically relevant, stem-rich GBM model. Combining the porcupine inhibitor WNT974 with αPD1 prolonged the survival of GBM-bearing mice. However, this combination had a dichotomous response, with a subset of tumors showing refractoriness. WNT974 and αPD1 expanded a subset of DC3-like dendritic cells (DCs) and decreased the granulocytic myeloid-derived suppressor cells (gMDSCs) in the tumor microenvironment (TME). By contrast, monocytic MDSCs (mMDSCs) increased, while T-cell infiltration remained unchanged, suggesting potential TME-mediated resistance. Our preclinical findings warrant the testing of Wnt7b/β-catenin combined with αPD1 in GBM patients with elevated Wnt7b/β-catenin signaling.
Collapse
|
18
|
Cao S, Wang D, Wang P, Liu Y, Dong W, Ruan X, Liu L, Xue Y, E T, Lin H, Liu X. SUMOylation of RALY promotes vasculogenic mimicry in glioma cells via the FOXD1/DKK1 pathway. Cell Biol Toxicol 2023; 39:3323-3340. [PMID: 37906341 PMCID: PMC10693529 DOI: 10.1007/s10565-023-09836-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 10/11/2023] [Indexed: 11/02/2023]
Abstract
Human malignant gliomas are the most common and aggressive primary malignant tumors of the human central nervous system. Vasculogenic mimicry (VM), which refers to the formation of a tumor blood supply system independently of endothelial cells, contributes to the malignant progression of glioma. Therefore, VM is considered a potential target for glioma therapy. Accumulated evidence indicates that alterations in SUMOylation, a reversible post-translational modification, are involved in tumorigenesis and progression. In the present study, we found that UBA2 and RALY were upregulated in glioma tissues and cell lines. Downregulation of UBA2 and RALY inhibited the migration, invasion, and VM of glioma cells. RALY can be SUMOylated by conjugation with SUMO1, which is facilitated by the overexpression of UBA2. The SUMOylation of RALY increases its stability, which in turn increases its expression as well as its promoting effect on FOXD1 mRNA. The overexpression of FOXD1 promotes DKK1 transcription by activating its promoter, thereby promoting glioma cell migration, invasion, and VM. Remarkably, the combined knockdown of UBA2, RALY, and FOXD1 resulted in the smallest tumor volumes and the longest survivals of nude mice in vivo. UBA2/RALY/FOXD1/DKK1 axis may play crucial roles in regulating VM in glioma, which may contribute to the development of potential strategies for the treatment of gliomas.
Collapse
Affiliation(s)
- Shuo Cao
- Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, 110004, China
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Di Wang
- Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, 110004, China
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
- Liaoning Medical Surgery and Rehabilitation Robot Technology Engineering Research Center, Shenyang, 110004, China
| | - Ping Wang
- Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, 110004, China
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China
| | - Yunhui Liu
- Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, 110004, China
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
- Liaoning Medical Surgery and Rehabilitation Robot Technology Engineering Research Center, Shenyang, 110004, China
| | - Weiwei Dong
- Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, 110004, China
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
- Liaoning Medical Surgery and Rehabilitation Robot Technology Engineering Research Center, Shenyang, 110004, China
| | - Xuelei Ruan
- Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, 110004, China
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China
| | - Libo Liu
- Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, 110004, China
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China
| | - Yixue Xue
- Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, 110004, China
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China
| | - Tiange E
- Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, 110004, China
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
- Liaoning Medical Surgery and Rehabilitation Robot Technology Engineering Research Center, Shenyang, 110004, China
| | - Hongda Lin
- Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, 110004, China
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
- Liaoning Medical Surgery and Rehabilitation Robot Technology Engineering Research Center, Shenyang, 110004, China
| | - Xiaobai Liu
- Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, 110004, China.
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
- Liaoning Medical Surgery and Rehabilitation Robot Technology Engineering Research Center, Shenyang, 110004, China.
| |
Collapse
|
19
|
Li J, Qin Y, Zhao C, Zhang Z, Zhou Z. Tetracycline antibiotics: Potential anticancer drugs. Eur J Pharmacol 2023; 956:175949. [PMID: 37541377 DOI: 10.1016/j.ejphar.2023.175949] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/22/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
In recent years, research on tetracycline antibiotics has gradually shifted from their antibacterial effects to anticancer effects. Doxycycline, minocycline, and tigecycline as the US Food and Drug Administration (FDA) approved tetracycline antibiotics have been the main subjects of studies. Evidence indicated that they have anticancer properties and are able to control cancer progression through different mechanisms, such as anti-proliferation, anti-metastasis, and promotion of autophagy or apoptosis. In addition, studies have shown that these three tetracycline antibiotics can be utilized in conjunction with chemotherapeutic and targeted drugs to inhibit cancer progression and improve the quality of patient survival. Therefore, doxycycline, minocycline, and tigecycline are taken as examples in this work. Their mechanisms of action in different cancers and related combination therapies are introduced. Their current roles in alleviating the suffering of patients undergoing chemotherapy when used as adjuvant drugs in clinical treatment are also described. Finally, the research gaps and potential research directions at this stage are briefly summarized.
Collapse
Affiliation(s)
- Jiayu Li
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yuan Qin
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China; College of Pharmacy, Nankai University, China
| | - Chenhao Zhao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zhi Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zhiruo Zhou
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, China.
| |
Collapse
|
20
|
Agnihotri TG, Salave S, Shinde T, Srikanth I, Gyanani V, Haley JC, Jain A. Understanding the role of endothelial cells in brain tumor formation and metastasis: a proposition to be explored for better therapy. JOURNAL OF THE NATIONAL CANCER CENTER 2023; 3:222-235. [PMID: 39035200 PMCID: PMC11256543 DOI: 10.1016/j.jncc.2023.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 07/23/2024] Open
Abstract
Glioblastoma is one of the most devastating central nervous system disorders. Being a highly vascular brain tumor, it is distinguished by aberrant vessel architecture. This lends credence to the idea that endothelial cells (ECs) linked with glioblastoma vary fundamentally from ECs seen in the healthy human brain. To effectively design an antiangiogenic treatment, it is crucial to identify the functional and phenotypic characteristics of tumor-associated ECs. The ECs associated with glioblastoma are less prone to apoptosis than control cells and are resistant to cytotoxic treatments. Additionally, ECs associated with glioblastoma migrate more quickly than control ECs and naturally produce large amounts of growth factors such as endothelin-1, interleukin-8, and vascular endothelial growth factor (VEGF). For designing innovative antiangiogenic drugs that particularly target tumor-related ECs in gliomas, it is critical to comprehend these distinctive features of ECs associated with gliomas. This review discusses the process of angiogenesis, other factors involved in the genesis of tumors, and the possibility of ECs as a potential target in combating glioblastoma. It also sheds light on the association of tumor microenvironment and ECs with immunotherapy. This review, thus gives us the hope that neuro endothelial targeting with growth factors and angiogenesis regulators combined with gene therapy would open up new doorways and change our traditional perspective of treating cancer.
Collapse
Affiliation(s)
- Tejas Girish Agnihotri
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, India
| | - Sagar Salave
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, India
| | - Tanuja Shinde
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, India
| | - Induri Srikanth
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, India
| | - Vijay Gyanani
- Long Acting Drug Delivery, Celanese Corporation, Irving, United States
| | - Jeffrey C. Haley
- Long Acting Drug Delivery, Celanese Corporation, Irving, United States
| | - Aakanchha Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, India
| |
Collapse
|
21
|
Zhang L, Abedin M, Jo HN, Levey J, Dinh QC, Chen Z, Angers S, Junge HJ. A Frizzled4-LRP5 agonist promotes blood-retina barrier function by inducing a Norrin-like transcriptional response. iScience 2023; 26:107415. [PMID: 37559903 PMCID: PMC10407957 DOI: 10.1016/j.isci.2023.107415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 05/22/2023] [Accepted: 07/14/2023] [Indexed: 08/11/2023] Open
Abstract
Norrin (NDP) and WNT7A/B induce and maintain the blood-brain and blood-retina barrier (BBB, BRB) by stimulating the Frizzled4-LDL receptor related protein 5/6 (FZD4-LRP5/6) complex to induce beta-catenin-dependent signaling in endothelial cells (ECs). Recently developed agonists for the FZD4-LRP5 complex have therapeutic potential in retinal and neurological diseases. Here, we use the tetravalent antibody modality F4L5.13 to identify agonist activities in Tspan12-/- mice, which display a complex retinal pathology due to impaired NDP-signaling. F4L5.13 administration during development alleviates BRB defects, retinal hypovascularization, and restores neural function. In mature Tspan12-/- mice F4L5.13 partially induces a BRB de novo without inducing angiogenesis. In a genetic model of impaired BRB maintenance, administration of F4L5.13 rapidly and substantially restores the BRB. scRNA-seq reveals perturbations of key mediators of barrier functions in juvenile Tspan12-/- mice, which are in large parts restored after F4L5.13 administration. This study identifies transcriptional and functional activities of FZD4-LRP5 agonists.
