1
|
Chawla YM, Bajpai P, Saini K, Reddy ES, Patel AK, Murali-Krishna K, Chandele A. Regional Variation of the CD4 and CD8 T Cell Epitopes Conserved in Circulating Dengue Viruses and Shared with Potential Vaccine Candidates. Viruses 2024; 16:730. [PMID: 38793612 PMCID: PMC11126086 DOI: 10.3390/v16050730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/03/2024] [Accepted: 04/11/2024] [Indexed: 05/26/2024] Open
Abstract
As dengue expands globally and many vaccines are under trials, there is a growing recognition of the need for assessing T cell immunity in addition to assessing the functions of neutralizing antibodies during these endeavors. While several dengue-specific experimentally validated T cell epitopes are known, less is understood about which of these epitopes are conserved among circulating dengue viruses and also shared by potential vaccine candidates. As India emerges as the epicenter of the dengue disease burden and vaccine trials commence in this region, we have here aligned known dengue specific T cell epitopes, reported from other parts of the world with published polyprotein sequences of 107 dengue virus isolates available from India. Of the 1305 CD4 and 584 CD8 epitopes, we found that 24% and 41%, respectively, were conserved universally, whereas 27% and 13% were absent in any viral isolates. With these data, we catalogued epitopes conserved in circulating dengue viruses from India and matched them with each of the six vaccine candidates under consideration (TV003, TDEN, DPIV, CYD-TDV, DENVax and TVDV). Similar analyses with viruses from Thailand, Brazil and Mexico revealed regional overlaps and variations in these patterns. Thus, our study provides detailed and nuanced insights into regional variation that should be considered for itemization of T cell responses during dengue natural infection and vaccine design, testing and evaluation.
Collapse
Affiliation(s)
- Yadya M. Chawla
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; (Y.M.C.); (P.B.); (K.S.); (E.S.R.)
| | - Prashant Bajpai
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; (Y.M.C.); (P.B.); (K.S.); (E.S.R.)
| | - Keshav Saini
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; (Y.M.C.); (P.B.); (K.S.); (E.S.R.)
| | - Elluri Seetharami Reddy
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; (Y.M.C.); (P.B.); (K.S.); (E.S.R.)
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India;
| | - Ashok Kumar Patel
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India;
| | - Kaja Murali-Krishna
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; (Y.M.C.); (P.B.); (K.S.); (E.S.R.)
- Department of Pediatrics, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
- Emory Vaccine Center, Emory University, Atlanta, GA 30317, USA
| | - Anmol Chandele
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; (Y.M.C.); (P.B.); (K.S.); (E.S.R.)
| |
Collapse
|
2
|
The dubious origin of beryllium toxicity. Struct Chem 2023. [DOI: 10.1007/s11224-023-02130-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
AbstractFour mechanisms have been proposed in the literature to explain beryllium toxicity; they can be divided in two groups of two mechanisms: (i) replacement type: models 1 and 2; (ii) addition type: models 3 and 4. At this moment is not possible to select the best model not even to establish if one of these models will be the ultimate mechanism of beryllium toxicity. However, it is important to know the still open discussion about something so important associated with one of the simplest elements of the periodic table.
Collapse
|
3
|
Atif SM, Mack DG, Martin AK, Fontenot AP. Protective role of tissue-resident regulatory T cells in a murine model of beryllium-induced disease. JCI Insight 2022; 7:156098. [PMID: 35819849 PMCID: PMC9462505 DOI: 10.1172/jci.insight.156098] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 07/07/2022] [Indexed: 11/17/2022] Open
Abstract
CD4+ T cells drive the immunopathogenesis of chronic beryllium disease (CBD), and their recruitment to the lung heralds the onset of granulomatous inflammation. We have shown that regulatory CD4+ T cells (Tregs) control granuloma formation in an HLA-DP2 transgenic (Tg) model of CBD. In these mice, Be oxide (BeO) exposure resulted in the accumulation of three distinct CD4+ T cell subsets in the lung with the majority of tissue-resident memory cells expressing FoxP3. The amount of Be regulated the number of total and antigen-specific CD4+ T cells and Tregs in the lungs of HLA-DP2 Tg mice. Depletion of Tregs increased the number of IFN-γ-producing CD4+ T cells and enhanced lung injury while mice treated with IL2/αIL-2 complexes had increased Tregs and reduced inflammation and Be-responsive T cells in the lung. BeO-experienced resident Tregs suppressed anti-CD3-induced proliferation of CD4+ T cells in a contact-dependent manner. CLTLA-4 and ICOS blockade as well as addition of LPS to BeO-exposed mice increased the Teff/Treg ratio and enhanced lung injury. Collectively, these data show that the protective role of tissue-resident Tregs is dependent on quantity of Be exposure and is overcome by blocking immune regulatory molecules or additional environmental insults.
Collapse
Affiliation(s)
- Shaikh M Atif
- Department of Medicine, University of Colorado Anschutz Medical Campus, Auroroa, United States of America
| | - Douglas G Mack
- Department of Medicine, University of Colorado Anschutz Medical Campus, Auroroa, United States of America
| | - Allison K Martin
- Department of Medicine, University of Colorado Anschutz Medical Campus, Auroroa, United States of America
| | - Andrew P Fontenot
- Department of Medicine, University of Colorado Anschutz Medical Campus, Auroroa, United States of America
| |
Collapse
|
4
|
McKee AS, Atif SM, Falta MT, Fontenot AP. Innate and Adaptive Immunity in Noninfectious Granulomatous Lung Disease. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1835-1843. [PMID: 35418504 PMCID: PMC9106315 DOI: 10.4049/jimmunol.2101159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/08/2022] [Indexed: 11/19/2022]
Abstract
Sarcoidosis and chronic beryllium disease are noninfectious lung diseases that are characterized by the presence of noncaseating granulomatous inflammation. Chronic beryllium disease is caused by occupational exposure to beryllium containing particles, whereas the etiology of sarcoidosis is not known. Genetic susceptibility for both diseases is associated with particular MHC class II alleles, and CD4+ T cells are implicated in their pathogenesis. The innate immune system plays a critical role in the initiation of pathogenic CD4+ T cell responses as well as the transition to active lung disease and disease progression. In this review, we highlight recent insights into Ag recognition in chronic beryllium disease and sarcoidosis. In addition, we discuss the current understanding of the dynamic interactions between the innate and adaptive immune systems and their impact on disease pathogenesis.
Collapse
Affiliation(s)
- Amy S McKee
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO; and
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Shaikh M Atif
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO; and
| | - Michael T Falta
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO; and
| | - Andrew P Fontenot
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO; and
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
5
|
Pinilla C, Giulianotti MA, Santos RG, Houghten RA. Identification of B Cell and T Cell Epitopes Using Synthetic Peptide Combinatorial Libraries. Curr Protoc 2022; 2:e378. [PMID: 35263045 DOI: 10.1002/cpz1.378] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This article presents a combinatorial library method that consists of the synthesis and screening of mixture-based synthetic combinatorial libraries of peptide molecules to identify B and T cell epitopes. The protocols employ peptide libraries to identify peptides recognized by MAbs and T cells. The first protocol uses a positional scanning peptide library made up of hexapeptides to identify antigenic determinants recognized by MAbs. The 120 mixtures in the hexapeptide library are tested for their inhibitory activity in a competitive ELISA. The second protocol uses a decapeptide library to identify T cell peptide ligands. The 200 mixtures of the decapeptide library are tested for their ability to induce T cell activation. Support protocols cover optimization of the assay conditions for each MAb or T cell, to achieve the best level of sensitivity and reproducibility, and preparation of a hexapeptide library, along with deconvolution approaches. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Screening peptide library for antibody inhibition Basic Protocol 2: Screening a peptide library to identify CD4+ Or CD8+ T cell ligands Support Protocol 1: Optimizing antigen and antibody concentrations for screening assay Support Protocol 2: Preparing a positional scanning peptide library.
Collapse
Affiliation(s)
- Clemencia Pinilla
- Center for Translational Science, Florida International University, Port St. Lucie, Florida
| | - Marc A Giulianotti
- Center for Translational Science, Florida International University, Port St. Lucie, Florida
| | | | - Richard A Houghten
- Center for Translational Science, Florida International University, Port St. Lucie, Florida
| |
Collapse
|
6
|
Riedel F, Aparicio-Soto M, Curato C, Thierse HJ, Siewert K, Luch A. Immunological Mechanisms of Metal Allergies and the Nickel-Specific TCR-pMHC Interface. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:10867. [PMID: 34682608 PMCID: PMC8535423 DOI: 10.3390/ijerph182010867] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/03/2021] [Accepted: 10/11/2021] [Indexed: 12/19/2022]
Abstract
Besides having physiological functions and general toxic effects, many metal ions can cause allergic reactions in humans. We here review the immune events involved in the mediation of metal allergies. We focus on nickel (Ni), cobalt (Co) and palladium (Pd), because these allergens are among the most prevalent sensitizers (Ni, Co) and immediate neighbors in the periodic table of the chemical elements. Co-sensitization between Ni and the other two metals is frequent while the knowledge on a possible immunological cross-reactivity using in vivo and in vitro approaches remains limited. At the center of an allergic reaction lies the capability of a metal allergen to form T cell epitopes that are recognized by specific T cell receptors (TCR). Technological advances such as activation-induced marker assays and TCR high-throughput sequencing recently provided new insights into the interaction of Ni2+ with the αβ TCR-peptide-major histocompatibility complex (pMHC) interface. Ni2+ functionally binds to the TCR gene segment TRAV9-2 or a histidine in the complementarity determining region 3 (CDR3), the main antigen binding region. Thus, we overview known, newly identified and hypothesized mechanisms of metal-specific T cell activation and discuss current knowledge on cross-reactivity.
