1
|
Shin B, Chang SJ, MacNabb BW, Rothenberg EV. Transcriptional network dynamics in early T cell development. J Exp Med 2024; 221:e20230893. [PMID: 39167073 PMCID: PMC11338287 DOI: 10.1084/jem.20230893] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/07/2024] [Accepted: 07/10/2024] [Indexed: 08/23/2024] Open
Abstract
The rate at which cells enter the T cell pathway depends not only on the immigration of hematopoietic precursors into the strong Notch signaling environment of the thymus but also on the kinetics with which each individual precursor cell reaches T-lineage commitment once it arrives. Notch triggers a complex, multistep gene regulatory network in the cells in which the steps are stereotyped but the transition speeds between steps are variable. Progenitor-associated transcription factors delay T-lineage differentiation even while Notch-induced transcription factors within the same cells push differentiation forward. Progress depends on regulator cross-repression, on breaching chromatin barriers, and on shifting, competitive collaborations between stage-specific and stably expressed transcription factors, as reviewed here.
Collapse
Affiliation(s)
- Boyoung Shin
- Division of Biology and Biological Engineering California Institute of Technology , Pasadena, CA, USA
| | - Samantha J Chang
- Division of Biology and Biological Engineering California Institute of Technology , Pasadena, CA, USA
| | - Brendan W MacNabb
- Division of Biology and Biological Engineering California Institute of Technology , Pasadena, CA, USA
| | - Ellen V Rothenberg
- Division of Biology and Biological Engineering California Institute of Technology , Pasadena, CA, USA
| |
Collapse
|
2
|
Montecino-Rodriguez E, Estrada OI, Dorshkind K. Transient PU.1 low fetal progenitors generate lymphoid progeny that contribute to adult immunity. Life Sci Alliance 2024; 7:e202402629. [PMID: 38830768 PMCID: PMC11147949 DOI: 10.26508/lsa.202402629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/05/2024] Open
Abstract
Hematopoietic stem cells and multipotential progenitors emerge in multiple, overlapping waves of fetal development. Some of these populations seed the bone marrow and sustain adult B- and T-cell development long-term after birth. However, others are present transiently, but whether they are vestigial or generate B and T cells that contribute to the adult immune system is not well understood. We now report that transient fetal progenitors distinguished by expression of low levels of the PU.1 transcription factor generated activated and memory T and B cells that colonized and were maintained in secondary lymphoid tissues. These included the small and large intestines, where they may contribute to the maintenance of gut homeostasis through at least middle age. At least some of the activated/memory cells may have been the progeny of B-1 and marginal zone B cells, as transient PU.1low fetal progenitors efficiently generated those populations. Taken together, our data demonstrate the potential of B- and T-cell progeny of transient PU.1low fetal progenitors to make an early and long-term contribution to the adult immune system.
Collapse
Affiliation(s)
| | - Oscar I Estrada
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Kenneth Dorshkind
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
3
|
Shirafkan F, Hensel L, Rattay K. Immune tolerance and the prevention of autoimmune diseases essentially depend on thymic tissue homeostasis. Front Immunol 2024; 15:1339714. [PMID: 38571951 PMCID: PMC10987875 DOI: 10.3389/fimmu.2024.1339714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/11/2024] [Indexed: 04/05/2024] Open
Abstract
The intricate balance of immune reactions towards invading pathogens and immune tolerance towards self is pivotal in preventing autoimmune diseases, with the thymus playing a central role in establishing and maintaining this equilibrium. The induction of central immune tolerance in the thymus involves the elimination of self-reactive T cells, a mechanism essential for averting autoimmunity. Disruption of the thymic T cell selection mechanisms can lead to the development of autoimmune diseases. In the dynamic microenvironment of the thymus, T cell migration and interactions with thymic stromal cells are critical for the selection processes that ensure self-tolerance. Thymic epithelial cells are particularly significant in this context, presenting self-antigens and inducing the negative selection of autoreactive T cells. Further, the synergistic roles of thymic fibroblasts, B cells, and dendritic cells in antigen presentation, selection and the development of regulatory T cells are pivotal in maintaining immune responses tightly regulated. This review article collates these insights, offering a comprehensive examination of the multifaceted role of thymic tissue homeostasis in the establishment of immune tolerance and its implications in the prevention of autoimmune diseases. Additionally, the developmental pathways of the thymus are explored, highlighting how genetic aberrations can disrupt thymic architecture and function, leading to autoimmune conditions. The impact of infections on immune tolerance is another critical area, with pathogens potentially triggering autoimmunity by altering thymic homeostasis. Overall, this review underscores the integral role of thymic tissue homeostasis in the prevention of autoimmune diseases, discussing insights into potential therapeutic strategies and examining putative avenues for future research on developing thymic-based therapies in treating and preventing autoimmune conditions.
Collapse
|
4
|
Parriott G, Hegermiller E, Morman RE, Frank C, Saygin C, Stock W, Bartom ET, Kee BL. Loss of thymocyte competition underlies the tumor suppressive functions of the E2a transcription factor in T-ALL. Leukemia 2024; 38:491-501. [PMID: 38155245 DOI: 10.1038/s41375-023-02123-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 12/30/2023]
Abstract
T lymphocyte acute lymphoblastic leukemia (T-ALL) is frequently associated with increased expression of the E protein transcription factor inhibitors TAL1 and LYL1. In mouse models, ectopic expression of TAL1 or LYL1 in T cell progenitors, or inactivation of E2A, is sufficient to predispose mice to develop T-ALL. How E2A suppresses thymocyte transformation is currently unknown. Here, we show that early deletion of E2a, prior to the DN3 stage, was required for robust leukemogenesis and was associated with alterations in thymus cellularity, T cell differentiation, and gene expression in immature CD4+CD8+ thymocytes. Introduction of wild-type thymocytes into mice with early deletion of E2a prevented leukemogenesis, or delayed disease onset, and impacted the expression of multiple genes associated with transformation and genome instability. Our data indicate that E2A suppresses leukemogenesis by promoting T cell development and enforcing inter-thymocyte competition, a mechanism that is emerging as a safeguard against thymocyte transformation. These studies have implications for understanding how multiple essential regulators of T cell development suppress T-ALL and support the hypothesis that thymocyte competition suppresses leukemogenesis.
Collapse
Affiliation(s)
- Geoffrey Parriott
- Committee on Immunology, University of Chicago, Chicago, IL, 60637, USA
| | - Emma Hegermiller
- Department of Pathology, University of Chicago, Chicago, IL, 60637, USA
| | - Rosemary E Morman
- Committee on Immunology, University of Chicago, Chicago, IL, 60637, USA
- Department of Pathology, University of Chicago, Chicago, IL, 60637, USA
| | - Cameron Frank
- Department of Pathology, University of Chicago, Chicago, IL, 60637, USA
| | - Caner Saygin
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, 60657, USA
| | - Wendy Stock
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, 60657, USA
| | - Elizabeth T Bartom
- Department of Biochemistry and Molecular Genetics, Northwestern Feinberg School of Medicine, Chicago, IL, USA
| | - Barbara L Kee
- Committee on Immunology, University of Chicago, Chicago, IL, 60637, USA.
- Department of Pathology, University of Chicago, Chicago, IL, 60637, USA.
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, 60657, USA.
- Department of Biochemistry and Molecular Genetics, Northwestern Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
5
|
Abdulla HD, Alserihi R, Flensburg C, Abeysekera W, Luo MX, Gray DH, Liu X, Smyth GK, Alexander WS, Majewski IJ, McCormack MP. Overexpression of Lmo2 initiates T-lymphoblastic leukemia via impaired thymocyte competition. J Exp Med 2023; 220:e20212383. [PMID: 36920307 PMCID: PMC10037042 DOI: 10.1084/jem.20212383] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/19/2022] [Accepted: 02/22/2023] [Indexed: 03/16/2023] Open
Abstract
Cell competition has recently emerged as an important tumor suppressor mechanism in the thymus that inhibits autonomous thymic maintenance. Here, we show that the oncogenic transcription factor Lmo2 causes autonomous thymic maintenance in transgenic mice by inhibiting early T cell differentiation. This autonomous thymic maintenance results in the development of self-renewing preleukemic stem cells (pre-LSCs) and subsequent leukemogenesis, both of which are profoundly inhibited by restoration of thymic competition or expression of the antiapoptotic factor BCL2. Genomic analyses revealed the presence of Notch1 mutations in pre-LSCs before subsequent loss of tumor suppressors promotes the transition to overt leukemogenesis. These studies demonstrate a critical role for impaired cell competition in the development of pre-LSCs in a transgenic mouse model of T cell acute lymphoblastic leukemia (T-ALL), implying that this process plays a role in the ontogeny of human T-ALL.
Collapse
Affiliation(s)
- Hesham D. Abdulla
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Raed Alserihi
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
- College of Applied Medical Sciences, King Abdul-Aziz University, Jeddah, Saudi Arabia
| | - Christoffer Flensburg
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Waruni Abeysekera
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Meng-Xiao Luo
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Daniel H.D. Gray
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Xiaodong Liu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Institute for Advanced Study, Hangzhou, China
| | - Gordon K. Smyth
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- School of Mathematics and Statistics, University of Melbourne, Parkville, Australia
| | - Warren S. Alexander
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Ian J. Majewski
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Matthew P. McCormack
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
- iCamuno Biotherapeutics, Melbourne, Australia
| |
Collapse
|
6
|
Zhang Z, Yang K, Zhang H. Targeting Leukemia-Initiating Cells and Leukemic Niches: The Next Therapy Station for T-Cell Acute Lymphoblastic Leukemia? Cancers (Basel) 2022; 14:cancers14225655. [PMID: 36428753 PMCID: PMC9688677 DOI: 10.3390/cancers14225655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive subtype of hematological malignancy characterized by its high heterogeneity and potentially life-threatening clinical features. Despite the advances in risk stratification and therapeutic management of T-ALL, patients often suffer from treatment failure and chemotherapy-induced toxicity, calling for greater efforts to improve therapeutic efficacy and safety in the treatment of T-ALL. During the past decades, increasing evidence has shown the indispensable effects of leukemia-initiating cells (LICs) and leukemic niches on T-ALL initiation and progression. These milestones greatly facilitate precision medicine by interfering with the pathways that are associated with LICs and leukemic niches or by targeting themselves directly. Most of these novel agents, either alone or in combination with conventional chemotherapy, have shown promising preclinical results, facilitating them to be further evaluated under clinical trials. In this review, we summarize the latest discoveries in LICs and leukemic niches in terms of T-ALL, with a particular highlight on the current precision medicine. The challenges and future prospects are also discussed.
