1
|
Zhao K, Yan Y, Jin XK, Pan T, Zhang SM, Yang CH, Rao ZY, Zhang XZ. An orally administered gene editing nanoparticle boosts chemo-immunotherapy in colorectal cancer. NATURE NANOTECHNOLOGY 2025:10.1038/s41565-025-01904-5. [PMID: 40269250 DOI: 10.1038/s41565-025-01904-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 03/12/2025] [Indexed: 04/25/2025]
Abstract
Chemoresistance and immunosuppression are common obstacles to the efficacy of chemo-immunotherapy in colorectal cancer (CRC) and are regulated by mitochondrial chaperone proteins. Here we show that the disruption of the tumour necrosis factor receptor-associated protein 1 (TRAP1) gene, which encodes a mitochondrial chaperone in tumour cells, causes the translocation of cyclophilin D in tumour cells. This process results in the continuous opening of the mitochondrial permeability transition pore, which enhances chemotherapy-induced cell necrosis and promotes immune responses. On the basis of this discovery we developed an oral CRISPR-Cas9 delivery system based on zwitterionic and polysaccharide polymer-coated nanocomplexes that disrupts the TRAP1 gene in CRC. This system penetrates the intestinal mucus layer and undergoes epithelial transcytosis, accumulating in CRC tissues. It enhances chemotherapeutic efficacy by overcoming chemoresistance and activating the tumour immune microenvironment in orthotopic, chemoresistant and spontaneous CRC models, with remarkable synergistic antitumour effects. This oral CRISPR-Cas9 delivery system represents a promising therapeutic strategy for the clinical management of CRC.
Collapse
Affiliation(s)
- Kai Zhao
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, P. R. China
| | - Yu Yan
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, P. R. China
| | - Xiao-Kang Jin
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, P. R. China
| | - Ting Pan
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, P. R. China
| | - Shi-Man Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, P. R. China
| | - Chi-Hui Yang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, P. R. China
| | - Zhi-Yong Rao
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, P. R. China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, P. R. China.
| |
Collapse
|
2
|
Wei Q, Jelloul FZ, Wang SA, Tang G, Li S, Lin P, Loghavi S, Wang H, Medeiros LJ, Xu J. Concurrent Bone Marrow Acute Undifferentiated Leukemia and Mediastinal T-Lymphoblastic Lymphoma With Identical SET::NUP214 Fusion and PHF6 and EZH2 Mutations. EJHAEM 2025; 6:e70034. [PMID: 40264515 PMCID: PMC12012753 DOI: 10.1002/jha2.70034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 04/24/2025]
Abstract
Acute undifferentiated leukemia (AUL) is a rare hematologic malignancy lacking lineage-specific markers. Concurrent, clonally related AUL and T-lymphoblastic lymphoma (T-LBL) has not been reported previously. Here we describe a patient who was diagnosed with AUL in the bone marrow and T-LBL in the mediastinum after a thorough immunophenotyping by flow cytometry and immunohistochemistry. Despite their immunophenotypic differences, the AUL and T-LBL showed identical genetic alterations: SET::NUP214 fusion, PHF6, and EZH2 mutations. The patient achieved and remained in complete remission after chemotherapy and stem cell transplantation. This case underscores the value of comprehensive immunophenotyping and genetic analysis in rare hematologic malignancies.
Collapse
Affiliation(s)
- Qing Wei
- Department of HematopathologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Fatima Z. Jelloul
- Department of HematopathologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Sa A. Wang
- Department of HematopathologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Guilin Tang
- Department of HematopathologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Shaoying Li
- Department of HematopathologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Pei Lin
- Department of HematopathologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Sanam Loghavi
- Department of HematopathologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Huan‐You Wang
- Department of PathologyUCSD School of Medicine and UCSD Health SystemSan DiegoCaliforniaUSA
| | - L. Jeffrey Medeiros
- Department of HematopathologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Jie Xu
- Department of HematopathologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| |
Collapse
|
3
|
Ye X, Song Q, Zhang L, Jing M, Fu Y, Yan W. Cysteine-rich intestinal protein family: structural overview, functional diversity, and roles in human disease. Cell Death Discov 2025; 11:114. [PMID: 40118853 PMCID: PMC11928533 DOI: 10.1038/s41420-025-02395-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/27/2025] [Accepted: 03/11/2025] [Indexed: 03/24/2025] Open
Abstract
The cysteine-rich intestinal protein (CRIP) family, including CRIP1, CRIP2, and CRIP3, is a subfamily of the highly conserved Lin-1, Isl1, Mec3/double zinc finger protein family that exhibits diverse biological functions. The CRIP family is known to play an important role in cellular epithelial-mesenchymal transition, cell death, and tumor progression and participate in multiple signaling pathways. This article summarizes the roles and potential molecular mechanisms of the CRIP family in diseases, which will help to explore new research directions for this family and provide useful information for clinical applications such as disease diagnosis and treatment.
Collapse
Affiliation(s)
- Xilin Ye
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qianben Song
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lumiao Zhang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengjia Jing
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yu Fu
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Wei Yan
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
4
|
Goleij P, Heidari MM, Tabari MAK, Hadipour M, Rezaee A, Javan A, Sanaye PM, Larsen DS, Daglia M, Khan H. Polycomb repressive complex 2 (PRC2) pathway's role in cancer cell plasticity and drug resistance. Funct Integr Genomics 2025; 25:53. [PMID: 40048009 DOI: 10.1007/s10142-025-01563-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/17/2025] [Accepted: 02/23/2025] [Indexed: 05/13/2025]
Abstract
Polycomb Repressive Complex 2 (PRC2) is a central regulator of gene expression via the trimethylation of histone H3 on lysine 27. This epigenetic modification plays a crucial role in maintaining cell identity and controlling differentiation, while its dysregulation is closely linked to cancer progression. PRC2 silences tumor suppressor genes, promoting cell proliferation, metastasis, epithelial-mesenchymal transition, and cancer stem cell plasticity. Enhancement of zeste homolog 2 (EZH2) overexpression or gain-of-function mutations have been observed in several cancers, including lymphoma, breast, and prostate cancers, driving aggressive tumor behavior and drug resistance. In addition to EZH2, other PRC2 components, such as embryonic ectoderm development (EED) and suppressor of zeste 12, are essential for complex stability and function. EED, in particular, enhances EZH2 activity and has emerged as a therapeutic target. Inhibitors like MAK683 and EED226 disrupt EED's ability to maintain PRC2 activity, thereby reducing H3K27me3 levels and reactivating tumor suppressor genes. Valemetostat, a dual inhibitor of both EZH2 and EED, has shown promising results in aggressive cancers like diffuse large B-cell lymphoma and small-cell lung cancer, underlining the therapeutic potential of targeting multiple PRC2 components. PRC2's role extends beyond gene repression, as it contributes to metabolic reprogramming in tumors, regulating glycolysis and lipid synthesis to fuel cancer growth. Furthermore, PRC2 is implicated in chemoresistance, particularly by modulating DNA damage response and immune evasion. Tazemetostat, a selective EZH2 inhibitor, has demonstrated significant clinical efficacy in EZH2-mutant cancers, such as non-Hodgkin lymphomas and epithelioid sarcoma. However, the compensatory function of enhancer of zeste homolog 1 (EZH1) in some cancers requires dual inhibition strategies, as seen with agents like UNC1999 and Tulmimetostat, which target both EZH1 and EZH2. Given PRC2's multifaceted role in cancer biology, its inhibition represents a promising avenue for therapeutic intervention. The continued development of PRC2 inhibitors and exploration of their use in combination with standard chemotherapy or immunotherapy has great potential for improving patient outcomes in cancers driven by PRC2 dysregulation.
Collapse
Affiliation(s)
- Pouya Goleij
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, 6715847141, Iran.
- Immunology Board for Transplantation and Cell-Based Therapeutics (Immunotact), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Mohammad Mahdi Heidari
- Department of Pediatrics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Khazeei Tabari
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Mazandaran, 4815733971, Iran
| | - Mahboube Hadipour
- Department of Biochemistry, School of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, 7919693116, Iran
| | - Aryan Rezaee
- School of Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Alireza Javan
- School of Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Pantea Majma Sanaye
- School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, 4513956184, Iran
| | - Danaé S Larsen
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland, 1010, New Zealand
| | - Maria Daglia
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131, Naples, Italy
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, 212013, China
| | - Haroon Khan
- Department of Pharmacy, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan.