Collapse
Affiliation(s)
- Franziska Riedel
- Department for Chemicals and Product Safety, Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany; (M.A.-S.); (C.C.); (H.-J.T.); (K.S.); (A.L.)
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2, 14195 Berlin, Germany
| | - Marina Aparicio-Soto
- Department for Chemicals and Product Safety, Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany; (M.A.-S.); (C.C.); (H.-J.T.); (K.S.); (A.L.)
| | - Caterina Curato
- Department for Chemicals and Product Safety, Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany; (M.A.-S.); (C.C.); (H.-J.T.); (K.S.); (A.L.)
| | - Hermann-Josef Thierse
- Department for Chemicals and Product Safety, Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany; (M.A.-S.); (C.C.); (H.-J.T.); (K.S.); (A.L.)
| | - Katherina Siewert
- Department for Chemicals and Product Safety, Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany; (M.A.-S.); (C.C.); (H.-J.T.); (K.S.); (A.L.)
| | - Andreas Luch
- Department for Chemicals and Product Safety, Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany; (M.A.-S.); (C.C.); (H.-J.T.); (K.S.); (A.L.)
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2, 14195 Berlin, Germany
| |
Collapse
|
7
|
Greaves SA, Ravindran A, Santos RG, Chen L, Falta MT, Wang Y, Mitchell AM, Atif SM, Mack DG, Tinega AN, Maier LA, Dai S, Pinilla C, Grunewald J, Fontenot AP. CD4+ T cells in the lungs of acute sarcoidosis patients recognize an Aspergillus nidulans epitope. J Exp Med 2021; 218:212583. [PMID: 34410304 PMCID: PMC8383815 DOI: 10.1084/jem.20210785] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/18/2021] [Accepted: 07/22/2021] [Indexed: 11/05/2022] Open
Abstract
Löfgren’s syndrome (LS) is an acute form of sarcoidosis characterized by a genetic association with HLA-DRB1*03 (HLA-DR3) and an accumulation of CD4+ T cells of unknown specificity in the bronchoalveolar lavage (BAL). Here, we screened related LS-specific TCRs for antigen specificity and identified a peptide derived from NAD-dependent histone deacetylase hst4 (NDPD) of Aspergillus nidulans that stimulated these CD4+ T cells in an HLA-DR3–restricted manner. Using ELISPOT analysis, a greater number of IFN-γ– and IL-2–secreting T cells in the BAL of DR3+ LS subjects compared with DR3+ control subjects was observed in response to the NDPD peptide. Finally, increased IgG antibody responses to A. nidulans NDPD were detected in the serum of DR3+ LS subjects. Thus, our findings identify a ligand for CD4+ T cells derived from the lungs of LS patients and suggest a role of A. nidulans in the etiology of LS.
Collapse
Affiliation(s)
- Sarah A Greaves
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Avinash Ravindran
- Department of Medicine, Solna, Karolinska University Hospital, Stockholm, Sweden.,Centre for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Radleigh G Santos
- Department of Mathematics, Nova Southeastern University, Ft. Lauderdale, FL
| | - Lan Chen
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Michael T Falta
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Yang Wang
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Angela M Mitchell
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Shaikh M Atif
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Douglas G Mack
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Alex N Tinega
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Lisa A Maier
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO.,Department of Medicine, National Jewish Health, Denver, CO
| | - Shaodong Dai
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Clemencia Pinilla
- Center for Translational Science, Florida International University, Port St. Lucie, FL
| | - Johan Grunewald
- Department of Medicine, Solna, Karolinska University Hospital, Stockholm, Sweden
| | - Andrew P Fontenot
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO.,Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
8
|
Wieber K, Zimmer CL, Hertl M. Detection of autoreactive CD4+ T cells by MHC class II multimers in HLA-linked human autoimmune diseases. J Clin Invest 2021; 131:148674. [PMID: 33938450 DOI: 10.1172/jci148674] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Recognition of self-peptides in association with distinct HLA class II alleles by autoreactive CD4+ T cells is central for loss of immunological tolerance leading to autoimmune disease. However, identifying immunodominant self-peptides and characterizing autoreactive T cells is challenging. In this issue of the JCI, Falta et al. identify a disease-associated complementarity-determining region 3β motif specific for beryllium-modified C-C motif ligand 4 (CCL4) and CCL3 self-peptides in patients with chronic beryllium disease (CBD), a granulomatous lung disorder with a known HLA class II allelic association. Detection of these antigen-specific CD4+ T cells by beryllium-pulsed HLA-DP2 tetramers presenting CCL4/CCL3 confirms these autoantigens in humans and mice and enables monitoring in the progress of disease. Detection of autoreactive CD4+ T cells by peptide-MHC class II multimers allows for the detailed characterization of disease-promoting T cells. This knowledge has profound implications for the monitoring and development of targeted therapies in human autoimmune disorders.
Collapse
|
9
|
Falta MT, Crawford JC, Tinega AN, Landry LG, Crawford F, Mack DG, Martin AK, Atif SM, Li L, Santos RG, Nakayama M, Kappler JW, Maier LA, Thomas PG, Pinilla C, Fontenot AP. Beryllium-specific CD4+ T cells induced by chemokine neoantigens perpetuate inflammation. J Clin Invest 2021; 131:144864. [PMID: 33630763 PMCID: PMC8087207 DOI: 10.1172/jci144864] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
Discovering dominant epitopes for T cells, particularly CD4+ T cells, in human immune-mediated diseases remains a significant challenge. Here, we used bronchoalveolar lavage (BAL) cells from HLA-DP2-expressing patients with chronic beryllium disease (CBD), a debilitating granulomatous lung disorder characterized by accumulations of beryllium-specific (Be-specific) CD4+ T cells in the lung. We discovered lung-resident CD4+ T cells that expressed a disease-specific public CDR3β T cell receptor motif and were specific to Be-modified self-peptides derived from C-C motif ligand 4 (CCL4) and CCL3. HLA-DP2-CCL/Be tetramer staining confirmed that these chemokine-derived peptides represented major antigenic targets in CBD. Furthermore, Be induced CCL3 and CCL4 secretion in the lungs of mice and humans. In a murine model of CBD, the addition of LPS to Be oxide exposure enhanced CCL4 and CCL3 secretion in the lung and significantly increased the number and percentage of CD4+ T cells specific for the HLA-DP2-CCL/Be epitope. Thus, we demonstrate a direct link between Be-induced innate production of chemokines and the development of a robust adaptive immune response to those same chemokines presented as Be-modified self-peptides, creating a cycle of innate and adaptive immune activation.
Collapse
Affiliation(s)
- Michael T. Falta
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jeremy C. Crawford
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Alex N. Tinega
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Laurie G. Landry
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | | | - Douglas G. Mack
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Allison K. Martin
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Shaikh M. Atif
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Li Li
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Radleigh G. Santos
- Department of Mathematics, Nova Southeastern University, Ft. Lauderdale, Florida, USA
| | - Maki Nakayama
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - John W. Kappler
- Department of Biomedical Research and
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Lisa A. Maier
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Paul G. Thomas
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | | | - Andrew P. Fontenot
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
10
|
Collins MK, Shotland AM, Wade MF, Atif SM, Richards DK, Torres-Llompart M, Mack DG, Martin AK, Fontenot AP, McKee AS. A role for TNF-α in alveolar macrophage damage-associated molecular pattern release. JCI Insight 2020; 5:134356. [PMID: 32255768 DOI: 10.1172/jci.insight.134356] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 04/01/2020] [Indexed: 01/22/2023] Open
Abstract
Chronic beryllium disease (CBD) is a metal hypersensitivity/autoimmune disease in which damage-associated molecular patterns (DAMPs) promote a break in T cell tolerance and expansion of Be2+/self-peptide-reactive CD4+ T cells. In this study, we investigated the mechanism of cell death induced by beryllium particles in alveolar macrophages (AMs) and its impact on DAMP release. We found that phagocytosis of Be led to AM cell death independent of caspase, receptor-interacting protein kinases 1 and 3, or ROS activity. Before cell death, Be-exposed AMs secreted TNF-α that boosted intracellular stores of IL-1α followed by caspase-8-dependent fragmentation of DNA. IL-1α and nucleosomal DNA were subsequently released from AMs upon loss of plasma membrane integrity. In contrast, necrotic AMs released only unfragmented DNA and necroptotic AMs released only IL-1α. In mice exposed to Be, TNF-α promoted release of DAMPs and was required for the mobilization of immunogenic DCs, the expansion of Be-reactive CD4+ T cells, and pulmonary inflammation in a mouse model of CBD. Thus, early autocrine effects of particle-induced TNF-α on AMs led to a break in peripheral tolerance. This potentially novel mechanism may underlie the known relationship between fine particle inhalation, TNF-α, and loss of peripheral tolerance in T cell-mediated autoimmune disease and hypersensitivities.
