1
|
Zhao M, Zhang H, Liu Z, Liu J, Xie B, Zeng L, Wang X, Shu Q, Tang P, Mo L, Zeng H, Yang P. Dynactin subunit 1 facilitates mast cell degranulation to drive food allergy pathogenesis. Immunol Lett 2025; 276:107035. [PMID: 40404107 DOI: 10.1016/j.imlet.2025.107035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 05/14/2025] [Accepted: 05/19/2025] [Indexed: 05/24/2025]
Abstract
BACKGROUND Mast cells play pivotal roles in allergic pathogenesis and inflammatory disorders, with their pathologic effects largely mediated through granule exocytosis. Dynactin subunit 1 (Dctn1), a microtubule-associated motor protein, remains unexplored in mast cell-driven inflammation. This study investigates Dctn1's functional role in regulating mast cell degranulation during food allergy (FA). METHODS An ovalbumin-sensitized murine FA model was established to profile mast cell activity. Gut lavage fluid (GLF) was analyzed via Olink proteomics and ELISA to quantify Dctn1 levels and mast cell mediators (histamine, Mcpt1). Mechanistic studies employed RNA interference, conditional knockout mice (Dctn1f/fCma1-Cre), and immunoprecipitation to assess Dctn1's role in granule trafficking. RESULTS FA mice exhibited 3.2-fold higher Dctn1 levels in GLF versus controls (p < 0.001), strongly correlating with mast cell mediator concentrations (histamine: r = 0.73; Mcpt1: r = 0.7). Intestinal mast cells showed selective Dctn1 upregulation (2.8-fold mRNA increase, p < 0.01), mechanistically linked to granule trafficking through CMA1 complex formation. Mast cell-specific Dctn1 ablation reduced Mcpt1 release by 74 % (p < 0.001) and ameliorated FA symptoms (92 % core temperature drop, p < 0.005), independent of AKT/ERK signaling pathways. CONCLUSIONS This study identifies Dctn1 as a novel regulator of mast cell degranulation in FA, operating through microtubule-dependent granule transport. Targeted inhibition of Dctn1 significantly attenuates allergic responses without disrupting canonical activation signals, positioning it as a promising therapeutic target for mast cell-driven pathologies.
Collapse
Affiliation(s)
- Miao Zhao
- Department of Otolaryngology, Longgang ENT Hospital & Shenzhen ENT Institute, Shenzhen, China.
| | - Hanqing Zhang
- State Key Laboratory of Respiratory Disease Allergy Division at Shenzhen University and Institute of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Zhiqiang Liu
- Department of Otolaryngology, Longgang ENT Hospital & Shenzhen ENT Institute, Shenzhen, China
| | - Jiangqi Liu
- Department of Otolaryngology, Longgang ENT Hospital & Shenzhen ENT Institute, Shenzhen, China
| | - Bailing Xie
- State Key Laboratory of Respiratory Disease Allergy Division at Shenzhen University and Institute of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Lu Zeng
- State Key Laboratory of Respiratory Disease Allergy Division at Shenzhen University and Institute of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Xiangyu Wang
- Department of Gastroenterology. Shenzhen People's Second Hospital. Shenzhen, China
| | - Qing Shu
- Department of Gastroenterology. Shenzhen People's Second Hospital. Shenzhen, China
| | - Ping Tang
- Department of General Practice Medicine, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Lihua Mo
- Department of General Practice Medicine, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Haotao Zeng
- Department of Otolaryngology, Longgang ENT Hospital & Shenzhen ENT Institute, Shenzhen, China
| | - Pingchang Yang
- State Key Laboratory of Respiratory Disease Allergy Division at Shenzhen University and Institute of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China.
| |
Collapse
|
2
|
Pascual-Vargas P, Arias-Garcia M, Roumeliotis TI, Choudhary JS, Bakal C. Integration of focal adhesion morphogenesis and polarity by DOCK5 promotes YAP/TAZ-driven drug resistance in TNBC. Mol Omics 2025. [PMID: 40353692 PMCID: PMC12068046 DOI: 10.1039/d4mo00154k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 04/04/2025] [Indexed: 05/14/2025]
Abstract
YAP and TAZ are transcriptional co-activators that are inhibited by sequestration in the cytoplasm. Cellular signalling pathways integrate soluble, mechanical (cytoskeleton, adhesion), and geometric (cell size, morphology) cues to regulate the translocation of YAP/TAZ to the nucleus. In triple-negative breast cancer (TNBC) cells, both signalling and morphogenesis are frequently rewired, leading to increased YAP/TAZ translocation, which drives proliferation, invasion, and drug resistance. However, whether this increased YAP/TAZ translocation is due to alterations in upstream signalling events or changes in cell morphology remains unclear. To gain insight into YAP/TAZ regulation in TNBC cells, we performed multiplexed quantitative genetic screens for YAP/TAZ localisation and cell shape, enabling us to determine whether changes in YAP/TAZ localisation following gene knockdown could be explained by alterations in cell morphology. These screens revealed that the focal adhesion (FA)-associated RhoGEF DOCK5 is essential for YAP/TAZ nuclear localisation in TNBC cells. DOCK5-defective cells exhibit defects in FA morphogenesis and fail to generate a stable, polarised leading edge, which we propose contributes to impaired YAP/TAZ translocation. Mechanistically, we implicate DOCK5's ability to act as a RacGEF and as a scaffold for NCK/AKT as key to its role in FA morphogenesis. Importantly, DOCK5 is essential for promoting the resistance of LM2 cells to the clinically used MEK inhibitor Binimetinib. Taken together, our findings suggest that DOCK5's role in TNBC cell shape determination drives YAP/TAZ upregulation and drug resistance.
Collapse
Affiliation(s)
- Patricia Pascual-Vargas
- Chester Beatty Laboratories, Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK.
| | - Mar Arias-Garcia
- Chester Beatty Laboratories, Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK.
| | - Theodoros I Roumeliotis
- Chester Beatty Laboratories, Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK.
| | - Jyoti S Choudhary
- Chester Beatty Laboratories, Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK.
| | - Chris Bakal
- Chester Beatty Laboratories, Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK.
| |
Collapse
|
3
|
Kodama T, Yokoyama A, Nishioka Y, Kawasaki R, Teshima A, Maeda A, Hojo A, Suizu T, Torii H, Fujioka K, Kishida S, Fujimura T, Arakawa K, Ikeda A, Kawamoto S. Fermented plant product (FPP) suppresses immediate hypersensitivity reactions with impaired high-affinity IgE receptor (FcεRI) signaling. Cytotechnology 2025; 77:69. [PMID: 40012927 PMCID: PMC11861467 DOI: 10.1007/s10616-025-00729-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 02/13/2025] [Indexed: 02/28/2025] Open
Abstract
Fermented plant product (FPP) is a dietary supplement made by fermentation and aging of a variety of plants, including fruits, vegetables, and grains. A previous study has shown that oral FPP supplementation prevents the development of allergic rhinitis-like nasal symptoms in a murine model of Japanese cedar pollinosis without affecting systemic immune response. However, the mode of action by which FPP exerts an anti-allergic effect remains to be elucidated. Here, we show that FPP acts on mast cells to suppress immediate hypersensitivity reactions in vitro as well as in vivo. We found that stimulation with FPP potently suppressed IgE antibody-mediated degranulation of RBL-2H3 rat basophilic leukemia cells. We also found that oral feeding with FPP significantly suppressed passive cutaneous anaphylaxis (PCA), an in vivo model of IgE- and mast cell-mediated hypersensitivity reactions. Mechanistic analysis revealed that FPP extensively suppressed the high-affinity IgE receptor (FcεRI) signaling pathway, in which FPP not only inhibited intracellular Ca2+ influx upon FcεRI ligation but also negatively regulated another Ca2+-independent FcεRI signaling pathway leading to granule translocation through microtubule formation. These results suggest that FPP fulfills its anti-allergic activity by acting on the IgE-mast cell axis to suppress immediate hypersensitivity reactions.
Collapse
Affiliation(s)
- Tomoki Kodama
- Program of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530 Japan
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Higashi-Hiroshima, Japan
| | - Ayana Yokoyama
- Program of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530 Japan
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Higashi-Hiroshima, Japan
| | - Yuki Nishioka
- Program of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530 Japan
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Higashi-Hiroshima, Japan
| | - Riku Kawasaki
- Program of Applied Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima, Japan
| | - Aiko Teshima
- Program of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530 Japan
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Higashi-Hiroshima, Japan
| | - Akira Maeda
- Program of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530 Japan
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Higashi-Hiroshima, Japan
| | - Ayano Hojo
- Manda Fermentation Co. Ltd, Onomichi, Japan
| | | | | | | | | | - Takashi Fujimura
- Program of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530 Japan
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Higashi-Hiroshima, Japan
| | - Kenji Arakawa
- Program of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530 Japan
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Higashi-Hiroshima, Japan
| | - Atsushi Ikeda
- Program of Applied Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima, Japan
| | - Seiji Kawamoto
- Program of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530 Japan
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Higashi-Hiroshima, Japan
| |
Collapse
|
4
|
Zhang Q, Zhang C, Kang C, Zhu J, He Q, Li H, Tong Q, Wang M, Zhang L, Xiong X, Wang Y, Qu H, Zheng H, Zheng Y. Liraglutide Promotes Diabetic Wound Healing via Myo1c/Dock5. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405987. [PMID: 39159301 PMCID: PMC11497045 DOI: 10.1002/advs.202405987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/26/2024] [Indexed: 08/21/2024]
Abstract
Non-healing diabetic wounds and ulcer complications, with persistent cell dysfunction and obstructed cellular processes, are leading causes of disability and death in patients with diabetes. Currently, there is a lack of guideline-recommended hypoglycemic drugs in clinical practice, likely due to limited research and unclear mechanisms. In this study, it is demonstrated that liraglutide significantly accelerates wound closure in diabetic mouse models (db/db mice and streptozotocin-induced mice) by improving re-epithelialization, collagen deposition, and extracellular matrix remodeling, and enhancing the proliferation, migration, and adhesion functions of keratinocytes. However, these effects of improved healing by liraglutide are abrogated in dedicator of cytokinesis 5 (Dock5) keratinocyte-specific knockout mice. Mechanistically, liraglutide induces cellular function through stabilization of unconventional myosin 1c (Myo1c). Liraglutide directly binds to Myo1c at arginine 93, enhancing the Myo1c/Dock5 interaction by targeting Dock5 promoter and thus promoting the proliferation, migration, and adhesion of keratinocytes. Therefore, this study provides insights into liraglutide biology and suggests it may be an effective treatment for diabetic patients with wound-healing pathologies.