Collapse
Affiliation(s)
- Lingling Zhang
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN, USA
| | - Md. Abedin
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN, USA
| | - Ha-Neul Jo
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN, USA
- Graduate Program in Molecular, Cellular, Developmental Biology and Genetics, University of Minnesota, Minneapolis, MN, USA
| | - Jacklyn Levey
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN, USA
- Graduate Program in Molecular, Cellular, Developmental Biology and Genetics, University of Minnesota, Minneapolis, MN, USA
| | - Quynh Chau Dinh
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN, USA
| | - Zhe Chen
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Stephane Angers
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, Toronto, ON, Canada
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Harald J. Junge
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN, USA
- Graduate Program in Molecular, Cellular, Developmental Biology and Genetics, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
22
|
Shen Y, Xu M, Ren L, Li X, Han X, Cao X, Yao J, Yan B. A novel retinoic acid drug, EYE-502, inhibits choroidal neovascularization by targeting endothelial cells and pericytes. Sci Rep 2023; 13:10439. [PMID: 37369771 DOI: 10.1038/s41598-023-37619-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 06/24/2023] [Indexed: 06/29/2023] Open
Abstract
Choroidal neovascularization (CNV) occurs in neovascular age-related macular degeneration (AMD) and often leads to permanent visual impairment. Intravitreal injection of anti-vascular endothelial growth factor (VEGF) agents is the gold standard for the treatment of CNV. However, anti-VEGF treatment did not always cause vision improvement and sometimes had detrimental effects on normal retinal tissues. Herein, we identified a novel retinoic acid drug, EYE-502, which had great therapeutic effects on CNV. Administration of EYE-502 could inhibit VEGF-induced dysfunction of endothelial cells (ECs) and reduce platelet-derived growth factor (PDGF)-induced recruitment of pericytes to ECs in vitro. Administration of EYE-502 could reduce the area of choroidal sprouting and laser-induced CNV, exhibiting similar anti-angiogenic effects as aflibercept. Moreover, administration of EYE-502 could reduce pericyte coverage in the sprouting vessels and choroidal neovascularization. Mechanistically, EYE-502 primarily bound to retinoic acid receptors (RARs) and exerted the anti-angiogenic effects by targeting ECs and pericytes via affecting the activation of Wnt/β-catenin and PDGF/PDGFR/PI3K/Akt signaling. Taken together, this study reports a novel retinoic acid drug, EYE-502, which can exert the anti-angiogenic effects by simultaneous targeting of ECs and pericytes.
Collapse
Affiliation(s)
- Yaming Shen
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Miao Xu
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Ling Ren
- Eye Institute, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiumiao Li
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
| | - Xiaoyan Han
- Eye Institute, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xin Cao
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Jin Yao
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China.
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China.
| | - Biao Yan
- Eye Institute, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
23
|
Xie Y, He L, Zhang Y, Huang H, Yang F, Chao M, Cao H, Wang J, Li Y, Zhang L, Xin L, Xiao B, Shi X, Zhang X, Tang J, Uhrbom L, Dimberg A, Wang L, Zhang L. Wnt signaling regulates MFSD2A-dependent drug delivery through endothelial transcytosis in glioma. Neuro Oncol 2023; 25:1073-1084. [PMID: 36591963 PMCID: PMC10237416 DOI: 10.1093/neuonc/noac288] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Systemic delivery of anti-tumor therapeutic agents to brain tumors is thwarted by the blood-brain barrier (BBB), an organotypic specialization of brain endothelial cells (ECs). A failure of pharmacological compounds to cross BBB is one culprit for the dismal prognosis of glioblastoma (GBM) patients. Identification of novel vascular targets to overcome the challenges posed by the BBB in tumors for GBM treatment is urgently needed. METHODS Temozolomide (TMZ) delivery was investigated in CT2A and PDGFB-driven RCAS/tv-a orthotopic glioma models. Transcriptome analysis was performed on ECs from murine gliomas. Mfsd2a deficient, Cav1 deficient, and Mfsd2a EC-specific inducible mice were developed to study the underlying molecular mechanisms. RESULTS We demonstrated that inhibiting Wnt signaling by LGK974 could increase TMZ delivery and sensitize glioma to chemotherapy in both murine glioma models. Transcriptome analysis of ECs from murine gliomas revealed that Wnt signaling inhibition enhanced vascular transcytosis as indicated by the upregulation of PLVAP and downregulation of MFSD2A. Mfsd2a deficiency in mice enhances TMZ delivery in tumors, whereas constitutive expression of Mfsd2a in ECs suppresses the enhanced TMZ delivery induced by Wnt pathway inhibition in murine glioma. In addition, Wnt signaling inhibition enhanced caveolin-1 (Cav1)-positive caveolae-mediated transcytosis in tumor ECs. Moreover, Wnt signaling inhibitor or Mfsd2a deficiency fails to enhance TMZ penetration in tumors from Cav1-deficient mice. CONCLUSIONS These results demonstrated that Wnt signaling regulates MFSD2A-dependent TMZ delivery through a caveolae-mediated EC transcytosis pathway. Our findings identify Wnt signaling as a promising therapeutic target to improve drug delivery for GBM treatment.
Collapse
Affiliation(s)
- Yuan Xie
- China-Sweden International Joint Research Center for Brain Diseases, Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an, 710119, China
| | - Liqun He
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory, 75185, Uppsala, Sweden
| | - Yanyu Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, 710032, China
| | - Hua Huang
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory, 75185, Uppsala, Sweden
| | - Fan Yang
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory, 75185, Uppsala, Sweden
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Key Laboratory of Post-Neuro-injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin 300052, China
| | - Min Chao
- Department of Neurosurgery, Tangdu Hospital of the Fourth Military Medical University, 569 Xinsi Road, Xi’an, 710038, China
| | - Haiyan Cao
- Department of Neurosurgery, Tangdu Hospital of the Fourth Military Medical University, 569 Xinsi Road, Xi’an, 710038, China
| | - Jianhao Wang
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory, 75185, Uppsala, Sweden
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Key Laboratory of Post-Neuro-injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin 300052, China
| | - Yaling Li
- Department of Obstetrics and Gynaecology, Xi’an People’s Hospital (Xi’an Fourth Hospital), Xi’an, 710005, China
| | - Lingxue Zhang
- China-Sweden International Joint Research Center for Brain Diseases, Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an, 710119, China
| | - Lele Xin
- China-Sweden International Joint Research Center for Brain Diseases, Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an, 710119, China
| | - Bing Xiao
- China-Sweden International Joint Research Center for Brain Diseases, Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an, 710119, China
| | - Xinxin Shi
- China-Sweden International Joint Research Center for Brain Diseases, Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an, 710119, China
| | - Xue Zhang
- China-Sweden International Joint Research Center for Brain Diseases, Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an, 710119, China
| | - Jiefu Tang
- Trauma Center, First Affiliated Hospital of Hunan University of Medicine, Huaihua, 418000, China
| | - Lene Uhrbom
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory, 75185, Uppsala, Sweden
| | - Anna Dimberg
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory, 75185, Uppsala, Sweden
| | - Liang Wang
- Department of Neurosurgery, Tangdu Hospital of the Fourth Military Medical University, 569 Xinsi Road, Xi’an, 710038, China
| | - Lei Zhang
- China-Sweden International Joint Research Center for Brain Diseases, Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an, 710119, China
| |
Collapse
|
24
|
Luo J, Lu C, Chen Y, Wu X, Zhu C, Cui W, Yu S, Li N, Pan Y, Zhao W, Yang Q, Yang X. Nuclear translocation of cGAS orchestrates VEGF-A-mediated angiogenesis. Cell Rep 2023; 42:112328. [PMID: 37027305 DOI: 10.1016/j.celrep.2023.112328] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 12/20/2022] [Accepted: 03/17/2023] [Indexed: 04/08/2023] Open
Abstract
Cyclic GMP-AMP synthase (cGAS) senses cytosolic incoming DNA and consequently activates stimulator of interferon response cGAMP interactor 1 (STING) to mount immune response. Here, we show nuclear cGAS could regulate VEGF-A-mediated angiogenesis in an immune-independent manner. We found VEGF-A stimulation induces cGAS nuclear translocation via importin-β pathway. Moreover, nuclear cGAS subsequently regulates miR-212-5p-ARPC3 cascade to modulate VEGF-A-mediated angiogenesis through affecting cytoskeletal dynamics and VEGFR2 trafficking from trans-Golgi network (TGN) to plasma membrane via a regulatory feedback loop. In contrast, cGAS deficiency remarkably impairs VEGF-A-mediated angiogenesis in vivo and in vitro. Furthermore, we found strong association between the expression of nuclear cGAS and VEGF-A, and the malignancy and prognosis in malignant glioma, suggesting that nuclear cGAS might play important roles in human pathology. Collectively, our findings illustrated the function of cGAS in angiogenesis other than immune surveillance, which might be a potential therapeutic target for pathological angiogenesis-related diseases.
Collapse
Affiliation(s)
- Juanjuan Luo
- Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Chunjiao Lu
- Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Yang Chen
- Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Xuewei Wu
- Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Chenchen Zhu
- Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Wei Cui
- College of Life Science and Biopharmaceutical of Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Shicang Yu
- Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Ningning Li
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Yihang Pan
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Weijiang Zhao
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qingkai Yang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning 116044, China.
| | - Xiaojun Yang
- Shantou University Medical College, Shantou, Guangdong 515041, China.
| |
Collapse
|
25
|
Wälchli T, Bisschop J, Carmeliet P, Zadeh G, Monnier PP, De Bock K, Radovanovic I. Shaping the brain vasculature in development and disease in the single-cell era. Nat Rev Neurosci 2023; 24:271-298. [PMID: 36941369 PMCID: PMC10026800 DOI: 10.1038/s41583-023-00684-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2023] [Indexed: 03/23/2023]
Abstract
The CNS critically relies on the formation and proper function of its vasculature during development, adult homeostasis and disease. Angiogenesis - the formation of new blood vessels - is highly active during brain development, enters almost complete quiescence in the healthy adult brain and is reactivated in vascular-dependent brain pathologies such as brain vascular malformations and brain tumours. Despite major advances in the understanding of the cellular and molecular mechanisms driving angiogenesis in peripheral tissues, developmental signalling pathways orchestrating angiogenic processes in the healthy and the diseased CNS remain incompletely understood. Molecular signalling pathways of the 'neurovascular link' defining common mechanisms of nerve and vessel wiring have emerged as crucial regulators of peripheral vascular growth, but their relevance for angiogenesis in brain development and disease remains largely unexplored. Here we review the current knowledge of general and CNS-specific mechanisms of angiogenesis during brain development and in brain vascular malformations and brain tumours, including how key molecular signalling pathways are reactivated in vascular-dependent diseases. We also discuss how these topics can be studied in the single-cell multi-omics era.
Collapse
Affiliation(s)
- Thomas Wälchli
- Group of CNS Angiogenesis and Neurovascular Link, Neuroscience Center Zurich, and Division of Neurosurgery, University and University Hospital Zurich, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.
- Division of Neurosurgery, University Hospital Zurich, Zurich, Switzerland.
- Group of Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada.