Collapse
Affiliation(s)
- Ziting Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Kun Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
- School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Han Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
- Correspondence: ; Tel.: +86-158-7796-3252
| |
Collapse
|
7
|
Feliciangeli F, Dreiwi H, López-García M, Castro Ponce M, Molina-París C, Lythe G. Why are cell populations maintained via multiple compartments? J R Soc Interface 2022; 19:20220629. [PMID: 36349449 PMCID: PMC9653237 DOI: 10.1098/rsif.2022.0629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/12/2022] [Indexed: 10/02/2023] Open
Abstract
We consider the maintenance of 'product' cell populations from 'progenitor' cells via a sequence of one or more cell types, or compartments, where each cell's fate is chosen stochastically. If there is only one compartment then large amplification, that is, a large ratio of product cells to progenitors comes with disadvantages. The product cell population is dominated by large families (cells descended from the same progenitor) and many generations separate, on average, product cells from progenitors. These disadvantages are avoided using suitably constructed sequences of compartments: the amplification factor of a sequence is the product of the amplification factors of each compartment, while the average number of generations is a sum over contributions from each compartment. Passing through multiple compartments is, in fact, an efficient way to maintain a product cell population from a small flux of progenitors, avoiding excessive clonality and minimizing the number of rounds of division en route. We use division, exit and death rates, estimated from measurements of single-positive thymocytes, to choose illustrative parameter values in the single-compartment case. We also consider a five-compartment model of thymocyte differentiation, from double-negative precursors to single-positive product cells.
Collapse
Affiliation(s)
- Flavia Feliciangeli
- School of Mathematics, University of Leeds, Leeds LS2 9JT, UK
- Systems Pharmacology and Medicine, Bayer AG, Leverkusen 51368, Germany
| | - Hanan Dreiwi
- School of Mathematics, University of Leeds, Leeds LS2 9JT, UK
| | | | - Mario Castro Ponce
- Instituto de Investigación Tecnológica (ITT), Universidad Pontificia Comillas, Madrid, Spain
| | - Carmen Molina-París
- School of Mathematics, University of Leeds, Leeds LS2 9JT, UK
- T-6, Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Grant Lythe
- School of Mathematics, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
8
|
Cell-Extrinsic Differentiation Block Mediated by EphA3 in Pre-Leukaemic Thymus Contributes to Disease Progression. Cancers (Basel) 2021; 13:cancers13153858. [PMID: 34359759 PMCID: PMC8345401 DOI: 10.3390/cancers13153858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/22/2021] [Accepted: 07/27/2021] [Indexed: 11/19/2022] Open
Abstract
Simple Summary The NUP98-HOXD13 (NHD13) mouse is a model of T-cell leukaemia (T-ALL) featuring a pre-leukemic phase, in which T-cell progenitors from the thymus of an NHD13 mouse can engraft into the thymus of a recipient mouse—an ability that normal T-cell progenitors do not possess. However, loss of this engraftment ability (by deletion of the Lyl1 gene) did not result in any loss of leukemogenesis activity, indicating the activity of redundant oncogenic pathways in this model. Having observed an overexpression of the EphA3 protein in the NHD13 thymocytes, we hypothesized that this gene might be involved in a redundant leukaemogenic pathway. Deletion of EphA3 did not affect the engraftment ability of the thymocytes, but did reduce the incidence of T-ALL. We thus uncovered a distinct mechanism of leukaemogenesis, which we believe operates in parallel to that mediated by Lyl1. Abstract We recently characterised the NUP98-HOXD13 (NHD13) mouse as a model of T-cell pre-leukaemia, featuring thymocytes that can engraft in recipient animals and progress to T-cell acute lymphoblastic leukaemia (T-ALL). However, loss of this engraftment ability by deletion of Lyl1 did not result in any loss of leukemogenesis activity. In the present study, we observe that NHD13 thymocytes overexpress EPHA3, and we characterise thymocyte behaviour in NHD13 mice with deletion of EphA3, which show a markedly reduced incidence of T-ALL. Deletion of EphA3 from the NHD13 mice does not prevent the abnormal accumulation or transplantation ability of these thymocytes. However, upon transplantation, these cells are unable to block the normal progression of recipient wild type (WT) progenitor cells through the normal developmental pathway. This is in contrast to the EphA3+/+ NHD13 thymocytes, which block the progression of incoming WT progenitors past the DN1 stage. Therefore, EphA3 is not critical for classical self-renewal, but is essential for mediating an interaction between the abnormally self-renewing cells and healthy progenitors—an interaction that results in a failure of the healthy cells to differentiate normally. We speculate that this may orchestrate a loss of healthy cell competition, which in itself has been demonstrated to be oncogenic, and that this may explain the decrease in T-ALL incidence in the absence of EphA3. We suggest that pre-leukaemic self-renewal in this model is a complex interplay of cell-intrinsic and -extrinsic factors, and that multiple redundant pathways to leukaemogenesis are active.
Collapse
|
9
|
Ramos CV, Martins VC. Cell competition in hematopoietic cells: Quality control in homeostasis and its role in leukemia. Dev Biol 2021; 475:1-9. [DOI: 10.1016/j.ydbio.2021.02.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 12/24/2022]
|
10
|
Modeling the Dynamics of T-Cell Development in the Thymus. ENTROPY 2021; 23:e23040437. [PMID: 33918050 PMCID: PMC8069328 DOI: 10.3390/e23040437] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/01/2021] [Accepted: 04/05/2021] [Indexed: 12/24/2022]
Abstract
The thymus hosts the development of a specific type of adaptive immune cells called T cells. T cells orchestrate the adaptive immune response through recognition of antigen by the highly variable T-cell receptor (TCR). T-cell development is a tightly coordinated process comprising lineage commitment, somatic recombination of Tcr gene loci and selection for functional, but non-self-reactive TCRs, all interspersed with massive proliferation and cell death. Thus, the thymus produces a pool of T cells throughout life capable of responding to virtually any exogenous attack while preserving the body through self-tolerance. The thymus has been of considerable interest to both immunologists and theoretical biologists due to its multi-scale quantitative properties, bridging molecular binding, population dynamics and polyclonal repertoire specificity. Here, we review experimental strategies aimed at revealing quantitative and dynamic properties of T-cell development and how they have been implemented in mathematical modeling strategies that were reported to help understand the flexible dynamics of the highly dividing and dying thymic cell populations. Furthermore, we summarize the current challenges to estimating in vivo cellular dynamics and to reaching a next-generation multi-scale picture of T-cell development.
Collapse
|
11
|
Paiva RA, Sousa AGG, Ramos CV, Ávila M, Lilue J, Paixão T, Martins VC. Self-renewal of double-negative 3 early thymocytes enables thymus autonomy but compromises the β-selection checkpoint. Cell Rep 2021; 35:108967. [PMID: 33852867 DOI: 10.1016/j.celrep.2021.108967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/29/2021] [Accepted: 03/18/2021] [Indexed: 10/21/2022] Open
Abstract
T lymphocyte differentiation in the steady state is characterized by high cellular turnover whereby thymocytes do not self-renew. However, if deprived of competent progenitors, the thymus can temporarily maintain thymopoiesis autonomously. This bears a heavy cost, because prolongation of thymus autonomy causes leukemia. Here, we show that, at an early stage, thymus autonomy relies on double-negative 3 early (DN3e) thymocytes that acquire stem-cell-like properties. Following competent progenitor deprivation, DN3e thymocytes become long lived, are required for thymus autonomy, differentiate in vivo, and include DNA-label-retaining cells. At the single-cell level, the transcriptional programs of thymopoiesis in autonomy and the steady state are similar. However, a new cell population emerges in autonomy that expresses an aberrant Notch target gene signature and bypasses the β-selection checkpoint. In summary, DN3e thymocytes have the potential to self-renew and differentiate in vivo if cell competition is impaired, but this generates atypical cells, probably the precursors of leukemia.
Collapse
Affiliation(s)
- Rafael A Paiva
- Lymphocyte Development and Leukemogenesis Laboratory, Instituto Gulbenkian de Ciência, Calouste Gulbenkian Foundation, Oeiras 2780-156, Portugal
| | - António G G Sousa
- Bioinformatics Unit, Instituto Gulbenkian de Ciência, Calouste Gulbenkian Foundation, Oeiras 2780-156, Portugal
| | - Camila V Ramos
- Lymphocyte Development and Leukemogenesis Laboratory, Instituto Gulbenkian de Ciência, Calouste Gulbenkian Foundation, Oeiras 2780-156, Portugal
| | - Mariana Ávila
- Lymphocyte Development and Leukemogenesis Laboratory, Instituto Gulbenkian de Ciência, Calouste Gulbenkian Foundation, Oeiras 2780-156, Portugal
| | - Jingtao Lilue
- Bioinformatics Unit, Instituto Gulbenkian de Ciência, Calouste Gulbenkian Foundation, Oeiras 2780-156, Portugal
| | - Tiago Paixão
- Quantitative and Digital Science Unit, Instituto Gulbenkian de Ciência, Calouste Gulbenkian Foundation, Oeiras 2780-156, Portugal
| | - Vera C Martins
- Lymphocyte Development and Leukemogenesis Laboratory, Instituto Gulbenkian de Ciência, Calouste Gulbenkian Foundation, Oeiras 2780-156, Portugal.
| |
Collapse
|
12
|
Han J, Zúñiga-Pflücker JC. High-Oxygen Submersion Fetal Thymus Organ Cultures Enable FOXN1-Dependent and -Independent Support of T Lymphopoiesis. Front Immunol 2021; 12:652665. [PMID: 33859647 PMCID: PMC8043069 DOI: 10.3389/fimmu.2021.652665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/15/2021] [Indexed: 01/19/2023] Open
Abstract
T cell development is effectively supported in fetal thymus organ cultures (FTOCs), which places thymus lobes atop an air-liquid interface (ALI) culture system. The direct exposure to air is critical for its success, as fetal thymus lobes placed in low oxygen submersion (LOS)-FTOCs fail to support thymocyte development. However, submersion cultures performed in the presence of high concentration of ambient oxygen (60~80%) allow for normal thymocyte development, but the underlying mechanism for this rescue has remained elusive. Here, we show that FOXN1 expression in thymic epithelial cells (TECs) from LOS-FTOCs was greatly reduced compared to conventional ALI-FTOCs. Consequently, the expression of important FOXN1 target genes, including Dll4 and Ccl25, in TECs was extinguished. The loss of DLL4 and CCL25 interrupted thymocyte differentiation and led to CD4+CD8+ cells exiting the lobes, respectively. High oxygen submersion (HOS)-FTOCs restored the expression of FOXN1 and its target genes, as well as maintained high levels of MHCII expression in TECs. In addition, HOS-FTOCs promoted the self-renewal of CD4−CD8−CD44−CD25+ cells, allowing for the continuous generation of later stage thymocytes. Forced FOXN1 expression in TECs rescued thymocyte developmental progression, but not cellularity, in LOS-FTOCs. Given that oxidative stress has been reported to accelerate the onset of age-associated thymic involution, we postulate that regulation of FOXN1 by oxygen and antioxidants may underpin this biological process.