Collapse
Affiliation(s)
- Morgan K Collins
- Division of Allergy, Asthma and Clinical Immunology, Department of Medicine
| | - Abigail M Shotland
- Division of Allergy, Asthma and Clinical Immunology, Department of Medicine
| | - Morgan F Wade
- Division of Allergy, Asthma and Clinical Immunology, Department of Medicine
| | - Shaikh M Atif
- Division of Allergy, Asthma and Clinical Immunology, Department of Medicine
| | | | | | - Douglas G Mack
- Division of Allergy, Asthma and Clinical Immunology, Department of Medicine
| | - Allison K Martin
- Division of Allergy, Asthma and Clinical Immunology, Department of Medicine
| | - Andrew P Fontenot
- Division of Allergy, Asthma and Clinical Immunology, Department of Medicine.,Department of Immunology and Microbiology, University of Colorado School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Amy S McKee
- Division of Allergy, Asthma and Clinical Immunology, Department of Medicine.,Department of Immunology and Microbiology, University of Colorado School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
11
|
Berger RJ, Håkansson P, Mera-Adasme R. A consistent model for the key complex in chronic beryllium disease. ACTA ACUST UNITED AC 2020. [DOI: 10.1515/znb-2020-0010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Abstract
A hypothesis on the structure of the key complex in chronic beryllium disease (CBD) is discussed with respect to the current knowledge on CBD, and with respect to the constraints implied by the coordination chemistry of beryllium and experimental data on the engaged protein complexes. The structure hypothesis is based on the [Be4O]6+ moiety as a coordination center, which is also found in the so called “basic beryllium carboxylates”. The structure of a small molecular model, optimized at the DFT level of theory, is used to compare the structural demands of this coordination center with a structure of the in vitro model of a beryllium immunoprotein complex determined previously by protein crystallography (Clayton & al., Cell
2014, 158, 132). 9Be NMR chemical shielding values, quadrupole coupling constants and asymmetry parameters (η) have been calculated.
Collapse
Affiliation(s)
- Raphael J.F. Berger
- Department for Chemistry and Physics of Materials , Universität Salzburg , Jakob-Haringer-Str.2 a , A-5020 Salzburg , Austria
| | - Pär Håkansson
- NMR Research Unit , University of Oulu , P. O. Box 3000 , 90014 Oulu , Finland
| | - Raúl Mera-Adasme
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología , Universidad de Santiago de Chile (USACH) , Santiago de Chile , Chile , E-mail:
| |
Collapse
|
12
|
Greaves SA, Atif SM, Fontenot AP. Adaptive Immunity in Pulmonary Sarcoidosis and Chronic Beryllium Disease. Front Immunol 2020; 11:474. [PMID: 32256501 PMCID: PMC7093490 DOI: 10.3389/fimmu.2020.00474] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 02/28/2020] [Indexed: 12/11/2022] Open
Abstract
Pulmonary sarcoidosis and chronic beryllium disease (CBD) are inflammatory granulomatous lung diseases defined by the presence of non-caseating granulomas in the lung. CBD results from beryllium exposure in the workplace, while the cause of sarcoidosis remains unknown. CBD and sarcoidosis are both immune-mediated diseases that involve Th1-polarized inflammation in the lung. Beryllium exposure induces trafficking of dendritic cells to the lung in a mechanism dependent on MyD88 and IL-1α. B cells are also recruited to the lung in a MyD88 dependent manner after beryllium exposure in order to protect the lung from beryllium-induced injury. Similar to most immune-mediated diseases, disease susceptibility in CBD and sarcoidosis is driven by the expression of certain MHCII molecules, primarily HLA-DPB1 in CBD and several HLA-DRB1 alleles in sarcoidosis. One of the defining features of both CBD and sarcoidosis is an infiltration of activated CD4+ T cells in the lung. CD4+ T cells in the bronchoalveolar lavage (BAL) of CBD and sarcoidosis patients are highly Th1 polarized, and there is a significant increase in inflammatory Th1 cytokines present in the BAL fluid. In sarcoidosis, there is also a significant population of Th17 cells in the lungs that is not present in CBD. Due to persistent antigen exposure and chronic inflammation in the lung, these activated CD4+ T cells often display either an exhausted or anergic phenotype. Evidence suggests that these T cells are responding to common antigens in the lung. In CBD there is an expansion of beryllium-responsive TRBV5.1+ TCRs expressed on pathogenic CD4+ T cells derived from the BAL of CBD patients that react with endogenous human peptides derived from the plexin A protein. In an acute form of sarcoidosis, there are expansions of specific TRAV12-1/TRBV2 T cell receptors expressed on BAL CD4+ T cells, indicating that these T cells are trafficking to and expanding in the lung in response to common antigens. The specificity of these pathogenic CD4+T cells in sarcoidosis are currently unknown.
Collapse
Affiliation(s)
- Sarah A Greaves
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Shaikh M Atif
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Andrew P Fontenot
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
13
|
Abstract
Abstract
Beryllium has long been considered the most toxic non-radioactive element to humans. However, it is shown that the acute toxicity of beryllium ions does not exceed that of other toxic cations like Cd2+, Ba2+, Hg2+ or As3+. The physiological mechanisms liable for the development of beryllium-associated diseases are discussed. Additionally an overview over proposed low-molecular model system for the beryllium species responsible for beryllioses is presented.
Collapse
Affiliation(s)
- Magnus R. Buchner
- Anorganische Chemie, Nachwuchsgruppe Berylliumchemie, Fachbereich Chemie , Philipps-Universität Marburg , Hans-Meerwein-Straße 4 , 35032 Marburg , Germany
| |
Collapse
|
14
|
De S, Sabu G, Zacharias M. Molecular mechanism of Be2+-ion binding to HLA-DP2: tetrahedral coordination, conformational changes and multi-ion binding. Phys Chem Chem Phys 2020; 22:799-810. [DOI: 10.1039/c9cp05695e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Be small and positive: the smaller size and higher charge of the Be2+-ion results in strong binding between the M2 peptide and the β-chain of HLA-DP2, which induces conformational changes at the periphery suitable for TCR binding.
Collapse
Affiliation(s)
- Susmita De
- Department of Applied Chemistry
- Cochin University of Science and Technology
- Kochi 682 022
- India
- Inter University Centre for Nanomaterials and Devices (IUCND)
| | - Gopika Sabu
- Department of Applied Chemistry
- Cochin University of Science and Technology
- Kochi 682 022
- India
| | - Martin Zacharias
- Physics Department
- Technical University of Munich
- Garching 85747
- Germany
| |
Collapse
|
15
|
Buchner MR. Beryllium coordination chemistry and its implications on the understanding of metal induced immune responses. Chem Commun (Camb) 2020; 56:8895-8907. [DOI: 10.1039/d0cc03802d] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The coordination chemistry of beryllium with ligands containing biologically relevant functional groups is discussed. The geometry, speciation and reactivity of these compounds, aids a better understanding of metal ion induced immune reactions.
Collapse
Affiliation(s)
- Magnus R. Buchner
- Anorganische Chemie
- Nachwuchsgruppe Hauptgruppenmetallchemie
- Fachbereich Chemie
- Philipps-Universität Marburg
- 35032 Marburg
| |
Collapse
|
16
|
Roach KA, Stefaniak AB, Roberts JR. Metal nanomaterials: Immune effects and implications of physicochemical properties on sensitization, elicitation, and exacerbation of allergic disease. J Immunotoxicol 2019; 16:87-124. [PMID: 31195861 PMCID: PMC6649684 DOI: 10.1080/1547691x.2019.1605553] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 03/15/2019] [Accepted: 04/05/2019] [Indexed: 12/25/2022] Open
Abstract
The recent surge in incorporation of metallic and metal oxide nanomaterials into consumer products and their corresponding use in occupational settings have raised concerns over the potential for metals to induce size-specific adverse toxicological effects. Although nano-metals have been shown to induce greater lung injury and inflammation than their larger metal counterparts, their size-related effects on the immune system and allergic disease remain largely unknown. This knowledge gap is particularly concerning since metals are historically recognized as common inducers of allergic contact dermatitis, occupational asthma, and allergic adjuvancy. The investigation into the potential for adverse immune effects following exposure to metal nanomaterials is becoming an area of scientific interest since these characteristically lightweight materials are easily aerosolized and inhaled, and their small size may allow for penetration of the skin, which may promote unique size-specific immune effects with implications for allergic disease. Additionally, alterations in physicochemical properties of metals in the nano-scale greatly influence their interactions with components of biological systems, potentially leading to implications for inducing or exacerbating allergic disease. Although some research has been directed toward addressing these concerns, many aspects of metal nanomaterial-induced immune effects remain unclear. Overall, more scientific knowledge exists in regards to the potential for metal nanomaterials to exacerbate allergic disease than to their potential to induce allergic disease. Furthermore, effects of metal nanomaterial exposure on respiratory allergy have been more thoroughly-characterized than their potential influence on dermal allergy. Current knowledge regarding metal nanomaterials and their potential to induce/exacerbate dermal and respiratory allergy are summarized in this review. In addition, an examination of several remaining knowledge gaps and considerations for future studies is provided.