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, Toronto, ON, Canada.
| | - Jeroen Bisschop
- Group of CNS Angiogenesis and Neurovascular Link, Neuroscience Center Zurich, and Division of Neurosurgery, University and University Hospital Zurich, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
- Division of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
- Group of Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, Toronto, ON, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB & Department of Oncology, KU Leuven, Leuven, Belgium
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
- Laboratory of Angiogenesis and Vascular Heterogeneity, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Gelareh Zadeh
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Philippe P Monnier
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Donald K. Johnson Research Institute, Krembil Research Institute, Krembil Discovery Tower, Toronto, ON, Canada
- Department of Ophthalmology and Vision Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Katrien De Bock
- Laboratory of Exercise and Health, Department of Health Science and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Ivan Radovanovic
- Group of Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, Toronto, ON, Canada
| |
Collapse
|
26
|
Chen X, Momin A, Wanggou S, Wang X, Min HK, Dou W, Gong Z, Chan J, Dong W, Fan JJ, Xiong Y, Talipova K, Zhao H, Chen YX, Veerasammy K, Fekete A, Kumar SA, Liu H, Yang Q, Son JE, Dou Z, Hu M, Pardis P, Juraschka K, Donovan LK, Zhang J, Ramaswamy V, Selvadurai HJ, Dirks PB, Taylor MD, Wang LY, Hui CC, Abzalimov R, He Y, Sun Y, Li X, Huang X. Mechanosensitive brain tumor cells construct blood-tumor barrier to mask chemosensitivity. Neuron 2023; 111:30-48.e14. [PMID: 36323321 DOI: 10.1016/j.neuron.2022.10.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 08/30/2022] [Accepted: 10/04/2022] [Indexed: 11/08/2022]
Abstract
Major obstacles in brain cancer treatment include the blood-tumor barrier (BTB), which limits the access of most therapeutic agents, and quiescent tumor cells, which resist conventional chemotherapy. Here, we show that Sox2+ tumor cells project cellular processes to ensheathe capillaries in mouse medulloblastoma (MB), a process that depends on the mechanosensitive ion channel Piezo2. MB develops a tissue stiffness gradient as a function of distance to capillaries. Sox2+ tumor cells perceive substrate stiffness to sustain local intracellular calcium, actomyosin tension, and adhesion to promote cellular process growth and cell surface sequestration of β-catenin. Piezo2 knockout reverses WNT/β-catenin signaling states between Sox2+ tumor cells and endothelial cells, compromises the BTB, reduces the quiescence of Sox2+ tumor cells, and markedly enhances the MB response to chemotherapy. Our study reveals that mechanosensitive tumor cells construct the BTB to mask tumor chemosensitivity. Targeting Piezo2 addresses the BTB and tumor quiescence properties that underlie treatment failures in brain cancer.
Collapse
Affiliation(s)
- Xin Chen
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Ali Momin
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Siyi Wanggou
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xian Wang
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Hyun-Kee Min
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Wenkun Dou
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
| | - Zheyuan Gong
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
| | - Jade Chan
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Weifan Dong
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Jerry J Fan
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Yi Xiong
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Kamilia Talipova
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Hongyu Zhao
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yuki X Chen
- Advanced Science Research Center at the Graduate Center, City University of New York, New York, NY 10031, USA
| | - Kelly Veerasammy
- Advanced Science Research Center at the Graduate Center, City University of New York, New York, NY 10031, USA
| | - Adam Fekete
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Sachin A Kumar
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Hongwei Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Qi Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Joe Eun Son
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Zhengchao Dou
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Malini Hu
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Parnian Pardis
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Kyle Juraschka
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Laura K Donovan
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Jiao Zhang
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Vijay Ramaswamy
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Hayden J Selvadurai
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Peter B Dirks
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Michael D Taylor
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; Department of Surgery, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Lu-Yang Wang
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Chi-Chung Hui
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Rinat Abzalimov
- Advanced Science Research Center at the Graduate Center, City University of New York, New York, NY 10031, USA
| | - Ye He
- Advanced Science Research Center at the Graduate Center, City University of New York, New York, NY 10031, USA
| | - Yu Sun
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| | - Xi Huang
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada.
| |
Collapse
|
27
|
Reiss Y, Bauer S, David B, Devraj K, Fidan E, Hattingen E, Liebner S, Melzer N, Meuth SG, Rosenow F, Rüber T, Willems LM, Plate KH. The neurovasculature as a target in temporal lobe epilepsy. Brain Pathol 2023; 33:e13147. [PMID: 36599709 PMCID: PMC10041171 DOI: 10.1111/bpa.13147] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/21/2022] [Indexed: 01/06/2023] Open
Abstract
The blood-brain barrier (BBB) is a physiological barrier maintaining a specialized brain micromilieu that is necessary for proper neuronal function. Endothelial tight junctions and specific transcellular/efflux transport systems provide a protective barrier against toxins, pathogens, and immune cells. The barrier function is critically supported by other cell types of the neurovascular unit, including pericytes, astrocytes, microglia, and interneurons. The dysfunctionality of the BBB is a hallmark of neurological diseases, such as ischemia, brain tumors, neurodegenerative diseases, infections, and autoimmune neuroinflammatory disorders. Moreover, BBB dysfunction is critically involved in epilepsy, a brain disorder characterized by spontaneously occurring seizures because of abnormally synchronized neuronal activity. While resistance to antiseizure drugs that aim to reduce neuronal hyperexcitability remains a clinical challenge, drugs targeting the neurovasculature in epilepsy patients have not been explored. The use of novel imaging techniques permits early detection of BBB leakage in epilepsy; however, the detailed mechanistic understanding of causes and consequences of BBB compromise remains unknown. Here, we discuss the current knowledge of BBB involvement in temporal lobe epilepsy with the emphasis on the neurovasculature as a therapeutic target.
Collapse
Affiliation(s)
- Yvonne Reiss
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University, Frankfurt, Germany.,Center for Personalized Translational Epilepsy Research (CePTER), University Hospital, Goethe University, Frankfurt, Germany
| | - Sebastian Bauer
- Center for Personalized Translational Epilepsy Research (CePTER), University Hospital, Goethe University, Frankfurt, Germany.,Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, Center of Neurology and Neurosurgery, University Hospital, Goethe University, Frankfurt, Germany
| | - Bastian David
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Kavi Devraj
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University, Frankfurt, Germany.,Center for Personalized Translational Epilepsy Research (CePTER), University Hospital, Goethe University, Frankfurt, Germany
| | - Elif Fidan
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University, Frankfurt, Germany.,Center for Personalized Translational Epilepsy Research (CePTER), University Hospital, Goethe University, Frankfurt, Germany
| | - Elke Hattingen
- Center for Personalized Translational Epilepsy Research (CePTER), University Hospital, Goethe University, Frankfurt, Germany.,Institute of Neuroradiology, Center of Neurology and Neurosurgery, University Hospital, Goethe University, Frankfurt, Germany
| | - Stefan Liebner
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University, Frankfurt, Germany.,Center for Personalized Translational Epilepsy Research (CePTER), University Hospital, Goethe University, Frankfurt, Germany
| | - Nico Melzer
- Department of Neurology, Heinrich-Heine University of Düsseldorf, Düsseldorf, Germany
| | - Sven G Meuth
- Department of Neurology, Heinrich-Heine University of Düsseldorf, Düsseldorf, Germany
| | - Felix Rosenow
- Center for Personalized Translational Epilepsy Research (CePTER), University Hospital, Goethe University, Frankfurt, Germany.,Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, Center of Neurology and Neurosurgery, University Hospital, Goethe University, Frankfurt, Germany
| | - Theodor Rüber
- Center for Personalized Translational Epilepsy Research (CePTER), University Hospital, Goethe University, Frankfurt, Germany.,Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, Center of Neurology and Neurosurgery, University Hospital, Goethe University, Frankfurt, Germany.,Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Laurent M Willems
- Center for Personalized Translational Epilepsy Research (CePTER), University Hospital, Goethe University, Frankfurt, Germany.,Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, Center of Neurology and Neurosurgery, University Hospital, Goethe University, Frankfurt, Germany
| | - Karl H Plate
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University, Frankfurt, Germany.,Center for Personalized Translational Epilepsy Research (CePTER), University Hospital, Goethe University, Frankfurt, Germany
| |
Collapse
|
28
|
Dai L, Luo J, Feng M, Wang M, Zhang J, Cao X, Yang X, Li J. Nanoplastics exposure induces vascular malformation by interfering with the VEGFA/VEGFR pathway in zebrafish (Danio rerio). CHEMOSPHERE 2023; 312:137360. [PMID: 36427586 DOI: 10.1016/j.chemosphere.2022.137360] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/23/2022]
Abstract
The widespread accumulation and adverse effects of nanoplastics (NPs) are a growing concern for environmental and human health. However, the potential toxicological effects of nanoplastics, especially on vascular development, have not been well studied. In this study, the zebrafish model was utilized to systematically study the developmental toxicity of nanoplastics exposure at different concentrations with morphological, histological, and molecular levels. The results revealed developmental defects in zebrafish embryos after exposure to different concentrations of nanoplastics. Specifically, the morphological deformities, including pericardial oedema and spine curvature, as well as the abnormal body length and the rates of survival and hatching were induced after nanoplastics exposure in zebrafish embryos. In addition, we found that nanoplastics exposure could induce vascular malformation, including the ectopic sprouting of intersegmental vessels (ISVs), malformation of superficial ocular vessels (SOVs), and overgrowth of the common cardinal vein (CCV), as well as the disorganized vasculature of the subintestinal venous plexus (SIVP). Moreover, further study indicated that SU5416, a specific vascular endothelial growth factor receptor (VEGFR) inhibitor, partially rescued the nanoplastics exposure-impaired vasculature, suggesting that the VEGFA/VEGFR pathway might be associated with nanoplastics-induced vascular malformation in zebrafish embryos. Further quantitative polymerase chain reaction assays revealed that the mRNA levels of VEGFA/VEGFR pathway-related genes, including vegfa, nrp1, klf6a, flt1, fih-1, flk1, cldn5a, and rspo3, were altered in different groups, indicating that nanoplastics exposure interferes with the VEGFA/VEGFR pathway, thereby inducing vascular malformation during the early developmental stage in zebrafish embryos. Therefore, our findings illustrated that nanoplastics might induce vascular malformation by regulating VEGFA/VEGFR pathway-related genes at the early developmental stage in zebrafish.