Collapse
Affiliation(s)
- Qian Zhang
- School of Life SciencesChongqing UniversityChongqing401331China
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
- Department of Pharmacythe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Chunlin Zhang
- School of Life SciencesChongqing UniversityChongqing401331China
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Changjiang Kang
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
- Department of Laboratory MedicineChongqing University Three Gorges HospitalSchool of MedicineChongqing UniversityChongqing404000China
| | - Jiaran Zhu
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Qingshan He
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Hongwei Li
- Department of Medicinal ChemistryArmy Medical UniversityChongqing400038China
| | - Qiang Tong
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Min Wang
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Linlin Zhang
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Xin Xiong
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Yuren Wang
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Hua Qu
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Hongting Zheng
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Yi Zheng
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| |
Collapse
|
5
|
Qu H, Liu X, Zhu J, Xiong X, Li L, He Q, Wang Y, Yang G, Zhang L, Yang Q, Luo G, Zheng Y, Zheng H. Dock5 Deficiency Promotes Proteinuric Kidney Diseases via Modulating Podocyte Lipid Metabolism. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306365. [PMID: 38161229 PMCID: PMC10953540 DOI: 10.1002/advs.202306365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/01/2023] [Indexed: 01/03/2024]
Abstract
Podocytes are particularly sensitive to lipid accumulation, which has recently emerged as a crucial pathological process in the progression of proteinuric kidney diseases like diabetic kidney disease and focal segmental glomerulosclerosis. However, the underlying mechanism remains unclear. Here, podocytes predominantly expressed protein dedicator of cytokinesis 5 (Dock5) is screened to be critically related to podocyte lipid lipotoxicity. Its expression is reduced in both proteinuric kidney disease patients and mouse models. Podocyte-specific deficiency of Dock5 exacerbated podocyte injury and glomeruli pathology in proteinuric kidney disease, which is mainly through modulating fatty acid uptake by the liver X receptor α (LXRα)/scavenger receptor class B (CD36) signaling pathway. Specifically, Dock5 deficiency enhanced CD36-mediated fatty acid uptake of podocytes via upregulating LXRα in an m6 A-dependent way. Moreover, the rescue of Dock5 expression ameliorated podocyte injury and proteinuric kidney disease. Thus, the findings suggest that Dock5 deficiency is a critical contributor to podocyte lipotoxicity and may serve as a promising therapeutic target in proteinuric kidney diseases.
Collapse
Affiliation(s)
- Hua Qu
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Xiufei Liu
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Jiaran Zhu
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Xin Xiong
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Lu Li
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Qingshan He
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Yuren Wang
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Guojun Yang
- Department of Clinical Laboratorythe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Linlin Zhang
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Qingwu Yang
- Department of Neurologythe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Gang Luo
- Department of Orthopedicsthe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Yi Zheng
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Hongting Zheng
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| |
Collapse
|
6
|
Sulimenko V, Sládková V, Sulimenko T, Dráberová E, Vosecká V, Dráberová L, Skalli O, Dráber P. Regulation of microtubule nucleation in mouse bone marrow-derived mast cells by ARF GTPase-activating protein GIT2. Front Immunol 2024; 15:1321321. [PMID: 38370406 PMCID: PMC10870779 DOI: 10.3389/fimmu.2024.1321321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/16/2024] [Indexed: 02/20/2024] Open
Abstract
Aggregation of high-affinity IgE receptors (FcϵRIs) on granulated mast cells triggers signaling pathways leading to a calcium response and release of inflammatory mediators from secretory granules. While microtubules play a role in the degranulation process, the complex molecular mechanisms regulating microtubule remodeling in activated mast cells are only partially understood. Here, we demonstrate that the activation of bone marrow mast cells induced by FcϵRI aggregation increases centrosomal microtubule nucleation, with G protein-coupled receptor kinase-interacting protein 2 (GIT2) playing a vital role in this process. Both endogenous and exogenous GIT2 were associated with centrosomes and γ-tubulin complex proteins. Depletion of GIT2 enhanced centrosomal microtubule nucleation, and phenotypic rescue experiments revealed that GIT2, unlike GIT1, acts as a negative regulator of microtubule nucleation in mast cells. GIT2 also participated in the regulation of antigen-induced degranulation and chemotaxis. Further experiments showed that phosphorylation affected the centrosomal localization of GIT2 and that during antigen-induced activation, GIT2 was phosphorylated by conventional protein kinase C, which promoted microtubule nucleation. We propose that GIT2 is a novel regulator of microtubule organization in activated mast cells by modulating centrosomal microtubule nucleation.
Collapse
Affiliation(s)
- Vadym Sulimenko
- Laboratory of Biology of Cytoskeleton, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Vladimíra Sládková
- Laboratory of Biology of Cytoskeleton, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Tetyana Sulimenko
- Laboratory of Biology of Cytoskeleton, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Eduarda Dráberová
- Laboratory of Biology of Cytoskeleton, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Věra Vosecká
- Laboratory of Biology of Cytoskeleton, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Lubica Dráberová
- Laboratory of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Omar Skalli
- Department of Biological Sciences, The University of Memphis, Memphis, TN, United States
| | - Pavel Dráber
- Laboratory of Biology of Cytoskeleton, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
7
|
Zmorzynski S, Kimicka-Szajwaj A, Szajwaj A, Czerwik-Marcinkowska J, Wojcierowski J. Genetic Changes in Mastocytes and Their Significance in Mast Cell Tumor Prognosis and Treatment. Genes (Basel) 2024; 15:137. [PMID: 38275618 PMCID: PMC10815783 DOI: 10.3390/genes15010137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/12/2024] [Accepted: 01/20/2024] [Indexed: 01/27/2024] Open
Abstract
Mast cell tumors are a large group of diseases occurring in dogs, cats, mice, as well as in humans. Systemic mastocytosis (SM) is a disease involving the accumulation of mast cells in organs. KIT gene mutations are very often seen in abnormal mast cells. In SM, high KIT/CD117 expression is observed; however, there are usually no KIT gene mutations present. Mastocytoma (MCT)-a form of cutaneous neoplasm-is common in animals but quite rare in humans. KIT/CD117 receptor mutations were studied as the typical changes for human mastocytosis. In 80% of human cases, the KIT gene substitution p.D816H was present. In about 25% of MCTs, metastasis was observed. Changes in the gene expression of certain genes, such as overexpression of the DNAJ3A3 gene, promote metastasis. In contrast, the SNORD93 gene blocks the expression of metastasis genes. The panel of miR-21-5p, miR-379, and miR-885 has a good efficiency in discriminating healthy and MCT-affected dogs, as well as MCT-affected dogs with and without nodal metastasis. Further studies on the pathobiology of mast cells can lead to clinical improvements, such as better MCT diagnosis and treatment. Our paper reviews studies on the topic of mast cells, which have been carried out over the past few years.
Collapse
|
8
|
Kunimura K, Akiyoshi S, Uruno T, Matsubara K, Sakata D, Morino K, Hirotani K, Fukui Y. DOCK2 regulates MRGPRX2/B2-mediated mast cell degranulation and drug-induced anaphylaxis. J Allergy Clin Immunol 2023:S0091-6749(23)00209-9. [PMID: 36804596 DOI: 10.1016/j.jaci.2023.01.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 01/08/2023] [Accepted: 01/11/2023] [Indexed: 02/18/2023]
Abstract
BACKGROUND Drug-induced anaphylaxis is triggered by the direct stimulation of mast cells (MCs) via Mas-related G protein-coupled receptor X2 (MRGPRX2; mouse ortholog MRGPRB2). However, the precise mechanism that links MRGPRX2/B2 to MC degranulation is poorly understood. Dedicator of cytokinesis 2 (DOCK2) is a Rac activator predominantly expressed in hematopoietic cells. Although DOCK2 regulates migration and activation of leukocytes, its role in MCs remains unknown. OBJECTIVE We aimed to elucidate whether-and if so, how-DOCK2 is involved in MRGPRX2/B2-mediated MC degranulation and anaphylaxis. METHODS Induction of drug-induced systemic and cutaneous anaphylaxis was compared between wild-type and DOCK2-deficient mice. In addition, genetic or pharmacologic inactivation of DOCK2 in human and murine MCs was used to reveal its role in MRGPRX2/B2-mediated signal transduction and degranulation. RESULTS Induction of MC degranulation and anaphylaxis by compound 48/80 and ciprofloxacin was severely attenuated in the absence of DOCK2. Although calcium influx and phosphorylation of several signaling molecules were unaffected, MRGPRB2-mediated Rac activation and phosphorylation of p21-activated kinase 1 (PAK1) were impaired in DOCK2-deficient MCs. Similar results were obtained when mice or MCs were treated with small-molecule inhibitors that bind to the catalytic domain of DOCK2 and inhibit Rac activation. CONCLUSION DOCK2 regulates MRGPRX2/B2-mediated MC degranulation through Rac activation and PAK1 phosphorylation, thereby indicating that the DOCK2-Rac-PAK1 axis could be a target for preventing drug-induced anaphylaxis.
Collapse
Affiliation(s)
- Kazufumi Kunimura
- Department of Immunobiology and Neuroscience, Division of Immunogenetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
| | - Sayaka Akiyoshi
- Department of Immunobiology and Neuroscience, Division of Immunogenetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Takehito Uruno
- Department of Immunobiology and Neuroscience, Division of Immunogenetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Keisuke Matsubara
- Department of Immunobiology and Neuroscience, Division of Immunogenetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Daiji Sakata
- Department of Immunobiology and Neuroscience, Division of Immunogenetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Kenji Morino
- Department of Immunobiology and Neuroscience, Division of Immunogenetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Kenichiro Hirotani
- Department of Immunobiology and Neuroscience, Division of Immunogenetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yoshinori Fukui
- Department of Immunobiology and Neuroscience, Division of Immunogenetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| |
Collapse
|
9
|
GEF-H1 Transduces FcεRI Signaling in Mast Cells to Activate RhoA and Focal Adhesion Formation during Exocytosis. Cells 2023; 12:cells12040537. [PMID: 36831204 PMCID: PMC9954420 DOI: 10.3390/cells12040537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
When antigen-stimulated, mast cells release preformed inflammatory mediators stored in cytoplasmic granules. This occurs via a robust exocytosis mechanism termed degranulation. Our previous studies revealed that RhoA and Rac1 are activated during mast cell antigen stimulation and are required for mediator release. Here, we show that the RhoGEF, GEF-H1, acts as a signal transducer of antigen stimulation to activate RhoA and promote mast cell spreading via focal adhesion (FA) formation. Cell spreading, granule movement, and exocytosis were all reduced in antigen-stimulated mast cells when GEF-H1 was depleted by RNA interference. GEF-H1-depleted cells also showed a significant reduction in RhoA activation, resulting in reduced stress fiber formation without altering lamellipodia formation. Ectopic expression of a constitutively active RhoA mutant restored normal morphology in GEF-H1-depleted cells. FA formation during antigen stimulation required GEF-H1, suggesting it is a downstream target of the GEF-H1-RhoA signaling axis. GEF-H1 was activated by phosphorylation in conjunction with antigen stimulation. Syk kinase is linked to the FcεRI signaling pathway and the Syk inhibitor, GS-9973, blocked GEF-H1 activation and also suppressed cell spreading, granule movement, and exocytosis. We concluded that during FcεRI receptor stimulation, GEF-H1 transmits signals to RhoA activation and FA formation to facilitate the exocytosis mechanism.