- Department of Pharmacy, Korea University, Sejong, 20019, South Korea.
| |
Collapse
|
5
|
Letai A, de The H. Conventional chemotherapy: millions of cures, unresolved therapeutic index. Nat Rev Cancer 2025; 25:209-218. [PMID: 39681637 DOI: 10.1038/s41568-024-00778-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/15/2024] [Indexed: 12/18/2024]
Abstract
In recent decades, millions of patients with cancer have been cured by chemotherapy alone. By 'cure', we mean that patients with cancers that would be fatal if left untreated receive a time-limited course of chemotherapy and their cancer disappears, never to return. In an era when hundreds of thousands of cancer genomes have been sequenced, a remarkable fact persists: in most patients who have been cured, we still do not fully understand the mechanisms underlying the therapeutic index by which the tumour cells are killed, but normal cells are somehow spared. In contrast, in more recent years, patients with cancer have benefited from targeted therapies that usually do not cure but whose mechanisms of therapeutic index are, at least superficially, understood. In this Perspective, we will explore the various and sometimes contradictory models that have attempted to explain why chemotherapy can cure some patients with cancer, and what gaps in our understanding of the therapeutic index of chemotherapy remain to be filled. We will summarize principles which have benefited curative conventional chemotherapy regimens in the past, principles which might be deployed in constructing combinations that include modern targeted therapies.
Collapse
Affiliation(s)
- Anthony Letai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| | - Hugues de The
- College de France, CIRB, INSERM, CNRS, Université PSL Paris, Paris, France.
- Hematology Laboratory, St Louis Hospital, Assistance Publique Hôpitaux de Paris, Paris, France.
- IRSL, INSERM, CNRS, Université Paris-Cité, Paris, France.
| |
Collapse
|
6
|
Gold S, Shilatifard A. Epigenetic therapies targeting histone lysine methylation: complex mechanisms and clinical challenges. J Clin Invest 2024; 134:e183391. [PMID: 39403928 PMCID: PMC11473148 DOI: 10.1172/jci183391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
As epigenetic therapies continue to gain ground as potential treatment strategies for cancer and other diseases, compounds that target histone lysine methylation and the enzyme complexes represent a major frontier for therapeutic development. Clinically viable therapies targeting the activities of histone lysine methyltransferases (HKMT) and demethylases (HKDMs) have only recently begun to emerge following FDA approval of the EZH2 inhibitor tazemetostat in 2020 and remain limited to compounds targeting the well-studied SET domain-containing HKMTs and their opposing HKDMs. These include the H3K27 methyltransferases EZH2/EZH1, the singular H3K79 methyltransferase DOT1L, and the H3K4 methyltransferase MLL1/COMPASS as well as H3K9 and H3K36 methyltransferases. They additionally include the H3K4/9-preferential demethylase LSD1 and the H3K4-, H3K27-, and H3K36-preferential KDM5, KDM6, and KDM2 demethylase subfamilies, respectively. This Review discusses the results of recent clinical and preclinical studies relevant to all of these existing and potential therapies. It provides an update on advancements in therapeutic development, as well as more basic molecular understanding, within the past 5 years approximately. It also offers a perspective on histone lysine methylation that departs from the long-predominant "histone code" metaphor, emphasizing complex-disrupting inhibitors and proximity-based approaches rather than catalytic domain inhibitors in the outlook for future therapeutic development.
Collapse
|
7
|
Zhou R, Sun Z, Zhou R, Wang M, Zhuo Q, Deng X, Wang Z, Xu Y. Pancancer analysis of NDUFA4L2 with focused role in tumor progression and metastasis of colon adenocarcinoma. Med Oncol 2024; 41:285. [PMID: 39402288 DOI: 10.1007/s12032-024-02531-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/01/2024] [Indexed: 11/14/2024]
Abstract
Colon adenocarcinoma (COAD) is a prevalent gastrointestinal malignant disease with a high mortality rate, and identification of novel prognostic biomarkers and therapeutic targets is urgently needed. Although NDUFA4L2 has high expressions in various tumors and affects tumor progression, its role in COAD remains unclear. The role of NDUFA4L2 in COAD was analyzed utilizing datasets available from public databases including The Cancer Genome Atlas, The Genotype-Tissue Expression (GTEx), Gene Expression Omnibus, Alabama Cancer Database (UALCAN), and The Human Protein Atlas databases. The prognostic value of NDUFA4L2 was determined using Kaplan-Meier analysis and Cox regression analysis. To investigate the possible mechanism underlying the role of NDUFA4L2 in COAD, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and gene set enrichment analysis (GSEA) were employed. The correlation between NDUFA4L2 expression and immune cell infiltration levels was examined through single-sample gene set enrichment analysis (ssGSEA). The NDUFA4L2 expression levels in COAD patients and cell lines were validated through immunohistochemistry, immunofluorescence, qRT-PCR, and Western blot. Wound healing assay was also performed to evaluate the effect of NDUFA4L2 on COAD metastasis. Furthermore, the NDUFA4L2 mediated competing endogenous RNA (ceRNA) regulatory network was predicted and constructed through a variety of databases. The comprehensive pan-cancer analysis showed that NDUFA4L2 possesses diagnostic and prognostic value in many cancers, especially in COAD. GO-KEGG and GSEA analyses indicated that NDUFA4L2 was associated with multiple biological functions including epithelial-mesenchymal transition and adaptation to hypoxia. The ssGSEA analysis showed that NDUFA4L2 expression was associated with immune infiltration. In vitro experiments confirmed upregulation of NDUFA4L2 in COAD tissues and cell lines, and NDUFA4L2 overexpression significantly promoted migration of COAD cells. In addition, the C9orf139 /miR-194-3p axis was speculated as the possible upstream regulators of NDUFA4L2 in COAD. This study demonstrated that NDUFA4L2 upregulation was correlated with tumor progression, relapsed prognosis and aggressive migration of COAD, suggesting that NDUFA4L2 can act as an effective prognostic biomarker and a promising therapeutic target for COAD treatment.
Collapse
Affiliation(s)
- Runlong Zhou
- Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, 430081, Hubei, China
| | - Zhe Sun
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Ruijie Zhou
- Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, 430081, Hubei, China
| | - Mengyi Wang
- Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, 430081, Hubei, China
| | - Qing Zhuo
- Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, 430081, Hubei, China
| | - Xiaotong Deng
- Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, 430081, Hubei, China
| | - Zhenrong Wang
- Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, 430081, Hubei, China
| | - Yao Xu
- Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, 430081, Hubei, China.
| |
Collapse
|
8
|
Chen G, Zhang L, Wang R, Xie Z. Histone methylation in Epstein-Barr virus-associated diseases. Epigenomics 2024; 16:865-877. [PMID: 38869454 PMCID: PMC11370928 DOI: 10.1080/17501911.2024.2345040] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/15/2024] [Indexed: 06/14/2024] Open
Abstract
Epstein-Barr virus (EBV) infection is linked to various human diseases, including both noncancerous conditions like infectious mononucleosis and cancerous diseases such as lymphoma and nasopharyngeal carcinoma. After the initial infection, EBV establishes a lifelong presence and remains latent in specific cells. This latent infection causes changes in the epigenetic marks known as histone methylation. Many studies have examined the role of histone methylation in different EBV-associated diseases, and understanding how EBV affects histone methylation can help us identify potential targets for epigenetic therapies. This review focuses on the research progress made in understanding histone methylation in well-studied EBV-associated diseases, intending to provide insights into potential strategies based on histone methylation to combat EBV-related ailments.
Collapse
Affiliation(s)
- Guanglian Chen
- Beijing Key Laboratory of Pediatric Respiratory Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
- Research Unit of Critical Infection in Children, 2019RU016, Chinese Academy of Medical Sciences, Beijing, 100045, China
| | - Linlin Zhang
- Beijing Key Laboratory of Pediatric Respiratory Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
- Research Unit of Critical Infection in Children, 2019RU016, Chinese Academy of Medical Sciences, Beijing, 100045, China
| | - Ran Wang
- Beijing Key Laboratory of Pediatric Respiratory Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
- Research Unit of Critical Infection in Children, 2019RU016, Chinese Academy of Medical Sciences, Beijing, 100045, China
| | - Zhengde Xie
- Beijing Key Laboratory of Pediatric Respiratory Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
- Research Unit of Critical Infection in Children, 2019RU016, Chinese Academy of Medical Sciences, Beijing, 100045, China
| |
Collapse
|
9
|
Walia Y, de Bock CE, Huang Y. The landscape of alterations affecting epigenetic regulators in T-cell acute lymphoblastic leukemia: Roles in leukemogenesis and therapeutic opportunities. Int J Cancer 2024; 154:1522-1536. [PMID: 38155420 DOI: 10.1002/ijc.34819] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/25/2023] [Accepted: 11/28/2023] [Indexed: 12/30/2023]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy accounting for 10%-15% of pediatric and 20%-25% of adult ALL cases. Epigenetic irregularities in T-ALL include alterations in both DNA methylation and the post-translational modifications on histones which together play a critical role in the initiation and development of T-ALL. Characterizing the oncogenic mutations that result in these epigenetic changes combined with the reversibility of epigenetic modifications represents an opportunity for the development of epigenetic therapies. Oncogenic mutations and deregulated expression of DNA methyltransferases (DNMTs), Ten-Eleven Translocation dioxygenases (TETs), Histone acetyltransferases (HATs) and members of Polycomb Repressor Complex 2 (PRC2) have all been identified in T-ALL. This review focuses on the current understanding of how these mutations lead to epigenetic changes in T-ALL, their association with disease pathogenesis and the current efforts to exploit these clinically through the development of epigenetic therapies in T-ALL treatment.