Collapse
Affiliation(s)
- Lu Dai
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| | - Juanjuan Luo
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| | - Meilan Feng
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| | - Maya Wang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| | - Jiannan Zhang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| | - Xiaoqian Cao
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| | - Xiaojun Yang
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, China.
| | - Juan Li
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, China.
| |
Collapse
|
29
|
Liu L, Qu Y, Cheng L, Yoon CW, He P, Monther A, Guo T, Chittle S, Wang Y. Engineering chimeric antigen receptor T cells for solid tumour therapy. Clin Transl Med 2022; 12:e1141. [PMID: 36495108 PMCID: PMC9736813 DOI: 10.1002/ctm2.1141] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/22/2022] [Accepted: 11/26/2022] [Indexed: 12/13/2022] Open
Abstract
Cell-based immunotherapy, for example, chimeric antigen receptor T (CAR-T) cell immunotherapy, has revolutionized cancer treatment, particularly for blood cancers. However, factors such as insufficient T cell tracking, tumour heterogeneity, inhibitory tumour microenvironment (TME) and T cell exhaustion limit the broad application of CAR-based immunotherapy for solid tumours. In particular, the TME is a complex and evolving entity, which is composed of cells of different types (e.g., cancer cells, immune cells and stromal cells), vasculature, soluble factors and extracellular matrix (ECM), with each component playing a critical role in CAR-T immunotherapy. Thus, developing approaches to mitigate the inhibitory TME factors is critical for future success in applying CAR-T cells for solid tumour treatment. Accordingly, understanding the bilateral interaction of CAR-T cells with the TME is in pressing need to pave the way for more efficient therapeutics. In the following review, we will discuss TME-associated aspects with an emphasis on T cell trafficking, ECM barriers, abnormal vasculature, solid tumour heterogenicity and immune suppressive microenvironment. We will then summarize current engineering strategies to overcome the challenges posed by the TME-associated factors. Lastly, the future directions for engineering efficient CAR-T cells for solid tumour therapy will be discussed.
Collapse
Affiliation(s)
- Longwei Liu
- Department of BioengineeringInstitute of Engineering in MedicineUniversity of CaliforniaLa JollaCaliforniaUSA
| | - Yunjia Qu
- Department of BioengineeringInstitute of Engineering in MedicineUniversity of CaliforniaLa JollaCaliforniaUSA
| | - Leonardo Cheng
- Department of BioengineeringInstitute of Engineering in MedicineUniversity of CaliforniaLa JollaCaliforniaUSA
| | - Chi Woo Yoon
- Department of BioengineeringInstitute of Engineering in MedicineUniversity of CaliforniaLa JollaCaliforniaUSA
| | - Peixiang He
- Department of BioengineeringInstitute of Engineering in MedicineUniversity of CaliforniaLa JollaCaliforniaUSA
| | - Abdula Monther
- Department of BioengineeringInstitute of Engineering in MedicineUniversity of CaliforniaLa JollaCaliforniaUSA
| | - Tianze Guo
- Department of BioengineeringInstitute of Engineering in MedicineUniversity of CaliforniaLa JollaCaliforniaUSA
| | - Sarah Chittle
- Department of BioengineeringInstitute of Engineering in MedicineUniversity of CaliforniaLa JollaCaliforniaUSA
| | - Yingxiao Wang
- Department of BioengineeringInstitute of Engineering in MedicineUniversity of CaliforniaLa JollaCaliforniaUSA
| |
Collapse
|
30
|
Wang W, Zhao Z, Han S, Wu D. miR-637 Prevents Glioblastoma Progression by Interrupting ZEB2/WNT/β-catenin Cascades. Cell Mol Neurobiol 2022; 42:2321-2335. [PMID: 34047878 PMCID: PMC11421589 DOI: 10.1007/s10571-021-01107-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/19/2021] [Indexed: 10/21/2022]
Abstract
Glioblastomas (GBMs) are the most frequent primary malignancies in the central nervous system. Aberrant activation of WNT/β-catenin signaling pathways is critical for GBM malignancy. However, the regulation of WNT/β-catenin signaling cascades remains unclear. Presently, we observed the increased expression of ZEB2 and the decreased expression of miR-637 in GBM. The expression of miR-637 was negatively correlated with ZEB2 expression. miR-637 overexpression overcame the ZEB2-enhanced cell proliferation and G1/S phase transition. Besides, miR-637 suppressed the canonical WNT/β-catenin pathways by targeting WNT7A directly. Gain- and loss-of-function experiments with U251 mice demonstrated that miR-637 inhibited cell proliferation and arrested the G1/S phase transition, leading to tumor growth suppression. The collective findings suggest that ZEB2 and WNT/β-catenin cascades merge at miR-637, and the ectopic expression of miR-637 disturbs ZEB2/WNT/β-catenin-mediated GBM growth. The findings provide new clues for improving β-catenin-targeted therapy against GBM.
Collapse
Affiliation(s)
- Wei Wang
- Department of Neurosurgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, People's Republic of China
| | - Zilong Zhao
- Department of Neurosurgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, People's Republic of China
| | - Shuai Han
- Department of Neurosurgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, People's Republic of China
| | - Di Wu
- Department of Tumor Biotherapy and Cancer Research, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, People's Republic of China.
| |
Collapse
|
31
|
Current Opportunities for Targeting Dysregulated Neurodevelopmental Signaling Pathways in Glioblastoma. Cells 2022; 11:cells11162530. [PMID: 36010607 PMCID: PMC9406959 DOI: 10.3390/cells11162530] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/06/2022] [Accepted: 08/09/2022] [Indexed: 11/29/2022] Open
Abstract
Glioblastoma (GBM) is the most common and highly lethal type of brain tumor, with poor survival despite advances in understanding its complexity. After current standard therapeutic treatment, including tumor resection, radiotherapy and concomitant chemotherapy with temozolomide, the median overall survival of patients with this type of tumor is less than 15 months. Thus, there is an urgent need for new insights into GBM molecular characteristics and progress in targeted therapy in order to improve clinical outcomes. The literature data revealed that a number of different signaling pathways are dysregulated in GBM. In this review, we intended to summarize and discuss current literature data and therapeutic modalities focused on targeting dysregulated signaling pathways in GBM. A better understanding of opportunities for targeting signaling pathways that influences malignant behavior of GBM cells might open the way for the development of novel GBM-targeted therapies.
Collapse
|
32
|
Bats ML, Peghaire C, Delobel V, Dufourcq P, Couffinhal T, Duplàa C. Wnt/frizzled Signaling in Endothelium: A Major Player in Blood-Retinal- and Blood-Brain-Barrier Integrity. Cold Spring Harb Perspect Med 2022; 12:a041219. [PMID: 35074794 PMCID: PMC9121893 DOI: 10.1101/cshperspect.a041219] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The Wnt/frizzled signaling pathway is one of the major regulators of endothelial biology, controlling key cellular activities. Many secreted Wnt ligands have been identified and can initiate diverse signaling via binding to a complex set of Frizzled (Fzd) transmembrane receptors and coreceptors. Roughly, Wnt signaling is subdivided into two pathways: the canonical Wnt/β-catenin signaling pathway whose main downstream effector is the transcriptional coactivator β-catenin, and the noncanonical Wnt signaling pathway, which is subdivided into the Wnt/Ca2+ pathway and the planar cell polarity pathway. Here, we will focus on its cross talk with other angiogenic pathways and on its role in blood-retinal- and blood-brain-barrier formation and its maintenance in a differentiated state. We will unravel how retinal vascular pathologies and neurovascular degenerative diseases result from disruption of the Wnt pathway related to vascular instability, and highlight current research into therapeutic options.
Collapse
Affiliation(s)
- Marie-Lise Bats
- Univ. Bordeaux, Inserm, UMR1034, Biology of Cardiovascular Diseases, F-33600 Pessac, France
- Department of Biochemistry, Pellegrin Hospital, University Hospital of Bordeaux, 33076 Bordeaux Cedex, France
| | - Claire Peghaire
- Univ. Bordeaux, Inserm, UMR1034, Biology of Cardiovascular Diseases, F-33600 Pessac, France
| | - Valentin Delobel
- Univ. Bordeaux, Inserm, UMR1034, Biology of Cardiovascular Diseases, F-33600 Pessac, France
| | - Pascale Dufourcq
- Univ. Bordeaux, Inserm, UMR1034, Biology of Cardiovascular Diseases, F-33600 Pessac, France
| | - Thierry Couffinhal
- Univ. Bordeaux, Inserm, UMR1034, Biology of Cardiovascular Diseases, F-33600 Pessac, France
- Centre d'exploration, de prévention et de traitement de l'athérosclérose (CEPTA), CHU Bordeaux, 33000 Bordeaux, France
| | - Cécile Duplàa
- Univ. Bordeaux, Inserm, UMR1034, Biology of Cardiovascular Diseases, F-33600 Pessac, France
| |
Collapse
|
33
|
Lin X, Chen L, Jullienne A, Zhang H, Salehi A, Hamer M, C. Holmes T, Obenaus A, Xu X. Longitudinal dynamics of microvascular recovery after acquired cortical injury. Acta Neuropathol Commun 2022; 10:59. [PMID: 35468870 PMCID: PMC9036719 DOI: 10.1186/s40478-022-01361-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/05/2022] [Indexed: 01/04/2023] Open
Abstract
Acquired brain injuries due to trauma damage the cortical vasculature, which in turn impairs blood flow to injured tissues. There are reports of vascular morphological recovery following traumatic brain injury, but the remodeling process has not been examined longitudinally in detail after injury in vivo. Understanding the dynamic processes that influence recovery is thus critically important. We evaluated the longitudinal and dynamic microvascular recovery and remodeling up to 2 months post injury using live brain miniscope and 2-photon microscopic imaging. The new imaging approaches captured dynamic morphological and functional recovery processes at high spatial and temporal resolution in vivo. Vessel painting documented the initial loss and subsequent temporal morphological vascular recovery at the injury site. Miniscopes were used to longitudinally image the temporal dynamics of vascular repair in vivo after brain injury in individual mice across each cohort. We observe near-immediate nascent growth of new vessels in and adjacent to the injury site that peaks between 14 and 21 days post injury. 2-photon microscopy confirms new vascular growth and further demonstrates differences between cortical layers after cortical injury: large vessels persist in deeper cortical layers (> 200 μm), while superficial layers exhibit a dense plexus of fine (and often non-perfused) vessels displaying regrowth. Functionally, blood flow increases mirror increasing vascular density. Filopodia development and endothelial sprouting is measurable within 3 days post injury that rapidly transforms regions devoid of vessels to dense vascular plexus in which new vessels become increasingly perfused. Within 7 days post injury, blood flow is observed in these nascent vessels. Behavioral analysis reveals improved vascular modulation after 9 days post injury, consistent with vascular regrowth. We conclude that morphological recovery events are closely linked to functional recovery of blood flow to the compromised tissues, which subsequently leads to improved behavioral outcomes.