Collapse
Affiliation(s)
- Jianxun Han
- Department of Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Juan Carlos Zúñiga-Pflücker
- Department of Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Immunology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
13
|
Ldb1 is required for Lmo2 oncogene-induced thymocyte self-renewal and T-cell acute lymphoblastic leukemia. Blood 2021; 135:2252-2265. [PMID: 32181817 DOI: 10.1182/blood.2019000794] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 02/20/2020] [Indexed: 12/18/2022] Open
Abstract
Prolonged or enhanced expression of the proto-oncogene Lmo2 is associated with a severe form of T-cell acute lymphoblastic leukemia (T-ALL), designated early T-cell precursor ALL, which is characterized by the aberrant self-renewal and subsequent oncogenic transformation of immature thymocytes. It has been suggested that Lmo2 exerts these effects by functioning as component of a multi-subunit transcription complex that includes the ubiquitous adapter Ldb1 along with b-HLH and/or GATA family transcription factors; however, direct experimental evidence for this mechanism is lacking. In this study, we investigated the importance of Ldb1 for Lmo2-induced T-ALL by conditional deletion of Ldb1 in thymocytes in an Lmo2 transgenic mouse model of T-ALL. Our results identify a critical requirement for Ldb1 in Lmo2-induced thymocyte self-renewal and thymocyte radiation resistance and for the transition of preleukemic thymocytes to overt T-ALL. Moreover, Ldb1 was also required for acquisition of the aberrant preleukemic ETP gene expression signature in immature Lmo2 transgenic thymocytes. Co-binding of Ldb1 and Lmo2 was detected at the promoters of key upregulated T-ALL driver genes (Hhex, Lyl1, and Nfe2) in preleukemic Lmo2 transgenic thymocytes, and binding of both Ldb1 and Lmo2 at these sites was reduced following Cre-mediated deletion of Ldb1. Together, these results identify a key role for Ldb1, a nonproto-oncogene, in T-ALL and support a model in which Lmo2-induced T-ALL results from failure to downregulate Ldb1/Lmo2-nucleated transcription complexes which normally function to enforce self-renewal in bone marrow hematopoietic progenitors.
Collapse
|
14
|
Montel-Hagen A, Sun V, Casero D, Tsai S, Zampieri A, Jackson N, Li S, Lopez S, Zhu Y, Chick B, He C, de Barros SC, Seet CS, Crooks GM. In Vitro Recapitulation of Murine Thymopoiesis from Single Hematopoietic Stem Cells. Cell Rep 2020; 33:108320. [PMID: 33113379 PMCID: PMC7727762 DOI: 10.1016/j.celrep.2020.108320] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/01/2020] [Accepted: 10/06/2020] [Indexed: 12/16/2022] Open
Abstract
We report a serum-free, 3D murine artificial thymic organoid (M-ATO) system that mimics normal murine thymopoiesis with the production of all T cell stages, from early thymic progenitors to functional single-positive (CD8SP and CD4SP) TCRαβ and TCRγδ cells. RNA sequencing aligns M-ATO-derived populations with phenotypically identical primary thymocytes. M-ATOs initiated with Rag1-/- marrow produce the same differentiation block as seen in the endogenous thymus, and Notch signaling patterns in M-ATOs mirror primary thymopoiesis. M-ATOs initiated with defined hematopoietic stem cells (HSCs) and lymphoid progenitors from marrow and thymus generate each of the downstream differentiation stages, allowing the kinetics of T cell differentiation to be tracked. Remarkably, single HSCs deposited into each M-ATO generate the complete trajectory of T cell differentiation, producing diverse TCR repertoires across clones that largely match endogenous thymus. M-ATOs represent a highly reproducible and efficient experimental platform for the interrogation of clonal thymopoiesis from HSCs.
Collapse
Affiliation(s)
- Amélie Montel-Hagen
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Victoria Sun
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA; Molecular Biology Interdepartmental Program, UCLA, Los Angeles, CA, USA
| | - David Casero
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Steven Tsai
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Alexandre Zampieri
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Nicholas Jackson
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Suwen Li
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA; Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, CA, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA, USA
| | - Shawn Lopez
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Yuhua Zhu
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Brent Chick
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Chongbin He
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Stéphanie C de Barros
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Christopher S Seet
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA
| | - Gay M Crooks
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA; Division of Pediatric Hematology-Oncology, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW Transplantation of cultured postnatal allogeneic thymus has been successful for treating athymia, mostly associated with complete DiGeorge syndrome, for more than 20 years. Advances in molecular genetics provide opportunities for widening the range of athymic conditions that can be treated while advances in cell culture and organ/tissue regeneration may offer the prospect of alternative preparations of thymic tissue. There are potential broader applications of this treatment outside congenital athymia. RECENT FINDINGS At the same time as further characterization of the cultured thymus product in terms of thymic epithelial cells and lymphoid composition, preclinical studies have looked at de-novo generation of thymic epithelial cells from stem cells and explored scaffolds for delivering these as three-dimensional structures. In the era of newborn screening for T-cell lymphopaenia, a broadening range of defects leading to athymia is being recognized and new assays should allow differentiation of these from haematopoietic cell defects, pending their genetic/molecular characterization. Evidence suggests that the tolerogenic effect of transplanted thymus could be exploited to improve outcomes after solid organ transplantation. SUMMARY Thymus transplantation, the accepted standard treatment for complete DiGeorge syndrome is also appropriate for other genetic defects leading to athymia. Improved strategies for generating thymus may lead to better outcomes and broader application of this treatment.
Collapse
|
16
|
Fischer A, Hacein-Bey-Abina S. Gene therapy for severe combined immunodeficiencies and beyond. J Exp Med 2020; 217:132743. [PMID: 31826240 PMCID: PMC7041706 DOI: 10.1084/jem.20190607] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/10/2019] [Accepted: 11/06/2019] [Indexed: 12/26/2022] Open
Abstract
This review describes how gene therapy of severe combined immunodeficiency became a reality, primarily based on the expected selective advantage conferred by transduction of hematopoietic progenitor cells. Thus, it resulted in a progressive extension to the treatment of other primary immunodeficiencies. Ex vivo retrovirally mediated gene therapy has been shown within the last 20 yr to correct the T cell immunodeficiency caused by γc-deficiency (SCID X1) and adenosine deaminase (ADA) deficiency. The rationale was brought up by the observation of the revertant of SCIDX1 and ADA deficiency as a kind of natural gene therapy. Nevertheless, the first attempts of gene therapy for SCID X1 were associated with insertional mutagenesis causing leukemia, because the viral enhancer induced transactivation of oncogenes. Removal of this element and use of a promoter instead led to safer but still efficacious gene therapy. It was observed that a fully diversified T cell repertoire could be generated by a limited set (<1,000) of progenitor cells. Further advances in gene transfer technology, including the use of lentiviral vectors, has led to success in the treatment of Wiskott–Aldrich syndrome, while further applications are pending. Genome editing of the mutated gene may be envisaged as an alternative strategy to treat SCID diseases.
Collapse
Affiliation(s)
- Alain Fischer
- Imagine Institute, Paris, France.,Immunology and Pediatric Hematology Department, Assistance Publique-Hôpitaux de Paris, Paris, France.,Institut National de la Santé et de la Recherche Médicale UMR 1163, Paris, France.,Collège de France, Paris, France
| | - Salima Hacein-Bey-Abina
- Unité de Technologies Chimiques et Biologiques pour la Santé, UMR8258 Centre National de la Recherche Scientifique - U1267 Institut National de la Santé et de la Recherche Médicale, Faculté de Pharmacie de Paris, Université Paris Descartes, Paris, France.,Clinical Immunology Laboratory, Groupe Hospitalier Universitaire Paris-Sud, Hôpital Kremlin-Bicêtre, Assistance Publique-Hôpitaux de Paris, Le Kremlin Bicêtre, France
| |
Collapse
|
17
|
Ramos CV, Ballesteros-Arias L, Silva JG, Paiva RA, Nogueira MF, Carneiro J, Gjini E, Martins VC. Cell Competition, the Kinetics of Thymopoiesis, and Thymus Cellularity Are Regulated by Double-Negative 2 to 3 Early Thymocytes. Cell Rep 2020; 32:107910. [DOI: 10.1016/j.celrep.2020.107910] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/11/2020] [Accepted: 06/24/2020] [Indexed: 02/07/2023] Open
|
18
|
Grossman Z, Singh NJ, Simonetti FR, Lederman MM, Douek DC, Deeks SG. 'Rinse and Replace': Boosting T Cell Turnover To Reduce HIV-1 Reservoirs. Trends Immunol 2020; 41:466-480. [PMID: 32414695 DOI: 10.1016/j.it.2020.04.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 04/06/2020] [Accepted: 04/06/2020] [Indexed: 12/22/2022]
Abstract
Latent HIV-1 persists indefinitely during antiretroviral therapy (ART) as an integrated silent genome in long-lived memory CD4+ T cells. In untreated infections, immune activation increases the turnover of intrinsically long-lived provirus-containing CD4+ T cells. Those are 'washed out' as a result of their activation, which when coupled to viral protein expression can facilitate local inflammation and recruitment of uninfected cells to activation sites, causing latently infected cells to compete for survival. De novo infection can counter this washout. During ART, inflammation and CD4+ T cell activation wane, resulting in reduced cell turnover and a persistent reservoir. We propose accelerating reservoir washout during ART by triggering sequential waves of polyclonal CD4+ T cell activation while simultaneously enhancing virus protein expression. Reservoir reduction as an adjunct to other therapies might achieve lifelong viral control.