Collapse
Affiliation(s)
- Yashna Walia
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
- School of Clinical Medicine, UNSW Sydney, Kensington, New South Wales, Australia
| | - Charles E de Bock
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
- School of Clinical Medicine, UNSW Sydney, Kensington, New South Wales, Australia
| | - Yizhou Huang
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
- School of Clinical Medicine, UNSW Sydney, Kensington, New South Wales, Australia
| |
Collapse
|
10
|
Kaur P, Shankar E, Gupta S. EZH2-mediated development of therapeutic resistance in cancer. Cancer Lett 2024; 586:216706. [PMID: 38331087 DOI: 10.1016/j.canlet.2024.216706] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/29/2024] [Accepted: 02/03/2024] [Indexed: 02/10/2024]
Abstract
Enhancer of zeste homolog 2 (EZH2) regulates gene expression and plays a definite role in cell proliferation, apoptosis, and senescence. Overexpression of EZH2 has been found in various human malignancies, including prostate, breast, and ovarian cancers, and is associated with increased metastasis and poor prognosis. EZH2 catalyzes trimethylation of lysine 27 of histone H3 (H3K27me3) as a canonical role in a PRC2-dependent manner. This mechanism silences various tumor suppressor genes through EZH2-mediated histone lysine methyltransferase activity. As a non-canonical role, EZH2 partners with other signaling molecules to undergo post-translational modification to orchestrate its function as a co-activator playing a critical role in cancer progression. Dysregulation of EZH2 has also been associated with therapeutic resistance in cancer cells. Given the role of EZH2 in promoting carcinogenesis and therapy resistance, both canonical and non-canonical EZH2 inhibitors have been used to combat multiple cancer types. Moreover, combining EZH2 inhibitors with other therapeutic modalities have shown to enhance the therapeutic efficacy and overcome potential resistance mechanisms in these cancerous cells. Therefore, targeting EZH2 through canonical and non-canonical modes appears to be a promising therapeutic strategy to enhance efficacy and overcome resistance in multiple cancers.
Collapse
Affiliation(s)
- Parminder Kaur
- Department of Urology, Case Western Reserve University, Cleveland, OH, 44016, USA; The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, 44016, USA.
| | - Eswar Shankar
- Department of Urology, Case Western Reserve University, Cleveland, OH, 44016, USA; Department of Internal Medicine, Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210, USA.
| | - Sanjay Gupta
- Department of Urology, Case Western Reserve University, Cleveland, OH, 44016, USA; The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, 44016, USA; Department of Pharmacology, Case Western Reserve University, Cleveland, OH, 44016, USA; Department of Pathology, Case Western Reserve University, Cleveland, OH, 44016, USA; Department of Nutrition, Case Western Reserve University, Cleveland, OH, 44016, USA; Division of General Medical Sciences, Case Comprehensive Cancer Center, Cleveland, OH, 44106, USA.
| |
Collapse
|
11
|
Loxha L, Ibrahim NK, Stasche AS, Cinar B, Dolgner T, Niessen J, Schreek S, Fehlhaber B, Forster M, Stanulla M, Hinze L. GSK3α Regulates Temporally Dynamic Changes in Ribosomal Proteins upon Amino Acid Starvation in Cancer Cells. Int J Mol Sci 2023; 24:13260. [PMID: 37686063 PMCID: PMC10488213 DOI: 10.3390/ijms241713260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Amino acid availability is crucial for cancer cells' survivability. Leukemia and colorectal cancer cells have been shown to resist asparagine depletion by utilizing GSK3-dependent proteasomal degradation, termed the Wnt-dependent stabilization of proteins (Wnt/STOP), to replenish their amino acid pool. The inhibition of GSK3α halts the sourcing of amino acids, which subsequently leads to cancer cell vulnerability toward asparaginase therapy. However, resistance toward GSK3α-mediated protein breakdown can occur, whose underlying mechanism is poorly understood. Here, we set out to define the mechanisms driving dependence toward this degradation machinery upon asparagine starvation in cancer cells. We show the independence of known stress response pathways including the integrated stress response mediated with GCN2. Additionally, we demonstrate the independence of changes in cell cycle progression and expression levels of the asparagine-synthesizing enzyme ASNS. Instead, RNA sequencing revealed that GSK3α inhibition and asparagine starvation leads to the temporally dynamic downregulation of distinct ribosomal proteins, which have been shown to display anti-proliferative functions. Using a CRISPR/Cas9 viability screen, we demonstrate that the downregulation of these specific ribosomal proteins can rescue cell death upon GSK3α inhibition and asparagine starvation. Thus, our findings suggest the vital role of the previously unrecognized regulation of ribosomal proteins in bridging GSK3α activity and tolerance of asparagine starvation.
Collapse
Affiliation(s)
- Lorent Loxha
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany; (L.L.); (N.K.I.); (A.S.S.); (B.C.); (T.D.); (J.N.); (S.S.); (B.F.); (M.S.)
| | - Nurul Khalida Ibrahim
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany; (L.L.); (N.K.I.); (A.S.S.); (B.C.); (T.D.); (J.N.); (S.S.); (B.F.); (M.S.)
| | - Anna Sophie Stasche
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany; (L.L.); (N.K.I.); (A.S.S.); (B.C.); (T.D.); (J.N.); (S.S.); (B.F.); (M.S.)
| | - Büsra Cinar
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany; (L.L.); (N.K.I.); (A.S.S.); (B.C.); (T.D.); (J.N.); (S.S.); (B.F.); (M.S.)
| | - Tim Dolgner
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany; (L.L.); (N.K.I.); (A.S.S.); (B.C.); (T.D.); (J.N.); (S.S.); (B.F.); (M.S.)
| | - Julia Niessen
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany; (L.L.); (N.K.I.); (A.S.S.); (B.C.); (T.D.); (J.N.); (S.S.); (B.F.); (M.S.)
| | - Sabine Schreek
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany; (L.L.); (N.K.I.); (A.S.S.); (B.C.); (T.D.); (J.N.); (S.S.); (B.F.); (M.S.)
| | - Beate Fehlhaber
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany; (L.L.); (N.K.I.); (A.S.S.); (B.C.); (T.D.); (J.N.); (S.S.); (B.F.); (M.S.)
| | - Michael Forster
- Institute of Clinical Molecular Biology, Kiel University, 24105 Kiel, Germany;
| | - Martin Stanulla
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany; (L.L.); (N.K.I.); (A.S.S.); (B.C.); (T.D.); (J.N.); (S.S.); (B.F.); (M.S.)
| | - Laura Hinze
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany; (L.L.); (N.K.I.); (A.S.S.); (B.C.); (T.D.); (J.N.); (S.S.); (B.F.); (M.S.)