Collapse
Affiliation(s)
- Katherine A Roach
- a Allergy and Clinical Immunology Branch (ACIB) , National Institute of Occupational Safety and Health (NIOSH) , Morgantown , WV , USA
- b School of Pharmacy , West Virginia University , Morgantown , WV , USA
| | - Aleksandr B Stefaniak
- c Respiratory Health Division (RHD) , National Institute of Occupational Safety and Health (NIOSH) , Morgantown , WV , USA
| | - Jenny R Roberts
- a Allergy and Clinical Immunology Branch (ACIB) , National Institute of Occupational Safety and Health (NIOSH) , Morgantown , WV , USA
| |
Collapse
|
17
|
Abstract
Metal-induced hypersensitivity is driven by T-cell sensitization to metal ions. Although numerous metals are associated with the development of diffuse parenchymal lung disease, beryllium-induced hypersensitivity is the best-studied to date. This review focuses on the interaction between innate and adaptive immunity that leads to the development of chronic beryllium disease. After beryllium exposure, activation of the innate immune system occurs through the engagement of pattern-recognition receptors. This activation leads to cell death, release of alarmins, and activation and migration of dendritic cells to lung-draining lymph nodes. These events culminate in the development of an adaptive immune response that is characterized by beryllium-specific, T-helper type 1-polarized, CD4+ T-cells and granuloma formation in the lung. The unique ability of beryllium to bind to human leukocyte antigen-DP molecules that express a glutamic acid at position 69 of the β-chain alters the charge and conformation of the human leukocyte antigen-DP-peptide complex. These changes induce post-translational modifications that are recognized as non-self. In essence, the ability of beryllium to create neoantigens underlies the genesis of chronic beryllium disease, and demonstrates the similarity between beryllium-induced hypersensitivity and autoimmunity.
Collapse
|
18
|
Kaiser Y, Eklund A, Grunewald J. Moving target: shifting the focus to pulmonary sarcoidosis as an autoimmune spectrum disorder. Eur Respir J 2019; 54:13993003.021532018. [PMID: 31000677 DOI: 10.1183/13993003.021532018] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 04/01/2019] [Indexed: 12/27/2022]
Abstract
Despite more than a century of research, the causative agent(s) in sarcoidosis, a heterogeneous granulomatous disorder mainly affecting the lungs, remain(s) elusive. Following identification of genetic factors underlying different clinical phenotypes, increased understanding of CD4+ T-cell immunology, which is believed to be central to sarcoid pathogenesis, as well as the role of B-cells and other cells bridging innate and adaptive immunity, contributes to novel insights into the mechanistic pathways influencing disease resolution or chronicity. Hopefully, new perspectives and state-of-the-art technology will help to shed light on the still-elusive enigma of sarcoid aetiology. This perspective article highlights a number of recent advances in the search for antigenic targets in sarcoidosis, as well as the main arguments for sarcoidosis as a spectrum of autoimmune conditions, either as a result of an external (microbial) trigger and/or due to defective control mechanisms regulating the balance between T-cell activation and inhibition.
Collapse
Affiliation(s)
- Ylva Kaiser
- Respiratory Medicine Unit, Dept of Medicine, Solna and Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital Solna, Stockholm, Sweden
| | - Anders Eklund
- Respiratory Medicine Unit, Dept of Medicine, Solna and Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital Solna, Stockholm, Sweden
| | - Johan Grunewald
- Respiratory Medicine Unit, Dept of Medicine, Solna and Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital Solna, Stockholm, Sweden
| |
Collapse
|
19
|
Atif SM, Mack DG, McKee AS, Rangel-Moreno J, Martin AK, Getahun A, Maier LA, Cambier JC, Tuder R, Fontenot AP. Protective role of B cells in sterile particulate-induced lung injury. JCI Insight 2019; 5:125494. [PMID: 31094704 DOI: 10.1172/jci.insight.125494] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Susceptibility to chronic beryllium (Be) disease is linked to HLA-DP molecules possessing a glutamic acid at the 69th position of the β-chain (βGlu69), with the most prevalent βGlu69-containing molecule being HLA-DP2. We have previously shown that HLA-DP2 transgenic (Tg) mice exposed to Be oxide (BeO) develop mononuclear infiltrates in a peribronchovascular distribution and a beryllium-specific, HLA-DP2-restricted CD4+ T cell response. In addition to T cells, B cells constituted a major portion of infiltrated leukocytes in the lung of BeO-exposed HLA-DP2 Tg mice and sequester BeO particles within ectopic lymphoid aggregates and granulomas. B cell depletion was associated with a loss of lymphoid aggregates and granulomas as well as a significant increase in lung injury in BeO-exposed mice. The protective role of B cells was innate in origin, and BeO-induced B cell recruitment to the lung was dependent on MyD88 signaling. Similar to BeO-exposed HLA-DP2 mice, B cells also accumulate in the lungs of CBD subjects, located at the periphery and surrounding the granuloma. Overall, our data suggest a novel modulatory role for B cells in the protection of the lung against sterile particulate exposure, with B cell recruitment to the inflamed lung occurring in an antigen-independent and MyD88-dependent manner.
Collapse
Affiliation(s)
- Shaikh M Atif
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Douglas G Mack
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Amy S McKee
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Javier Rangel-Moreno
- Department of Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Allison K Martin
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Andrew Getahun
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Lisa A Maier
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.,Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - John C Cambier
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Rubin Tuder
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Andrew P Fontenot
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.,Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
20
|
Drobyshev E, Kybarskaya L, Dagaev S, Solovyev N. New insight in beryllium toxicity excluding exposure to beryllium-containing dust: accumulation patterns, target organs, and elimination. Arch Toxicol 2019; 93:859-869. [DOI: 10.1007/s00204-019-02432-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 03/14/2019] [Indexed: 01/28/2023]
|
21
|
Nakayama M, Michels AW. Determining Antigen Specificity of Human Islet Infiltrating T Cells in Type 1 Diabetes. Front Immunol 2019; 10:365. [PMID: 30906293 PMCID: PMC6418007 DOI: 10.3389/fimmu.2019.00365] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 02/13/2019] [Indexed: 01/07/2023] Open
Abstract
Type 1 diabetes, the immune mediated form of diabetes, represents a prototypical organ specific autoimmune disease in that insulin producing pancreatic islets are specifically targeted by T cells. The disease is now predictable in humans with the measurement of type 1 diabetes associated autoantibodies (islet autoantibodies) in the peripheral blood which are directed against insulin and beta cell proteins. With an increasing incidence of disease, especially in young children, large well-controlled clinical prevention trials using antigen specific immunotherapy have been completed but with limited clinical benefit. To improve outcomes, it is critical to understand the antigen and T cell receptor repertoires of those cells that infiltrate the target organ, pancreatic islets, in human type 1 diabetes. With international networks to identify organ donors with type 1 diabetes, improved immunosequencing platforms, and the ability to reconstitute T cell receptors of interest into immortalized cell lines allows antigen discovery efforts for rare tissue specific T cells. Here we review the disease pathogenesis of type 1 diabetes with a focus on human islet infiltrating T cell antigen discovery efforts, which provides necessary knowledge to define biomarkers of disease activity and improve antigen specific immunotherapy approaches for disease prevention.
Collapse
Affiliation(s)
- Maki Nakayama
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO, United States
| | - Aaron W Michels
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
22
|
Gu S, Kumar R, Lee MH, Mickael C, Graham BB. Common genetic variants in pulmonary arterial hypertension. THE LANCET. RESPIRATORY MEDICINE 2019; 7:190-191. [PMID: 30527955 PMCID: PMC6768546 DOI: 10.1016/s2213-2600(18)30448-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 10/17/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Sue Gu
- Program in Translational Lung Research, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Rahul Kumar
- Program in Translational Lung Research, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Michael H Lee
- Program in Translational Lung Research, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Claudia Mickael
- Program in Translational Lung Research, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Brian B Graham
- Program in Translational Lung Research, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
23
|
Bradley P, Thomas PG. Using T Cell Receptor Repertoires to Understand the Principles of Adaptive Immune Recognition. Annu Rev Immunol 2019; 37:547-570. [PMID: 30699000 DOI: 10.1146/annurev-immunol-042718-041757] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Adaptive immune recognition is mediated by antigen receptors on B and T cells generated by somatic recombination during lineage development. The high level of diversity resulting from this process posed technical limitations that previously limited the comprehensive analysis of adaptive immune recognition. Advances over the last ten years have produced data and approaches allowing insights into how T cells develop, evolutionary signatures of recombination and selection, and the features of T cell receptors that mediate epitope-specific binding and T cell activation. The size and complexity of these data have necessitated the generation of novel computational and analytical approaches, which are transforming how T cell immunology is conducted. Here we review the development and application of novel biological, theoretical, and computational methods for understanding T cell recognition and discuss the potential for improved models of receptor:antigen interactions.