Collapse
Affiliation(s)
- Zvi Grossman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA; Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Nevil J Singh
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Francesco R Simonetti
- 'L. Sacco' Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | | | - Daniel C Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Steven G Deeks
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
19
|
Pouzolles M, Machado A, Guilbaud M, Irla M, Gailhac S, Barennes P, Cesana D, Calabria A, Benedicenti F, Sergé A, Raman I, Li QZ, Montini E, Klatzmann D, Adjali O, Taylor N, Zimmermann VS. Intrathymic adeno-associated virus gene transfer rapidly restores thymic function and long-term persistence of gene-corrected T cells. J Allergy Clin Immunol 2019; 145:679-697.e5. [PMID: 31513879 DOI: 10.1016/j.jaci.2019.08.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 07/28/2019] [Accepted: 08/05/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND Patients with T-cell immunodeficiencies are generally treated with allogeneic hematopoietic stem cell transplantation, but alternatives are needed for patients without matched donors. An innovative intrathymic gene therapy approach that directly targets the thymus might improve outcomes. OBJECTIVE We sought to determine the efficacy of intrathymic adeno-associated virus (AAV) serotypes to transduce thymocyte subsets and correct the T-cell immunodeficiency in a zeta-associated protein of 70 kDa (ZAP-70)-deficient murine model. METHODS AAV serotypes were injected intrathymically into wild-type mice, and gene transfer efficiency was monitored. ZAP-70-/- mice were intrathymically injected with an AAV8 vector harboring the ZAP70 gene. Thymus structure, immunophenotyping, T-cell receptor clonotypes, T-cell function, immune responses to transgenes and autoantibodies, vector copy number, and integration were evaluated. RESULTS AAV8, AAV9, and AAV10 serotypes all transduced thymocyte subsets after in situ gene transfer, with transduction of up to 5% of cells. Intrathymic injection of an AAV8-ZAP-70 vector into ZAP-70-/- mice resulted in a rapid thymocyte differentiation associated with the development of a thymic medulla. Strikingly, medullary thymic epithelial cells expressing the autoimmune regulator were detected within 10 days of gene transfer, correlating with the presence of functional effector and regulatory T-cell subsets with diverse T-cell receptor clonotypes in the periphery. Although thymocyte reconstitution was transient, gene-corrected peripheral T cells harboring approximately 1 AAV genome per cell persisted for more than 40 weeks, and AAV vector integration was detected. CONCLUSIONS Intrathymic AAV-transduced progenitors promote a rapid restoration of the thymic architecture, with a single wave of thymopoiesis generating long-term peripheral T-cell function.
Collapse
Affiliation(s)
- Marie Pouzolles
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Alice Machado
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Mickaël Guilbaud
- INSERM UMR1089, Université de Nantes, Centre Hospitalier Universitaire de Nantes, Nantes, France
| | - Magali Irla
- Center of Immunology Marseille-Luminy (CIML), INSERM U1104, CNRS UMR7280, Aix-Marseille Université UM2, Marseille, France
| | - Sarah Gailhac
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Pierre Barennes
- Sorbonne Université, INSERM, Immunology-Immunopathology-Immunotherapy (i3), Paris, France
| | - Daniela Cesana
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Calabria
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - Fabrizio Benedicenti
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - Arnauld Sergé
- Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Indu Raman
- Microarray Core Facility, University of Texas Southwestern Medical Center, Dallas, Tex
| | - Quan-Zhen Li
- Microarray Core Facility, University of Texas Southwestern Medical Center, Dallas, Tex; Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Tex
| | - Eugenio Montini
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - David Klatzmann
- Sorbonne Université, INSERM, Immunology-Immunopathology-Immunotherapy (i3), Paris, France; AP-HP, Hôpital Pitié-Salpêtrière, Biotherapy (CIC-BTi) and Inflammation-Immunopathology-Biotherapy Department (i2B), Paris, France
| | - Oumeya Adjali
- INSERM UMR1089, Université de Nantes, Centre Hospitalier Universitaire de Nantes, Nantes, France.
| | - Naomi Taylor
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France; Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Md.
| | - Valérie S Zimmermann
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
20
|
Tang Y, Yang YG, Bai O, Xia J, Hu Z. Long-term survival and differentiation of human thymocytes in human thymus-grafted immunodeficient mice. Immunotherapy 2019; 11:881-888. [PMID: 31140331 PMCID: PMC6949514 DOI: 10.2217/imt-2019-0030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 05/13/2019] [Indexed: 02/08/2023] Open
Abstract
Aim: Thymus transplants have produced encouraging clinical outcomes in achieving thymopoiesis and T-cell development. This study was aimed to investigate whether human thymus contains self-renewing lymphoid progenitors capable of maintaining long-term T-cell development. Materials & methods: Immunodeficient mice were transplanted with human thymic tissue along with autologous GFP-expressing or allogeneic CD34+ cells and followed for human thymopoiesis and T-cell development from the thymic progenitors versus CD34+ cells, which can be distinguished by GFP or HLA expression. Results: In both models, long-term thymopoiesis and T-cell development from the thymic grafts were detected. In these mice, human thymic progenitor-derived T cells including CD45RA+CD31+CD4+ new thymic emigrants were persistently present in the periphery throughout the observation period (32 weeks). Conclusion: The results indicate that human thymus contains long-lived lymphoid progenitors that can maintain durable thymopoiesis and T-cell development.
Collapse
Affiliation(s)
- Yang Tang
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun, 130061, PR China
| | - Yong-Guang Yang
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University College of Physicians & Surgeons, New York, NY 10032, USA
| | - Ou Bai
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun, 130061, PR China
| | - Jinxing Xia
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University College of Physicians & Surgeons, New York, NY 10032, USA
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, 230023, PR China
| | - Zheng Hu
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun, 130061, PR China
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University College of Physicians & Surgeons, New York, NY 10032, USA
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, 130061, PR China
| |
Collapse
|
21
|
An integrated transcriptional switch at the β-selection checkpoint determines T cell survival, development and leukaemogenesis. Biochem Soc Trans 2019; 47:1077-1089. [DOI: 10.1042/bst20180414] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 02/06/2023]
Abstract
Abstract
In T cell development, a pivotal decision-making stage, termed β-selection, integrates a TCRβ checkpoint to coordinate survival, proliferation and differentiation to an αβ T cell. Here, we review how transcriptional regulation coordinates fate determination in early T cell development to enable β-selection. Errors in this transcription control can trigger T cell acute lymphoblastic leukaemia. We describe how the β-selection checkpoint goes awry in leukaemic transformation.
Collapse
|
22
|
Abstract
Generating and maintaining a diverse repertoire of naive T cells is essential for protection against pathogens, and developing a mechanistic and quantitative description of the processes involved lies at the heart of our understanding of vertebrate immunity. Here, we review the biology of naive T cells from birth to maturity and outline how the integration of mathematical models and experiments has helped us to develop a full picture of their life histories.
Collapse
Affiliation(s)
- Benedict Seddon
- Institute of Immunity and Transplantation, Division of Infection and Immunity, UCL, Royal Free Hospital, London, UK
| | - Andrew J Yates
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York
| |
Collapse
|
23
|
Du JL, Cao X, Liu HY, Zeng Y, Yang XC, Wan XM, Chang FF, Zhao TY, Jia XY, Wang HZ, Liu J, Cai KZ, Ma ZR. RETRACTED: Function of the PLZF gene in early development and self-renewal of T cells in mice. Biochem Biophys Res Commun 2019; 511:935-940. [PMID: 30853180 DOI: 10.1016/j.bbrc.2019.02.156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 02/23/2019] [Accepted: 02/28/2019] [Indexed: 11/21/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal).. This article has been retracted at the request of < the Editor in Chief. The Editor in Chief has been made aware of numerous problems with this paper regarding authorship, poor or insufficient supervision of researchers and the unauthorized use of data acquired from a lab visit by one of the authors.
Collapse
Affiliation(s)
- Jiang-Long Du
- Center for Biomedical Research, College of Life Science and Engineering, Northwest Minzu University, Lanzhou, 730030, China
| | - Xin Cao
- Center for Biomedical Research, College of Life Science and Engineering, Northwest Minzu University, Lanzhou, 730030, China; State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Han-Yu Liu
- Dejiang County People's Hospital, Tongren District, Guizhou Province, 565200, China
| | - Yan Zeng
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Xue-Cai Yang
- Center for Biomedical Research, College of Life Science and Engineering, Northwest Minzu University, Lanzhou, 730030, China
| | - Xue-Mei Wan
- Center for Biomedical Research, College of Life Science and Engineering, Northwest Minzu University, Lanzhou, 730030, China
| | - Fan-Fan Chang
- Center for Biomedical Research, College of Life Science and Engineering, Northwest Minzu University, Lanzhou, 730030, China
| | - Tian-Yu Zhao
- Center for Biomedical Research, College of Life Science and Engineering, Northwest Minzu University, Lanzhou, 730030, China
| | - Xiao-Ye Jia
- Center for Biomedical Research, College of Life Science and Engineering, Northwest Minzu University, Lanzhou, 730030, China
| | - Hai-Zhen Wang
- Hebi Precision Medical Research Institute People's Hospital of Hebi, 412 Hemei, Boulevard, Hebi, Henan Province, 458030, China
| | - Jing Liu
- Department of Medical Oncology, People's Hospital of Hebi, 412 Hemei Boulevard, Hebi, Henan Province, 458030, China
| | - Kui-Zheng Cai
- Center for Biomedical Research, College of Life Science and Engineering, Northwest Minzu University, Lanzhou, 730030, China
| | - Zhong-Ren Ma
- Center for Biomedical Research, College of Life Science and Engineering, Northwest Minzu University, Lanzhou, 730030, China; State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| |
Collapse
|
24
|
Ballesteros-Arias L, Silva JG, Paiva RA, Carbonetto B, Faísca P, Martins VC. T Cell Acute Lymphoblastic Leukemia as a Consequence of Thymus Autonomy. THE JOURNAL OF IMMUNOLOGY 2019; 202:1137-1144. [DOI: 10.4049/jimmunol.1801373] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 12/02/2018] [Indexed: 01/22/2023]
|
25
|
Eymard N, Volpert V, Kurbatova P, Volpert V, Bessonov N, Ogungbenro K, Aarons L, Janiaud P, Nony P, Bajard A, Chabaud S, Bertrand Y, Kassaï B, Cornu C, Nony P. Mathematical model of T-cell lymphoblastic lymphoma: disease, treatment, cure or relapse of a virtual cohort of patients. MATHEMATICAL MEDICINE AND BIOLOGY-A JOURNAL OF THE IMA 2018; 35:25-47. [PMID: 28082512 DOI: 10.1093/imammb/dqw019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 10/12/2016] [Indexed: 12/19/2022]
Abstract
T lymphoblastic lymphoma (T-LBL) is a rare type of lymphoma with a good prognosis with a remission rate of 85%. Patients can be completely cured or can relapse during or after a 2-year treatment. Relapses usually occur early after the remission of the acute phase. The median time of relapse is equal to 1 year, after the occurrence of complete remission (range 0.2-5.9 years) (Uyttebroeck et al., 2008). It can be assumed that patients may be treated longer than necessary with undue toxicity.The aim of our model was to investigate whether the duration of the maintenance therapy could be reduced without increasing the risk of relapses and to determine the minimum treatment duration that could be tested in a future clinical trial.We developed a mathematical model of virtual patients with T-LBL in order to obtain a proportion of virtual relapses close to the one observed in the real population of patients from the EuroLB database. Our simulations reproduced a 2-year follow-up required to study the onset of the disease, the treatment of the acute phase and the maintenance treatment phase.