| |
Collapse
|
12
|
Groß E, Hilger RA, Schümann FL, Bauer M, Bouska A, Rohde C, Willscher E, Lützkendorf J, Müller LP, Edemir B, Mueller T, Herling M, Binder M, Wickenhauser C, Iqbal J, Posern G, Weber T. SAM-Competitive EZH2-Inhibitors Induce Platinum Resistance by EZH2-Independent Induction of ABC-Transporters. Cancers (Basel) 2023; 15:3043. [PMID: 37297005 PMCID: PMC10252553 DOI: 10.3390/cancers15113043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/20/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
T-cell lymphomas are heterogeneous and rare lymphatic malignancies with unfavorable prognosis. Consequently, new therapeutic strategies are needed. The enhancer of zeste homologue 2 (EZH2) is the catalytic subunit of the polycomb repressive complex 2 and responsible for lysine 27 trimethylation of histone 3. EZH2 is overexpressed in several tumor entities including T-cell neoplasms leading to epigenetic and consecutive oncogenic dysregulation. Thus, pharmacological EZH2 inhibition is a promising target and its clinical evaluation in T-cell lymphomas shows favorable results. We have investigated EZH2 expression in two cohorts of T-cell lymphomas by mRNA-profiling and immunohistochemistry, both revealing overexpression to have a negative impact on patients' prognosis. Furthermore, we have evaluated EZH2 inhibition in a panel of leukemia and lymphoma cell lines with a focus on T-cell lymphomas characterized for canonical EZH2 signaling components. The cell lines were treated with the inhibitors GSK126 or EPZ6438 that inhibit EZH2 specifically by competitive binding at the S-adenosylmethionine (SAM) binding site in combination with the common second-line chemotherapeutic oxaliplatin. The change in cytotoxic effects under pharmacological EZH2 inhibition was evaluated revealing a drastic increase in oxaliplatin resistance after 72 h and longer periods of combinational incubation. This outcome was independent of cell type but associated to reduced intracellular platinum. Pharmacological EZH2 inhibition revealed increased expression in SRE binding proteins, SREBP1/2 and ATP binding cassette subfamily G transporters ABCG1/2. The latter are associated with chemotherapy resistance due to increased platinum efflux. Knockdown experiments revealed that this was independent of the EZH2 functional state. The EZH2 inhibition effect on oxaliplatin resistance and efflux was reduced by additional inhibition of the regulated target proteins. In conclusion, pharmacological EZH2 inhibition is not suitable in combination with the common chemotherapeutic oxaliplatin in T-cell lymphomas revealing an EZH2-independent off-target effect.
Collapse
Affiliation(s)
- Elisabeth Groß
- Department of Hematology and Oncology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Ralf-Axel Hilger
- West German Cancer Center, University Hospital Essen, 45147 Essen, Germany
| | - Franziska Lea Schümann
- Department of Hematology and Oncology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Marcus Bauer
- Institute of Pathology, Martin-Luther-University Halle-Wittenberg, 06112 Halle (Saale), Germany
| | - Alyssa Bouska
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Christian Rohde
- Department of Hematology, Oncology and Rheumatology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Edith Willscher
- Department of Hematology and Oncology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Jana Lützkendorf
- Department of Hematology and Oncology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Lutz Peter Müller
- Department of Hematology and Oncology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Bayram Edemir
- Department of Hematology and Oncology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Thomas Mueller
- Department of Hematology and Oncology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Marco Herling
- Department of Hematology, Cell Therapy, Hemostaseology, University of Leipzig, 04103 Leipzig, Germany
| | - Mascha Binder
- Department of Hematology and Oncology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Claudia Wickenhauser
- Institute of Pathology, Martin-Luther-University Halle-Wittenberg, 06112 Halle (Saale), Germany
| | - Javeed Iqbal
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Guido Posern
- Institute for Physiological Chemistry, Martin-Luther-University Halle-Wittenberg, 06114 Halle (Saale), Germany
| | - Thomas Weber
- Department of Hematology and Oncology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| |
Collapse
|
13
|
Polycomb Alterations in Acute Myeloid Leukaemia: From Structure to Function. Cancers (Basel) 2023; 15:cancers15061693. [PMID: 36980579 PMCID: PMC10046783 DOI: 10.3390/cancers15061693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/01/2023] [Accepted: 03/04/2023] [Indexed: 03/12/2023] Open
Abstract
Epigenetic dysregulation is a hallmark of many haematological malignancies and is very frequent in acute myeloid leukaemia (AML). A cardinal example is the altered activity of the Polycomb Repressive Complex 2 (PRC2) due to somatic mutations and deletions in genes encoding PRC2 core factors that are necessary for correct complex assembly. These genetic alterations typically lead to reduced histone methyltransferase activity that, in turn, has been strongly linked to poor prognosis and chemoresistance. In this review, we provide an overview of genetic alterations of PRC components in AML, with particular reference to structural and functional features of PRC2 factors. We further review genetic interactions between these alterations and other AML-associated mutations in both adult and paediatric leukaemias. Finally, we discuss reported prognostic links between PRC2 mutations and deletions and disease outcomes and potential implications for therapy.
Collapse
|
14
|
Abstract
Dynamic regulation of the chromatin state by Polycomb Repressive Complex 2 (PRC2) provides an important mean for epigenetic gene control that can profoundly influence normal development and cell lineage specification. PRC2 and PRC2-induced methylation of histone H3 lysine 27 (H3K27) are critically involved in a wide range of DNA-templated processes, which at least include transcriptional repression and gene imprinting, organization of three-dimensional chromatin structure, DNA replication and DNA damage response and repair. PRC2-based genome regulation often goes wrong in diseases, notably cancer. This chapter discusses about different modes-of-action through which PRC2 and EZH2, a catalytic subunit of PRC2, mediate (epi)genomic and transcriptomic regulation. We will also discuss about how alteration or mutation of the PRC2 core or axillary component promotes oncogenesis, how post-translational modification regulates functionality of EZH2 and PRC2, and how PRC2 and other epigenetic pathways crosstalk. Lastly, we will briefly touch on advances in targeting EZH2 and PRC2 dependence as cancer therapeutics.
Collapse
Affiliation(s)
- Yiran Guo
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA.
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA.
| | - Yao Yu
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Gang Greg Wang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA.
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA.
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
15
|
Zhang X, Lou HE, Gopalan V, Liu Z, Jafarah HM, Lei H, Jones P, Sayers CM, Yohe ME, Chittiboina P, Widemann BC, Thiele CJ, Kelly MC, Hannenhalli S, Shern JF. Single-cell sequencing reveals activation of core transcription factors in PRC2-deficient malignant peripheral nerve sheath tumor. Cell Rep 2022; 40:111363. [PMID: 36130486 PMCID: PMC9585487 DOI: 10.1016/j.celrep.2022.111363] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 05/16/2022] [Accepted: 08/24/2022] [Indexed: 11/26/2022] Open
Abstract
Loss-of-function mutations in the polycomb repressive complex 2 (PRC2) occur frequently in malignant peripheral nerve sheath tumor, an aggressive sarcoma that arises from NF1-deficient Schwann cells. To define the oncogenic mechanisms underlying PRC2 loss, we use engineered cells that dynamically reassemble a competent PRC2 coupled with single-cell sequencing from clinical samples. We discover a two-pronged oncogenic process: first, PRC2 loss leads to remodeling of the bivalent chromatin and enhancer landscape, causing the upregulation of developmentally regulated transcription factors that enforce a transcriptional circuit serving as the cell's core vulnerability. Second, PRC2 loss reduces type I interferon signaling and antigen presentation as downstream consequences of hyperactivated Ras and its cross talk with STAT/IRF transcription factors. Mapping of the transcriptional program of these PRC2-deficient tumor cells onto a constructed developmental trajectory of normal Schwann cells reveals that changes induced by PRC2 loss enforce a cellular profile characteristic of a primitive mesenchymal neural crest stem cell.
Collapse
Affiliation(s)
- Xiyuan Zhang
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hannah E Lou
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vishaka Gopalan
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zhihui Liu
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hilda M Jafarah
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Haiyan Lei
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Paige Jones
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Carly M Sayers
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Marielle E Yohe
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Prashant Chittiboina
- Neurosurgery Unit for Pituitary and Inheritable Diseases, National Institute of Neurological Diseases and Stroke, Bethesda, MD 20892, USA
| | - Brigitte C Widemann
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Carol J Thiele
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael C Kelly
- Center for Cancer Research Single Cell Analysis Facility, Cancer Research Technology Program, Frederick National Laboratory, Bethesda, MD 20892, USA
| | - Sridhar Hannenhalli
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jack F Shern
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
16
|
Yu C, Li T, Li J, Cui B, Liu N, Bayliss G, Zhuang S. Inhibition of polycomb repressive complex 2 by targeting EED protects against cisplatin-induced acute kidney injury. J Cell Mol Med 2022; 26:4061-4075. [PMID: 35734954 PMCID: PMC9279598 DOI: 10.1111/jcmm.17447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 05/12/2022] [Accepted: 05/20/2022] [Indexed: 12/05/2022] Open
Abstract
Polycomb repressive complex 2 (PRC2) is a multicomponent complex with methyltransferase activity that catalyzes trimethylation of histone H3 at lysine 27 (H3K27me3). Interaction of the epigenetic reader protein EED with EZH2, a catalytic unit of PRC, allosterically stimulates PRC2 activity. In this study, we investigated the role and underlying mechanism of the PRC2 in acute kidney injury (AKI) by using EED226, a highly selective PRC2 inhibitor, to target EED. Administration of EED226 improved renal function, attenuated renal pathological changes, and reduced renal tubular cell apoptosis in a murine model of cisplatin‐induced AKI. In cultured renal epithelial cells, treatment with either EED226 or EED siRNA also ameliorated cisplatin‐induced apoptosis. Mechanistically, EED226 treatment inhibited cisplatin‐induced phosphorylation of p53 and FOXO3a, two transcriptional factors contributing to apoptosis, and preserved expression of Sirtuin 3 and PGC1α, two proteins associated with mitochondrial protection in vivo and in vitro. EED226 was also effective in enhancing renal tubular cell proliferation, suppressing expression of multiple inflammatory cytokines, and reducing infiltration of macrophages to the injured kidney. These data suggest that inhibition of the PRC2 activity by targeting EED can protect against cisplatin‐induced AKI by promoting the survival and proliferation of renal tubular cells and inhibiting inflammatory response.