Collapse
|
10
|
Longé C, Bratti M, Kurowska M, Vibhushan S, David P, Desmeure V, Huang JD, Fischer A, de Saint Basile G, Sepulveda FE, Blank U, Ménasché G. Rab44 regulates murine mast cell-driven anaphylaxis through kinesin-1-dependent secretory granule translocation. J Allergy Clin Immunol 2022; 150:676-689. [PMID: 35469841 DOI: 10.1016/j.jaci.2022.04.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/15/2022] [Accepted: 04/08/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Mast cells (MCs) are key effectors of the allergic response. Following the cross-linking of IgE receptors (FcεRIs), they release crucial inflammatory mediators through degranulation. Although degranulation depends critically on secretory granule (SG) trafficking towards the plasma membrane, the molecular machinery underlying this transport has not been fully characterized. OBJECTIVE Here, we analyzed the function of Rab44, a large atypical Rab GTPase highly expressed in MC, in MC degranulation process. METHODS Murine KO mouse models (KORab44 and DKOKif5b/Rab44) were used to perform passive cutaneous anaphylaxis (PCA) experiments and analyze granule translocation in derived bone-marrow-derived MCs (BMMCs) during degranulation. RESULTS We demonstrate that mice lacking Rab44 (KORab44) in their BMMCs are impaired in their ability to translocate and degranulate SGs at the plasma membrane upon FcεRI stimulation. Accordingly, KORab44 mice were less sensitive to IgE-mediated passive cutaneous anaphylaxis in vivo. A lack of Rab44 did not impair early FcεRI-stimulated signaling pathways, microtubule reorganization, lipid mediator or cytokine secretion. Mechanistically, Rab44 appears to interact with and function as part of the previously described kinesin-1-dependent transport pathway. CONCLUSIONS Our results highlight a novel role of Rab44 as a regulator of SG transport during degranulation and anaphylaxis acting through the kinesin-1-dependent microtubule transport machinery. Rab44 can thus be considered as a potential target for modulating MC degranulation and inhibiting IgE-mediated allergic reactions.
Collapse
Affiliation(s)
- Cyril Longé
- Université Paris Cité, Imagine Institute, Laboratory of Molecular basis of altered immune homeostasis, INSERM UMR1163, F-75015 Paris France
| | - Manuela Bratti
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS EMR8252, Faculté de Médecine site Bichat, Paris, France; Laboratoire d'Excellence Inflamex, F-75018, Paris, France
| | - Mathieu Kurowska
- Université Paris Cité, Imagine Institute, Laboratory of Molecular basis of altered immune homeostasis, INSERM UMR1163, F-75015 Paris France
| | - Shamila Vibhushan
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS EMR8252, Faculté de Médecine site Bichat, Paris, France; Laboratoire d'Excellence Inflamex, F-75018, Paris, France
| | - Pierre David
- Transgenesis Facility, Laboratoire d'Expérimentation Animale et Transgénèse (LEAT), Imagine Institute, Structure Fédérative de Recherche Necker INSERM US24/CNRS UMS3633, F-75015, Paris, France
| | - Valère Desmeure
- Université Paris Cité, Imagine Institute, Laboratory of Molecular basis of altered immune homeostasis, INSERM UMR1163, F-75015 Paris France
| | - Jian-Dong Huang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Alain Fischer
- Université Paris Cité, Imagine Institute, Laboratory of Molecular basis of altered immune homeostasis, INSERM UMR1163, F-75015 Paris France; Immunology and Pediatric Hematology Department, Necker Children's Hospital, AP-HP, F-75015 Paris, France; Collège de France, F-75005 Paris, France
| | - Geneviève de Saint Basile
- Université Paris Cité, Imagine Institute, Laboratory of Molecular basis of altered immune homeostasis, INSERM UMR1163, F-75015 Paris France; Centre d'Etude des Déficits Immunitaires, AP-HP, Hôpital Necker-Enfants Malades, F-75015, Paris, France
| | - Fernando E Sepulveda
- Université Paris Cité, Imagine Institute, Laboratory of Molecular basis of altered immune homeostasis, INSERM UMR1163, F-75015 Paris France; Centre National de la Recherche Scientifique, F-75015, Paris. France
| | - Ulrich Blank
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS EMR8252, Faculté de Médecine site Bichat, Paris, France; Laboratoire d'Excellence Inflamex, F-75018, Paris, France
| | - Gaël Ménasché
- Université Paris Cité, Imagine Institute, Laboratory of Molecular basis of altered immune homeostasis, INSERM UMR1163, F-75015 Paris France
| |
Collapse
|
11
|
Zhang W, Zhang Y, Chen S, Zhang H, Yuan M, Xiao L, Lu Y, Xu H. Trigonelline, An Alkaloid From Leonurus japonicus Houtt., Suppresses Mast Cell Activation and OVA-Induced Allergic Asthma. Front Pharmacol 2021; 12:687970. [PMID: 34421593 PMCID: PMC8371462 DOI: 10.3389/fphar.2021.687970] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/27/2021] [Indexed: 12/02/2022] Open
Abstract
Trigonelline, one of the active compounds from Leonurus japonicus Houtt., has been proven to have pharmacological value in diabetes, the central nervous system and cardiovascular diseases. Recent studies have shown that it may also be beneficial in controlling inflammation. However, the mechanism of the antiallergic effects of trigonelline has not been well studied. As the key effector cells participating in the development of allergies, mast cells have been linked to the pathogenesis of asthma for ages. In this study, we demonstrated the inhibitory effect of trigonelline on activated bone marrow-derived mast cells (BMMCs) and verified its anti-inflammatory properties using an ovalbumin (OVA)-induced asthma model. Trigonelline suppressed BMMC degranulation and decreased the production of the cytokines, prostaglandin D2 (PGD2) and leukotriene C4 (LTC4) in a dose-dependent manner. The potent mechanism is mainly through the suppression of the nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways. Trigonelline can alleviate pathological damage in lung tissue and reduce the levels of serum immunoglobulin E (IgE) and T helper 2 (Th2) cytokines. RNA-seq results revealed the HIF-1α to be a potential target for the allergic reaction. Taken together, our study demonstrated that trigonelline can inhibit allergic inflammation in vitro and in vivo, which may provide a basis for novel anti-inflammatory drug development.
Collapse
Affiliation(s)
- Wenhui Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yingling Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Simin Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Man Yuan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lianbo Xiao
- Institute of Arthritis Research, Shanghai Academy of Chinese Medical Sciences, Guanghua Integrative Medicine Hospital, Shanghai, China
| | - Yue Lu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongxi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
12
|
Ithal D, Sukumaran SK, Bhattacharjee D, Vemula A, Nadella R, Mahadevan J, Sud R, Viswanath B, Purushottam M, Jain S. Exome hits demystified: The next frontier. Asian J Psychiatr 2021; 59:102640. [PMID: 33892377 DOI: 10.1016/j.ajp.2021.102640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/26/2021] [Indexed: 12/13/2022]
Abstract
Severe mental illnesses such as schizophrenia and bipolar disorder have complex inheritance patterns, involving both common and rare variants. Whole exome sequencing is a promising approach to find out the rare genetic variants. We had previously reported several rare variants in multiplex families with severe mental illnesses. The current article tries to summarise the biological processes and pattern of expression of genes harbouring the aforementioned variants, linking them to known clinical manifestations through a methodical narrative review. Of the 28 genes considered for this review from 7 families with multiple affected individuals, 6 genes are implicated in various neuropsychiatric manifestations including some variations in the brain morphology assessed by magnetic resonance imaging. Another 15 genes, though associated with neuropsychiatric manifestations, did not have established brain morphological changes whereas the remaining 7 genes did not have any previously recorded neuropsychiatric manifestations at all. Wnt/b-catenin signaling pathway was associated with 6 of these genes and PI3K/AKT, calcium signaling, ERK, RhoA and notch signaling pathways had at least 2 gene associations. We present a comprehensive review of biological and clinical knowledge about the genes previously reported in multiplex families with severe mental illness. A 'disease in dish approach' can be helpful to further explore the fundamental mechanisms.
Collapse
Affiliation(s)
- Dhruva Ithal
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Salil K Sukumaran
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Debanjan Bhattacharjee
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Alekhya Vemula
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Ravi Nadella
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Jayant Mahadevan
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Reeteka Sud
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Biju Viswanath
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Meera Purushottam
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India.
| | - Sanjeev Jain
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| |
Collapse
|
13
|
Qu H, Miao T, Wang Y, Tan L, Huang B, Zhang L, Liu X, Long M, Zhang R, Liao X, Gong X, Wang J, Xiong X, Liu J, Li X, Yu J, Yang G, Zhu Z, Zheng H, Zheng Y. Dedicator of Cytokinesis 5 Regulates Keratinocyte Function and Promotes Diabetic Wound Healing. Diabetes 2021; 70:1170-1184. [PMID: 33627322 PMCID: PMC8173801 DOI: 10.2337/db20-1008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 02/12/2021] [Indexed: 02/06/2023]
Abstract
Cutaneous wound healing is a fundamental biologic and coordinated process, and failure to maintain this process contributes to the dysfunction of tissue homeostasis, increasing the global burden of diabetic foot ulcerations. However, the factors that mediate this process are not fully understood. Here, we identify the pivotal role of dedicator of cytokinesis 5 (Dock5) in keratinocyte functions contributing to the process of skin wound healing. Specifically, Dock5 is highly upregulated during the proliferative phase of wound repair and is predominantly expressed in epidermal keratinocytes. It regulates keratinocyte adhesion, migration, and proliferation and influences the functions of extracellular matrix (ECM) deposition by facilitating the ubiquitination of transcription factor ZEB1 to activate laminin-332/integrin signaling. Genetic ablation of Dock5 in mice leads to attenuated reepithelialization and granulation tissue formation, and Dock5 overexpression-improved skin repair can be abrogated by LAMA3 knockdown. Importantly, Dock5 expression in the skin edge is reduced in patients and animal models of diabetes, further suggesting a direct correlation between its abundance and healing capability. The rescue of Dock5 expression in diabetic mice causes a significant improvement in reepithelialization, collagen deposition, ECM production, and granulation. Our study provides a potential therapeutic target for wound healing impairment during diabetes.