Collapse
Affiliation(s)
- Philip Bradley
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA; .,Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA;
| |
Collapse
|
24
|
Wade MF, Collins MK, Richards D, Mack DG, Martin AK, Dinarello CA, Fontenot AP, McKee AS. TLR9 and IL-1R1 Promote Mobilization of Pulmonary Dendritic Cells during Beryllium Sensitization. THE JOURNAL OF IMMUNOLOGY 2018; 201:2232-2243. [PMID: 30185516 DOI: 10.4049/jimmunol.1800303] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 08/13/2018] [Indexed: 11/19/2022]
Abstract
Metal-induced hypersensitivity is driven by dendritic cells (DCs) that migrate from the site of exposure to the lymph nodes, upregulate costimulatory molecules, and initiate metal-specific CD4+ T cell responses. Chronic beryllium disease (CBD), a life-threatening metal-induced hypersensitivity, is driven by beryllium-specific CD4+ Th1 cells that expand in the lung-draining lymph nodes (LDLNs) after beryllium exposure (sensitization phase) and are recruited back to the lung, where they orchestrate granulomatous lung disease (elicitation phase). To understand more about how beryllium exposures impact DC function during sensitization, we examined the early events in the lung and LDLNs after pulmonary exposure to different physiochemical forms of beryllium. Exposure to soluble or crystalline forms of beryllium induced alveolar macrophage death/release of IL-1α and DNA, enhanced migration of CD80hi DCs to the LDLNs, and sensitized HLA-DP2 transgenic mice after single low-dose exposures, whereas exposures to insoluble particulate forms beryllium did not. IL-1α and DNA released by alveolar macrophages upregulated CD80 on immature BMDC via IL-1R1 and TLR9, respectively. Intrapulmonary exposure of mice to IL-1R and TLR9 agonists without beryllium was sufficient to drive accumulation of CD80hi DCs in the LDLNs, whereas blocking both pathways prevented accumulation of CD80hi DCs in the LDLNs of beryllium-exposed mice. Thus, in contrast to particulate forms of beryllium, which are poor sensitizers, soluble or crystalline forms of beryllium promote death of alveolar macrophages and their release of IL-1α and DNA, which act as damage-associated molecular pattern molecules to enhance DC function during beryllium sensitization.
Collapse
Affiliation(s)
- Morgan F Wade
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Morgan K Collins
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Denay Richards
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045.,Webb Waring Summer Research Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045; and
| | - Douglas G Mack
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Allison K Martin
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Charles A Dinarello
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Andrew P Fontenot
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045.,Department of Microbiology and Immunology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Amy S McKee
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045; .,Department of Microbiology and Immunology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
25
|
Movassagh H, Khadem F, Gounni AS. Semaphorins and Their Roles in Airway Biology: Potential as Therapeutic Targets. Am J Respir Cell Mol Biol 2018; 58:21-27. [PMID: 28817310 DOI: 10.1165/rcmb.2017-0171tr] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Semaphorins are a large family of proteins originally identified as axon guidance cues that play a crucial role in neural development. They are also ubiquitously expressed beyond the nervous system and contribute to regulation of essential cell functions, such as cell migration, proliferation, and adhesion. Binding of semaphorins to their receptors, including plexins and neuropilins, triggers diverse signaling pathways, which are involved in the pathogenesis of various diseases, from cancer to autoimmune and allergic disorders. Despite emerging evidence suggestive of nonredundant roles of semaphorins in cellular and molecular mechanisms of the airway biology, their precise expression and function have not been fully addressed. Here, we first provide an overview about the semaphorin family, their receptors, signaling pathways, and their cellular functions. Then, we highlight the novel findings on the role of semaphorins in airway biology under developmental, homeostatic, and pathological conditions. In particular, we discuss the dual roles of semaphorins in respiratory disorders where they can up- or downregulate processes underlying the pathophysiology of the airway diseases. Next, our recent findings on the expression and function of semaphorin 3E in allergic asthma are further emphasized, and its potential mechanism of action in allergic airway inflammation and remodeling is discussed. Finally, we raise some unanswered questions aiming to develop future research directions.
Collapse
Affiliation(s)
- Hesam Movassagh
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Forough Khadem
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Abdelilah S Gounni
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
26
|
Pallardy M, Bechara R. Chemical or Drug Hypersensitivity: Is the Immune System Clearing the Danger? Toxicol Sci 2017; 158:14-22. [DOI: 10.1093/toxsci/kfx084] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
27
|
Kuroishi T, Bando K, Tanaka Y, Shishido K, Kinbara M, Ogawa T, Muramoto K, Endo Y, Sugawara S. CXCL4 is a novel nickel-binding protein and augments nickel allergy. Clin Exp Allergy 2017; 47:1069-1078. [DOI: 10.1111/cea.12926] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 02/17/2017] [Accepted: 03/13/2017] [Indexed: 12/11/2022]
Affiliation(s)
- T. Kuroishi
- Division of Oral Immunology; Department of Oral Biology; Tohoku University Graduate School of Dentistry; Sendai Japan
| | - K. Bando
- Division of Oral Immunology; Department of Oral Biology; Tohoku University Graduate School of Dentistry; Sendai Japan
- Division of Orthodontics and Dentofacial Orthopedics; Tohoku University Graduate School of Dentistry; Sendai Japan
| | - Y. Tanaka
- Division of Oral Immunology; Department of Oral Biology; Tohoku University Graduate School of Dentistry; Sendai Japan
- Division of Pediatric Dentistry; Department of Oral Health and Developmental Sciences; Tohoku University Graduate School of Dentistry; Sendai Japan
| | - K. Shishido
- Division of Oral Immunology; Department of Oral Biology; Tohoku University Graduate School of Dentistry; Sendai Japan
- Division of Orthodontics and Dentofacial Orthopedics; Tohoku University Graduate School of Dentistry; Sendai Japan
| | - M. Kinbara
- Division of Orthodontics and Dentofacial Orthopedics; Tohoku University Graduate School of Dentistry; Sendai Japan
| | - T. Ogawa
- Department of Biomolecular Sciences; Graduate School of Life Sciences; Tohoku University; Sendai Japan
| | - K. Muramoto
- Department of Biomolecular Sciences; Graduate School of Life Sciences; Tohoku University; Sendai Japan
| | - Y. Endo
- Division of Oral Immunology; Department of Oral Biology; Tohoku University Graduate School of Dentistry; Sendai Japan
| | - S. Sugawara
- Division of Oral Immunology; Department of Oral Biology; Tohoku University Graduate School of Dentistry; Sendai Japan
| |
Collapse
|
28
|
Abstract
The lung is constantly exposed to airborne infectious agents due to the large surface area of approximately 100 m2. Therefore pneumonia is one of the most common lung diseases. Understanding infection requires understanding the routes of infections, the way invading organisms infect epithelial cells, as well as defense mechanisms of the lung tissue acquired during evolution. Different variants of infectious and non-infectious pneumonias are discussed; special types of pneumonias such as granulomatous and fibrosing pneumonias are presented under separate sections. Causing organisms and other causes of pneumonias are included, and their mode of action is included as far as understood.
Collapse
|
29
|
Culver DA. Beryllium disease and sarcoidosis: still besties after all these years? Eur Respir J 2016; 47:1625-8. [DOI: 10.1183/13993003.00805-2016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 04/26/2016] [Indexed: 12/26/2022]
|
30
|
Fontenot AP, Falta MT, Kappler JW, Dai S, McKee AS. Beryllium-Induced Hypersensitivity: Genetic Susceptibility and Neoantigen Generation. THE JOURNAL OF IMMUNOLOGY 2016; 196:22-7. [PMID: 26685315 DOI: 10.4049/jimmunol.1502011] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Chronic beryllium (Be) disease is a granulomatous lung disorder that results from Be exposure in a genetically susceptible host. The disease is characterized by the accumulation of Be-responsive CD4(+) T cells in the lung, and genetic susceptibility is primarily linked to HLA-DPB1 alleles possessing a glutamic acid at position 69 of the β-chain. Recent structural analysis of a Be-specific TCR interacting with a Be-loaded HLA-DP2-peptide complex revealed that Be is coordinated by amino acid residues derived from the HLA-DP2 β-chain and peptide and showed that the TCR does not directly interact with the Be(2+) cation. Rather, the TCR recognizes a modified HLA-DP2-peptide complex with charge and conformational changes. Collectively, these findings provide a structural basis for the development of this occupational lung disease through the ability of Be to induce posttranslational modifications in preexisting HLA-DP2-peptide complexes, resulting in the creation of neoantigens.
Collapse
Affiliation(s)
- Andrew P Fontenot
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045; Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045;
| | - Michael T Falta
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - John W Kappler
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045; Howard Hughes Medical Institute, National Jewish Health, Denver, CO 80206; and Department of Biomedical Research, National Jewish Health, Denver, CO 80206
| | - Shaodong Dai
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045; Department of Biomedical Research, National Jewish Health, Denver, CO 80206
| | - Amy S McKee
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
31
|
Interplay of innate and adaptive immunity in metal-induced hypersensitivity. Curr Opin Immunol 2016; 42:25-30. [PMID: 27228132 DOI: 10.1016/j.coi.2016.05.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 05/02/2016] [Accepted: 05/03/2016] [Indexed: 12/16/2022]
Abstract
Metal-induced hypersensitivity is driven by T cell sensitization to metal ions. Recent advances in our understanding of the complex interactions between innate and adaptive immunity have expanded our knowledge of the pathogenesis of these diseases. Metals activate the innate immune system through direct binding to pathogen recognition receptors, activation of the inflammasome, or the induction of cellular death and release of alarmins. Certain metals can serve as adjuvants, promoting dendritic cell activation and migration as well as antigen presentation to metal-specific T cells. These T cells can recognize metals as haptens or as altered MHC-peptide complexes. The ability of metals to create these neoantigens emphasizes the similarity between metal-induced hypersensitivity and autoimmunity.