Collapse
|
34
|
Diverse roles of tumor-stromal PDGFB-to-PDGFRβ signaling in breast cancer growth and metastasis. Adv Cancer Res 2022; 154:93-140. [PMID: 35459473 DOI: 10.1016/bs.acr.2022.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Over the last couple of decades, it has become increasingly apparent that the tumor microenvironment (TME) mediates every step of cancer progression and solid tumors are only able to metastasize with a permissive TME. This intricate interaction of cancer cells with their surrounding TME, or stroma, is becoming more understood with an ever greater knowledge of tumor-stromal signaling pairs such as platelet-derived growth factors (PDGF) and their cognate receptors. We and others have focused our research efforts on understanding how tumor-derived PDGFB activates platelet-derived growth factor receptor beta (PDGFRβ) signaling specifically in the breast cancer TME. In this chapter, we broadly discuss PDGF and PDGFR expression patterns and signaling in normal physiology and breast cancer. We then detail the expansive roles played by the PDGFB-to-PDGFRβ signaling pathway in modulating breast tumor growth and metastasis with a focus on specific cellular populations within the TME, which are responsive to tumor-derived PDGFB. Given the increasingly appreciated importance of PDGFB-to-PDGFRβ signaling in breast cancer progression, specifically in promoting metastasis, we end by discussing how therapeutic targeting of PDGFB-to-PDGFRβ signaling holds great promise for improving current breast cancer treatment strategies.
Collapse
|
35
|
Martin M, Vermeiren S, Bostaille N, Eubelen M, Spitzer D, Vermeersch M, Profaci CP, Pozuelo E, Toussay X, Raman-Nair J, Tebabi P, America M, De Groote A, Sanderson LE, Cabochette P, Germano RFV, Torres D, Boutry S, de Kerchove d'Exaerde A, Bellefroid EJ, Phoenix TN, Devraj K, Lacoste B, Daneman R, Liebner S, Vanhollebeke B. Engineered Wnt ligands enable blood-brain barrier repair in neurological disorders. Science 2022; 375:eabm4459. [PMID: 35175798 DOI: 10.1126/science.abm4459] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The blood-brain barrier (BBB) protects the central nervous system (CNS) from harmful blood-borne factors. Although BBB dysfunction is a hallmark of several neurological disorders, therapies to restore BBB function are lacking. An attractive strategy is to repurpose developmental BBB regulators, such as Wnt7a, into BBB-protective agents. However, safe therapeutic use of Wnt ligands is complicated by their pleiotropic Frizzled signaling activities. Taking advantage of the Wnt7a/b-specific Gpr124/Reck co-receptor complex, we genetically engineered Wnt7a ligands into BBB-specific Wnt activators. In a "hit-and-run" adeno-associated virus-assisted CNS gene delivery setting, these new Gpr124/Reck-specific agonists protected BBB function, thereby mitigating glioblastoma expansion and ischemic stroke infarction. This work reveals that the signaling specificity of Wnt ligands is adjustable and defines a modality to treat CNS disorders by normalizing the BBB.
Collapse
Affiliation(s)
- Maud Martin
- Laboratory of Neurovascular Signaling, Department of Molecular Biology, ULB Neuroscience Institute, Université libre de Bruxelles, Gosselies B-6041, Belgium
| | - Simon Vermeiren
- Laboratory of Neurovascular Signaling, Department of Molecular Biology, ULB Neuroscience Institute, Université libre de Bruxelles, Gosselies B-6041, Belgium
| | - Naguissa Bostaille
- Laboratory of Neurovascular Signaling, Department of Molecular Biology, ULB Neuroscience Institute, Université libre de Bruxelles, Gosselies B-6041, Belgium
| | - Marie Eubelen
- Laboratory of Neurovascular Signaling, Department of Molecular Biology, ULB Neuroscience Institute, Université libre de Bruxelles, Gosselies B-6041, Belgium
| | - Daniel Spitzer
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Marjorie Vermeersch
- Center for Microscopy and Molecular Imaging, Université libre de Bruxelles, Université de Mons, Gosselies B-6041, Belgium
| | - Caterina P Profaci
- Departments of Pharmacology and Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Elisa Pozuelo
- Laboratory of Neurophysiology, ULB Neuroscience Institute, Université libre de Bruxelles, Brussels B-1070, Belgium
| | - Xavier Toussay
- Ottawa Hospital Research Institute, Neuroscience Program, Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research Institute, Faculty of Medicine, Ottawa, Ontario, Canada
| | - Joanna Raman-Nair
- Ottawa Hospital Research Institute, Neuroscience Program, Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research Institute, Faculty of Medicine, Ottawa, Ontario, Canada
| | - Patricia Tebabi
- Laboratory of Neurovascular Signaling, Department of Molecular Biology, ULB Neuroscience Institute, Université libre de Bruxelles, Gosselies B-6041, Belgium
| | - Michelle America
- Laboratory of Neurovascular Signaling, Department of Molecular Biology, ULB Neuroscience Institute, Université libre de Bruxelles, Gosselies B-6041, Belgium
| | - Aurélie De Groote
- Laboratory of Neurophysiology, ULB Neuroscience Institute, Université libre de Bruxelles, Brussels B-1070, Belgium
| | - Leslie E Sanderson
- Laboratory of Neurovascular Signaling, Department of Molecular Biology, ULB Neuroscience Institute, Université libre de Bruxelles, Gosselies B-6041, Belgium
| | - Pauline Cabochette
- Laboratory of Neurovascular Signaling, Department of Molecular Biology, ULB Neuroscience Institute, Université libre de Bruxelles, Gosselies B-6041, Belgium
| | - Raoul F V Germano
- Laboratory of Neurovascular Signaling, Department of Molecular Biology, ULB Neuroscience Institute, Université libre de Bruxelles, Gosselies B-6041, Belgium
| | - David Torres
- Institut d'Immunologie Médicale, Université libre de Bruxelles, Gosselies, Belgium
| | - Sébastien Boutry
- Center for Microscopy and Molecular Imaging, Université libre de Bruxelles, Université de Mons, Gosselies B-6041, Belgium
| | - Alban de Kerchove d'Exaerde
- Laboratory of Neurophysiology, ULB Neuroscience Institute, Université libre de Bruxelles, Brussels B-1070, Belgium
| | - Eric J Bellefroid
- Laboratory of Developmental Genetics, ULB Neuroscience Institute, Université libre de Bruxelles, Gosselies B-6041, Belgium
| | - Timothy N Phoenix
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, USA
| | - Kavi Devraj
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Baptiste Lacoste
- Ottawa Hospital Research Institute, Neuroscience Program, Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research Institute, Faculty of Medicine, Ottawa, Ontario, Canada
| | - Richard Daneman
- Departments of Pharmacology and Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Stefan Liebner
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Benoit Vanhollebeke
- Laboratory of Neurovascular Signaling, Department of Molecular Biology, ULB Neuroscience Institute, Université libre de Bruxelles, Gosselies B-6041, Belgium.,Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Wavre, Belgium
| |
Collapse
|
36
|
Menaceur C, Gosselet F, Fenart L, Saint-Pol J. The Blood-Brain Barrier, an Evolving Concept Based on Technological Advances and Cell-Cell Communications. Cells 2021; 11:cells11010133. [PMID: 35011695 PMCID: PMC8750298 DOI: 10.3390/cells11010133] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/27/2021] [Accepted: 12/30/2021] [Indexed: 02/07/2023] Open
Abstract
The construction of the blood–brain barrier (BBB), which is a natural barrier for maintaining brain homeostasis, is the result of a meticulous organisation in space and time of cell–cell communication processes between the endothelial cells that carry the BBB phenotype, the brain pericytes, the glial cells (mainly the astrocytes), and the neurons. The importance of these communications for the establishment, maturation and maintenance of this unique phenotype had already been suggested in the pioneering work to identify and demonstrate the BBB. As for the history of the BBB, the evolution of analytical techniques has allowed knowledge to evolve on the cell–cell communication pathways involved, as well as on the role played by the cells constituting the neurovascular unit in the maintenance of the BBB phenotype, and more particularly the brain pericytes. This review summarises the key points of the history of the BBB, from its origin to the current knowledge of its physiology, as well as the cell–cell communication pathways identified so far during its development, maintenance, and pathophysiological alteration.
Collapse
|
37
|
Lamplugh Z, Fan Y. Vascular Microenvironment, Tumor Immunity and Immunotherapy. Front Immunol 2021; 12:811485. [PMID: 34987525 PMCID: PMC8720970 DOI: 10.3389/fimmu.2021.811485] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 11/29/2021] [Indexed: 01/01/2023] Open
Abstract
Immunotherapy holds great promise for treating cancer. Nonetheless, T cell-based immunotherapy of solid tumors has remained challenging, largely due to the lack of universal tumor-specific antigens and an immunosuppressive tumor microenvironment (TME) that inhibits lymphocyte infiltration and activation. Aberrant vascularity characterizes malignant solid tumors, which fuels the formation of an immune-hostile microenvironment and induces tumor resistance to immunotherapy, emerging as a crucial target for adjuvant treatment in cancer immunotherapy. In this review, we discuss the molecular and cellular basis of vascular microenvironment-mediated tumor evasion of immune responses and resistance to immunotherapy, with a focus on vessel abnormality, dysfunctional adhesion, immunosuppressive niche, and microenvironmental stress in tumor vasculature. We provide an overview of opportunities and challenges related to these mechanisms. We also propose genetic programming of tumor endothelial cells as an alternative approach to recondition the vascular microenvironment and to overcome tumor resistance to immunotherapy.