Collapse
Affiliation(s)
- Hua Qu
- Translational Research of Diabetes Key Laboratory of Chongqing Education Commission of China, Department of Endocrinology, Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Tian Miao
- Translational Research of Diabetes Key Laboratory of Chongqing Education Commission of China, Department of Endocrinology, Second Affiliated Hospital of Army Medical University, Chongqing, China
- Department of Respiratory and Critical Care Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Yuren Wang
- Translational Research of Diabetes Key Laboratory of Chongqing Education Commission of China, Department of Endocrinology, Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Liang Tan
- Department of Neurosurgery, Southwest Hospital, Army Medical University, Chongqing, China
- Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau, China
| | - Bangliang Huang
- Translational Research of Diabetes Key Laboratory of Chongqing Education Commission of China, Department of Endocrinology, Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Linlin Zhang
- Translational Research of Diabetes Key Laboratory of Chongqing Education Commission of China, Department of Endocrinology, Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Xiufei Liu
- Translational Research of Diabetes Key Laboratory of Chongqing Education Commission of China, Department of Endocrinology, Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Min Long
- Translational Research of Diabetes Key Laboratory of Chongqing Education Commission of China, Department of Endocrinology, Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Rui Zhang
- Translational Research of Diabetes Key Laboratory of Chongqing Education Commission of China, Department of Endocrinology, Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Xiaoyu Liao
- Translational Research of Diabetes Key Laboratory of Chongqing Education Commission of China, Department of Endocrinology, Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Xiaoli Gong
- Translational Research of Diabetes Key Laboratory of Chongqing Education Commission of China, Department of Endocrinology, Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Ju Wang
- Department of Neurosurgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Xin Xiong
- Translational Research of Diabetes Key Laboratory of Chongqing Education Commission of China, Department of Endocrinology, Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Junli Liu
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xi Li
- Biology Science Institutes, Chongqing Medical University, Chongqing, China
| | - Jiang Yu
- Department of Outpatient, Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Gangyi Yang
- Department of Endocrinology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhiming Zhu
- Department of Hypertension and Endocrinology, Third Affiliated Hospital of Army Medical University, Chongqing, China
| | - Hongting Zheng
- Translational Research of Diabetes Key Laboratory of Chongqing Education Commission of China, Department of Endocrinology, Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Yi Zheng
- Translational Research of Diabetes Key Laboratory of Chongqing Education Commission of China, Department of Endocrinology, Second Affiliated Hospital of Army Medical University, Chongqing, China
| |
Collapse
|
14
|
Ménasché G, Longé C, Bratti M, Blank U. Cytoskeletal Transport, Reorganization, and Fusion Regulation in Mast Cell-Stimulus Secretion Coupling. Front Cell Dev Biol 2021; 9:652077. [PMID: 33796537 PMCID: PMC8007931 DOI: 10.3389/fcell.2021.652077] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/03/2021] [Indexed: 01/16/2023] Open
Abstract
Mast cells are well known for their role in allergies and many chronic inflammatory diseases. They release upon stimulation, e.g., via the IgE receptor, numerous bioactive compounds from cytoplasmic secretory granules. The regulation of granule secretion and its interaction with the cytoskeleton and transport mechanisms has only recently begun to be understood. These studies have provided new insight into the interaction between the secretory machinery and cytoskeletal elements in the regulation of the degranulation process. They suggest a tight coupling of these two systems, implying a series of specific signaling effectors and adaptor molecules. Here we review recent knowledge describing the signaling events regulating cytoskeletal reorganization and secretory granule transport machinery in conjunction with the membrane fusion machinery that occur during mast cell degranulation. The new insight into MC biology offers novel strategies to treat human allergic and inflammatory diseases targeting the late steps that affect harmful release from granular stores leaving regulatory cytokine secretion intact.
Collapse
Affiliation(s)
- Gaël Ménasché
- Laboratory of Molecular Basis of Altered Immune Homeostasis, Imagine Institute, INSERM UMR 1163, Université de Paris, Paris, France
| | - Cyril Longé
- Laboratory of Molecular Basis of Altered Immune Homeostasis, Imagine Institute, INSERM UMR 1163, Université de Paris, Paris, France
| | - Manuela Bratti
- Centre de Recherche sur l'Inflammation, INSERM UMR 1149, CNRS ERL8252, Faculté de Médecine site Bichat, Université de Paris, Paris, France.,Laboratoire d'Excellence Inflamex, Université de Paris, Paris, France
| | - Ulrich Blank
- Centre de Recherche sur l'Inflammation, INSERM UMR 1149, CNRS ERL8252, Faculté de Médecine site Bichat, Université de Paris, Paris, France.,Laboratoire d'Excellence Inflamex, Université de Paris, Paris, France
| |
Collapse
|
15
|
Gao L, Kong L, Zhao Y. The Regulatory Role of Rho GTPases and their Substrates in Osteoclastogenesis. Curr Drug Targets 2021; 22:1064-1070. [PMID: 32981499 DOI: 10.2174/1389450121666200925150446] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/15/2020] [Accepted: 04/23/2020] [Indexed: 11/22/2022]
Abstract
Pathological bone loss diseases (osteolysis, Paget's diseases) are commonly caused by the excessive differentiation and activity of osteoclasts. The Rho GTPases family members Rac1/2 (Rac1 and Rac2) have been reported for their special role in exerting multiple cellular functions during osteoclastic differentiation, which includes the most prominent function on dynamic actin cytoskeleton rearranging. Besides that, the increasing studies demonstrated that the regulating effects of Rac1/2 on the osteoclastic cytoskeletal organization are through the GEFs member Dock5. Although the amount of relevant studies on this topic is still limited, several excellent studies have been reported that extensively explored the molecular mechanisms involved in Rac1/2 and Dock5 during the osteoclastogenesis regulation, as well as their role as the therapeutic target in bone loss diseases. Herein, in this review, we aim to focus on recent advances studies for extensively understanding the role of Rho GTPases Rac1/2 and Dock5 in osteoclastogenesis, as well as their role as a potential therapeutic target in regulating osteoclastogenesis.
Collapse
Affiliation(s)
- Lin Gao
- Department of Spine Surgery, Honghui Hospital, School of Medicine, Xi'an Jiaotong University, China
| | - Lingbo Kong
- Department of Spine Surgery, Honghui Hospital, School of Medicine, Xi'an Jiaotong University, China
| | - Yuanting Zhao
- Department of Spine Surgery, Honghui Hospital, School of Medicine, Xi'an Jiaotong University, China
| |
Collapse
|
16
|
Nakamura T, Yoshida N, Yamanoi Y, Honryo A, Tomita H, Kuwabara H, Kojima Y. Eucalyptus oil reduces allergic reactions and suppresses mast cell degranulation by downregulating IgE-FcεRI signalling. Sci Rep 2020; 10:20940. [PMID: 33262354 PMCID: PMC7708995 DOI: 10.1038/s41598-020-77039-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 11/02/2020] [Indexed: 02/03/2023] Open
Abstract
Eucalyptus oil has been used since ancient times for its bactericidal, anti-inflammatory, analgesic and sedative effects. In recent years, the action of Eucalyptus oil has been scientifically proven, and there have been reports that Eucalyptus oil suppresses the production of chemokines, cytokines and lipid mediators in basophils, alveolar macrophages and monocytes. Based on this information, we aimed to verify whether Eucalyptus oil can be used for allergic dermatitis, the incidence of which has been increasing among human skin diseases. This effect was verified using a mouse IgE-mediated local allergic model. In conclusion, topical application of Eucalyptus oil suppressed oedema and vascular permeability enhancement due to IgE-mediated allergic on the skin. In addition, we also verified the degranuration of mast cells, which is a part of its action, and examined whether 1,8-cineole, which is the main component of Eucalyptus oil, suppresses the phosphorylation of PLCγ and p38 directly or indirectly. 1,8-cineole was found to suppress degranulation of mast cells.
Collapse
Affiliation(s)
- Tomoya Nakamura
- Department of R&D Center, Ikeda Mohando Co., Ltd, 16 Jinden, Kamiichi, Nakaniikawa, Toyama, 930-0394, Japan.
| | - Naoki Yoshida
- Department of R&D Center, Ikeda Mohando Co., Ltd, 16 Jinden, Kamiichi, Nakaniikawa, Toyama, 930-0394, Japan
| | - Yu Yamanoi
- Department of R&D Center, Ikeda Mohando Co., Ltd, 16 Jinden, Kamiichi, Nakaniikawa, Toyama, 930-0394, Japan
| | - Akira Honryo
- Department of R&D Center, Ikeda Mohando Co., Ltd, 16 Jinden, Kamiichi, Nakaniikawa, Toyama, 930-0394, Japan
| | - Hiroyuki Tomita
- Department of R&D Center, Ikeda Mohando Co., Ltd, 16 Jinden, Kamiichi, Nakaniikawa, Toyama, 930-0394, Japan
| | - Hiroki Kuwabara
- Department of R&D Center, Ikeda Mohando Co., Ltd, 16 Jinden, Kamiichi, Nakaniikawa, Toyama, 930-0394, Japan
| | - Yoshihiko Kojima
- Department of R&D Center, Ikeda Mohando Co., Ltd, 16 Jinden, Kamiichi, Nakaniikawa, Toyama, 930-0394, Japan
| |
Collapse
|
17
|
Umehara H, Nakamura M, Nagai M, Kato Y, Ueno SI, Sano A. Positional cloning and comprehensive mutation analysis of a Japanese family with lithium-responsive bipolar disorder identifies a novel DOCK5 mutation. J Hum Genet 2020; 66:243-249. [PMID: 32920599 DOI: 10.1038/s10038-020-00840-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 11/09/2022]
Abstract
Bipolar disorder (BD) is a severe psychiatric disorder characterized by the recurrence of depressive and manic episodes. Its heritability is high, and many linkage and association studies have been performed. Although various linkage regions and candidate genes have been reported, few have shown sufficient reproducibility, and none have identified the pathogenic genes based on the results of the linkage analysis. To find functional variants that are expected to be rare and have strong genetic effects, we recruited ten healthy individuals, two individuals with unknown status, and six patients with BD or recurrent major depressive disorder (MDD) from a Japanese family consisting of 21 members. We performed a genome-wide linkage analysis using a 100K single-nucleotide polymorphism (SNP) array and microsatellite markers to narrow linkage regions within this family. Subsequently, we performed whole-exome sequencing for two patients with BD to identify genetic mutations in the narrowed linkage regions. Then, we performed co-segregation analysis for DNA variants obtained from the results of the exome sequencing. Finally, we identified a rare heterozygous mutation in exon 31 of DOCK5 (c.3170A>G, p.E1057G). Convergent functional genomics analysis revealed that DOCK5 was listed as one of the biomarkers for mood state and suicidality. Although DOCK5 is still a functionally unknown gene, our findings highlight the possibility of a pathological relationship between BD and DOCK5.
Collapse
Affiliation(s)
- Hiromi Umehara
- Department of Psychiatry, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Masayuki Nakamura
- Department of Psychiatry, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan.
| | - Mio Nagai
- Division of Psychiatry, Matsuyama Red Cross Hospital, Matsuyama, Japan
| | - Yuko Kato
- Division of Psychiatry, Jiundo Hospital, Tokyo, Japan
| | - Shu-Ichi Ueno
- Department of Neuropsychiatry, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Akira Sano
- Department of Psychiatry, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan
| |
Collapse
|
18
|
Abstract
Primary atopic disorders describes a series of monogenic diseases that have allergy- or atopic effector–related symptoms as a substantial feature. The underlying pathogenic genetic lesions help illustrate fundamental pathways in atopy, opening up diagnostic and therapeutic options for further study in those patients, but ultimately for common allergic diseases as well. Key pathways affected in these disorders include T cell receptor and B cell receptor signaling, cytokine signaling, skin barrier function, and mast cell function, as well as pathways that have not yet been elucidated. While comorbidities such as classically syndromic presentation or immune deficiency are often present, in some cases allergy alone is the presenting symptom, suggesting that commonly encountered allergic diseases exist on a spectrum of monogenic and complex genetic etiologies that are impacted by environmental risk factors.