Collapse
|
32
|
Abstract
Sarcoidosis is a systemic inflammatory disorder characterised by tissue infiltration by mononuclear phagocytes and lymphocytes with associated non-caseating granuloma formation. Originally described as a disorder of the skin, sarcoidosis can involve any organ with wide-ranging clinical manifestations and disease course. Recent studies have provided new insights into the mechanisms involved in disease pathobiology, and we now know that sarcoidosis has a clear genetic basis largely involving human leukocyte antigen (HLA) genes. In contrast to Mendelian-monogenic disorders--which are generally due to specific and relatively rare mutations often leading to a single amino acid change in an encoded protein--sarcoidosis results from genetic variations relatively common in the general population and involving multiple genes, each contributing an effect of varying magnitude. However, an individual may have the necessary genetic profile and yet the disease will not develop unless an environmental or infectious factor is encountered. Genetics appears also to contribute to the huge variability in clinical phenotype and disease behaviour. Moreover, it has been established that sarcoidosis granulomatous inflammation is a highly polarized T helper 1 immune response that starts with an antigenic stimulus followed by T cell activation via a classic HLA class II-mediated pathway. A complex network of lymphocytes, macrophages, and cytokines is pivotal in the orchestration and evolution of the granulomatous process. Despite these advances, the aetiology of sarcoidosis remains elusive and its pathogenesis incompletely understood. As such, there is an urgent need for a better understanding of disease pathogenesis, which hopefully will translate into the development of truly effective therapies.
Collapse
|
33
|
Unanue ER, Turk V, Neefjes J. Variations in MHC Class II Antigen Processing and Presentation in Health and Disease. Annu Rev Immunol 2016; 34:265-97. [PMID: 26907214 DOI: 10.1146/annurev-immunol-041015-055420] [Citation(s) in RCA: 186] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
MHC class II (MHC-II) molecules are critical in the control of many immune responses. They are also involved in most autoimmune diseases and other pathologies. Here, we describe the biology of MHC-II and MHC-II variations that affect immune responses. We discuss the classic cell biology of MHC-II and various perturbations. Proteolysis is a major process in the biology of MHC-II, and we describe the various components forming and controlling this endosomal proteolytic machinery. This process ultimately determines the MHC-II-presented peptidome, including cryptic peptides, modified peptides, and other peptides that are relevant in autoimmune responses. MHC-II also variable in expression, glycosylation, and turnover. We illustrate that MHC-II is variable not only in amino acids (polymorphic) but also in its biology, with consequences for both health and disease.
Collapse
Affiliation(s)
- Emil R Unanue
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110;
| | - Vito Turk
- Department of Biochemistry and Molecular and Structural Biology, J. Stefan Institute, SI-1000 Ljubljana, Slovenia;
| | - Jacques Neefjes
- Division of Cell Biology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; .,Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| |
Collapse
|
34
|
Falta MT, Tinega AN, Mack DG, Bowerman NA, Crawford F, Kappler JW, Pinilla C, Fontenot AP. Metal-specific CD4+ T-cell responses induced by beryllium exposure in HLA-DP2 transgenic mice. Mucosal Immunol 2016; 9:218-28. [PMID: 26129650 PMCID: PMC4698108 DOI: 10.1038/mi.2015.54] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 05/16/2015] [Indexed: 02/04/2023]
Abstract
Chronic beryllium disease (CBD) is a granulomatous lung disorder that is associated with the accumulation of beryllium (Be)-specific CD4(+) T cells into the lung. Genetic susceptibility is linked to HLA-DPB1 alleles that possess a glutamic acid at position 69 (βGlu69), and HLA-DPB1*02:01 is the most prevalent βGlu69-containing allele. Using HLA-DP2 transgenic (Tg) mice, we developed a model of CBD that replicates the major features of the human disease. Here we characterized the T-cell receptor (TCR) repertoire of Be-responsive CD4(+) T cells derived from the lungs of Be oxide-exposed HLA-DP2 Tg mice. The majority of Be-specific T-cell hybridomas expressed TCR Vβ6, and a subset of these hybridomas expressed identical or nearly identical β-chains that were paired with different α-chains. We delineated mimotopes that bind to HLA-DP2 and form a complex recognized by Be-specific CD4(+) T cells in the absence of Be. These Be-independent peptides possess an arginine at p5 and a tryptophan at p7 that surround the Be-binding site within the HLA-DP2 acidic pocket and likely induce charge and conformational changes that mimic those induced by the Be(2+) cation. Collectively, these data highlight the interplay between peptides and Be in the generation of an adaptive immune response in metal-induced hypersensitivity.
Collapse
Affiliation(s)
- Michael T. Falta
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 USA
| | - Alex N. Tinega
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 USA
| | - Douglas G. Mack
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 USA
| | - Natalie A. Bowerman
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 USA
| | - Frances Crawford
- Department of Immunology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 USA
,Howard Hughes Medical Institute, National Jewish Health, Denver, CO 80206 USA
| | - John W. Kappler
- Department of Immunology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 USA
,Howard Hughes Medical Institute, National Jewish Health, Denver, CO 80206 USA
| | - Clemencia Pinilla
- Torrey Pines Institute for Molecular Studies, San Diego, CA 92121 USA
| | - Andrew P. Fontenot
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 USA
,Department of Immunology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 USA
| |
Collapse
|
35
|
Berger RJ, Mera-Adasme R. Glutamyl-glutamate – a tailor-made chelating ligand for the [Be4O]6+ core in basic beryllium complexes and implications on investigations on the origins of chronic beryllium disease. ACTA ACUST UNITED AC 2015. [DOI: 10.1515/znb-2015-0157] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Density functional theory calculations suggest that l-glutamyl-l-glutamate [H-Glu-Glu-H]2– can act as an efficient chelating ligand in basic beryllium carboxylates of type Be4O(RCO2)6. An exergonic energy balance of –10.6 kcal mol–1 for the substitution of two [AcO]– anions by one [H-Glu-Glu-OH]2– dianion in Be4O(AcO2)6 has been calculated; for a second and third substitutions, the computed energy release amounts to –9.3, and –11.3 kcal mol–1. The coordination geometry of the complexes shows a trend toward less deviation from local octahedral symmetry with increasing number of [H-Glu-Glu-OH]2– ligands. The implications of these findings for the yet unknown molecular origins of chronic beryllium disease (CBD) are discussed, and a Be4O moiety is suggested as the beryllium species engaged in CBD.
Collapse
Affiliation(s)
- Raphael J.F. Berger
- Materialchemie, Paris-Lodron Universität Salzburg, Hellbrunner Strasse 34, 5020 Salzburg, Austria; and Department of Chemistry, P.O. Box 55 FI-0014, University of Helsinki, Finland
| | - Raúl Mera-Adasme
- Laboratorio de Química Inorgánica Teórica, Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
36
|
Massilamany C, Krishnan B, Reddy J. Major Histocompatibility Complex Class II Dextramers: New Tools for the Detection of antigen-Specific, CD4 T Cells in Basic and Clinical Research. Scand J Immunol 2015; 82:399-408. [PMID: 26207337 PMCID: PMC4610346 DOI: 10.1111/sji.12344] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 07/15/2015] [Indexed: 12/19/2022]
Abstract
The advent of major histocompatibility complex (MHC) tetramer technology has been a major contribution to T cell immunology, because tetramer reagents permit detection of antigen-specific T cells at the single-cell level in heterogeneous populations by flow cytometry. However, unlike MHC class I tetramers, the utility of MHC class II tetramers has been less frequently reported. MHC class II tetramers can be used successfully to enumerate the frequencies of antigen-specific CD4 T cells in cells activated in vitro, but their use for ex vivo analyses continues to be a problem, due in part to their activation dependency for binding with T cells. To circumvent this problem, we recently reported the creation of a new generation of reagents called MHC class II dextramers, which were found to be superior to their counterparts. In this review, we discuss the utility of class II dextramers vis-a-vis tetramers, with respect to their specificity and sensitivity, including potential applications and limitations.
Collapse
Affiliation(s)
- C Massilamany
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - B Krishnan
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - J Reddy
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| |
Collapse
|
37
|
MyD88 dependence of beryllium-induced dendritic cell trafficking and CD4⁺ T-cell priming. Mucosal Immunol 2015; 8:1237-47. [PMID: 25760420 PMCID: PMC4567547 DOI: 10.1038/mi.2015.14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 01/12/2015] [Indexed: 02/04/2023]
Abstract
Beryllium exposure results in beryllium hypersensitivity in a subset of exposed individuals, leading to granulomatous inflammation and fibrosis in the lung. In addition to its antigenic properties, beryllium has potent adjuvant activity that contributes to sensitization via unknown pathways. Here we show that beryllium induces cellular death and release of interleukin (IL)-1α and DNA into the lung. Release of IL-1α was inflammasome independent and required for beryllium-induced neutrophil recruitment into the lung. Beryllium enhanced classical dendritic cell (cDC) migration from the lung to draining lymph nodes (LNs) in an IL-1R-independent manner, and the accumulation of activated cDCs in the LN was associated with increased priming of CD4(+) T cells. DC migration was reduced in Toll-like receptor 9 knockout (TLR9KO) mice; however, cDCs in the LNs of TLR9-deficient mice were highly activated, suggesting a role for more than one innate receptor in the effects on DCs. The adjuvant effects of beryllium on CD4(+) T-cell priming were similar in wild-type, IL-1R-, caspase-1-, TLR2-, TLR4-, TLR7-, and TLR9-deficient mice. In contrast, DC migration, activation, and the adjuvant effects of beryllium were significantly reduced in myeloid differentiation primary response gene 88 knockout (MyD88KO) mice. Collectively, these data suggest that beryllium exposure results in the release of damage-associated molecular patterns that engage MyD88-dependent receptors to enhance pulmonary DC function.