Collapse
Affiliation(s)
- N Eymard
- Institut Camille Jordan, UMR, CNRS, University Lyon 1, Villeurbanne, France
| | - V Volpert
- Institut Camille Jordan, UMR, CNRS, University Lyon 1, Villeurbanne, France
| | - P Kurbatova
- Institut Camille Jordan, UMR, CNRS, University Lyon 1, Villeurbanne, France
| | - V Volpert
- INRIA Team Dracula, INRIA Antenne Lyon la Doua 69603 Villeurbanne, France
| | - N Bessonov
- Institute of Mechanical Engineering Problems, Saint Petersburg, Russia
| | - K Ogungbenro
- Centre for Applied Pharmacokinetic Research, Manchester Pharmacy School The University of Manchester, Manchester, UK
| | - L Aarons
- Centre for Applied Pharmacokinetic Research, Manchester Pharmacy School The University of Manchester, Manchester, UK
| | - P Janiaud
- University of Lyon 1, UMR, CNRS, Lyon, France
| | - P Nony
- University of Lyon 1, UMR, CNRS, Lyon, France
| | - A Bajard
- Unité de Biostatistique et d'Evaluation des Thérapeutiques Centre Léon Bérard, Lyon, France
| | - S Chabaud
- Unité de Biostatistique et d'Evaluation des Thérapeutiques Centre Léon Bérard, Lyon, France
| | - Y Bertrand
- Institute of Hematology and Oncology Paediatrics, Hospices Civils de Lyon, University Claude Bernard Lyon I, Lyon, France
| | - B Kassaï
- Hospices Civils de Lyon, Centre d'Investigation Clinique, INSERM CIC1407, Lyon, France
| | - C Cornu
- Hospices Civils de Lyon, Centre d'Investigation Clinique, INSERM CIC1407, Lyon, France
| | - P Nony
- CHU Lyon, Service de Pharmacologie Clinique et Essais Thérapeutiques, Lyon, France
| | | |
Collapse
|
26
|
Paiva RA, Ramos CV, Martins VC. Thymus autonomy as a prelude to leukemia. FEBS J 2018; 285:4565-4574. [DOI: 10.1111/febs.14651] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/09/2018] [Accepted: 09/03/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Rafael A. Paiva
- Lymphocyte Development and Leukemogenesis Laboratory Instituto Gulbenkian de Ciência Oeiras Portugal
| | - Camila V. Ramos
- Lymphocyte Development and Leukemogenesis Laboratory Instituto Gulbenkian de Ciência Oeiras Portugal
| | - Vera C. Martins
- Lymphocyte Development and Leukemogenesis Laboratory Instituto Gulbenkian de Ciência Oeiras Portugal
| |
Collapse
|
27
|
Ginn SL, McCormack MP, Alexander IE. Thymocyte self-renewal and oncogenic risk in immunodeficient mouse models: relevance for human gene therapy clinical trials targeting haematopoietic stem cell populations? Mamm Genome 2018; 29:771-776. [PMID: 30182300 DOI: 10.1007/s00335-018-9780-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 08/29/2018] [Indexed: 11/28/2022]
Abstract
Emerging evidence indicates that thymocyte self-renewal induced by progenitor deprivation carries an oncogenic risk that is modulated by intra-thymic competition from differentiation-committed cells. Here we discuss formative studies demonstrating that, in mice, early thymocytes acquire self-renewing potential when thymic progenitor supply is sub-physiological and the importance of cellular competition with this at-risk cell population to prevent lymphoid malignancy. We also consider the possibility that increased thymic residency time, established under conditions of limited cellular competition, may have contributed to oncogenesis observed in early SCID-X1 trials when combined with insertional activation of proto-oncogenes such as LMO2.
Collapse
Affiliation(s)
- Samantha L Ginn
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney and Sydney Children's Hospitals Network, Locked Bag 2023, Wentworthville, NSW, 2145, Australia.
| | - Matthew P McCormack
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
| | - Ian E Alexander
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney and Sydney Children's Hospitals Network, Locked Bag 2023, Wentworthville, NSW, 2145, Australia.,Discipline of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| |
Collapse
|
28
|
Hosokawa H, Rothenberg EV. Cytokines, Transcription Factors, and the Initiation of T-Cell Development. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a028621. [PMID: 28716889 DOI: 10.1101/cshperspect.a028621] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Multipotent blood progenitor cells migrate into the thymus and initiate the T-cell differentiation program. T-cell progenitor cells gradually acquire T-cell characteristics while shedding their multipotentiality for alternative fates. This process is supported by extracellular signaling molecules, including Notch ligands and cytokines, provided by the thymic microenvironment. T-cell development is associated with dynamic change of gene regulatory networks of transcription factors, which interact with these environmental signals. Together with Notch or pre-T-cell-receptor (TCR) signaling, cytokines always control proliferation, survival, and differentiation of early T cells, but little is known regarding their cross talk with transcription factors. However, recent results suggest ways that cytokines expressed in distinct intrathymic niches can specifically modulate key transcription factors. This review discusses how stage-specific roles of cytokines and transcription factors can jointly guide development of early T cells.
Collapse
Affiliation(s)
- Hiroyuki Hosokawa
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Ellen V Rothenberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| |
Collapse
|
29
|
Krueger A. Thymus Colonization: Who, How, How Many? Arch Immunol Ther Exp (Warsz) 2017; 66:81-88. [PMID: 29288431 DOI: 10.1007/s00005-017-0503-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 11/23/2017] [Indexed: 11/28/2022]
Abstract
De novo generation of T cells depends on continual colonization of the thymus by bone marrow-derived progenitors. Thymus seeding progenitors (TSPs) constitute a heterogeneous population comprising multipotent and lineage-restricted cell types. Entry into the thymic microenvironment is tightly controlled and recent quantitative studies have revealed that the adult murine thymus only contains approximately 160 niches to accommodate TSPs. Of these niches only about 6% are open for seeding on average at steady-state. Here, I review the state of understanding of colonization of the adult murine thymus with a particular focus on past and current controversies in the field. Improving thymus colonization and/or maintaining intact TSP niches during the course of pre-conditioning regimens are likely to be critical for efficient T-cell regeneration after hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Andreas Krueger
- Institute for Molecular Medicine, Goethe University Frankfurt am Main, 60590, Frankfurt am Main, Germany.
| |
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW Hematopoietic stem cells (HSCs) possess two fundamental characteristics, the capacity for self-renewal and the sustained production of all blood cell lineages. The fine balance between HSC expansion and lineage specification is dynamically regulated by the interplay between external and internal stimuli. This review introduces recent advances in the roles played by the stem cell niche, regulatory transcriptional networks, and metabolic pathways in governing HSC self-renewal, commitment, and lineage differentiation. We will further focus on discoveries made by studying hematopoiesis at single-cell resolution. RECENT FINDINGS HSCs require the support of an interactive milieu with their physical position within the perivascular niche dynamically regulating HSC behavior. In these microenvironments, transcription factor networks and nutrient-mediated regulation of energy resources, signaling pathways, and epigenetic status govern HSC quiescence and differentiation. Once HSCs begin their lineage specification, single-cell analyses show that they do not become oligopotent but rather, differentiate directly into committed unipotent progenitors. SUMMARY The diversity of transcriptional networks and metabolic pathways in HSCs and their downstream progeny allows a high level of plasticity in blood differentiation. The intricate interactions between these pathways, within the perivascular niche, broaden the specification of HSCs in pathological and stressed conditions.
Collapse
|
31
|
Loughran SJ, Comoglio F, Hamey FK, Giustacchini A, Errami Y, Earp E, Göttgens B, Jacobsen SEW, Mead AJ, Hendrich B, Green AR. Mbd3/NuRD controls lymphoid cell fate and inhibits tumorigenesis by repressing a B cell transcriptional program. J Exp Med 2017; 214:3085-3104. [PMID: 28899870 PMCID: PMC5626393 DOI: 10.1084/jem.20161827] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 07/04/2017] [Accepted: 07/25/2017] [Indexed: 02/02/2023] Open
Abstract
Differentiation of lineage-committed cells from multipotent progenitors requires the establishment of accessible chromatin at lineage-specific transcriptional enhancers and promoters, which is mediated by pioneer transcription factors that recruit activating chromatin remodeling complexes. Here we show that the Mbd3/nucleosome remodeling and deacetylation (NuRD) chromatin remodeling complex opposes this transcriptional pioneering during B cell programming of multipotent lymphoid progenitors by restricting chromatin accessibility at B cell enhancers and promoters. Mbd3/NuRD-deficient lymphoid progenitors therefore prematurely activate a B cell transcriptional program and are biased toward overproduction of pro-B cells at the expense of T cell progenitors. The striking reduction in early thymic T cell progenitors results in compensatory hyperproliferation of immature thymocytes and development of T cell lymphoma. Our results reveal that Mbd3/NuRD can regulate multilineage differentiation by constraining the activation of dormant lineage-specific enhancers and promoters. In this way, Mbd3/NuRD protects the multipotency of lymphoid progenitors, preventing B cell-programming transcription factors from prematurely enacting lineage commitment. Mbd3/NuRD therefore controls the fate of lymphoid progenitors, ensuring appropriate production of lineage-committed progeny and suppressing tumor formation.
Collapse
Affiliation(s)
- Stephen J Loughran
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, England, UK
- Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge, England, UK
| | - Federico Comoglio
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, England, UK
- Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge, England, UK
| | - Fiona K Hamey
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, England, UK
- Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge, England, UK
| | - Alice Giustacchini
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, England, UK
| | - Youssef Errami
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, England, UK
- Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge, England, UK
| | - Eleanor Earp
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, England, UK
- Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge, England, UK
| | - Berthold Göttgens
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, England, UK
- Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge, England, UK
| | - Sten Eirik W Jacobsen
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, England, UK
- Wallenberg Institute for Regenerative Medicine, Department of Cell and Molecular Biology and Department of Medicine Huddinge, Karolinska Institutet and Center for Hematology and Regenerative Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Adam J Mead
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, England, UK
| | - Brian Hendrich
- Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge, England, UK
- Department of Biochemistry, University of Cambridge, Cambridge, England, UK
| | - Anthony R Green
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, England, UK
- Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge, England, UK
| |
Collapse
|
32
|
Tan SH, Bertulfo FC, Sanda T. Leukemia-Initiating Cells in T-Cell Acute Lymphoblastic Leukemia. Front Oncol 2017; 7:218. [PMID: 29034206 PMCID: PMC5627022 DOI: 10.3389/fonc.2017.00218] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 09/01/2017] [Indexed: 12/26/2022] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a hematological malignancy characterized by the clonal proliferation of immature T-cell precursors. T-ALL has many similar pathophysiological features to acute myeloid leukemia, which has been extensively studied in the establishment of the cancer stem cell (CSC) theory, but the CSC concept in T-ALL is still debatable. Although leukemia-initiating cells (LICs), which can generate leukemia in a xenograft setting, have been found in both human T-ALL patients and animal models, the nature and origin of LICs are largely unknown. In this review, we discuss recent studies on LICs in T-ALL and the potential mechanisms of LIC emergence in this disease. We focus on the oncogenic transcription factors TAL1, LMO2, and NOTCH1 and highlight the significance of the transcriptional regulatory programs in normal hematopoietic stem cells and T-ALL.