Collapse
Affiliation(s)
| | - Yi Fan
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
38
|
van Ingen E, Foks AC, Woudenberg T, van der Bent ML, de Jong A, Hohensinner PJ, Wojta J, Bot I, Quax PHA, Nossent AY. Inhibition of microRNA-494-3p activates Wnt signaling and reduces proinflammatory macrophage polarization in atherosclerosis. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:1228-1239. [PMID: 34853722 PMCID: PMC8607137 DOI: 10.1016/j.omtn.2021.10.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/24/2021] [Accepted: 10/28/2021] [Indexed: 12/31/2022]
Abstract
We have previously shown that treatment with third-generation antisense oligonucleotides against miR-494-3p (3GA-494) reduces atherosclerotic plaque progression and stabilizes lesions, both in early and established plaques, with reduced macrophage content in established plaques. Within the plaque, different subtypes of macrophages are present. Here, we aimed to investigate whether miR-494-3p directly influences macrophage polarization and activation. Human macrophages were polarized into either proinflammatory M1 or anti-inflammatory M2 macrophages and simultaneously treated with 3GA-494 or a control antisense (3GA-ctrl). We show that 3GA-494 treatment inhibited miR-494-3p in M1 macrophages and dampened M1 polarization, while in M2 macrophages miR-494-3p expression was induced and M2 polarization enhanced. The proinflammatory marker CCR2 was reduced in 3GA-494-treated atherosclerosis-prone mice. Pathway enrichment analysis predicted an overlap between miR-494-3p target genes in macrophage polarization and Wnt signaling. We demonstrate that miR-494-3p regulates expression levels of multiple Wnt signaling components, such as LRP6 and TBL1X. Wnt signaling appears activated upon treatment with 3GA-494, both in cultured M1 macrophages and in plaques of hypercholesterolemic mice. Taken together, 3GA-494 treatment dampened M1 polarization, at least in part via activated Wnt signaling, while M2 polarization was enhanced, which is both favorable in reducing atherosclerotic plaque formation and increasing plaque stability.
Collapse
Affiliation(s)
- Eva van Ingen
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, the Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2300 RC Leiden, the Netherlands.,Division of BioTherapeutics, LACDR, Leiden University, 2333 CC Leiden, The Netherlands
| | - Amanda C Foks
- Division of BioTherapeutics, LACDR, Leiden University, 2333 CC Leiden, The Netherlands
| | - Tamar Woudenberg
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, the Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - M Leontien van der Bent
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, the Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Alwin de Jong
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, the Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Philipp J Hohensinner
- Department of Internal Medicine II, Medical, University of Vienna, 1090 Vienna, Austria
| | - Johann Wojta
- Department of Internal Medicine II, Medical, University of Vienna, 1090 Vienna, Austria.,Ludwig Boltzmann Institute for Cardiovascular Research, 1090 Vienna, Austria
| | - Ilze Bot
- Division of BioTherapeutics, LACDR, Leiden University, 2333 CC Leiden, The Netherlands
| | - Paul H A Quax
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, the Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Anne Yaël Nossent
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, the Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2300 RC Leiden, the Netherlands.,Department of Internal Medicine II, Medical, University of Vienna, 1090 Vienna, Austria.,Department of Laboratory Medicine, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
39
|
Trejo-Solis C, Escamilla-Ramirez A, Jimenez-Farfan D, Castillo-Rodriguez RA, Flores-Najera A, Cruz-Salgado A. Crosstalk of the Wnt/β-Catenin Signaling Pathway in the Induction of Apoptosis on Cancer Cells. Pharmaceuticals (Basel) 2021; 14:ph14090871. [PMID: 34577571 PMCID: PMC8465904 DOI: 10.3390/ph14090871] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 12/13/2022] Open
Abstract
The Wnt/β-catenin signaling pathway plays a major role in cell survival and proliferation, as well as in angiogenesis, migration, invasion, metastasis, and stem cell renewal in various cancer types. However, the modulation (either up- or downregulation) of this pathway can inhibit cell proliferation and apoptosis both through β-catenin-dependent and independent mechanisms, and by crosstalk with other signaling pathways in a wide range of malignant tumors. Existing studies have reported conflicting results, indicating that the Wnt signaling can have both oncogenic and tumor-suppressing roles, depending on the cellular context. This review summarizes the available information on the role of the Wnt/β-catenin pathway and its crosstalk with other signaling pathways in apoptosis induction in cancer cells and presents a modified dual-signal model for the function of β-catenin. Understanding the proapoptotic mechanisms induced by the Wnt/β-catenin pathway could open new therapeutic opportunities.
Collapse
Affiliation(s)
- Cristina Trejo-Solis
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (A.E.-R.); (A.C.-S.)
- Correspondence:
| | - Angel Escamilla-Ramirez
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (A.E.-R.); (A.C.-S.)
| | - Dolores Jimenez-Farfan
- Laboratorio de Inmunología, División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico;
| | | | - Athenea Flores-Najera
- Centro Médico Nacional 20 de Noviembre, Departamento de Cirugía General, Ciudad de Mexico 03229, Mexico;
| | - Arturo Cruz-Salgado
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (A.E.-R.); (A.C.-S.)
| |
Collapse
|
40
|
Subramaniam N, Nair R, Marsden PA. Epigenetic Regulation of the Vascular Endothelium by Angiogenic LncRNAs. Front Genet 2021; 12:668313. [PMID: 34512715 PMCID: PMC8427604 DOI: 10.3389/fgene.2021.668313] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/17/2021] [Indexed: 12/15/2022] Open
Abstract
The functional properties of the vascular endothelium are diverse and heterogeneous between vascular beds. This is especially evident when new blood vessels develop from a pre-existing closed cardiovascular system, a process termed angiogenesis. Endothelial cells are key drivers of angiogenesis as they undergo a highly choreographed cascade of events that has both exogenous (e.g., hypoxia and VEGF) and endogenous regulatory inputs. Not surprisingly, angiogenesis is critical in health and disease. Diverse therapeutics target proteins involved in coordinating angiogenesis with varying degrees of efficacy. It is of great interest that recent work on non-coding RNAs, especially long non-coding RNAs (lncRNAs), indicates that they are also important regulators of the gene expression paradigms that underpin this cellular cascade. The protean effects of lncRNAs are dependent, in part, on their subcellular localization. For instance, lncRNAs enriched in the nucleus can act as epigenetic modifiers of gene expression in the vascular endothelium. Of great interest to genetic disease, they are undergoing rapid evolution and show extensive inter- and intra-species heterogeneity. In this review, we describe endothelial-enriched lncRNAs that have robust effects in angiogenesis.
Collapse
Affiliation(s)
- Noeline Subramaniam
- Marsden Lab, Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Marsden Lab, Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON, Canada
| | - Ranju Nair
- Marsden Lab, Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON, Canada
- Marsden Lab, Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Philip A. Marsden
- Marsden Lab, Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Marsden Lab, Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON, Canada
- Marsden Lab, Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
41
|
Wei X, Meel MH, Breur M, Bugiani M, Hulleman E, Phoenix TN. Defining tumor-associated vascular heterogeneity in pediatric high-grade and diffuse midline gliomas. Acta Neuropathol Commun 2021; 9:142. [PMID: 34425907 PMCID: PMC8381557 DOI: 10.1186/s40478-021-01243-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/10/2021] [Indexed: 12/23/2022] Open
Abstract
The blood–brain barrier (BBB) plays important roles in brain tumor pathogenesis and treatment response, yet our understanding of its function and heterogeneity within or across brain tumor types remains poorly characterized. Here we analyze the neurovascular unit (NVU) of pediatric high-grade glioma (pHGG) and diffuse midline glioma (DMG) using patient derived xenografts and natively forming glioma mouse models. We show tumor-associated vascular differences between these glioma subtypes, and parallels between PDX and mouse model systems, with DMG models maintaining a more normal vascular architecture, BBB function and endothelial transcriptional program relative to pHGG models. Unlike prior work in angiogenic brain tumors, we find that expression of secreted Wnt antagonists do not alter the tumor-associated vascular phenotype in DMG tumor models. Together, these findings highlight vascular heterogeneity between pHGG and DMG and differences in their response to alterations in developmental BBB signals that may participate in driving these pathological differences.
Collapse
|
42
|
Dugina VB, Shagieva GS, Shakhov AS, Alieva IB. The Cytoplasmic Actins in the Regulation of Endothelial Cell Function. Int J Mol Sci 2021; 22:ijms22157836. [PMID: 34360602 PMCID: PMC8345992 DOI: 10.3390/ijms22157836] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/17/2021] [Accepted: 07/19/2021] [Indexed: 01/22/2023] Open
Abstract
The primary function of the endothelial cells (EC) lining the inner surface of all vessels is to regulate permeability of vascular walls and to control exchange between circulating blood and tissue fluids of organs. The EC actin cytoskeleton plays a crucial role in maintaining endothelial barrier function. Actin cytoskeleton reorganization result in EC contraction and provides a structural basis for the increase in vascular permeability, which is typical for many diseases. Actin cytoskeleton in non-muscle cells presented two actin isoforms: non-muscle β-cytoplasmic and γ-cytoplasmic actins (β-actins and γ-actins), which are encoded by ACTB and ACTG1 genes, respectively. They are ubiquitously expressed in the different cells in vivo and in vitro and the β/γ-actin ratio depends on the cell type. Both cytoplasmic actins are essential for cell survival, but they perform various functions in the interphase and cell division and play different roles in neoplastic transformation. In this review, we briefly summarize the research results of recent years and consider the features of the cytoplasmic actins: The spatial organization in close connection with their functional activity in different cell types by focusing on endothelial cells.
Collapse
Affiliation(s)
- Vera B. Dugina
- A.N. Belozersky Institute of Physical and Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (V.B.D.); (G.S.S.); (A.S.S.)
| | - Galina S. Shagieva
- A.N. Belozersky Institute of Physical and Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (V.B.D.); (G.S.S.); (A.S.S.)
| | - Anton S. Shakhov
- A.N. Belozersky Institute of Physical and Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (V.B.D.); (G.S.S.); (A.S.S.)
| | - Irina B. Alieva
- A.N. Belozersky Institute of Physical and Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (V.B.D.); (G.S.S.); (A.S.S.)