Collapse
|
38
|
Chellan P, Sadler PJ. The elements of life and medicines. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2015; 373:20140182. [PMID: 25666066 PMCID: PMC4342972 DOI: 10.1098/rsta.2014.0182] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Which elements are essential for human life? Here we make an element-by-element journey through the periodic table and attempt to assess whether elements are essential or not, and if they are, whether there is a relevant code for them in the human genome. There are many difficulties such as the human biochemistry of several so-called essential elements is not well understood, and it is not clear how we should classify elements that are involved in the destruction of invading microorganisms, or elements which are essential for microorganisms with which we live in symbiosis. In general, genes do not code for the elements themselves, but for specific chemical species, i.e. for the element, its oxidation state, type and number of coordinated ligands, and the coordination geometry. Today, the biological periodic table is in a position somewhat similar to Mendeleev's chemical periodic table of 1869: there are gaps and we need to do more research to fill them. The periodic table also offers potential for novel therapeutic and diagnostic agents, based on not only essential elements, but also non-essential elements, and on radionuclides. Although the potential for inorganic chemistry in medicine was realized more than 2000 years ago, this area of research is still in its infancy. Future advances in the design of inorganic drugs require more knowledge of their mechanism of action, including target sites and metabolism. Temporal speciation of elements in their biological environments at the atomic level is a major challenge, for which new methods are urgently needed.
Collapse
Affiliation(s)
- Prinessa Chellan
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| | - Peter J Sadler
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
39
|
Gherardi RK, Eidi H, Crépeaux G, Authier FJ, Cadusseau J. Biopersistence and brain translocation of aluminum adjuvants of vaccines. Front Neurol 2015; 6:4. [PMID: 25699008 PMCID: PMC4318414 DOI: 10.3389/fneur.2015.00004] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 01/08/2015] [Indexed: 02/06/2023] Open
Abstract
Aluminum oxyhydroxide (alum) is a crystalline compound widely used as an immunological adjuvant of vaccines. Concerns linked to the use of alum particles emerged following recognition of their causative role in the so-called macrophagic myofasciitis (MMF) lesion detected in patients with myalgic encephalomyelitis/chronic fatigue/syndrome. MMF revealed an unexpectedly long-lasting biopersistence of alum within immune cells in presumably susceptible individuals, stressing the previous fundamental misconception of its biodisposition. We previously showed that poorly biodegradable aluminum-coated particles injected into muscle are promptly phagocytosed in muscle and the draining lymph nodes, and can disseminate within phagocytic cells throughout the body and slowly accumulate in brain. This strongly suggests that long-term adjuvant biopersistence within phagocytic cells is a prerequisite for slow brain translocation and delayed neurotoxicity. The understanding of basic mechanisms of particle biopersistence and brain translocation represents a major health challenge, since it could help to define susceptibility factors to develop chronic neurotoxic damage. Biopersistence of alum may be linked to its lysosome-destabilizing effect, which is likely due to direct crystal-induced rupture of phagolysosomal membranes. Macrophages that continuously perceive foreign particles in their cytosol will likely reiterate, with variable interindividual efficiency, a dedicated form of autophagy (xenophagy) until they dispose of alien materials. Successful compartmentalization of particles within double membrane autophagosomes and subsequent fusion with repaired and re-acidified lysosomes will expose alum to lysosomal acidic pH, the sole factor that can solubilize alum particles. Brain translocation of alum particles is linked to a Trojan horse mechanism previously described for infectious particles (HIV, HCV), that obeys to CCL2, signaling the major inflammatory monocyte chemoattractant.
Collapse
Affiliation(s)
- Romain Kroum Gherardi
- Faculté de Médecine and Faculté des Sciences et Technologie, INSERM U955 Team 10, Université Paris Est-Créteil , Créteil , France
| | - Housam Eidi
- Faculté de Médecine and Faculté des Sciences et Technologie, INSERM U955 Team 10, Université Paris Est-Créteil , Créteil , France
| | - Guillemette Crépeaux
- Faculté de Médecine and Faculté des Sciences et Technologie, INSERM U955 Team 10, Université Paris Est-Créteil , Créteil , France
| | - François Jerome Authier
- Faculté de Médecine and Faculté des Sciences et Technologie, INSERM U955 Team 10, Université Paris Est-Créteil , Créteil , France
| | - Josette Cadusseau
- Faculté de Médecine and Faculté des Sciences et Technologie, INSERM U955 Team 10, Université Paris Est-Créteil , Créteil , France
| |
Collapse
|
40
|
Petukh M, Wu B, Stefl S, Smith N, Hyde-Volpe D, Wang L, Alexov E. Chronic Beryllium Disease: revealing the role of beryllium ion and small peptides binding to HLA-DP2. PLoS One 2014; 9:e111604. [PMID: 25369028 PMCID: PMC4219729 DOI: 10.1371/journal.pone.0111604] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 10/02/2014] [Indexed: 01/30/2023] Open
Abstract
Chronic Beryllium (Be) Disease (CBD) is a granulomatous disorder that predominantly affects the lung. The CBD is caused by Be exposure of individuals carrying the HLA-DP2 protein of the major histocompatibility complex class II (MHCII). While the involvement of Be in the development of CBD is obvious and the binding site and the sequence of Be and peptide binding were recently experimentally revealed [1], the interplay between induced conformational changes and the changes of the peptide binding affinity in presence of Be were not investigated. Here we carry out in silico modeling and predict the Be binding to be within the acidic pocket (Glu26, Glu68 and Glu69) present on the HLA-DP2 protein in accordance with the experimental work [1]. In addition, the modeling indicates that the Be ion binds to the HLA-DP2 before the corresponding peptide is able to bind to it. Further analysis of the MD generated trajectories reveals that in the presence of the Be ion in the binding pocket of HLA-DP2, all the different types of peptides induce very similar conformational changes, but their binding affinities are quite different. Since these conformational changes are distinctly different from the changes caused by peptides normally found in the cell in the absence of Be, it can be speculated that CBD can be caused by any peptide in presence of Be ion. However, the affinities of peptides for Be loaded HLA-DP2 were found to depend of their amino acid composition and the peptides carrying acidic group at positions 4 and 7 are among the strongest binders. Thus, it is proposed that CBD is caused by the exposure of Be of an individual carrying the HLA-DP2*0201 allele and that the binding of Be to HLA-DP2 protein alters the conformational and ionization properties of HLA-DP2 such that the binding of a peptide triggers a wrong signaling cascade.
Collapse
Affiliation(s)
- Marharyta Petukh
- Computational Biophysics and Bioinformatics, Physics Department, Clemson University, Clemson, South Carolina, United States of America
- * E-mail:
| | - Bohua Wu
- School of Nursing, Clemson University, Clemson, South Carolina, United States of America
| | - Shannon Stefl
- Computational Biophysics and Bioinformatics, Physics Department, Clemson University, Clemson, South Carolina, United States of America
| | - Nick Smith
- Computational Biophysics and Bioinformatics, Physics Department, Clemson University, Clemson, South Carolina, United States of America
| | - David Hyde-Volpe
- Department of Chemistry, Clemson University, Clemson, South Carolina, United States of America
| | - Li Wang
- Computational Biophysics and Bioinformatics, Physics Department, Clemson University, Clemson, South Carolina, United States of America
| | - Emil Alexov
- Computational Biophysics and Bioinformatics, Physics Department, Clemson University, Clemson, South Carolina, United States of America
| |
Collapse
|
41
|
Clayton GM, Wang Y, Crawford F, Novikov A, Wimberly BT, Kieft JS, Falta MT, Bowerman NA, Marrack P, Fontenot AP, Dai S, Kappler JW. Structural basis of chronic beryllium disease: linking allergic hypersensitivity and autoimmunity. Cell 2014; 158:132-42. [PMID: 24995984 PMCID: PMC4269484 DOI: 10.1016/j.cell.2014.04.048] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 03/22/2014] [Accepted: 04/21/2014] [Indexed: 11/20/2022]
Abstract
T-cell-mediated hypersensitivity to metal cations is common in humans. How the T cell antigen receptor (TCR) recognizes these cations bound to a major histocompatibility complex (MHC) protein and self-peptide is unknown. Individuals carrying the MHCII allele, HLA-DP2, are at risk for chronic beryllium disease (CBD), a debilitating inflammatory lung condition caused by the reaction of CD4 T cells to inhaled beryllium. Here, we show that the T cell ligand is created when a Be(2+) cation becomes buried in an HLA-DP2/peptide complex, where it is coordinated by both MHC and peptide acidic amino acids. Surprisingly, the TCR does not interact with the Be(2+) itself, but rather with surface changes induced by the firmly bound Be(2+) and an accompanying Na(+) cation. Thus, CBD, by creating a new antigen by indirectly modifying the structure of preexisting self MHC-peptide complex, lies on the border between allergic hypersensitivity and autoimmunity.