Collapse
Affiliation(s)
- Shi Hao Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Fatima Carla Bertulfo
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Takaomi Sanda
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
33
|
The development of T cells from stem cells in mice and humans. Future Sci OA 2017; 3:FSO186. [PMID: 28883990 PMCID: PMC5583695 DOI: 10.4155/fsoa-2016-0095] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/20/2017] [Indexed: 12/19/2022] Open
Abstract
T cells develop from hematopoietic stem cells in the specialized microenvironment of the thymus. The main transcriptional players of T-cell differentiation such as Notch, Tcf-1, Gata3 and Bcl11b have been identified, but their role and regulation are not yet completely understood. In humans, functional experiments on T-cell development have traditionally been rather difficult to perform, but novel in vitro culture systems and in vivo xenograft models have allowed detailed studies on human T-cell development. Recent work has allowed the use of human severe combined immunodeficiency stem cells to unravel developmental checkpoints for human thymocyte development.
Collapse
|
34
|
Gonçalves P, Ferrarini M, Molina-Paris C, Lythe G, Vasseur F, Lim A, Rocha B, Azogui O. A new mechanism shapes the naïve CD8 + T cell repertoire: the selection for full diversity. Mol Immunol 2017; 85:66-80. [PMID: 28212502 DOI: 10.1016/j.molimm.2017.01.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 01/16/2017] [Accepted: 01/28/2017] [Indexed: 12/17/2022]
Abstract
During thymic T cell differentiation, TCR repertoires are shaped by negative, positive and agonist selection. In the thymus and in the periphery, repertoires are also shaped by strong inter-clonal and intra-clonal competition to survive death by neglect. Understanding the impact of these events on the T cell repertoire requires direct evaluation of TCR expression in peripheral naïve T cells. Several studies have evaluated TCR diversity, with contradictory results. Some of these studies had intrinsic technical limitations since they used material obtained from T cell pools, preventing the direct evaluation of clonal sizes. Indeed with these approaches, identical TCRs may correspond to different cells expressing the same receptor, or to several amplicons from the same T cell. We here overcame this limitation by evaluating TCRB expression in individual naïve CD8+ T cells. Of the 2269 Tcrb sequences we obtained from 13 mice, 99% were unique. Mathematical analysis of the data showed that the average number of naïve peripheral CD8+ T cells expressing the same TCRB is 1.1 cell. Since TCRA co-expression studies could only increase repertoire diversity, these results reveal that the number of naïve T cells with unique TCRs approaches the number of naïve cells. Since thymocytes undergo multiple rounds of divisions after TCRB rearrangement and 3-5% of thymocytes survive thymic selection events the number of cells expressing the same TCRB was expected to be much higher. Thus, these results suggest a new repertoire selection mechanism, which strongly selects for full TCRB diversity.
Collapse
Affiliation(s)
- Pedro Gonçalves
- Lymphocyte Population Biology Unit, CNRS URA 196, Institut Pasteur, Paris, France; INSERM, U1151, CNRS, UMR8253, Faculté de Médecine Paris Descartes, Paris, France.
| | - Marco Ferrarini
- Department of Applied Mathematics, University of Leeds, Leeds LS29JT, UK
| | | | - Grant Lythe
- Department of Applied Mathematics, University of Leeds, Leeds LS29JT, UK
| | - Florence Vasseur
- Lymphocyte Population Biology Unit, CNRS URA 196, Institut Pasteur, Paris, France; INSERM, U1151, CNRS, UMR8253, Faculté de Médecine Paris Descartes, Paris, France
| | - Annik Lim
- Lymphocyte Population Biology Unit, CNRS URA 196, Institut Pasteur, Paris, France
| | - Benedita Rocha
- Lymphocyte Population Biology Unit, CNRS URA 196, Institut Pasteur, Paris, France; INSERM, U1151, CNRS, UMR8253, Faculté de Médecine Paris Descartes, Paris, France.
| | - Orly Azogui
- INSERM, U1151, CNRS, UMR8253, Faculté de Médecine Paris Descartes, Paris, France
| |
Collapse
|
35
|
Ginn SL, Hallwirth CV, Liao SHY, Teber ET, Arthur JW, Wu J, Lee HC, Tay SS, Hu M, Reddel RR, McCormack MP, Thrasher AJ, Cavazzana M, Alexander SI, Alexander IE. Limiting Thymic Precursor Supply Increases the Risk of Lymphoid Malignancy in Murine X-Linked Severe Combined Immunodeficiency. MOLECULAR THERAPY. NUCLEIC ACIDS 2016; 6:1-14. [PMID: 28325276 PMCID: PMC5363493 DOI: 10.1016/j.omtn.2016.11.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 11/20/2016] [Accepted: 11/21/2016] [Indexed: 11/25/2022]
Abstract
In early gene therapy trials for SCID-X1, using γ-retroviral vectors, T cell leukemias developed in a subset of patients secondary to insertional proto-oncogene activation. In contrast, we have reported development of T cell leukemias in SCID-X1 mice following lentivirus-mediated gene therapy independent of insertional mutagenesis. A distinguishing feature in our study was that only a proportion of transplanted γc-deficient progenitors were transduced and therefore competent for reconstitution. We hypothesized that reconstitution of SCID-X1 mice with limiting numbers of hematopoietic progenitors might be a risk factor for lymphoid malignancy. To test this hypothesis, in the absence of transduction, SCID-X1 mice were reconstituted with serially fewer wild-type hematopoietic progenitors. A robust inverse correlation between hematopoietic progenitor cell dose and T-lymphoid malignancy was observed, with earlier disease onset at lower cell doses. Malignancies were of donor origin and carried activating Notch1 mutations. These findings align with emerging evidence that thymocyte self-renewal induced by progenitor deprivation carries an oncogenic risk that is modulated by intra-thymic competition from differentiation-committed cells. Although insertional proto-oncogene activation is required for the development of malignancy in humans, failure of γc-deficient thymocytes to effectively compete with this at-risk cell population may have also contributed to oncogenesis observed in early SCID-X1 trials.
Collapse
Affiliation(s)
- Samantha L Ginn
- Gene Therapy Research Unit, Children's Medical Research Institute, The University of Sydney and The Sydney Children's Hospitals Network, Westmead, NSW 2145, Australia
| | - Claus V Hallwirth
- Gene Therapy Research Unit, Children's Medical Research Institute, The University of Sydney and The Sydney Children's Hospitals Network, Westmead, NSW 2145, Australia
| | - Sophia H Y Liao
- Gene Therapy Research Unit, Children's Medical Research Institute, The University of Sydney and The Sydney Children's Hospitals Network, Westmead, NSW 2145, Australia
| | - Erdahl T Teber
- Bioinformatics Unit, Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia
| | - Jonathan W Arthur
- Bioinformatics Unit, Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia
| | - Jianmin Wu
- Kinghorn Cancer Centre & Cancer Division, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, University of New South Wales, Darlinghurst, NSW 2010, Australia
| | - Hong Ching Lee
- Kinghorn Cancer Centre & Cancer Division, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, University of New South Wales, Darlinghurst, NSW 2010, Australia
| | - Szun S Tay
- Gene Therapy Research Unit, Children's Medical Research Institute, The University of Sydney and The Sydney Children's Hospitals Network, Westmead, NSW 2145, Australia
| | - Min Hu
- Centre for Kidney Research of The Children's Hospital at Westmead, Westmead, NSW 2145, Australia
| | - Roger R Reddel
- Cancer Research Unit, Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia
| | - Matthew P McCormack
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC 3800, Australia
| | - Adrian J Thrasher
- Infection, Immunity, Inflammation, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Marina Cavazzana
- Department of Biotherapy, Hôpital Necker-Enfants Malades, Paris 75015, France
| | - Stephen I Alexander
- Centre for Kidney Research of The Children's Hospital at Westmead, Westmead, NSW 2145, Australia; Discipline of Child and Adolescent Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Ian E Alexander
- Gene Therapy Research Unit, Children's Medical Research Institute, The University of Sydney and The Sydney Children's Hospitals Network, Westmead, NSW 2145, Australia; Discipline of Child and Adolescent Health, The University of Sydney, Westmead, NSW 2145, Australia.
| |
Collapse
|
36
|
Krueger A, Ziętara N, Łyszkiewicz M. T Cell Development by the Numbers. Trends Immunol 2016; 38:128-139. [PMID: 27842955 DOI: 10.1016/j.it.2016.10.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 10/21/2016] [Accepted: 10/25/2016] [Indexed: 01/01/2023]
Abstract
T cells are continually generated in the thymus in a highly dynamic process comprising discrete steps of lineage commitment, T cell receptor (TCR) gene rearrangement, and selection. These steps are linked to distinct rates of proliferation, survival, and cell death, but a quantitative picture of T cell development is only beginning to emerge. Here we summarize recent technical advances, including genetic fate mapping, barcoding, and molecular timers, that have allowed the implementation of computational models to quantify developmental dynamics in the thymus. Coupling new techniques with mathematical models has recently resulted in the emergence of new paradigms in early hematopoiesis and might similarly open new perspectives on T cell development.
Collapse
Affiliation(s)
- Andreas Krueger
- Institute of Molecular Medicine, Goethe University Frankfurt am Main, 60590 Frankfurt am Main, Germany.
| | - Natalia Ziętara
- Dr von Hauner Children's Hospital, Ludwig Maximilian University, 80337 Munich, Germany
| | - Marcin Łyszkiewicz
- Dr von Hauner Children's Hospital, Ludwig Maximilian University, 80337 Munich, Germany
| |
Collapse
|
37
|
Modeling the development of the post-natal mouse thymus in the absence of bone marrow progenitors. Sci Rep 2016; 6:36159. [PMID: 27824070 PMCID: PMC5099910 DOI: 10.1038/srep36159] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 10/04/2016] [Indexed: 01/01/2023] Open
Abstract
Many mathematical models have been published with the purpose of explaining aspects of T-cell development in the thymus. In this manuscript we adapted a four-compartment model of the thymus and used a range of mathematical approaches with the aim of explaining the dynamics of the four main thymocyte populations in the mouse thymus, from the emergence of the first fetal thymocyte until the death of the animal. At various pre-natal and post-natal stages we investigated experimentally the number and composition of thymocytes populations, their apoptosis and proliferation, along with data from literature, to create and validate the model. In our model the proliferation processes are characterized by decreasing proliferation rates, which allows us to model the natural involution of the thymus. The best results were obtained when different sets of parameters were used for the fetal and post-natal periods, suggesting that birth may induce a discontinuity in the modeled processes. Our model is able to model the development of both pre-natal and post-natal thymocyte populations. Also, our findings showed that the post-natal thymus is able to develop in the absence of the daily input of bone marrow progenitors, providing more evidence to support the autonomous development of the post-natal thymus.