Collapse
Affiliation(s)
- Joshua D. Milner
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
19
|
Lai Y, Zhao A, Tan M, Yang M, Lin Y, Li S, Song J, Zheng H, Zhu Z, Liu D, Liu C, Li L, Yang G. DOCK5 regulates energy balance and hepatic insulin sensitivity by targeting mTORC1 signaling. EMBO Rep 2020; 21:e49473. [PMID: 31885214 PMCID: PMC7001503 DOI: 10.15252/embr.201949473] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/14/2019] [Accepted: 11/29/2019] [Indexed: 12/25/2022] Open
Abstract
The dedicator of cytokinesis 5 (DOCK5) is associated with obesity. However, the mechanism by which DOCK5 contributes to obesity remains completely unknown. Here, we show that hepatic DOCK5 expression significantly decreases at a state of insulin resistance (IR). Deletion of DOCK5 in mice reduces energy expenditure, promotes obesity, augments IR, dysregulates glucose metabolism, and activates the mTOR (Raptor)/S6K1 pathway under a high-fat diet (HFD). The overexpression of DOCK5 in hepatocytes inhibits gluconeogenic gene expression and increases the level of insulin receptor (InsR) and Akt phosphorylation. DOCK5 overexpression also inhibits mTOR/S6K1 phosphorylation and decreases the level of raptor protein expression. The opposite effects were observed in DOCK5-deficient hepatocytes. Importantly, in liver-specific Raptor knockout mice and associated hepatocytes, the effects of an adeno-associated virus (AAV8)- or adenovirus-mediated DOCK5 knockdown on glucose metabolism and insulin signaling are largely eliminated. Additionally, DOCK5-Raptor interaction is indispensable for the DOCK5-mediated regulation of hepatic glucose production (HGP). Therefore, DOCK5 acts as a regulator of Raptor to control hepatic insulin activity and glucose homeostasis.
Collapse
Affiliation(s)
- Yerui Lai
- Department of EndocrinologyThe Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Anjiang Zhao
- The Key Laboratory of Laboratory Medical Diagnostics in the Ministry of Education and Department of Clinical BiochemistryCollege of Laboratory MedicineChongqing Medical UniversityChongqingChina
| | - Minghong Tan
- Department of EndocrinologyThe Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Mengliu Yang
- Department of EndocrinologyThe Second Affiliated HospitalChongqing Medical UniversityChongqingChina
- School of Biomedical SciencesThe University of QueenslandBrisbaneQldAustralia
| | - Yao Lin
- The Key Laboratory of Laboratory Medical Diagnostics in the Ministry of Education and Department of Clinical BiochemistryCollege of Laboratory MedicineChongqing Medical UniversityChongqingChina
| | - Shengbing Li
- Department of EndocrinologyThe Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Jinlin Song
- Chongqing Key Laboratory for oral Diseases and Biomedical ScienceCollege of StomatologyChongqing Medical UniversityChongqingChina
| | - Hongting Zheng
- Department of EndocrinologyXinqiao HospitalThird Military Medical UniversityChongqingChina
| | - Zhiming Zhu
- Department of Hypertension and EndocrinologyDaping HospitalChongqing Institute of HypertensionThird Military Medical UniversityChongqingChina
| | - Dongfang Liu
- Department of EndocrinologyThe Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Chaohong Liu
- Department of Pathogen BiologySchool of Basic MedicineHuazhong University of Science and TechnologyWuhanChina
| | - Ling Li
- Department of EndocrinologyThe Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Gangyi Yang
- Department of EndocrinologyThe Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| |
Collapse
|
20
|
Trigonelline: An alkaloid with anti-degranulation properties. Mol Immunol 2020; 118:201-209. [DOI: 10.1016/j.molimm.2019.12.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 12/24/2019] [Accepted: 12/26/2019] [Indexed: 01/23/2023]
|
21
|
Kim D, Uner A, Saglam A, Chadburn A, Crane GM. Peripheral eosinophilia in primary immunodeficiencies of actin dysregulation: A case series of Wiskott-Aldrich syndrome, CARMIL2 and DOCK8 deficiency and review of the literature. Ann Diagn Pathol 2019; 43:151413. [DOI: 10.1016/j.anndiagpath.2019.151413] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 09/11/2019] [Indexed: 11/26/2022]
|
22
|
Guimbal S, Morel A, Guérit D, Chardon M, Blangy A, Vives V. Dock5 is a new regulator of microtubule dynamic instability in osteoclasts. Biol Cell 2019; 111:271-283. [PMID: 31461543 DOI: 10.1111/boc.201900014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 07/02/2019] [Accepted: 08/06/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND INFORMATION Osteoclast resorption is dependent on a podosome-rich structure called sealing zone. It tightly attaches the osteoclast to the bone creating a favourable acidic microenvironment for bone degradation. This adhesion structure needs to be stabilised by microtubules whose acetylation is maintained by down-regulation of deacetylase HDAC6 and/or of microtubule destabilising kinase GSK3β activities. We already established that Dock5 is a guanine nucleotide exchange factor for Rac1. As a consequence, Dock5 inhibition results in a decrease of the GTPase activity associated with impaired podosome assembly into sealing zones and resorbing activity in osteoclasts. More, administration of C21, a chemical compound that directly inhibits the exchange activity of Dock5, disrupts osteoclast podosome organisation and protects mice against bone degradation in models recapitulating major osteolytic diseases. RESULTS In this report, we show that Dock5 knockout osteoclasts also present a reduced acetylated tubulin level leading to a decreased length and duration of microtubule growth phases, whereas their growth speed remains unaffected. Dock5 does not act by direct interaction with the polymerised tubulin. Using specific Rac inhibitors, we showed that Dock5 regulates microtubule dynamic instability through Rac-dependent and -independent pathways. The latter involves GSK3β inhibitory serine 9 phosphorylation downstream of Akt activation but not HDAC6 activity. CONCLUSION We showed that Dock5 is a new regulator of microtubule dynamic instability in osteoclast. SIGNIFICANCE Dock5 dual role in the regulation of the actin cytoskeleton and microtubule, which both need to be intact for bone resorption, reinforces the fact that it is an interesting therapeutic target for osteolytic pathologies.
Collapse
Affiliation(s)
- Sarah Guimbal
- Centre de Recherche de Biologie Cellulaire (CRBM), CNRS UMR 5237, Montpellier, Cedex 5, 34293, France.,Montpellier University, Montpellier, Cedex 5, 34095, France
| | - Anne Morel
- Centre de Recherche de Biologie Cellulaire (CRBM), CNRS UMR 5237, Montpellier, Cedex 5, 34293, France.,Montpellier University, Montpellier, Cedex 5, 34095, France
| | - David Guérit
- Centre de Recherche de Biologie Cellulaire (CRBM), CNRS UMR 5237, Montpellier, Cedex 5, 34293, France.,Montpellier University, Montpellier, Cedex 5, 34095, France
| | - Manon Chardon
- Centre de Recherche de Biologie Cellulaire (CRBM), CNRS UMR 5237, Montpellier, Cedex 5, 34293, France.,Montpellier University, Montpellier, Cedex 5, 34095, France
| | - Anne Blangy
- Centre de Recherche de Biologie Cellulaire (CRBM), CNRS UMR 5237, Montpellier, Cedex 5, 34293, France.,Montpellier University, Montpellier, Cedex 5, 34095, France
| | - Virginie Vives
- Centre de Recherche de Biologie Cellulaire (CRBM), CNRS UMR 5237, Montpellier, Cedex 5, 34293, France.,Montpellier University, Montpellier, Cedex 5, 34095, France
| |
Collapse
|
23
|
Liu C, Guo T, Xu G, Sakai A, Ren S, Fukusumi T, Ando M, Sadat S, Saito Y, Khan Z, Fisch KM, Califano J. Characterization of Alternative Splicing Events in HPV-Negative Head and Neck Squamous Cell Carcinoma Identifies an Oncogenic DOCK5 Variant. Clin Cancer Res 2018; 24:5123-5132. [PMID: 29945995 DOI: 10.1158/1078-0432.ccr-18-0752] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/29/2018] [Accepted: 06/22/2018] [Indexed: 01/26/2023]
Abstract
Purpose: Head and neck squamous cell carcinoma (HNSCC) is one of the most common cancers worldwide, and alternative splicing is considered to play important roles in tumor progression. Our study is designed to identify alternative splicing events (ASEs) in human papillomavirus (HPV)-negative HNSCC.Experimental Design: RNA sequencing data of 407 HPV-negative HNSCC and 38 normal samples were obtained from The Cancer Genome Atlas (TCGA), and splice junctions were discovered using MapSplice. Outlier analysis was used to identify significant splicing junctions between HPV-negative HNSCC and normal samples. To explore the functional role of the identified DOCK5 variant, we checked its expression with qRT-PCR in a separate primary tumor validation set and performed proliferation, migration, and invasion assays.Results: A total of 580 significant splicing events were identified in HPV-negative HNSCC, and the most common type of splicing events was an alternative start site (33.3%). The prevalence of a given individual ASE among the tumor cohort ranged from 9.8% and 64.4%. Within the 407 HPV-negative HNSCC samples in TCGA, the number of significant ASEs differentially expressed in each tumor ranged from 17 to 290. We identified a novel candidate oncogenic DOCK5 variant confirmed using qRT-PCR in a separate primary tumor validation set. Loss- and gain-of-function experiments indicated that DOCK5 variant promoted proliferation, migration, and invasion of HPV-negative HNSCC cells, and patients with higher expression of DOCK5 variant showed decreased overall survival.Conclusions: Analysis of ASEs in HPV-negative HNSCC identifies multiple alterations likely related to carcinogenesis, including an oncogenic DOCK5 variant. Clin Cancer Res; 24(20); 5123-32. ©2018 AACR.
Collapse
Affiliation(s)
- Chao Liu
- Moores Cancer Center, University of California San Diego, San Diego, California.,Department of Otolaryngology - Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Theresa Guo
- Department of Otolaryngology - Head and Neck Surgery, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Guorong Xu
- Center for Computational Biology and Bioinformatics, Department of Medicine, University of California San Diego, San Diego, California
| | - Akihiro Sakai
- Moores Cancer Center, University of California San Diego, San Diego, California
| | - Shuling Ren
- Moores Cancer Center, University of California San Diego, San Diego, California.,Department of Otolaryngology - Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Takahito Fukusumi
- Moores Cancer Center, University of California San Diego, San Diego, California
| | - Mizuo Ando
- Moores Cancer Center, University of California San Diego, San Diego, California
| | - Sayed Sadat
- Moores Cancer Center, University of California San Diego, San Diego, California
| | - Yuki Saito
- Moores Cancer Center, University of California San Diego, San Diego, California
| | - Zubair Khan
- Department of Otolaryngology - Head and Neck Surgery, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Kathleen M Fisch
- Center for Computational Biology and Bioinformatics, Department of Medicine, University of California San Diego, San Diego, California
| | - Joseph Califano
- Moores Cancer Center, University of California San Diego, San Diego, California. .,Division of Otolaryngology - Head and Neck Surgery, University of California San Diego, San Diego, California
| |
Collapse
|
24
|
Milner JD. TCR Signaling Abnormalities in Human Th2-Associated Atopic Disease. Front Immunol 2018; 9:719. [PMID: 29713322 PMCID: PMC5911486 DOI: 10.3389/fimmu.2018.00719] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/22/2018] [Indexed: 11/15/2022] Open
Abstract
Stimulation of naïve CD4 T cells with weak T cell receptor agonists even in the absence of T helper-skewing cytokines can result in IL-4 production which can drive a Th2 response. Evidence for the in vivo consequences of such a phenomenon can be found in a number of mouse models and, importantly, a series of monogenic human diseases associated with significant atopy which are caused by mutations in the T cell receptor signaling cascade. Such diseases can help understand how Th2 responses evolve in humans, and potentially provide insight into therapeutic interventions.