Collapse
Affiliation(s)
- Chao Yu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tingting Li
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jialu Li
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Binbin Cui
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Na Liu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - George Bayliss
- Department of Medicine, Rhode Island Hospital, and Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Medicine, Rhode Island Hospital, and Alpert Medical School, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
17
|
Bodaar K, Yamagata N, Barthe A, Landrigan J, Chonghaile TN, Burns M, Stevenson KE, Devidas M, Loh ML, Hunger SP, Wood B, Silverman LB, Teachey DT, Meijerink JP, Letai A, Gutierrez A. JAK3 mutations and mitochondrial apoptosis resistance in T-cell acute lymphoblastic leukemia. Leukemia 2022; 36:1499-1507. [PMID: 35411095 PMCID: PMC9177679 DOI: 10.1038/s41375-022-01558-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 03/15/2022] [Accepted: 03/24/2022] [Indexed: 11/09/2022]
Abstract
Resistance to mitochondrial apoptosis predicts inferior treatment outcomes in patients with diverse tumor types, including T-cell acute lymphoblastic leukemia (T-ALL). However, the genetic basis for variability in this mitochondrial apoptotic phenotype is poorly understood, preventing its rational therapeutic targeting. Using BH3 profiling and exon sequencing analysis of childhood T-ALL clinical specimens, we found that mitochondrial apoptosis resistance was most strongly associated with activating mutations of JAK3. Mutant JAK3 directly repressed apoptosis in leukemia cells, because its inhibition with mechanistically distinct pharmacologic inhibitors resulted in reversal of mitochondrial apoptotic blockade. Inhibition of JAK3 led to loss of MEK, ERK and BCL2 phosphorylation, and BH3 profiling revealed that JAK3-mutant primary T-ALL patient samples were characterized by a dependence on BCL2. Treatment of JAK3-mutant T-ALL cells with the JAK3 inhibitor tofacitinib in combination with a spectrum of conventional chemotherapeutics revealed synergy with glucocorticoids, in vitro and in vivo. These findings thus provide key insights into the molecular genetics of mitochondrial apoptosis resistance in childhood T-ALL, and a compelling rationale for a clinical trial of JAK3 inhibitors in combination with glucocorticoids for patients with JAK3-mutant T-ALL.
Collapse
Affiliation(s)
- Kimberly Bodaar
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Natsuko Yamagata
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Anais Barthe
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Jack Landrigan
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Triona Ni Chonghaile
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA.,Deparment of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Melissa Burns
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, 02115, USA.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Kristen E. Stevenson
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Meenakshi Devidas
- Department of Global Pediatric Medicine, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Mignon L. Loh
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, and the Department of Pediatrics, Seattle Children’s Hospital, University of Washington, Seattle, WA, 98105, USA
| | - Stephen P. Hunger
- Division of Oncology and the Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Brent Wood
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Lewis B. Silverman
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, 02115, USA.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - David T. Teachey
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
| | | | - Anthony Letai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Alejandro Gutierrez
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA. .,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
18
|
Kumari S, Ali MS, Singh J, Arora M, Verma D, Pandey AK, Benjamin M, Bakhshi S, Palanichamy JK, Sharma A, Singh I, Tanwar P, Singh AR, Pushpam D, Qamar I, Chopra A. Prognostic utility of key copy number alterations in T cell acute lymphoblastic leukemia. Hematol Oncol 2022; 40:577-587. [DOI: 10.1002/hon.3030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/26/2022] [Accepted: 05/21/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Sarita Kumari
- Laboratory Oncology Unit Dr. BRA‐IRCH All India Institute of Medical Sciences New Delhi110029 India
- School of Biotechnology Gautam Buddha University Uttar Pradesh201312 India
| | - Md Shadab Ali
- Department of Pulmonary Medicine and Sleep Disorders All India Institute of Medical Sciences New Delhi New Delhi110029 India
| | - Jay Singh
- Laboratory Oncology Unit Dr. BRA‐IRCH All India Institute of Medical Sciences New Delhi110029 India
| | - Mohit Arora
- Department of Biochemistry All India Institute of Medical Sciences New Delhi110029 India
| | - Deepak Verma
- Laboratory Oncology Unit Dr. BRA‐IRCH All India Institute of Medical Sciences New Delhi110029 India
| | - Avanish Kumar Pandey
- Laboratory Oncology Unit Dr. BRA‐IRCH All India Institute of Medical Sciences New Delhi110029 India
| | - Mercilena Benjamin
- Laboratory Oncology Unit Dr. BRA‐IRCH All India Institute of Medical Sciences New Delhi110029 India
| | - Sameer Bakhshi
- Laboratory Oncology Unit Dr. BRA‐IRCH All India Institute of Medical Sciences New Delhi110029 India
| | | | - Atul Sharma
- Department of Medical Oncology Dr. BRA‐IRCH All India Institute of Medical Sciences New Delhi110029 India
| | - Inder Singh
- Department of Neurology All India Institute of Medical Sciences New Delhi New Delhi110029 India
| | - Pranay Tanwar
- Laboratory Oncology Unit Dr. BRA‐IRCH All India Institute of Medical Sciences New Delhi110029 India
| | - Amar Ranjan Singh
- Laboratory Oncology Unit Dr. BRA‐IRCH All India Institute of Medical Sciences New Delhi110029 India
| | - Deepam Pushpam
- Department of Medical Oncology Dr. BRA‐IRCH All India Institute of Medical Sciences New Delhi110029 India
| | - Imteyaz Qamar
- School of Biotechnology Gautam Buddha University Uttar Pradesh201312 India
| | - Anita Chopra
- Laboratory Oncology Unit Dr. BRA‐IRCH All India Institute of Medical Sciences New Delhi110029 India
| |
Collapse
|
19
|
|
20
|
Li J, Hlavka-Zhang J, Shrimp JH, Piper C, Dupéré-Richér D, Roth JS, Jing D, Casellas Román HL, Troche C, Swaroop A, Kulis M, Oyer JA, Will CM, Shen M, Riva A, Bennett RL, Ferrando AA, Hall MD, Lock RB, Licht JD. PRC2 Inhibitors Overcome Glucocorticoid Resistance Driven by NSD2 Mutation in Pediatric Acute Lymphoblastic Leukemia. Cancer Discov 2022; 12:186-203. [PMID: 34417224 DOI: 10.1158/2159-8290.cd-20-1771] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 07/21/2021] [Accepted: 08/18/2021] [Indexed: 01/05/2023]
Abstract
Mutations in epigenetic regulators are common in relapsed pediatric acute lymphoblastic leukemia (ALL). Here, we uncovered the mechanism underlying the relapse of ALL driven by an activating mutation of the NSD2 histone methyltransferase (p.E1099K). Using high-throughput drug screening, we found that NSD2-mutant cells were specifically resistant to glucocorticoids. Correction of this mutation restored glucocorticoid sensitivity. The transcriptional response to glucocorticoids was blocked in NSD2-mutant cells due to depressed glucocorticoid receptor (GR) levels and the failure of glucocorticoids to autoactivate GR expression. Although H3K27me3 was globally decreased by NSD2 p.E1099K, H3K27me3 accumulated at the NR3C1 (GR) promoter. Pretreatment of NSD2 p.E1099K cell lines and patient-derived xenograft samples with PRC2 inhibitors reversed glucocorticoid resistance in vitro and in vivo. PRC2 inhibitors restored NR3C1 autoactivation by glucocorticoids, increasing GR levels and allowing GR binding and activation of proapoptotic genes. These findings suggest a new therapeutic approach to relapsed ALL associated with NSD2 mutation. SIGNIFICANCE: NSD2 histone methyltransferase mutations observed in relapsed pediatric ALL drove glucocorticoid resistance by repression of the GR and abrogation of GR gene autoactivation due to accumulation of K3K27me3 at its promoter. Pretreatment with PRC2 inhibitors reversed resistance, suggesting a new therapeutic approach to these patients with ALL.This article is highlighted in the In This Issue feature, p. 1.