Collapse
|
38
|
Lucas B, James KD, Cosway EJ, Parnell SM, Tumanov AV, Ware CF, Jenkinson WE, Anderson G. Lymphotoxin β Receptor Controls T Cell Progenitor Entry to the Thymus. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 197:2665-72. [PMID: 27549174 PMCID: PMC5026032 DOI: 10.4049/jimmunol.1601189] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 07/29/2016] [Indexed: 11/19/2022]
Abstract
The recruitment of lymphoid progenitors to the thymus is essential to sustain T cell production throughout life. Importantly, it also limits T lineage regeneration following bone marrow transplantation, and so contributes to the secondary immunodeficiency that is caused by delayed immune reconstitution. Despite this significance, the mechanisms that control thymus colonization are poorly understood. In this study, we show that in both the steady-state and after bone marrow transplant, lymphotoxin β receptor (LTβR) controls entry of T cell progenitors to the thymus. We show that this requirement maps to thymic stroma, further underlining the key importance of this TNFR superfamily member in regulation of thymic microenvironments. Importantly, analysis of the requirement for LTβR in relationship to known regulators of thymus seeding suggests that it acts independently of its regulation of thymus-homing chemokines. Rather, we show that LTβR differentially regulates intrathymic expression of adhesion molecules known to play a role in T cell progenitor entry to the thymus. Finally, Ab-mediated in vivo LTβR stimulation following bone marrow transplant enhances initial thymus recovery and boosts donor-derived T cell numbers, which correlates with increased adhesion molecule expression by thymic stroma. Collectively, we reveal a novel link between LTβR and thymic stromal cells in thymus colonization, and highlight its potential as an immunotherapeutic target to boost T cell reconstitution after transplantation.
Collapse
Affiliation(s)
- Beth Lucas
- Medical Research Council Centre for Immune Regulation, Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Kieran D James
- Medical Research Council Centre for Immune Regulation, Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Emilie J Cosway
- Medical Research Council Centre for Immune Regulation, Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Sonia M Parnell
- Medical Research Council Centre for Immune Regulation, Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | | | - Carl F Ware
- Infectious and Inflammatory Diseases Research Center, Sanford Burnham Medical Research Institute, La Jolla, CA 92037
| | - William E Jenkinson
- Medical Research Council Centre for Immune Regulation, Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Graham Anderson
- Medical Research Council Centre for Immune Regulation, Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, United Kingdom;
| |
Collapse
|
39
|
Shi Y, Wu W, Chai Q, Li Q, Hou Y, Xia H, Ren B, Xu H, Guo X, Jin C, Lv M, Wang Z, Fu YX, Zhu M. LTβR controls thymic portal endothelial cells for haematopoietic progenitor cell homing and T-cell regeneration. Nat Commun 2016; 7:12369. [PMID: 27493002 PMCID: PMC4980457 DOI: 10.1038/ncomms12369] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 06/27/2016] [Indexed: 12/19/2022] Open
Abstract
Continuous thymic homing of haematopoietic progenitor cells (HPCs) via the blood is critical for normal T-cell development. However, the nature and the differentiation programme of specialized thymic endothelial cells (ECs) controlling this process remain poorly understood. Here using conditional gene-deficient mice, we find that lymphotoxin beta receptor (LTβR) directly controls thymic ECs to guide HPC homing. Interestingly, T-cell deficiency or conditional ablation of T-cell-engaged LTβR signalling results in a defect in thymic HPC homing, suggesting the feedback regulation of thymic progenitor homing by thymic products. Furthermore, we identify and characterize a special thymic portal EC population with features that guide HPC homing. LTβR is essential for the differentiation and homeostasis of these thymic portal ECs. Finally, we show that LTβR is required for T-cell regeneration on irradiation-induced thymic injury. Together, these results uncover a cellular and molecular pathway that governs thymic EC differentiation for HPC homing. Lymphoid progenitors migrate from the bone marrow into the thymus to give rise to T and NK cell lineages. Here the authors characterize a lymphotoxin receptor beta-dependent population of thymic endothelial cells that guide lymphoid progenitor homing in the thymus.
Collapse
Affiliation(s)
- Yaoyao Shi
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiwei Wu
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Chai
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Qingqing Li
- Biodynamic Optical Imaging Center, College of Life Sciences, Peking University, Beijing 100871, China
| | - Yu Hou
- Biodynamic Optical Imaging Center, College of Life Sciences, Peking University, Beijing 100871, China
| | - Huan Xia
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Boyang Ren
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hairong Xu
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaohuan Guo
- School of Medicine, Tsinghua University, Beijing 100084 China
| | - Caiwei Jin
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengjie Lv
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongnan Wang
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yang-Xin Fu
- Department of Pathology and Immunology, UT Southwestern Medical Center, Dallas, Texas 75235-9072, USA
| | - Mingzhao Zhu
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
40
|
Höfer T, Busch K, Klapproth K, Rodewald HR. Fate Mapping and Quantitation of Hematopoiesis In Vivo. Annu Rev Immunol 2016; 34:449-78. [DOI: 10.1146/annurev-immunol-032414-112019] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Thomas Höfer
- Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany;
| | - Katrin Busch
- Division of Cellular Immunology, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany;
| | - Kay Klapproth
- Division of Cellular Immunology, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany;
| | - Hans-Reimer Rodewald
- Division of Cellular Immunology, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany;
| |
Collapse
|
41
|
Lucas B, McCarthy NI, Baik S, Cosway E, James KD, Parnell SM, White AJ, Jenkinson WE, Anderson G. Control of the thymic medulla and its influence on αβT-cell development. Immunol Rev 2016; 271:23-37. [PMID: 27088905 PMCID: PMC4982089 DOI: 10.1111/imr.12406] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The thymus is a primary lymphoid tissue that supports the generation of αβT cells. In this review, we describe the processes that give rise to the thymus medulla, a site that nurtures self-tolerant T-cell generation following positive selection events that take place in the cortex. To summarize the developmental pathways that generate medullary thymic epithelial cells (mTEC) from their immature progenitors, we describe work on both the initial emergence of the medulla during embryogenesis, and the maintenance of the medulla during postnatal stages. We also investigate the varying roles that receptors belonging to the tumor necrosis factor receptor superfamily have on thymus medulla development and formation, and highlight the impact that T-cell development has on thymus medulla formation. Finally, we examine the evidence that the thymic medulla plays an important role during the intrathymic generation of distinct αβT-cell subtypes. Collectively, these studies provide new insight into the development and functional importance of medullary microenvironments during self-tolerant T-cell production in the thymus.
Collapse
Affiliation(s)
- Beth Lucas
- MRC Centre for Immune RegulationInstitute for Immunology and ImmunotherapyMedical SchoolUniversity of BirminghamBirminghamUK
| | - Nicholas I. McCarthy
- MRC Centre for Immune RegulationInstitute for Immunology and ImmunotherapyMedical SchoolUniversity of BirminghamBirminghamUK
| | - Song Baik
- MRC Centre for Immune RegulationInstitute for Immunology and ImmunotherapyMedical SchoolUniversity of BirminghamBirminghamUK
| | - Emilie Cosway
- MRC Centre for Immune RegulationInstitute for Immunology and ImmunotherapyMedical SchoolUniversity of BirminghamBirminghamUK
| | - Kieran D. James
- MRC Centre for Immune RegulationInstitute for Immunology and ImmunotherapyMedical SchoolUniversity of BirminghamBirminghamUK
| | - Sonia M. Parnell
- MRC Centre for Immune RegulationInstitute for Immunology and ImmunotherapyMedical SchoolUniversity of BirminghamBirminghamUK
| | - Andrea J. White
- MRC Centre for Immune RegulationInstitute for Immunology and ImmunotherapyMedical SchoolUniversity of BirminghamBirminghamUK
| | - William E. Jenkinson
- MRC Centre for Immune RegulationInstitute for Immunology and ImmunotherapyMedical SchoolUniversity of BirminghamBirminghamUK
| | - Graham Anderson
- MRC Centre for Immune RegulationInstitute for Immunology and ImmunotherapyMedical SchoolUniversity of BirminghamBirminghamUK
| |
Collapse
|
42
|
Patenaude J, Perreault C. Thymic Mesenchymal Cells Have a Distinct Transcriptomic Profile. THE JOURNAL OF IMMUNOLOGY 2016; 196:4760-70. [DOI: 10.4049/jimmunol.1502499] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/28/2016] [Indexed: 12/22/2022]
|
43
|
Peaudecerf L, Krenn G, Gonçalves P, Vasseur F, Rocha B. Thymocytes self-renewal: a major hope or a major threat? Immunol Rev 2016; 271:173-84. [DOI: 10.1111/imr.12408] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
| | - Gerald Krenn
- INSERM; Unit 1020, Faculty of Medicine Descartes Paris V; Paris France
| | | | - Florence Vasseur
- INSERM; Unit 1020, Faculty of Medicine Descartes Paris V; Paris France
- Institut Pasteur; Paris France
| | - Benedita Rocha
- INSERM; Unit 1020, Faculty of Medicine Descartes Paris V; Paris France
- Institut Pasteur; Paris France
| |
Collapse
|
44
|
Pham K, Shimoni R, Charnley M, Ludford-Menting MJ, Hawkins ED, Ramsbottom K, Oliaro J, Izon D, Ting SB, Reynolds J, Lythe G, Molina-Paris C, Melichar H, Robey E, Humbert PO, Gu M, Russell SM. Asymmetric cell division during T cell development controls downstream fate. J Cell Biol 2015; 210:933-50. [PMID: 26370500 PMCID: PMC4576854 DOI: 10.1083/jcb.201502053] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
T cell precursors undergo asymmetric cell division after T cell receptor genomic recombination, with stromal cell cues controlling the differential inheritance of fate determinants Numb and α-Adaptin by the daughters of a dividing DN3a T cell precursor. During mammalian T cell development, the requirement for expansion of many individual T cell clones, rather than merely expansion of the entire T cell population, suggests a possible role for asymmetric cell division (ACD). We show that ACD of developing T cells controls cell fate through differential inheritance of cell fate determinants Numb and α-Adaptin. ACD occurs specifically during the β-selection stage of T cell development, and subsequent divisions are predominantly symmetric. ACD is controlled by interaction with stromal cells and chemokine receptor signaling and uses a conserved network of polarity regulators. The disruption of polarity by deletion of the polarity regulator, Scribble, or the altered inheritance of fate determinants impacts subsequent fate decisions to influence the numbers of DN4 cells arising after the β-selection checkpoint. These findings indicate that ACD enables the thymic microenvironment to orchestrate fate decisions related to differentiation and self-renewal.