Collapse
Affiliation(s)
- Joshua D Milner
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
25
|
Lyons JJ, Milner JD. Primary atopic disorders. J Exp Med 2018; 215:1009-1022. [PMID: 29549114 PMCID: PMC5881472 DOI: 10.1084/jem.20172306] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/21/2018] [Accepted: 03/01/2018] [Indexed: 12/19/2022] Open
Abstract
Important insights from monogenic disorders into the immunopathogenesis of allergic diseases and reactions are discussed. Monogenic disorders have provided fundamental insights into human immunity and the pathogenesis of allergic diseases. The pathways identified as critical in the development of atopy range from focal defects in immune cells and epithelial barrier function to global changes in metabolism. A major goal of studying heritable single-gene disorders that lead to severe clinical allergic diseases is to identify fundamental pathways leading to hypersensitivity that can be targeted to provide novel therapeutic strategies for patients with allergic diseases, syndromic and nonsyndromic alike. Here, we review known single-gene disorders leading to severe allergic phenotypes in humans, discuss how the revealed pathways fit within our current understanding of the atopic diathesis, and propose how some pathways might be targeted for therapeutic benefit.
Collapse
Affiliation(s)
- Jonathan J Lyons
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Joshua D Milner
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
26
|
Rastogi D, Nico J, Johnston AD, Tobias TAM, Jorge Y, Macian F, Greally JM. CDC42-related genes are upregulated in helper T cells from obese asthmatic children. J Allergy Clin Immunol 2018; 141:539-548.e7. [PMID: 28479334 PMCID: PMC5671374 DOI: 10.1016/j.jaci.2017.04.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 04/04/2017] [Accepted: 04/18/2017] [Indexed: 01/21/2023]
Abstract
BACKGROUND Pediatric obesity-related asthma is more severe and less responsive to medications than asthma in normal-weight children. Obese asthmatic children have nonatopic TH1-polarized systemic inflammation that correlates with pulmonary function deficits, but the pathways underlying TH1-polarized inflammation are not well understood. OBJECTIVE We compared the CD4+ T-cell transcriptome in obese children with asthma with that in normal-weight children with asthma to identify key differentially expressed genes associated with TH1-polarized inflammation. METHODS CD4+ T-cell transcriptome-wide differential gene expression was compared between 21 obese and 21 normal-weight children by using directional RNA sequencing. High-confidence differentially expressed genes were verified in the first cohort and validated in a second cohort of 20 children (10 obese and 10 normal-weight children) by using quantitative RT-PCR. RESULTS Transcriptome-wide differential gene expression among obese asthmatic children was enriched for genes, including VAV2, DOCK5, PAK3, PLD1, CDC42EP4, and CDC42PBB, which are associated with CDC42, a small guanosine triphosphate protein linked to T-cell activation. Upregulation of MLK3 and PLD1, genes downstream of CDC42 in the mitogen-activated protein kinase and mammalian target of rapamycin pathways and the inverse correlation of CDC42EP4 and DOCK5 transcript counts with FEV1/FVC ratio together support a role of CDC42 in the TH1 polarization and pulmonary function deficits found in patients with obesity-related asthma. CONCLUSIONS Our study identifies the CDC42 pathway as a novel target that is upregulated in TH cells of obese asthmatic children, suggesting its role in nonatopic TH1-polarized systemic inflammation and pulmonary function deficits found in patients with pediatric obesity-related asthma.
Collapse
Affiliation(s)
- Deepa Rastogi
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY.
| | - John Nico
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY
| | - Andrew D Johnston
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY
| | | | - Yurydia Jorge
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY
| | - Fernando Macian
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY
| | - John M Greally
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
27
|
Xu X, Yoshizaki H, Ishigaki Y, Kubo E, Minato H, Kiyokawa E. Upregulation of multiple signaling pathways by Dock5 deletion in epithelial cells. Mol Vis 2017; 23:1081-1092. [PMID: 29872253 PMCID: PMC5987311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 12/30/2017] [Indexed: 11/19/2022] Open
Abstract
Purpose Rupture of lens cataract (RLC) is a hereditary mouse model that shows spontaneous rupture of the lens at the posterior pole at 45-100 days of age. The responsible gene for this phenotype was identified as Dock5, a guanine nucleotide exchange factor for small GTPase Rac1. This study was performed to elucidate the pathway initiating this phenotype. Methods We examined the RNA expression by microarray in lens epithelial cells (LECs) from wild-type and RLC mice at the pre-rupture age of 21 days. We applied the list of altered genes to an Ingenuity Pathway Analysis (IPA) to predict the pathways that are altered upon dedicator of cytokinesis-5 (Dock5) protein loss. The activation status of the predicted pathways was examined by western blotting in the cultured epithelial cells treated with a Dock5 inhibitor. Results The highest-scored network was "Antimicrobial Response, Inflammatory Response, Dermatological Diseases and Conditions." In that network, it is predicted that extracellular signal-regulated kinase (Erk) is activated in LECs from RLC mice. Our test confirmed that Erk was more phosphorylated in the LECs at the equator in both Dock5-knockout mice and RLC mice. In an in vitro experiment of the cultured epithelial cells, the inhibition of Dock5 activity significantly induced Erk activation. It was also confirmed that Akt (cellular homolog of murine thymoma virus akt8 oncogene, also called protein kinase B) and nuclear factor-kappa B (NFκB), predicted to be the key molecules in two other high-scoring networks by IPA, were activated upon Dock5 inhibition in the cultured epithelial cells. Conclusions Dock5 participates in epithelial cell maintenance by regulating gene expression.
Collapse
Affiliation(s)
- Xiaohe Xu
- Department of Oncologic Pathology, Kanazawa Medical University, Ishikawa, Japan
| | - Hisayoshi Yoshizaki
- Department of Oncologic Pathology, Kanazawa Medical University, Ishikawa, Japan,Department of Pediatric Surgery, Kanazawa Medical University, Ishikawa, Japan
| | - Yasuhito Ishigaki
- Division of Molecular and Cell Biology, Research Institute, Kanazawa Medical University, Ishikawa, Japan
| | - Eri Kubo
- Department of Ophthalmology, Kanazawa Medical University, Ishikawa, Japan
| | - Hiroshi Minato
- Department of Diagnostic Pathology, Ishikawa Prefectural Central Hospital, Ishikawa, Japan
| | - Etsuko Kiyokawa
- Department of Oncologic Pathology, Kanazawa Medical University, Ishikawa, Japan
| |
Collapse
|
28
|
Fort P, Blangy A. The Evolutionary Landscape of Dbl-Like RhoGEF Families: Adapting Eukaryotic Cells to Environmental Signals. Genome Biol Evol 2017; 9:1471-1486. [PMID: 28541439 PMCID: PMC5499878 DOI: 10.1093/gbe/evx100] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2017] [Indexed: 12/27/2022] Open
Abstract
The dynamics of cell morphology in eukaryotes is largely controlled by small GTPases of the Rho family. Rho GTPases are activated by guanine nucleotide exchange factors (RhoGEFs), of which diffuse B-cell lymphoma (Dbl)-like members form the largest family. Here, we surveyed Dbl-like sequences from 175 eukaryotic genomes and illuminate how the Dbl family evolved in all eukaryotic supergroups. By combining probabilistic phylogenetic approaches and functional domain analysis, we show that the human Dbl-like family is made of 71 members, structured into 20 subfamilies. The 71 members were already present in ancestral jawed vertebrates, but several members were subsequently lost in specific clades, up to 12% in birds. The jawed vertebrate repertoire was established from two rounds of duplications that occurred between tunicates, cyclostomes, and jawed vertebrates. Duplicated members showed distinct tissue distributions, conserved at least in Amniotes. All 20 subfamilies have members in Deuterostomes and Protostomes. Nineteen subfamilies are present in Porifera, the first phylum that diverged in Metazoa, 14 in Choanoflagellida and Filasterea, single-celled organisms closely related to Metazoa and three in Fungi, the sister clade to Metazoa. Other eukaryotic supergroups show an extraordinary variability of Dbl-like repertoires as a result of repeated and independent gain and loss events. Last, we observed that in Metazoa, the number of Dbl-like RhoGEFs varies in proportion of cell signaling complexity. Overall, our analysis supports the conclusion that Dbl-like RhoGEFs were present at the origin of eukaryotes and evolved as highly adaptive cell signaling mediators.
Collapse
Affiliation(s)
- Philippe Fort
- CRBM, Université of Montpellier, France.,CNRS, UMR5237, Montpellier, France
| | - Anne Blangy
- CRBM, Université of Montpellier, France.,CNRS, UMR5237, Montpellier, France
| |
Collapse
|
29
|
Munoz I, Danelli L, Claver J, Goudin N, Kurowska M, Madera-Salcedo IK, Huang JD, Fischer A, González-Espinosa C, de Saint Basile G, Blank U, Ménasché G. Kinesin-1 controls mast cell degranulation and anaphylaxis through PI3K-dependent recruitment to the granular Slp3/Rab27b complex. J Cell Biol 2017; 215:203-216. [PMID: 27810912 PMCID: PMC5084650 DOI: 10.1083/jcb.201605073] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 09/12/2016] [Indexed: 12/22/2022] Open
Abstract
Activation of mast cells through IgE and antigen triggers the release of secretory granules that contain factors responsible for anaphylactic responses. Munoz et al. show that kinesin-1 regulates mast cell degranulation through PI3K-dependent formation of a kinesin-1/Slp3/Rab27b complex. Cross-linking of mast cell (MC) IgE receptors (FcεRI) triggers degranulation of secretory granules (SGs) and the release of many allergic and inflammatory mediators. Although degranulation depends crucially on microtubule dynamics, the molecular machinery that couples SGs to microtubule-dependent transport is poorly understood. In this study, we demonstrate that mice lacking Kif5b (the heavy chain of kinesin-1) in hematopoietic cells are less sensitive to IgE-mediated, passive, systemic anaphylaxis. After IgE-induced stimulation, bone marrow–derived MCs from Kif5b knockout mice exhibited a marked reduction in SG translocation toward the secretion site. In contrast, a lack of Kif5b did not affect cytokine secretion, early FcεRI-initiated signaling pathways, or microtubule reorganization upon FcεRI stimulation. We identified Slp3 as the critical effector linking kinesin-1 to Rab27b-associated SGs. Kinesin-1 recruitment to the Slp3/Rab27b effector complex was independent of microtubule reorganization but occurred only upon stimulation requiring phosphatidylinositol 3-kinase (PI3K) activity. Our findings demonstrate that PI3K-dependent formation of a kinesin-1/Slp3/Rab27b complex is critical for the microtubule-dependent movement of SGs required for MC degranulation.