Collapse
Affiliation(s)
- Jianping Li
- Division of Hematology/Oncology, University of Florida Health Cancer Center, Gainesville, Florida
| | - Julia Hlavka-Zhang
- Children's Cancer Institute, School of Women's and Children's Health, University of New South Wales Sydney, Sydney, Australia
| | - Jonathan H Shrimp
- National Center for Advancing Translational Sciences, NIH, Rockville, Maryland
| | - Crissandra Piper
- Division of Hematology/Oncology, University of Florida Health Cancer Center, Gainesville, Florida
| | - Daphne Dupéré-Richér
- Division of Hematology/Oncology, University of Florida Health Cancer Center, Gainesville, Florida
| | - Jacob S Roth
- National Center for Advancing Translational Sciences, NIH, Rockville, Maryland
| | - Duohui Jing
- Children's Cancer Institute, School of Women's and Children's Health, University of New South Wales Sydney, Sydney, Australia
| | - Heidi L Casellas Román
- Division of Hematology/Oncology, University of Florida Health Cancer Center, Gainesville, Florida
| | - Catalina Troche
- Division of Hematology/Oncology, University of Florida Health Cancer Center, Gainesville, Florida
| | - Alok Swaroop
- Division of Hematology/Oncology, University of Florida Health Cancer Center, Gainesville, Florida
| | - Marta Kulis
- Fundació Clínic per a la Recerca Biomèdica, Barcelona, Spain
| | - Jon A Oyer
- Pfizer Inc., Oncology Research and Development, San Diego, California
| | - Christine M Will
- Division of Hematology/Oncology, University of Florida Health Cancer Center, Gainesville, Florida
| | - Min Shen
- National Center for Advancing Translational Sciences, NIH, Rockville, Maryland
| | - Alberto Riva
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida
| | - Richard L Bennett
- Division of Hematology/Oncology, University of Florida Health Cancer Center, Gainesville, Florida
| | - Adolfo A Ferrando
- Institute of Cancer Genetics, Columbia University, New York, New York
| | - Matthew D Hall
- National Center for Advancing Translational Sciences, NIH, Rockville, Maryland
| | - Richard B Lock
- Children's Cancer Institute, School of Women's and Children's Health, University of New South Wales Sydney, Sydney, Australia
| | - Jonathan D Licht
- Division of Hematology/Oncology, University of Florida Health Cancer Center, Gainesville, Florida.
| |
Collapse
|
21
|
Mieczkowska IK, Pantelaiou-Prokaki G, Prokakis E, Schmidt GE, Müller-Kirschbaum LC, Werner M, Sen M, Velychko T, Jannasch K, Dullin C, Napp J, Pantel K, Wikman H, Wiese M, Kramm CM, Alves F, Wegwitz F. Decreased PRC2 activity supports the survival of basal-like breast cancer cells to cytotoxic treatments. Cell Death Dis 2021; 12:1118. [PMID: 34845197 PMCID: PMC8630036 DOI: 10.1038/s41419-021-04407-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 11/01/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022]
Abstract
Breast cancer (BC) is the most common cancer occurring in women but also rarely develops in men. Recent advances in early diagnosis and development of targeted therapies have greatly improved the survival rate of BC patients. However, the basal-like BC subtype (BLBC), largely overlapping with the triple-negative BC subtype (TNBC), lacks such drug targets and conventional cytotoxic chemotherapies often remain the only treatment option. Thus, the development of resistance to cytotoxic therapies has fatal consequences. To assess the involvement of epigenetic mechanisms and their therapeutic potential increasing cytotoxic drug efficiency, we combined high-throughput RNA- and ChIP-sequencing analyses in BLBC cells. Tumor cells surviving chemotherapy upregulated transcriptional programs of epithelial-to-mesenchymal transition (EMT) and stemness. To our surprise, the same cells showed a pronounced reduction of polycomb repressive complex 2 (PRC2) activity via downregulation of its subunits Ezh2, Suz12, Rbbp7 and Mtf2. Mechanistically, loss of PRC2 activity leads to the de-repression of a set of genes through an epigenetic switch from repressive H3K27me3 to activating H3K27ac mark at regulatory regions. We identified Nfatc1 as an upregulated gene upon loss of PRC2 activity and directly implicated in the transcriptional changes happening upon survival to chemotherapy. Blocking NFATc1 activation reduced epithelial-to-mesenchymal transition, aggressiveness, and therapy resistance of BLBC cells. Our data demonstrate a previously unknown function of PRC2 maintaining low Nfatc1 expression levels and thereby repressing aggressiveness and therapy resistance in BLBC.
Collapse
Affiliation(s)
- Iga K. Mieczkowska
- grid.411984.10000 0001 0482 5331Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Garyfallia Pantelaiou-Prokaki
- grid.411984.10000 0001 0482 5331Department of Gynecology and Obstetrics, University Medical Center Göttingen, Göttingen, Germany ,grid.419522.90000 0001 0668 6902Translational Molecular Imaging, Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Evangelos Prokakis
- grid.411984.10000 0001 0482 5331Department of Gynecology and Obstetrics, University Medical Center Göttingen, Göttingen, Germany
| | - Geske E. Schmidt
- grid.411984.10000 0001 0482 5331Department of Gastroenterology, GI-Oncology and Endocrinology, University Medical Center Göttingen, Göttingen, Germany
| | - Lukas C. Müller-Kirschbaum
- grid.411984.10000 0001 0482 5331Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Marcel Werner
- grid.411984.10000 0001 0482 5331Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Madhobi Sen
- grid.411984.10000 0001 0482 5331Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Taras Velychko
- grid.411984.10000 0001 0482 5331Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Katharina Jannasch
- grid.411984.10000 0001 0482 5331Clinic for Haematology and Medical Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Christian Dullin
- grid.419522.90000 0001 0668 6902Translational Molecular Imaging, Max Planck Institute for Experimental Medicine, Göttingen, Germany ,grid.411984.10000 0001 0482 5331Clinic for Haematology and Medical Oncology, University Medical Center Göttingen, Göttingen, Germany ,grid.411984.10000 0001 0482 5331Institute for Diagnostic and Interventional Radiology, University Medical Center Göttingen, Göttingen, Germany
| | - Joanna Napp
- grid.419522.90000 0001 0668 6902Translational Molecular Imaging, Max Planck Institute for Experimental Medicine, Göttingen, Germany ,grid.411984.10000 0001 0482 5331Institute for Diagnostic and Interventional Radiology, University Medical Center Göttingen, Göttingen, Germany
| | - Klaus Pantel
- grid.13648.380000 0001 2180 3484Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Harriet Wikman
- grid.13648.380000 0001 2180 3484Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maria Wiese
- grid.411984.10000 0001 0482 5331Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Christof M. Kramm
- grid.411984.10000 0001 0482 5331Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Frauke Alves
- grid.419522.90000 0001 0668 6902Translational Molecular Imaging, Max Planck Institute for Experimental Medicine, Göttingen, Germany ,grid.411984.10000 0001 0482 5331Clinic for Haematology and Medical Oncology, University Medical Center Göttingen, Göttingen, Germany ,grid.411984.10000 0001 0482 5331Institute for Diagnostic and Interventional Radiology, University Medical Center Göttingen, Göttingen, Germany
| | - Florian Wegwitz
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany. .,Department of Gynecology and Obstetrics, University Medical Center Göttingen, Göttingen, Germany.
| |
Collapse
|
22
|
Fornerod M, Ma J, Noort S, Liu Y, Walsh MP, Shi L, Nance S, Liu Y, Wang Y, Song G, Lamprecht T, Easton J, Mulder HL, Yergeau D, Myers J, Kamens JL, Obeng EA, Pigazzi M, Jarosova M, Kelaidi C, Polychronopoulou S, Lamba JK, Baker SD, Rubnitz JE, Reinhardt D, van den Heuvel-Eibrink MM, Locatelli F, Hasle H, Klco JM, Downing JR, Zhang J, Pounds S, Zwaan CM, Gruber TA. Integrative Genomic Analysis of Pediatric Myeloid-Related Acute Leukemias Identifies Novel Subtypes and Prognostic Indicators. Blood Cancer Discov 2021; 2:586-599. [PMID: 34778799 PMCID: PMC8580615 DOI: 10.1158/2643-3230.bcd-21-0049] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/04/2021] [Accepted: 09/01/2021] [Indexed: 12/17/2022] Open
Abstract
Integrating somatic mutation analysis and gene expression profiling distinguishes pediatric AML subtypes with differential prognoses and clinical risks. Genomic characterization of pediatric patients with acute myeloid leukemia (AML) has led to the discovery of somatic mutations with prognostic implications. Although gene-expression profiling can differentiate subsets of pediatric AML, its clinical utility in risk stratification remains limited. Here, we evaluate gene expression, pathogenic somatic mutations, and outcome in a cohort of 435 pediatric patients with a spectrum of pediatric myeloid-related acute leukemias for biological subtype discovery. This analysis revealed 63 patients with varying immunophenotypes that span a T-lineage and myeloid continuum designated as acute myeloid/T-lymphoblastic leukemia (AMTL). Within AMTL, two patient subgroups distinguished by FLT3-ITD and PRC2 mutations have different outcomes, demonstrating the impact of mutational composition on survival. Across the cohort, variability in outcomes of patients within isomutational subsets is influenced by transcriptional identity and the presence of a stem cell–like gene-expression signature. Integration of gene expression and somatic mutations leads to improved risk stratification.