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1a Malaya Pirogovskaya St., 119435 Moscow, Russia
- Correspondence:
| |
Collapse
|
43
|
Bioinspired artificial exosomes based on lipid nanoparticles carrying let-7b-5p promote angiogenesis in vitro and in vivo. Mol Ther 2021; 29:2239-2252. [PMID: 33744469 PMCID: PMC8261169 DOI: 10.1016/j.ymthe.2021.03.015] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 01/18/2021] [Accepted: 03/15/2021] [Indexed: 01/07/2023] Open
Abstract
MicroRNAs (miRNAs) regulate gene expression by post-transcriptional inhibition of target genes. Proangiogenic small extracellular vesicles (sEVs; popularly identified with the name "exosomes") with a composite cargo of miRNAs are secreted by cultured stem cells and present in human biological fluids. Lipid nanoparticles (LNPs) represent an advanced platform for clinically approved delivery of RNA therapeutics. In this study, we aimed to (1) identify the miRNAs responsible for sEV-induced angiogenesis; (2) develop the prototype of bioinspired "artificial exosomes" (AEs) combining LNPs with a proangiogenic miRNA, and (3) validate the angiogenic potential of the bioinspired AEs. We previously reported that human sEVs from bone marrow (BM)-CD34+ cells and pericardial fluid (PF) are proangiogenic. Here, we have shown that sEVs secreted from saphenous vein pericytes and BM mesenchymal stem cells also promote angiogenesis. Analysis of miRNA datasets available in-house or datamined from GEO identified the let-7 family as common miRNA signature of the proangiogenic sEVs. LNPs with either hsa-let-7b-5p or cyanine 5 (Cy5)-conjugated Caenorhabditis elegans miR-39 (Cy5-cel-miR-39; control miRNA) were prepared using microfluidic micromixing. let-7b-5p-AEs did not cause toxicity and transferred functionally active let-7b-5p to recipient endothelial cells (ECs). let-7b-AEs also improved EC survival under hypoxia and angiogenesis in vitro and in vivo. Bioinspired proangiogenic AEs could be further developed into innovative nanomedicine products targeting ischemic diseases.
Collapse
|
44
|
Petridis PD, Horenstein C, Pereira B, Wu P, Samanamud J, Marie T, Boyett D, Sudhakar T, Sheth SA, McKhann GM, Sisti MB, Bruce JN, Canoll P, Grinband J. BOLD Asynchrony Elucidates Tumor Burden in IDH-Mutated Gliomas. Neuro Oncol 2021; 24:78-87. [PMID: 34214170 DOI: 10.1093/neuonc/noab154] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Gliomas comprise the most common type of primary brain tumor, are highly invasive, and often fatal. IDH-mutated gliomas are particularly challenging to image and there is currently no clinically accepted method for identifying the extent of tumor burden in these neoplasms. This uncertainty poses a challenge to clinicians who must balance the need to treat the tumor while sparing healthy brain from iatrogenic damage. The purpose of this study was to investigate the feasibility of using resting-state blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) to detect glioma-related asynchrony in vascular dynamics for distinguishing tumor from healthy brain. METHODS Twenty-four stereotactically localized biopsies were obtained during open surgical resection from ten treatment-naïve patients with IDH-mutated gliomas who received standard of care preoperative imaging as well as echo-planar resting-state BOLD fMRI. Signal intensity for BOLD asynchrony and standard of care imaging was compared to cell counts of total cellularity (H&E), tumor density (IDH1 & Sox2), cellular proliferation (Ki67), and neuronal density (NeuN), for each corresponding sample. RESULTS BOLD asynchrony was directly related to total cellularity (H&E, p = 4 x 10 -5), tumor density (IDH1, p = 4 x 10 -5; Sox2, p = 3 x 10 -5), cellular proliferation (Ki67, p = 0.002), and as well as inversely related to neuronal density (NeuN, p = 1 x 10 -4). CONCLUSIONS Asynchrony in vascular dynamics, as measured by resting-state BOLD fMRI, correlates with tumor burden and provides a radiographic delineation of tumor boundaries in IDH-mutated gliomas.
Collapse
Affiliation(s)
- Petros D Petridis
- Vagelos College of Physicians & Surgeons, Columbia University, New York, New York USA.,Department of Psychiatry, New York University, New York, New York, USA
| | - Craig Horenstein
- Department of Radiology, School of Medicine at Hofstra/Northwell, Manhasset, New York USA
| | - Brianna Pereira
- Vagelos College of Physicians & Surgeons, Columbia University, New York, New York USA
| | - Peter Wu
- Vagelos College of Physicians & Surgeons, Columbia University, New York, New York USA
| | - Jorge Samanamud
- Department of Neurological Surgery, Columbia University, New York, New York USA
| | - Tamara Marie
- Department of Pediatrics Oncology, Columbia University, New York, New York USA
| | - Deborah Boyett
- Department of Neurological Surgery, Columbia University, New York, New York USA
| | - Tejaswi Sudhakar
- Department of Neurological Surgery, Columbia University, New York, New York USA
| | - Sameer A Sheth
- Department of Neurological Surgery, Baylor College of Medicine, Houston, Texas, USA
| | - Guy M McKhann
- Department of Neurological Surgery, Columbia University, New York, New York USA
| | - Michael B Sisti
- Department of Neurological Surgery, Columbia University, New York, New York USA
| | - Jeffrey N Bruce
- Department of Neurological Surgery, Columbia University, New York, New York USA
| | - Peter Canoll
- Department of Pathology & Cell Biology, Columbia University, New York, New York USA
| | - Jack Grinband
- Department of Radiology, Columbia University, New York, New York, USA.,Department of Psychiatry, Columbia University, New York, New York, USA
| |
Collapse
|
45
|
Huang M, Zhang D, Wu JY, Xing K, Yeo E, Li C, Zhang L, Holland E, Yao L, Qin L, Binder ZA, O'Rourke DM, Brem S, Koumenis C, Gong Y, Fan Y. Wnt-mediated endothelial transformation into mesenchymal stem cell-like cells induces chemoresistance in glioblastoma. Sci Transl Med 2021; 12:12/532/eaay7522. [PMID: 32102932 DOI: 10.1126/scitranslmed.aay7522] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 12/25/2019] [Indexed: 12/12/2022]
Abstract
Therapeutic resistance remains a persistent challenge for patients with malignant tumors. Here, we reveal that endothelial cells (ECs) acquire transformation into mesenchymal stem cell (MSC)-like cells in glioblastoma (GBM), driving tumor resistance to cytotoxic treatment. Transcriptome analysis by RNA sequencing (RNA-seq) revealed that ECs undergo mesenchymal transformation and stemness-like activation in GBM microenvironment. Furthermore, we identified a c-Met-mediated axis that induces β-catenin phosphorylation at Ser675 and Wnt signaling activation, inducing multidrug resistance-associated protein-1(MRP-1) expression and leading to EC stemness-like activation and chemoresistance. Last, genetic ablation of β-catenin in ECs overcome GBM tumor resistance to temozolomide (TMZ) chemotherapy in vivo. Combination of Wnt inhibition and TMZ chemotherapy eliminated tumor-associated ECs, inhibited GBM growth, and increased mouse survival. These findings identified a cell plasticity-based, microenvironment-dependent mechanism that controls tumor chemoresistance, and suggest that targeting Wnt/β-catenin-mediated EC transformation and stemness activation may overcome therapeutic resistance in GBM.
Collapse
Affiliation(s)
- Menggui Huang
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Duo Zhang
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Janet Y Wu
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.,Department of Biology, Oberlin College, Oberlin, OH 44074, USA
| | - Kun Xing
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Eujin Yeo
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Chunsheng Li
- Department of Obstetrics and Gynecology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Lin Zhang
- Department of Obstetrics and Gynecology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Eric Holland
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Lutian Yao
- Department of Orthopedic Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Ling Qin
- Department of Orthopedic Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Zev A Binder
- Department of Neurosurgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.,Glioblastoma Translational Center of Excellence, University of Pennsylvania Abramson Cancer Center, Philadelphia, PA 19104, USA
| | - Donald M O'Rourke
- Department of Neurosurgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.,Glioblastoma Translational Center of Excellence, University of Pennsylvania Abramson Cancer Center, Philadelphia, PA 19104, USA
| | - Steven Brem
- Department of Neurosurgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.,Glioblastoma Translational Center of Excellence, University of Pennsylvania Abramson Cancer Center, Philadelphia, PA 19104, USA
| | - Constantinos Koumenis
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Yanqing Gong
- Division of Human Genetics and Translational Medicine, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Yi Fan
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA. .,Department of Neurosurgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.,Glioblastoma Translational Center of Excellence, University of Pennsylvania Abramson Cancer Center, Philadelphia, PA 19104, USA
| |
Collapse
|
46
|
Zheng R, Li F, Li F, Gong A. Targeting tumor vascularization: promising strategies for vascular normalization. J Cancer Res Clin Oncol 2021; 147:2489-2505. [PMID: 34148156 DOI: 10.1007/s00432-021-03701-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 06/14/2021] [Indexed: 12/17/2022]
Abstract
Tumor recurrence after the clinical cure of tumor often results from the presence of an abnormal microenvironment, including an aberrant vasculature. The tumor microenvironment is rich in pro-angiogenic factors but lacks pro-maturation factors. Pro-angiogenic conditions in the tumor microenvironment, such as hypoxia, are double-edged swords, promoting both the repair of normal tissues and the development of an abnormal blood vessel network. The coexistence of perfusion and hypoxic zones and uneven blood vessel distribution in tumor tissues profoundly influence tumor deterioration, recurrence, and metastasis. Traditional anti-angiogenic therapies have shown limited efficacy, and promote drug resistance, and even metastasis. In contrast, vascular normalization therapy induces a more physiological-like state, leading to better outcomes and fewer side effects. Vascular normalization entails modifying the tumor vascular system to improve tumor oxygenation and substance transport, thereby contributing to improving the efficacy of radiotherapy, chemotherapy, and immunotherapy. This review mainly focuses on the process of tumor vascularization; potential therapeutic targets, including cells, metabolism, signaling pathways, and angiogenesis-related genes; and possible strategies to normalize blood vessels through regulating tumor vessel generation, the development of tumor vessels, and blood vessel fusion and pruning.