Collapse
Affiliation(s)
- Gina M Clayton
- Howard Hughes Medical Institute, National Jewish Health, Denver, CO 80206, USA; Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA; Department of Immunology and Microbiology, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA
| | - Yang Wang
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA; Department of Immunology and Microbiology, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA
| | - Frances Crawford
- Howard Hughes Medical Institute, National Jewish Health, Denver, CO 80206, USA; Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA; Department of Immunology and Microbiology, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA
| | - Andrey Novikov
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA; Department of Immunology and Microbiology, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA
| | - Brian T Wimberly
- Department of Biochemistry and Molecular Genetics, Howard Hughes Medical Institute, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA; Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA; Program in Structural Biology and Biochemistry, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA
| | - Jeffrey S Kieft
- Department of Biochemistry and Molecular Genetics, Howard Hughes Medical Institute, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA; Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA; Program in Structural Biology and Biochemistry, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA
| | - Michael T Falta
- Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Natalie A Bowerman
- Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Philippa Marrack
- Howard Hughes Medical Institute, National Jewish Health, Denver, CO 80206, USA; Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA; Department of Immunology and Microbiology, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA; Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA
| | - Andrew P Fontenot
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA; Department of Immunology and Microbiology, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA; Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Shaodong Dai
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA; Department of Immunology and Microbiology, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA.
| | - John W Kappler
- Howard Hughes Medical Institute, National Jewish Health, Denver, CO 80206, USA; Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA; Department of Immunology and Microbiology, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA; Program in Structural Biology and Biochemistry, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
42
|
Regulatory T cells modulate granulomatous inflammation in an HLA-DP2 transgenic murine model of beryllium-induced disease. Proc Natl Acad Sci U S A 2014; 111:8553-8. [PMID: 24912188 DOI: 10.1073/pnas.1408048111] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Susceptibility to chronic beryllium disease (CBD) is linked to certain HLA-DP molecules, including HLA-DP2. To elucidate the molecular basis of this association, we exposed mice transgenic (Tg) for HLA-DP2 to beryllium oxide (BeO) via oropharyngeal aspiration. As opposed to WT mice, BeO-exposed HLA-DP2 Tg mice developed mononuclear infiltrates in a peribronchovascular distribution that were composed of CD4(+) T cells and included regulatory T (Treg) cells. Beryllium-responsive, HLA-DP2-restricted CD4(+) T cells expressing IFN-γ and IL-2 were present in BeO-exposed HLA-DP2 Tg mice and not in WT mice. Using Be-loaded HLA-DP2-peptide tetramers, we identified Be-specific CD4(+) T cells in the mouse lung that recognize identical ligands as CD4(+) T cells derived from the human lung. Importantly, a subset of HLA-DP2 tetramer-binding CD4(+) T cells expressed forkhead box P3, consistent with the expansion of antigen-specific Treg cells. Depletion of Treg cells in BeO-exposed HLA-DP2 Tg mice exacerbated lung inflammation and enhanced granuloma formation. These findings document, for the first time to our knowledge, the development of a Be-specific adaptive immune response in mice expressing HLA-DP2 and the ability of Treg cells to modulate the beryllium-induced granulomatous immune response.
Collapse
|
43
|
Clambey ET, Davenport B, Kappler JW, Marrack P, Homann D. Molecules in medicine mini review: the αβ T cell receptor. J Mol Med (Berl) 2014; 92:735-41. [PMID: 24848996 DOI: 10.1007/s00109-014-1145-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 01/17/2014] [Accepted: 01/21/2014] [Indexed: 01/01/2023]
Abstract
As an integral part of the mammalian immune system, a distributed network of tissues, cells, and extracellular factors, T lymphocytes perform and control a multitude of activities that collectively contribute to the effective establishment, maintenance, and restoration of tissue and organismal integrity. Development and function of T cells is controlled by the T cell receptor (TCR), a heterodimeric cell surface protein uniquely expressed on T cells. During T cell development, the TCR undergoes extensive somatic diversification that generates a diverse T cell repertoire capable of recognizing an extraordinary range of protein and nonprotein antigens presented in the context of major histocompatibility complex molecules (MHC). In this review, we provide an introduction to the TCR, describing underlying principles that position this molecule as a central regulator of the adaptive immune system involved in responses ranging from tissue protection and preservation to pathology and autoimmunity.
Collapse
Affiliation(s)
- Eric T Clambey
- Department of Anesthesiology, Mucosal Inflammation Program, University of Colorado School of Medicine, Mail Stop B112, Research Complex 2, 12700 East 19th Avenue, Aurora, CO, 80045, USA,
| | | | | | | | | |
Collapse
|
44
|
Bowerman NA, Falta MT, Mack DG, Wehrmann F, Crawford F, Mroz MM, Maier LA, Kappler JW, Fontenot AP. Identification of multiple public TCR repertoires in chronic beryllium disease. THE JOURNAL OF IMMUNOLOGY 2014; 192:4571-80. [PMID: 24719461 DOI: 10.4049/jimmunol.1400007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chronic beryllium disease (CBD) is a granulomatous lung disease characterized by the accumulation of beryllium (Be)-specific CD4(+) T cells in bronchoalveolar lavage. These expanded CD4(+) T cells are composed of oligoclonal T cell subsets, suggesting their recruitment to the lung in response to conventional Ag. In the current study, we noted that all bronchoalveolar lavage-derived T cell lines from HLA-DP2-expressing CBD patients contained an expansion of Be-responsive Vβ5.1(+) CD4(+) T cells. Using Be-loaded HLA-DP2-peptide tetramers, the majority of tetramer-binding T cells also expressed Vβ5.1 with a highly conserved CDR3β motif. Interestingly, Be-specific, Vβ5.1-expressing CD4(+) T cells displayed differential HLA-DP2-peptide tetramer staining intensity, and sequence analysis of the distinct tetramer-binding subsets showed that the two populations differed by a single conserved amino acid in the CDR3β motif. TCR Vα-chain analysis of purified Vβ5.1(+) CD4(+) T cells based on differential tetramer-binding intensity showed differing TCR Vα-chain pairing requirements, with the high-affinity population having promiscuous Vα-chain pairing and the low-affinity subset requiring restricted Vα-chain usage. Importantly, disease severity, as measured by loss of lung function, was inversely correlated with the frequency of tetramer-binding CD4(+) T cells in the lung. Our findings suggest the presence of a dominant Be-specific, Vβ5.1-expressing public T cell repertoire in the lungs of HLA-DP2-expressing CBD patients using promiscuous Vα-chain pairing to recognize an identical HLA-DP2-peptide/Be complex. Importantly, the inverse relationship between expansion of CD4(+) T cells expressing these public TCRs and disease severity suggests a pathogenic role for these T cells in CBD.
Collapse
Affiliation(s)
- Natalie A Bowerman
- Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
T Cell Responses to Contact Allergens. T LYMPHOCYTES AS TOOLS IN DIAGNOSTICS AND IMMUNOTOXICOLOGY 2014; 104:41-9. [DOI: 10.1007/978-3-0348-0726-5_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
46
|
Scaffold ranking and positional scanning utilized in the discovery of nAChR-selective compounds suitable for optimization studies. J Med Chem 2013; 56:10103-17. [PMID: 24274400 DOI: 10.1021/jm401543h] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Nicotine binds to nicotinic acetylcholine receptors (nAChR), which can exist as many different subtypes. The α4β2 nAChR is the most prevalent subtype in the brain and possesses the most evidence linking it to nicotine seeking behavior. Herein we report the use of mixture based combinatorial libraries for the rapid discovery of a series of α4β2 nAChR selective compounds. Further chemistry optimization provided compound 301, which was characterized as a selective α4β2 nAChR antagonist. This compound displayed no agonist activity but blocked nicotine-induced depolarization of HEK cells with an IC50 of approximately 430 nM. 301 demonstrated nearly 500-fold selectivity for binding and 40-fold functional selectivity for α4β2 over α3β4 nAChR. In total over 5 million compounds were assessed through the use of just 170 samples in order to identify a series of structural analogues suitable for future optimization toward the goal of developing clinically relevant smoking cessation medications.
Collapse
|
47
|
A peptide's perspective on antigen presentation to the immune system. Nat Chem Biol 2013; 9:769-75. [DOI: 10.1038/nchembio.1391] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 10/16/2013] [Indexed: 12/20/2022]
|
48
|
Abstract
Chronic beryllium disease (CBD) is a granulomatous lung disorder caused by a hypersensitivity to beryllium and characterized by the accumulation of beryllium-specific CD4(+) T cells in the lung. Genetic susceptibility to beryllium-induced disease is strongly associated with HLA-DP alleles possessing a glutamic acid at the 69th position of the β-chain (βGlu69). The structure of HLA-DP2, the most prevalent βGlu69-containing molecule, revealed a unique solvent-exposed acidic pocket that includes βGlu69 and represents the putative beryllium-binding site. The delineation of mimotopes and endogenous self-peptides that complete the αβTCR ligand for beryllium-specific CD4(+) T cells suggests a unique role of these peptides in metal ion coordination and the generation of altered self-peptides, blurring the distinction between hypersensitivity and autoimmunity.
Collapse
|