Collapse
Affiliation(s)
- Maarten Fornerod
- Department of Cell Biology, Erasmus Medical Center, Rotterdam, the Netherlands.,Department of Pediatric Oncology Hematology, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Jing Ma
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Sanne Noort
- Department of Pediatric Oncology Hematology, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Yu Liu
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Michael P Walsh
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Lei Shi
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Stephanie Nance
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Yanling Liu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Yuanyuan Wang
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Guangchun Song
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Tamara Lamprecht
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - John Easton
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Heather L Mulder
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Donald Yergeau
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jacquelyn Myers
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jennifer L Kamens
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Esther A Obeng
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Martina Pigazzi
- Department of Women's and Children's Health, Hematology Oncology Clinic and Lab, University of Padova, IRP, Padova, Italy.,Department of Pediatric Hematology Oncology, IRCCS Ospedale Pediatrico Bambino Gesù, Sapienza, University of Rome, Rome, Italy
| | - Marie Jarosova
- Department of Internal Medicine Hematology and Oncology Center of Molecular Biology and Gene Therapy, Masaryk University Hospital, Brno, Czech Republic
| | - Charikleia Kelaidi
- Department of Pediatric Hematology and Oncology Aghia Sophia Children's Hospital, Athens, Greece
| | - Sophia Polychronopoulou
- Department of Pediatric Hematology and Oncology Aghia Sophia Children's Hospital, Athens, Greece
| | - Jatinder K Lamba
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, Florida
| | - Sharyn D Baker
- Division of Pharmaceutics, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Jeffrey E Rubnitz
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Dirk Reinhardt
- Department of Pediatrics, University Hospital Essen, Essen, Germany
| | - Marry M van den Heuvel-Eibrink
- Department of Pediatric Oncology Hematology, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, the Netherlands.,Department of Pediatric Oncology, Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Franco Locatelli
- Department of Pediatric Hematology Oncology, IRCCS Ospedale Pediatrico Bambino Gesù, Sapienza, University of Rome, Rome, Italy
| | - Henrik Hasle
- Department of Pediatrics, Aarhus University, Aarhus, Denmark
| | - Jeffery M Klco
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - James R Downing
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Stanley Pounds
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - C Michel Zwaan
- Department of Pediatric Oncology Hematology, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, the Netherlands.,Department of Pediatric Oncology, Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Tanja A Gruber
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California.,Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
23
|
T-Cell Acute Lymphoblastic Leukemia: Biomarkers and Their Clinical Usefulness. Genes (Basel) 2021; 12:genes12081118. [PMID: 34440292 PMCID: PMC8394887 DOI: 10.3390/genes12081118] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/17/2021] [Accepted: 07/20/2021] [Indexed: 12/11/2022] Open
Abstract
T-cell acute lymphoblastic leukemias (T-ALL) are immature lymphoid tumors localizing in the bone marrow, mediastinum, central nervous system, and lymphoid organs. They account for 10-15% of pediatric and about 25% of adult acute lymphoblastic leukemia (ALL) cases. It is a widely heterogeneous disease that is caused by the co-occurrence of multiple genetic abnormalities, which are acquired over time, and once accumulated, lead to full-blown leukemia. Recurrently affected genes deregulate pivotal cell processes, such as cycling (CDKN1B, RB1, TP53), signaling transduction (RAS pathway, IL7R/JAK/STAT, PI3K/AKT), epigenetics (PRC2 members, PHF6), and protein translation (RPL10, CNOT3). A remarkable role is played by NOTCH1 and CDKN2A, as they are altered in more than half of the cases. The activation of the NOTCH1 signaling affects thymocyte specification and development, while CDKN2A haploinsufficiency/inactivation, promotes cell cycle progression. Among recurrently involved oncogenes, a major role is exerted by T-cell-specific transcription factors, whose deregulated expression interferes with normal thymocyte development and causes a stage-specific differentiation arrest. Hence, TAL and/or LMO deregulation is typical of T-ALL with a mature phenotype (sCD3 positive) that of TLX1, NKX2-1, or TLX3, of cortical T-ALL (CD1a positive); HOXA and MEF2C are instead over-expressed in subsets of Early T-cell Precursor (ETP; immature phenotype) and early T-ALL. Among immature T-ALL, genomic alterations, that cause BCL11B transcriptional deregulation, identify a specific genetic subgroup. Although comprehensive cytogenetic and molecular studies have shed light on the genetic background of T-ALL, biomarkers are not currently adopted in the diagnostic workup of T-ALL, and only a limited number of studies have assessed their clinical implications. In this review, we will focus on recurrent T-ALL abnormalities that define specific leukemogenic pathways and on oncogenes/oncosuppressors that can serve as diagnostic biomarkers. Moreover, we will discuss how the complex genomic profile of T-ALL can be used to address and test innovative/targeted therapeutic options.
Collapse
|
24
|
Masgras I, Laquatra C, Cannino G, Serapian SA, Colombo G, Rasola A. The molecular chaperone TRAP1 in cancer: From the basics of biology to pharmacological targeting. Semin Cancer Biol 2021; 76:45-53. [PMID: 34242740 DOI: 10.1016/j.semcancer.2021.07.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/25/2021] [Accepted: 07/02/2021] [Indexed: 12/22/2022]
Abstract
TRAP1, the mitochondrial component of the Hsp90 family of molecular chaperones, displays important bioenergetic and proteostatic functions. In tumor cells, TRAP1 contributes to shape metabolism, dynamically tuning it with the changing environmental conditions, and to shield from noxious insults. Hence, TRAP1 activity has profound effects on the capability of neoplastic cells to evolve towards more malignant phenotypes. Here, we discuss our knowledge on the biochemical functions of TRAP1 in the context of a growing tumor mass, and we analyze the possibility of targeting its chaperone functions for developing novel anti-neoplastic approaches.
Collapse
Affiliation(s)
- Ionica Masgras
- Dipartimento di Scienze Biomediche, Università di Padova, Padova, Italy; Istituto di Neuroscienze, Consiglio Nazionale Delle Ricerche (CNR), Padova, Italy
| | - Claudio Laquatra
- Dipartimento di Scienze Biomediche, Università di Padova, Padova, Italy
| | - Giuseppe Cannino
- Dipartimento di Scienze Biomediche, Università di Padova, Padova, Italy
| | | | | | - Andrea Rasola
- Dipartimento di Scienze Biomediche, Università di Padova, Padova, Italy.
| |
Collapse
|
25
|
Zhang C, Amanda S, Wang C, King Tan T, Zulfaqar Ali M, Zhong Leong W, Moy Ng L, Kitajima S, Li Z, Eng Juh Yeoh A, Hao Tan S, Sanda T. Oncorequisite role of an aldehyde dehydrogenase in the pathogenesis of T-cell acute lymphoblastic leukemia. Haematologica 2021; 106:1545-1558. [PMID: 32414855 PMCID: PMC8168519 DOI: 10.3324/haematol.2019.245639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Indexed: 12/11/2022] Open
Abstract
Aldehyde dehydrogenases (ALDH) are overexpressed in various types of cancers. One of the ALDH family genes, ALDH1A2, is aberrantly expressed in more than 50% of cases of T-cell acute lymphoblastic leukemia (T-ALL). However, its molecular function and role in the pathogenesis of T-ALL are largely unknown. Chromatin immunoprecipitation-sequencing and RNA-sequencing analyses showed that the oncogenic transcription factor TAL1 and its regulatory partners bind to the intronic regulatory element of the ALDH1A2 gene, directly inducing a T-ALL-specific isoform with enzymatic activity. ALDH1A2 was preferentially expressed in the TAL1-positive T-ALL subgroup. In TALL cell lines, depletion of ALDH1A2 inhibited cell viability and induced apoptosis. Interestingly, gene expression and metabolomic profiling revealed that ALDH1A2 supported glycolysis and the tricarboxylic acid cycle, accompanied by NADH production, by affecting multiple metabolic enzymes to promote ATP production. Depletion of ALDH1A2 increased the levels of reactive oxygen species, while the levels were reduced by ALDH1A2 overexpression both in vitro and in vivo. Overexpression of ALDH1A2 accelerated tumor onset and increased tumor penetrance in a zebrafish model of T-ALL. Taken together, our results indicate that ALDH1A2 protects against intracellular stress and promotes T-ALL cell metabolism and survival. ALDH1A2 overexpression enables leukemic clones to sustain a hyper-proliferative state driven by oncogenes.