Collapse
Affiliation(s)
- Ruiqi Zheng
- Department of Cell Biology, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212003, Jiangsu, China
| | - Feifan Li
- Department of Cell Biology, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212003, Jiangsu, China
| | - Fengcen Li
- Department of Cell Biology, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212003, Jiangsu, China
| | - Aihua Gong
- Department of Cell Biology, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212003, Jiangsu, China.
| |
Collapse
|
47
|
Wang F, Qian H, Kong L, Wang W, Wang X, Xu Z, Chai Y, Xu J, Kang Q. Accelerated Bone Regeneration by Astragaloside IV through Stimulating the Coupling of Osteogenesis and Angiogenesis. Int J Biol Sci 2021; 17:1821-1836. [PMID: 33994865 PMCID: PMC8120474 DOI: 10.7150/ijbs.57681] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/04/2021] [Indexed: 12/20/2022] Open
Abstract
Both osteoblasts and preosteoclasts contribute to the coupling of osteogenesis and angiogenesis, regulating bone regeneration. Astragaloside IV (AS-IV), a glycoside of cycloartane-type triterpene derived from the Chinese herb Astragalus membranaceus, exhibits various biological activities, including stimulating angiogenesis and attenuating ischemic-hypoxic injury. However, the effects and underlying mechanisms of AS-IV in osteogenesis, osteoclastogenesis, and bone regeneration remain poorly understood. In the present study, we found that AS-IV treatment inhibited osteoclastogenesis, preserved preosteoclasts, and enhanced platelet-derived growth factor-BB (PDGF-BB)-induced angiogenesis. Additionally, AS-IV promoted cell viability, osteogenic differentiation, and angiogenic gene expression in bone marrow mesenchymal stem cells (BMSCs). The activation of AKT/GSK-3β/β-catenin signaling was found to contribute to the effects of AS-IV on osteoclastogenesis and osteogenesis. Furthermore, AS-IV accelerated bone regeneration during distraction osteogenesis (DO), as evidenced from the improved radiological and histological manifestations and biomechanical parameters, accompanied by enhanced angiogenesis within the distraction zone. In summary, AS-IV accelerates bone regeneration during DO, by enhancing osteogenesis and preosteoclast-induced angiogenesis simultaneously, partially through AKT/GSK-3β/β-catenin signaling. These findings reveal that AS-IV may serve as a potential bioactive molecule for promoting the coupling of osteogenesis and angiogenesis, and imply that AKT/GSK-3β/β-catenin signaling may be a promising therapeutic target for patients during DO treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jia Xu
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, PR China
| | - Qinglin Kang
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, PR China
| |
Collapse
|
48
|
Expression profiles and prognostic significance of WNT family members in glioma via bioinformatic analysis. Biosci Rep 2021; 40:222401. [PMID: 32181818 PMCID: PMC7103590 DOI: 10.1042/bsr20194255] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/13/2020] [Accepted: 03/16/2020] [Indexed: 01/11/2023] Open
Abstract
AIMS The dysregulation and essential role of WNTs in glioma have been widely implicated. However, there is a paucity of literature on the expression status of all the 19 WNTs in glioma. Our study was aimed to evaluate the expression and prognostic values of the 19 WNTs in glioma. METHODS mRNA expression and clinical data were retrieved from the Cancer Genome Atlas (TCGA) database, Chinese Glioma Genome Atlas (CGGA), GTEx and ONCOMINE databases. The 50 frequent neighbor genes of WNT5A and WNT10B were shown with PPI network, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. RESULTS We found that the mRNA expression of WNT5A was significantly higher in glioma; however, the WNT10B expression was significantly lower in glioma. Furthermore, the expression of WNT5A and WNT10B was associated with the clinicopathology of glioma. The survival analysis revealed that the higher expressions of WNT5A and WNT16 were associated poor overall survival (OS) in patients with glioma. Conversely, overexpression of WNT3, WNT5B, and WNT10B was associated with better OS. Finally, Go and KEGG analysis revealed WNT5A was associated with multiple signal translations, and crucial oncogenes (EGFR and MDM2) and 2 important tumor suppressors (PTEN and IKN4a/ARF) were found closely correlated with WNT5A in glioma. CONCLUSION Among 19WNTs, WNT5A can serve as a candidate to diagnose and therapy glioma, while WNT10B might be valuable for anti-glioma research. The presumed direction was provided to explore the relation of WNTs signal and multiple pathways in glioma.
Collapse
|
49
|
Ta S, Rong X, Guo Z, Jin H, Zhang P, Li F, Li Z, Lin L, Zheng C, Gu Q, Zhang Y, Liu W, Yang Y, Chang J. Variants of WNT7A and GPR124 are associated with hemorrhagic transformation following intravenous thrombolysis in ischemic stroke. CNS Neurosci Ther 2021; 27:71-81. [PMID: 32991049 PMCID: PMC7804912 DOI: 10.1111/cns.13457] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 12/16/2022] Open
Abstract
AIMS The canonical Wnt signaling pathway plays an essential role in blood-brain barrier integrity and intracerebral hemorrhage in preclinical stroke models. Here, we sought to explore the association between canonical Wnt signaling and hemorrhagic transformation (HT) following intravenous thrombolysis (IVT) in acute ischemic stroke (AIS) patients as well as to determine the underlying cellular mechanisms. METHODS 355 consecutive AIS patients receiving IVT were included. Blood samples were collected on admission, and HT was detected at 24 hours after IVT. 117 single-nucleotide polymorphisms (SNPs) of 28 Wnt signaling genes and exon sequences of 4 core cerebrovascular Wnt signaling components (GPR124, RECK, FZD4, and CTNNB1) were determined using a customized sequencing chip. The impact of identified genetic variants was further studied in HEK 293T cells using cellular and biochemical assays. RESULTS During the study period, 80 patients experienced HT with 27 parenchymal hematoma (PH). Compared to the non-PH patients, WNT7A SNPs (rs2163910, P = .001, OR 2.727; rs1124480, P = .002, OR 2.404) and GPR124 SNPs (rs61738775, P = .012, OR 4.883; rs146016051, P < .001, OR 7.607; rs75336000, P = .044, OR 2.503) were selectively enriched in the PH patients. Interestingly, a missense variant of GPR124 (rs75336000, c.3587G>A) identified in the PH patients resulted in a single amino acid alteration (p.Cys1196Tyr) in the intracellular domain of GPR124. This variant substantially reduced the activity of WNT7B-induced canonical Wnt signaling by decreasing the ability of GPR124 to recruit cytoplasmic DVL1 to the cellular membrane. CONCLUSION Variants of WNT7A and GPR124 are associated with increased risk of PH in patients with AIS after intravenous thrombolysis, likely through regulating the activity of canonical Wnt signaling.
Collapse
Affiliation(s)
- Song Ta
- Department of NeurologyThe First Hospital of Jilin UniversityChangchunChina
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Xianfang Rong
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Zhen‐Ni Guo
- Department of NeurologyThe First Hospital of Jilin UniversityChangchunChina
| | - Hang Jin
- Department of NeurologyThe First Hospital of Jilin UniversityChangchunChina
| | - Peng Zhang
- Department of NeurologyThe First Hospital of Jilin UniversityChangchunChina
| | - Fenge Li
- Department of NeurologyThe First Hospital of Jilin UniversityChangchunChina
| | - Zhihuan Li
- Dongguan Enlife Stem Cell Biotechnology InstituteDongguanChina
| | - Lilong Lin
- Dongguan Enlife Stem Cell Biotechnology InstituteDongguanChina
| | | | - Qingquan Gu
- Shenzhen RealOmics Biotech Co., Ltd.ShenzhenChina
| | - Yuan Zhang
- The Central Laboratory, Shenzhen Second People's Hospital, Shenzhen University 1st Affiliated HospitalShenzhen University School of MedicineShenzhenChina
| | - Wenlan Liu
- The Central Laboratory, Shenzhen Second People's Hospital, Shenzhen University 1st Affiliated HospitalShenzhen University School of MedicineShenzhenChina
| | - Yi Yang
- Department of NeurologyThe First Hospital of Jilin UniversityChangchunChina
| | - Junlei Chang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| |
Collapse
|
50
|
Profaci CP, Munji RN, Pulido RS, Daneman R. The blood-brain barrier in health and disease: Important unanswered questions. J Exp Med 2020; 217:151582. [PMID: 32211826 PMCID: PMC7144528 DOI: 10.1084/jem.20190062] [Citation(s) in RCA: 422] [Impact Index Per Article: 84.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/21/2019] [Accepted: 11/21/2019] [Indexed: 12/11/2022] Open
Abstract
The blood vessels vascularizing the central nervous system exhibit a series of distinct properties that tightly control the movement of ions, molecules, and cells between the blood and the parenchyma. This "blood-brain barrier" is initiated during angiogenesis via signals from the surrounding neural environment, and its integrity remains vital for homeostasis and neural protection throughout life. Blood-brain barrier dysfunction contributes to pathology in a range of neurological conditions including multiple sclerosis, stroke, and epilepsy, and has also been implicated in neurodegenerative diseases such as Alzheimer's disease. This review will discuss current knowledge and key unanswered questions regarding the blood-brain barrier in health and disease.
Collapse
Affiliation(s)
- Caterina P Profaci
- Department of Neurosciences, University of California, San Diego, San Diego, CA.,Department of Pharmacology, University of California, San Diego, San Diego, CA
| | - Roeben N Munji
- Department of Neurosciences, University of California, San Diego, San Diego, CA.,Department of Pharmacology, University of California, San Diego, San Diego, CA
| | - Robert S Pulido
- Department of Neurosciences, University of California, San Diego, San Diego, CA.,Department of Pharmacology, University of California, San Diego, San Diego, CA
| | - Richard Daneman
- Department of Neurosciences, University of California, San Diego, San Diego, CA.,Department of Pharmacology, University of California, San Diego, San Diego, CA
| |
Collapse
|