Collapse
Affiliation(s)
- Kim Pham
- Immune Signalling Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia Centre for Micro-Photonics, Faculty of Science, Engineering, and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Raz Shimoni
- Immune Signalling Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia Centre for Micro-Photonics, Faculty of Science, Engineering, and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Mirren Charnley
- Immune Signalling Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia Centre for Micro-Photonics, Faculty of Science, Engineering, and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia Industrial Research Institute Swinburne, Faculty of Science, Engineering, and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Mandy J Ludford-Menting
- Immune Signalling Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia Centre for Micro-Photonics, Faculty of Science, Engineering, and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Edwin D Hawkins
- Immune Signalling Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
| | - Kelly Ramsbottom
- Immune Signalling Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
| | - Jane Oliaro
- Immune Signalling Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - David Izon
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
| | - Stephen B Ting
- Immune Signalling Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
| | - Joseph Reynolds
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds LS2 9JT, England, UK
| | - Grant Lythe
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds LS2 9JT, England, UK
| | - Carmen Molina-Paris
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds LS2 9JT, England, UK
| | - Heather Melichar
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Ellen Robey
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Patrick O Humbert
- Cell Cycle and Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia Department of Pathology, University of Melbourne, Parkville, Victoria 3010, Australia Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Min Gu
- Centre for Micro-Photonics, Faculty of Science, Engineering, and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Sarah M Russell
- Immune Signalling Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia Centre for Micro-Photonics, Faculty of Science, Engineering, and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia Department of Pathology, University of Melbourne, Parkville, Victoria 3010, Australia Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
45
|
Regelin M, Blume J, Pommerencke J, Vakilzadeh R, Witzlau K, Łyszkiewicz M, Ziętara N, Saran N, Schambach A, Krueger A. Responsiveness of Developing T Cells to IL-7 Signals Is Sustained by miR-17∼92. THE JOURNAL OF IMMUNOLOGY 2015; 195:4832-40. [PMID: 26475928 DOI: 10.4049/jimmunol.1402248] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 09/04/2015] [Indexed: 12/13/2022]
Abstract
miRNAs regulate a large variety of developmental processes including development of the immune system. T cell development is tightly controlled through the interplay of transcriptional programs and cytokine-mediated signals. However, the role of individual miRNAs in this process remains largely elusive. In this study, we demonstrated that hematopoietic cell-specific loss of miR-17∼92, a cluster of six miRNAs implicated in B and T lineage leukemogenesis, resulted in profound defects in T cell development both at the level of prethymic T cell progenitors as well as intrathymically. We identified reduced surface expression of IL-7R and concomitant limited responsiveness to IL-7 signals as a common mechanism resulting in reduced cell survival of common lymphoid progenitors and thymocytes at the double-negative to double-positive transition. In conclusion, we identified miR-17∼92 as a critical modulator of multiple stages of T cell development.
Collapse
Affiliation(s)
- Malte Regelin
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Jonas Blume
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Jens Pommerencke
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Ramin Vakilzadeh
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Katrin Witzlau
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Marcin Łyszkiewicz
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Natalia Ziętara
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Namita Saran
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; and Division of Hematology and Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115
| | - Andreas Krueger
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany;
| |
Collapse
|
46
|
Ziętara N, Łyszkiewicz M, Puchałka J, Witzlau K, Reinhardt A, Förster R, Pabst O, Prinz I, Krueger A. Multicongenic fate mapping quantification of dynamics of thymus colonization. ACTA ACUST UNITED AC 2015; 212:1589-601. [PMID: 26347471 PMCID: PMC4577840 DOI: 10.1084/jem.20142143] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 08/10/2015] [Indexed: 12/30/2022]
Abstract
Ziętara et al demonstrate with multicongenic fate mapping that thymus seeding is directly restricted to the duration of niche occupancy rather than long-range effects. Postnatal T cell development depends on continuous colonization of the thymus by BM-derived T lineage progenitors. Both quantitative parameters and the mechanisms of thymus seeding remain poorly understood. Here, we determined the number of dedicated thymus-seeding progenitor niches (TSPNs) capable of supporting productive T cell development, turnover rates of niche occupancy, and feedback mechanisms. To this end, we established multicongenic fate mapping combined with mathematical modeling to quantitate individual events of thymus colonization. We applied this method to study thymus colonization in CCR7−/−CCR9−/− (DKO) mice, whose TSPNs are largely unoccupied. We showed that ∼160–200 TSPNs are present in the adult thymus and, on average, 10 of these TSPNs were open for recolonization at steady state. Preconditioning of wild-type mice revealed a similar number of TSPNs, indicating that preconditioning can generate space efficiently for transplanted T cell progenitors. To identify potential cellular feedback loops restricting thymus colonization, we performed serial transfer experiments. These experiments indicated that thymus seeding was directly restricted by the duration of niche occupancy rather than long-range effects, thus challenging current paradigms of thymus colonization.
Collapse
Affiliation(s)
- Natalia Ziętara
- Institute of Immunology, Hannover Medical School, D-30625 Hannover, Germany
| | - Marcin Łyszkiewicz
- Institute of Immunology, Hannover Medical School, D-30625 Hannover, Germany
| | - Jacek Puchałka
- Dr. von Haunersches Kinderspital, University Children's Hospital, Ludwig Maximilian University, D-80337 Munich, Germany
| | - Katrin Witzlau
- Institute of Immunology, Hannover Medical School, D-30625 Hannover, Germany
| | - Annika Reinhardt
- Institute of Immunology, Hannover Medical School, D-30625 Hannover, Germany
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, D-30625 Hannover, Germany
| | - Oliver Pabst
- Institute of Immunology, Hannover Medical School, D-30625 Hannover, Germany Institute of Molecular Medicine, RWTH Aachen University, D-52074 Aachen, Germany
| | - Immo Prinz
- Institute of Immunology, Hannover Medical School, D-30625 Hannover, Germany
| | - Andreas Krueger
- Institute of Immunology, Hannover Medical School, D-30625 Hannover, Germany
| |
Collapse
|
47
|
Abstract
The thymus is an essential organ for the generation of the adaptive immune system. By now, the cellular selection events taking place in ongoing life before sexual maturity have been worked out even at the molecular level, and thus thymic lymphocyte development represents one of the best-studied systems in mammalian development. Because thymic lymphocyte development involves ample proliferation and generation of new cells, it is not astonishing that the thymus also represents an organ where malignancy can develop. In this Masters of Immunology primer, the development of lymphocytes and the role of intracellular Notch 1 and cyclins in lymphocytic malignancy are reviewed, offering new therapeutic possibilities.
Collapse
Affiliation(s)
- Harald von Boehmer
- Author's Affiliations: Harvard Medical School; Dana-Farber Cancer Institute, Boston, Massachusetts; University of Florida, Gainesville, Florida; and University of Munich, Munich, Germany
| |
Collapse
|
48
|
Vasil’ev KA, Polevshchikov AV. Thymus development in early ontogeny: A comparative aspect. Russ J Dev Biol 2015. [DOI: 10.1134/s106236041503008x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
49
|
Premature expression of Foxp3 in double-negative thymocytes. PLoS One 2015; 10:e0127038. [PMID: 25978037 PMCID: PMC4433242 DOI: 10.1371/journal.pone.0127038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 04/14/2015] [Indexed: 01/09/2023] Open
Abstract
Peripheral immune regulation depends on the generation of thymic-derived regulatory T (tTreg) cells to maintain self-tolerance and to counterbalance overshooting immune responses. The expression of the Treg lineage defining transcription factor Foxp3 in developing tTreg cells depends on TCR signaling during the thymic selection process of these T cells. In this study, we surprisingly identify Foxp3+ immature thymocytes at the double-negative (DN) stage in transcription factor 7 (Tcf7)-deficient mice. These Foxp3+ cells did not express a TCR (β or γδ chains), CD3 or CD5 and therefore these cells were true DN cells. Further investigation of this phenomenon in a transgenic TCR model showed that Foxp3-expressing DN cells could not respond to TCR stimulation in vivo. These data suggest that Foxp3 expression in these DN cells occurred independently of TCR signaling. Interestingly, these Foxp3+ DN cells were located in a transition state between DN1 and DN2 (CD4-CD8-CD3-TCR-CD44highCD25low). Our results indicate that Tcf7 is involved in preventing the premature expression of Foxp3 in DN thymocytes.
Collapse
|
50
|
A GMCSF and IL7 fusion cytokine leads to functional thymic-dependent T-cell regeneration in age-associated immune deficiency. Clin Transl Immunology 2015; 4:e37. [PMID: 26131365 PMCID: PMC4478872 DOI: 10.1038/cti.2015.8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 02/26/2015] [Accepted: 03/19/2015] [Indexed: 01/16/2023] Open
Abstract
The competence of cellular immunity depends on a diverse T-cell receptor (TCR) repertoire arising from thymic output. Normal thymopoiesis arises from marrow-derived CD3(-)CD4(-)CD8(-) triple-negative T-cell progenitors (TN), which develop into mature single-positive (SP) CD4 or CD8 T cells after expressing both CD4 and CD8 (double-positive, DP) transiently, leading to de novo T-cell production. Interleukin-7 (IL7) is a singularly important common γ-chain IL involved in normal thymic development. Our previous work has demonstrated that γc cytokines fused with granulocyte-macrophage colony stimulating factor (GMCSF) at the N-terminus acquire unheralded biological properties. Therefore, to enhance thymopoiesis, we developed a novel biopharmaceutical based on the fusion of GMCSF and IL7, hereafter GIFT7. Systemic administration of GIFT7 leads to cortical thymic hyperplasia including the specific expansion of CD44(int)CD25(-) double-negative 1 (DN1) thymic progenitors. During murine cytomegalovirus (mCMV) infection of aged animals, GIFT7-mediated neo-thymopoiesis led to increased absolute numbers of viral-specific CD8(+) T cell. Our work demonstrated that thymic precursors can be therapeutically repopulated and its reconstitution leads to meaningful central and peripheral T-cell neogenesis, correcting immune dysfunction arising from age-associated thymic atrophy.
Collapse
|