Collapse
Affiliation(s)
- Isabelle Munoz
- Laboratory of Normal and Pathological Homeostasis of the Immune System, Institut National de la Santé et de la Recherche Médicale, UMR1163, F-75015 Paris, France.,Imagine Institute, Paris Descartes University-Sorbonne Paris Cité, F-75015 Paris, France
| | - Luca Danelli
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1149; Centre de Recherche sur l'Inflammation, Centre National de la Recherche Scientifique, Equipe de Recherche Labelisé 8252; Inflamex Laboratory of Excellence, Université Paris Diderot, Sorbonne Paris Cité, Faculté de Médecine, Site Xavier Bichat, F-75018 Paris, France
| | - Julien Claver
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1149; Centre de Recherche sur l'Inflammation, Centre National de la Recherche Scientifique, Equipe de Recherche Labelisé 8252; Inflamex Laboratory of Excellence, Université Paris Diderot, Sorbonne Paris Cité, Faculté de Médecine, Site Xavier Bichat, F-75018 Paris, France
| | - Nicolas Goudin
- Cell Imaging Facility, Imagine Institute, Paris Descartes University-Sorbonne Paris Cité, F-75015 Paris, France
| | - Mathieu Kurowska
- Laboratory of Normal and Pathological Homeostasis of the Immune System, Institut National de la Santé et de la Recherche Médicale, UMR1163, F-75015 Paris, France.,Imagine Institute, Paris Descartes University-Sorbonne Paris Cité, F-75015 Paris, France
| | - Iris Karina Madera-Salcedo
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1149; Centre de Recherche sur l'Inflammation, Centre National de la Recherche Scientifique, Equipe de Recherche Labelisé 8252; Inflamex Laboratory of Excellence, Université Paris Diderot, Sorbonne Paris Cité, Faculté de Médecine, Site Xavier Bichat, F-75018 Paris, France
| | - Jian-Dong Huang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Alain Fischer
- Laboratory of Normal and Pathological Homeostasis of the Immune System, Institut National de la Santé et de la Recherche Médicale, UMR1163, F-75015 Paris, France.,Imagine Institute, Paris Descartes University-Sorbonne Paris Cité, F-75015 Paris, France.,Immunology and Pediatric Hematology Department, Necker Children's Hospital, Assistance Publique Hôpitaux de Paris, F-75015 Paris, France.,Collège de France, F-75005 Paris, France
| | | | - Geneviéve de Saint Basile
- Laboratory of Normal and Pathological Homeostasis of the Immune System, Institut National de la Santé et de la Recherche Médicale, UMR1163, F-75015 Paris, France.,Imagine Institute, Paris Descartes University-Sorbonne Paris Cité, F-75015 Paris, France
| | - Ulrich Blank
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1149; Centre de Recherche sur l'Inflammation, Centre National de la Recherche Scientifique, Equipe de Recherche Labelisé 8252; Inflamex Laboratory of Excellence, Université Paris Diderot, Sorbonne Paris Cité, Faculté de Médecine, Site Xavier Bichat, F-75018 Paris, France
| | - Gaël Ménasché
- Laboratory of Normal and Pathological Homeostasis of the Immune System, Institut National de la Santé et de la Recherche Médicale, UMR1163, F-75015 Paris, France .,Imagine Institute, Paris Descartes University-Sorbonne Paris Cité, F-75015 Paris, France
| |
Collapse
|
30
|
Kamei R, Fujimura T, Matsuda M, Kakihara K, Hirakawa N, Baba K, Ono K, Arakawa K, Kawamoto S. A flavanone derivative from the Asian medicinal herb (Perilla frutescens) potently suppresses IgE-mediated immediate hypersensitivity reactions. Biochem Biophys Res Commun 2016; 483:674-679. [PMID: 27986566 DOI: 10.1016/j.bbrc.2016.12.083] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 12/12/2016] [Indexed: 12/28/2022]
Abstract
Perilla frutescens is a dietary leafy herb consumed as a traditional Japanese condiment as well as used for Chinese medicine with anti-inflammatory activity. Here we report a hitherto-unrecognized P. frutescens phytochemical that potently suppresses IgE-mediated type I hypersensitivity reactions. Structural analysis reveals that the purified anti-allergic compound (Perilla-derived methoxyflavanone, PDMF) is identified as 8-hydroxy-5,7-dimethoxyflavanone. PDMF significantly inhibits IgE-mediated histamine release from RBL-2H3 rat basophilic leukemia cells as compared with those seen in known P. frutescens-derived anti-inflammatory polyphenols. We also show that oral administration of PDMF not only suppresses passive cutaneous anaphylaxis, but also prevents allergic rhinitis-like nasal symptoms in a murine model of Japanese cedar pollinosis. Mechanistically, PDMF negatively regulates Akt phosphorylation and intracellular Ca2+ influx, both of which are essential for mast cell secretory granule translocation and its exocytosis upon high-affinity IgE receptor (FcεRI) cross-linking. These results represent PDMF as a new potent anti-allergic phytochemical useful for prevention of IgE-driven hypersensitivity reactions.
Collapse
Affiliation(s)
- Rikiya Kamei
- Hiroshima Research Center for Healthy Aging (HiHA), Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Japan
| | - Takashi Fujimura
- Hiroshima Research Center for Healthy Aging (HiHA), Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Japan
| | - Miki Matsuda
- Hiroshima Research Center for Healthy Aging (HiHA), Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Japan
| | - Kotaro Kakihara
- Hiroshima Research Center for Healthy Aging (HiHA), Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Japan
| | | | - Kenji Baba
- Mishima Foods Co. Ltd., Hiroshima, Japan
| | - Kazuhisa Ono
- Hiroshima Research Center for Healthy Aging (HiHA), Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Japan; Faculty of Life Sciences, Hiroshima Institute of Technology, Hiroshima, Japan
| | - Kenji Arakawa
- Hiroshima Research Center for Healthy Aging (HiHA), Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Japan
| | - Seiji Kawamoto
- Hiroshima Research Center for Healthy Aging (HiHA), Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Japan.
| |
Collapse
|
31
|
Singh J, Shah R, Singh D. Targeting mast cells: Uncovering prolific therapeutic role in myriad diseases. Int Immunopharmacol 2016; 40:362-384. [PMID: 27694038 DOI: 10.1016/j.intimp.2016.09.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 09/16/2016] [Accepted: 09/22/2016] [Indexed: 01/08/2023]
Abstract
The mast cells are integral part of immune system and they have pleiotropic physiological functions in our body. Any type of abnormal stimuli causes the mast cells receptors to spur the otherwise innocuous mast cells to degranulate and release inflammatory mediators like histamine, cytokines, chemokines and prostaglandins. These mediators are involved in various diseases like allergy, asthma, mastocytosis, cardiovascular disorders, etc. Herein, we describe the receptors involved in degranulation of mast cells and are broadly divided into four categories: G-protein coupled receptors, ligand gated ion channels, immunoreceptors and pattern recognition receptors. Although, activation of pattern recognition receptors do not cause mast cell degranulation, but result in cytokines production. Degranulation itself is a complex process involving cascade of events like membrane fusion events and various proteins like VAMP, Syntaxins, DOCK5, SNAP-23, MARCKS. Furthermore, we described these mast cell receptors antagonists or agonists useful in treatment of myriad diseases. Like, omalizumab anti-IgE antibody is highly effective in asthma, allergic disorders treatment and recently mechanistic insight of IgE uncovered; matrix mettaloprotease inhibitor marimistat is under phase III trial for inflammation, muscular dystrophy diseases; ZPL-389 (H4 receptor antagonist) is in Phase 2a Clinical Trial for atopic dermatitis and psoriasis; JNJ3851868 an oral H4 receptor antagonist is in phase II clinical development for asthma, rheumatoid arthritis. Therefore, research is still in inchoate stage to uncover mast cell biology, mast cell receptors, their therapeutic role in myriad diseases.
Collapse
Affiliation(s)
- Jatinder Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, Punjab, India
| | - Ramanpreet Shah
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, Punjab, India
| | - Dhandeep Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, Punjab, India.
| |
Collapse
|
32
|
The focal adhesion-associated proteins DOCK5 and GIT2 comprise a rheostat in control of epithelial invasion. Oncogene 2016; 36:1816-1828. [PMID: 27669437 PMCID: PMC5366285 DOI: 10.1038/onc.2016.345] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 08/07/2016] [Accepted: 08/15/2016] [Indexed: 11/23/2022]
Abstract
DOCK proteins are guanine nucleotide exchange factors for Rac and Cdc42 GTPases. DOCK1 is the founding member of the family and acts downstream of integrins via the canonical Crk-p130Cas complex to activate Rac GTPases in numerous contexts. In contrast, DOCK5, which possesses the greatest similarity to DOCK1, remains sparingly studied. Here we establish that DOCK5 has a non-redundant role in regulating motile and invasive capacities of epithelial cells. DOCK1 is constitutively associated with sites of integrin attachment termed focal adhesions (FAs). In contrast, we demonstrate that DOCK5 recruitment to FAs in Hela cells is restricted by GIT2, an established regulator of FA signaling. We determine that GIT2 is targeted to FAs in response to Rho-ROCK signaling and actomyosin contractility. Accordingly, inhibition of ROCK activity or MLC function promotes enrichment of DOCK5 in membrane protrusions and nascent cell–substratum adhesions. We further demonstrate that GIT2 inhibits the interaction of DOCK5 with Crk. Moreover, we show that depletion of GIT2 promotes DOCK5-dependent activation of the Crk-p130Cas signaling cascade to promote Rac1-mediated lamellipodial protrusion and FA turnover. The antagonism between GIT2 and DOCK5 extends to non-transformed MCF10A mammary epithelial cells, with DOCK5 ‘dialing-up' and GIT2 ‘dialing-down' invasiveness. Finally, we determine that DOCK5 inhibition attenuates invasion and metastasis of MDA-MB-231 cells and prolongs life span of mice injected with these cells. Collectively, our work identifies DOCK5 as a key regulator of epithelial invasion and metastasis, and demonstrates that suppression of DOCK5 by GIT2 represents a previously unappreciated mechanism for coordination of Rho and Rac GTPases.
Collapse
|
33
|
Li N, Mruk DD, Tang EI, Lee WM, Wong CKC, Cheng CY. Formin 1 Regulates Microtubule and F-Actin Organization to Support Spermatid Transport During Spermatogenesis in the Rat Testis. Endocrinology 2016; 157:2894-908. [PMID: 27145014 PMCID: PMC4929546 DOI: 10.1210/en.2016-1133] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Formin 1 confers actin nucleation by generating long stretches of actin microfilaments to support cell movement, cell shape, and intracellular protein trafficking. Formin 1 is likely involved in microtubule (MT) dynamics due to the presence of a MT binding domain near its N terminus. Here, formin 1 was shown to structurally interact with α-tubulin, the building block of MT, and also end-binding protein 1 (a MT plus [+]-end-binding protein that stabilizes MT) in the testis. Knockdown of formin 1 in Sertoli cells with an established tight junction barrier was found to induce down-regulation of detyrosinated MT (a stabilized form of MT), and disorganization of MTs, in which MTs were retracted from the cell cortical zone, mediated through a loss of MT polymerization and down-regulation of Akt1/2 signaling kinase. An efficient knockdown of formin 1 in the testis reduced the number of track-like structures conferred by MTs and F-actin considerably, causing defects in spermatid and phagosome transport across the seminiferous epithelium. In summary, formin1 maintains MT and F-actin track-like structures to support spermatid and phagosome transport across the seminiferous epithelium during spermatogenesis.
Collapse
Affiliation(s)
- Nan Li
- The Mary M. Wohlford Laboratory for Male Contraceptive Research (N.L., D.D.M., E.I.T., C.Y.C.), Center for Biomedical Research, Population Council, New York, New York 10065-6307; College of Life Sciences and Oceanography (N.L.), Shenzhen University, Shenzhen 518060, China; School of Biological Sciences (W.M.L.), University of Hong Kong, Hong Kong, China; and Department of Biology (C.K.C.W.), Hong Kong Baptist University, Hong Kong, China
| | - Dolores D Mruk
- The Mary M. Wohlford Laboratory for Male Contraceptive Research (N.L., D.D.M., E.I.T., C.Y.C.), Center for Biomedical Research, Population Council, New York, New York 10065-6307; College of Life Sciences and Oceanography (N.L.), Shenzhen University, Shenzhen 518060, China; School of Biological Sciences (W.M.L.), University of Hong Kong, Hong Kong, China; and Department of Biology (C.K.C.W.), Hong Kong Baptist University, Hong Kong, China
| | - Elizabeth I Tang
- The Mary M. Wohlford Laboratory for Male Contraceptive Research (N.L., D.D.M., E.I.T., C.Y.C.), Center for Biomedical Research, Population Council, New York, New York 10065-6307; College of Life Sciences and Oceanography (N.L.), Shenzhen University, Shenzhen 518060, China; School of Biological Sciences (W.M.L.), University of Hong Kong, Hong Kong, China; and Department of Biology (C.K.C.W.), Hong Kong Baptist University, Hong Kong, China
| | - Will M Lee
- The Mary M. Wohlford Laboratory for Male Contraceptive Research (N.L., D.D.M., E.I.T., C.Y.C.), Center for Biomedical Research, Population Council, New York, New York 10065-6307; College of Life Sciences and Oceanography (N.L.), Shenzhen University, Shenzhen 518060, China; School of Biological Sciences (W.M.L.), University of Hong Kong, Hong Kong, China; and Department of Biology (C.K.C.W.), Hong Kong Baptist University, Hong Kong, China
| | - Chris K C Wong
- The Mary M. Wohlford Laboratory for Male Contraceptive Research (N.L., D.D.M., E.I.T., C.Y.C.), Center for Biomedical Research, Population Council, New York, New York 10065-6307; College of Life Sciences and Oceanography (N.L.), Shenzhen University, Shenzhen 518060, China; School of Biological Sciences (W.M.L.), University of Hong Kong, Hong Kong, China; and Department of Biology (C.K.C.W.), Hong Kong Baptist University, Hong Kong, China
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research (N.L., D.D.M., E.I.T., C.Y.C.), Center for Biomedical Research, Population Council, New York, New York 10065-6307; College of Life Sciences and Oceanography (N.L.), Shenzhen University, Shenzhen 518060, China; School of Biological Sciences (W.M.L.), University of Hong Kong, Hong Kong, China; and Department of Biology (C.K.C.W.), Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
34
|
Drago A, Crisafulli C, Sidoti A, Calabrò M, Serretti A. The microtubule-associated molecular pathways may be genetically disrupted in patients with Bipolar Disorder. Insights from the molecular cascades. J Affect Disord 2016; 190:429-438. [PMID: 26551401 DOI: 10.1016/j.jad.2015.10.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 09/24/2015] [Accepted: 10/10/2015] [Indexed: 01/15/2023]
Abstract
Bipolar Disorder is a severe disease characterized by pathological mood swings from major depressive episodes to manic ones and vice versa. The biological underpinnings of Bipolar Disorder have yet to be defined. As a consequence, pharmacological treatments are suboptimal. In the present paper we test the hypothesis that the molecular pathways involved with the direct targets of lithium, hold significantly more genetic variations associated with BD. A molecular pathway approach finds its rationale in the polygenic nature of the disease. The pathways were tested in a sample of ∼ 7,000 patients and controls. Data are available from the public NIMH database. The definition of the pathways was conducted according to the National Cancer Institute (http://pid.nci.nih.gov/). As a result, 3 out of the 18 tested pathways related to lithium action resisted the permutation analysis and were found to be associated with BD. These pathways were related to Reelin, Integrins and Aurora. A pool of genes selected from the ones linked with the above pathways was further investigated in order to identify the fine molecular mechanics shared by our significant pathways and also their link with lithium mechanism of action. The data obtained point out to a possible involvement of microtubule-related mechanics.
Collapse
Affiliation(s)
- Antonio Drago
- Department of Biomedical and Neuromotor Sciences - DIBINEM - University of Bologna, Bologna, Italy
| | - Concetta Crisafulli
- Department of Biomedical Science and Morphological and Functional Images, University of Messina, Via Consolare Valeria, 98125 Messina, Italy.
| | - Antonina Sidoti
- Department of Biomedical Science and Morphological and Functional Images, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| | - Marco Calabrò
- Department of Biomedical Science and Morphological and Functional Images, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| | - Alessandro Serretti
- Department of Biomedical and Neuromotor Sciences - DIBINEM - University of Bologna, Bologna, Italy
| |
Collapse
|
35
|
Moon TC, Befus AD, Kulka M. Mast cell mediators: their differential release and the secretory pathways involved. Front Immunol 2014; 5:569. [PMID: 25452755 PMCID: PMC4231949 DOI: 10.3389/fimmu.2014.00569] [Citation(s) in RCA: 297] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 10/23/2014] [Indexed: 12/14/2022] Open
Abstract
Mast cells (MC) are widely distributed throughout the body and are common at mucosal surfaces, a major host-environment interface. MC are functionally and phenotypically heterogeneous depending on the microenvironment in which they mature. Although MC have been classically viewed as effector cells of IgE-mediated allergic diseases, they are also recognized as important in host defense, innate and acquired immunity, homeostatic responses, and immunoregulation. MC activation can induce release of pre-formed mediators such as histamine from their granules, as well as release of de novo synthesized lipid mediators, cytokines, and chemokines that play diverse roles, not only in allergic reactions but also in numerous physiological and pathophysiological responses. Indeed, MC release their mediators in a discriminating and chronological manner, depending upon the stimuli involved and their signaling cascades (e.g., IgE-mediated or Toll-like receptor-mediated). However, the precise mechanisms underlying differential mediator release in response to these stimuli are poorly known. This review summarizes our knowledge of MC mediators and will focus on what is known about the discriminatory release of these mediators dependent upon diverse stimuli, MC phenotypes, and species of origin, as well as on the intracellular synthesis, storage, and secretory processes involved.
Collapse
Affiliation(s)
- Tae Chul Moon
- Pulmonary Research Group, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - A. Dean Befus
- Pulmonary Research Group, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Marianna Kulka
- National Institute for Nanotechnology, National Research Council, Edmonton, AB, Canada
| |
Collapse
|
36
|
Droppelmann CA, Campos-Melo D, Volkening K, Strong MJ. The emerging role of guanine nucleotide exchange factors in ALS and other neurodegenerative diseases. Front Cell Neurosci 2014; 8:282. [PMID: 25309324 PMCID: PMC4159981 DOI: 10.3389/fncel.2014.00282] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 08/25/2014] [Indexed: 12/11/2022] Open
Abstract
Small GTPases participate in a broad range of cellular processes such as proliferation, differentiation, and migration. The exchange of GDP for GTP resulting in the activation of these GTPases is catalyzed by a group of enzymes called guanine nucleotide exchange factors (GEFs), of which two classes: Dbl-related exchange factors and the more recently described dedicator of cytokinesis proteins family exchange factors. Increasingly, deregulation of normal GEF activity or function has been associated with a broad range of disease states, including neurodegeneration and neurodevelopmental disorders. In this review, we examine this evidence with special emphasis on the novel role of Rho guanine nucleotide exchange factor (RGNEF/p190RhoGEF) in the pathogenesis of amyotrophic lateral sclerosis. RGNEF is the first neurodegeneration-linked GEF that regulates not only RhoA GTPase activation but also functions as an RNA binding protein that directly acts with low molecular weight neurofilament mRNA 3' untranslated region to regulate its stability. This dual role for RGNEF, coupled with the increasing understanding of the key role for GEFs in modulating the GTPase function in cell survival suggests a prominent role for GEFs in mediating a critical balance between cytotoxicity and neuroprotection which, when disturbed, contributes to neuronal loss.
Collapse
Affiliation(s)
- Cristian A Droppelmann
- Molecular Medicine Group, Robarts Research Institute, Western University London, ON, Canada
| | - Danae Campos-Melo
- Molecular Medicine Group, Robarts Research Institute, Western University London, ON, Canada
| | - Kathryn Volkening
- Molecular Medicine Group, Robarts Research Institute, Western University London, ON, Canada ; Department of Clinical Neurological Sciences, Schulich School of Medicine & Dentistry, Western University London, ON, Canada
| | - Michael J Strong
- Molecular Medicine Group, Robarts Research Institute, Western University London, ON, Canada ; Department of Clinical Neurological Sciences, Schulich School of Medicine & Dentistry, Western University London, ON, Canada
| |
Collapse
|
37
|
Namekata K, Kimura A, Kawamura K, Harada C, Harada T. Dock GEFs and their therapeutic potential: neuroprotection and axon regeneration. Prog Retin Eye Res 2014; 43:1-16. [PMID: 25016980 DOI: 10.1016/j.preteyeres.2014.06.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 06/26/2014] [Accepted: 06/30/2014] [Indexed: 12/17/2022]
Abstract
The dedicator of cytokinesis (Dock) family is composed of atypical guanine exchange factors (GEFs) that activate the Rho GTPases Rac1 and Cdc42. Rho GTPases are best documented for their roles in actin polymerization and they regulate important cellular functions, including morphogenesis, migration, neuronal development, and cell division and adhesion. To date, 11 Dock family members have been identified and their roles have been reported in diverse contexts. There has been increasing interest in elucidating the roles of Dock proteins in recent years and studies have revealed that they are potential therapeutic targets for various diseases, including glaucoma, Alzheimer's disease, cancer, attention deficit hyperactivity disorder and combined immunodeficiency. Among the Dock proteins, Dock3 is predominantly expressed in the central nervous system and recent studies have revealed that Dock3 plays a role in protecting retinal ganglion cells from neurotoxicity and oxidative stress as well as in promoting optic nerve regeneration. In this review, we discuss the current understanding of the 11 Dock GEFs and their therapeutic potential, with a particular focus on Dock3 as a novel target for the treatment of glaucoma and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Kazuhiko Namekata
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Atsuko Kimura
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Kazuto Kawamura
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Chikako Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Takayuki Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.
| |
Collapse
|
38
|
Ogawa K, Tanaka Y, Uruno T, Duan X, Harada Y, Sanematsu F, Yamamura K, Terasawa M, Nishikimi A, Côté JF, Fukui Y. DOCK5 functions as a key signaling adaptor that links FcεRI signals to microtubule dynamics during mast cell degranulation. J Biophys Biochem Cytol 2014. [DOI: 10.1083/jcb.2056oia110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|