Collapse
Affiliation(s)
- Chujing Zhang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Stella Amanda
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Cheng Wang
- Department of Anatomy, National University of Singapore, Singapore
| | - Tze King Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | | | - Wei Zhong Leong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Ley Moy Ng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Shojiro Kitajima
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Zhenhua Li
- Department of Paediatrics, National University of Singapore, Singapore
| | - Allen Eng Juh Yeoh
- Dept of Paediatrics, National University of Singapore and Cancer Science Institute of Singapore
| | - Shi Hao Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Takaomi Sanda
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| |
Collapse
|
26
|
Lai P, Wang Y. Epigenetics of cutaneous T-cell lymphoma: biomarkers and therapeutic potentials. Cancer Biol Med 2021; 18:34-51. [PMID: 33628583 PMCID: PMC7877166 DOI: 10.20892/j.issn.2095-3941.2020.0216] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/30/2020] [Indexed: 12/31/2022] Open
Abstract
Cutaneous T-cell lymphomas (CTCLs) are a heterogeneous group of skin-homing non-Hodgkin lymphomas. There are limited options for effective treatment of patients with advanced-stage CTCL, leading to a poor survival rate. Epigenetics plays a pivotal role in regulating gene expression without altering the DNA sequence. Epigenetic alterations are involved in virtually all key cancer-associated pathways and are fundamental to the genesis of cancer. In recent years, the epigenetic hallmarks of CTCL have been gradually elucidated and their potential values in the diagnosis, prognosis, and therapeutic intervention have been clarified. In this review, we summarize the current knowledge of the best-studied epigenetic modifications in CTCL, including DNA methylation, histone modifications, microRNAs, and chromatin remodelers. These epigenetic regulators are essential in the development of CTCL and provide new insights into the clinical treatments of this refractory disease.
Collapse
Affiliation(s)
- Pan Lai
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, National Clinical Research Center for Skin and Immune Diseases, Beijing 100034, China
| | - Yang Wang
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, National Clinical Research Center for Skin and Immune Diseases, Beijing 100034, China
| |
Collapse
|
27
|
Mroczek A, Zawitkowska J, Kowalczyk J, Lejman M. Comprehensive Overview of Gene Rearrangements in Childhood T-Cell Acute Lymphoblastic Leukaemia. Int J Mol Sci 2021; 22:E808. [PMID: 33467425 PMCID: PMC7829804 DOI: 10.3390/ijms22020808] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/11/2022] Open
Abstract
Acute lymphoblastic leukaemia (ALL) is a relevant form of childhood neoplasm, as it accounts for over 80% of all leukaemia cases. T-cell ALL constitutes a genetically heterogeneous cancer derived from T-lymphoid progenitors. The diagnosis of T-ALL is based on morphologic, immunophenotypic, cytogenetic, and molecular features, thus the results are used for patient stratification. Due to the expression of surface and intracellular antigens, several subtypes of T-ALL can be distinguished. Although the aetiology of T-ALL remains unclear, a wide spectrum of rearrangements and mutations affecting crucial signalling pathways has been described so far. Due to intensive chemotherapy regimens and supportive care, overall cure rates of more than 80% in paediatric T-ALL patients have been accomplished. However, improved knowledge of the mechanisms of relapse, drug resistance, and determination of risk factors are crucial for patients in the high-risk group. Even though some residual disease studies have allowed the optimization of therapy, the identification of novel diagnostic and prognostic markers is required to individualize therapy. The following review summarizes our current knowledge about genetic abnormalities in paediatric patients with T-ALL. As molecular biology techniques provide insights into the biology of cancer, our study focuses on new potential therapeutic targets and predictive factors which may improve the outcome of young patients with T-ALL.
Collapse
Affiliation(s)
- Anna Mroczek
- Department of Paediatric Haematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; (A.M.); (J.Z.); (J.K.)
| | - Joanna Zawitkowska
- Department of Paediatric Haematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; (A.M.); (J.Z.); (J.K.)
| | - Jerzy Kowalczyk
- Department of Paediatric Haematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; (A.M.); (J.Z.); (J.K.)
| | - Monika Lejman
- Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
28
|
Kaito S, Iwama A. Pathogenic Impacts of Dysregulated Polycomb Repressive Complex Function in Hematological Malignancies. Int J Mol Sci 2020; 22:ijms22010074. [PMID: 33374737 PMCID: PMC7793497 DOI: 10.3390/ijms22010074] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/17/2020] [Accepted: 12/19/2020] [Indexed: 02/06/2023] Open
Abstract
Polycomb repressive complexes (PRCs) are epigenetic regulators that mediate repressive histone modifications. PRCs play a pivotal role in the maintenance of hematopoietic stem cells through repression of target genes involved in cell proliferation and differentiation. Next-generation sequencing technologies have revealed that various hematologic malignancies harbor mutations in PRC2 genes, such as EZH2, EED, and SUZ12, and PRC1.1 genes, such as BCOR and BCORL1. Except for the activating EZH2 mutations detected in lymphoma, most of these mutations compromise PRC function and are frequently associated with resistance to chemotherapeutic agents and poor prognosis. Recent studies have shown that mutations in PRC genes are druggable targets. Several PRC2 inhibitors, including EZH2-specific inhibitors and EZH1 and EZH2 dual inhibitors have shown therapeutic efficacy for tumors with and without activating EZH2 mutations. Moreover, EZH2 loss-of-function mutations appear to be attractive therapeutic targets for implementing the concept of synthetic lethality. Further understanding of the epigenetic dysregulation associated with PRCs in hematological malignancies should improve treatment outcomes.
Collapse
Affiliation(s)
| | - Atsushi Iwama
- Correspondence: ; Tel.: +81-3-6409-2181; Fax: +81-3-6409-2182
| |
Collapse
|
29
|
Zhu J, Li L, Tong J, Hui C, Wong CH, Lo KW, Chan R, Ai QY, Hui EP, Chan ATC, To KF, Tao Q, Ma BBY. Targeting the polycomb repressive complex-2 related proteins with novel combinational strategies for nasopharyngeal carcinoma. Am J Cancer Res 2020; 10:3267-3284. [PMID: 33163269 PMCID: PMC7642668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/10/2020] [Indexed: 06/11/2023] Open
Abstract
Aberrant epigenetic regulation is critically involved in the pathogenesis of nasopharyngeal carcinoma (NPC), where abnormal histone methylation can be found in polycomb repressive complex-2 (PRC2) related cancer gene loci. This study investigated some novel combinational strategies against NPC in vitro using PRC2-targeting agents as a backbone. PRC2 subunit proteins were overexpressed in over 70% of NPC tumors and enhancer of zeste homolog-2 (EZH2) expression correlated with more advanced T-stage. Basal expression of EZH2 and embryonic ectoderm development (EED) was higher in Epstein-Bar virus (EBV)+ NPC cells than EBV- cells. Treatment with an EED inhibitor (EED226) led to reduced levels of H3K27me3 with minimal inhibitory effect on NPC cell growth. The combination of an EZH2 inhibitor (EPZ-6438) and trichostatin-A (TSA) yielded the highest synergy score (12.64) in NPC cells in vitro than combinations using EED226 and agents like chemotherapy and azacitadine. Global gene expression analysis showed that EED226 predominantly affects the expression of major histocompatibility complex (MHC) class I genes and cell cycle-related genes in NPC cells. Furthermore, treatment with EED226 resulted in increased MHC-I proteins in vitro. Based on the prediction of an artificial neural network, a synergistic inhibitory effect on growth was found by combining EED226 with cyclin dependent kinase (CDK) 4/6 inhibitor (LEE011) in NPC cells. In summary, this study found that PRC2-targeting agents could exert synergistic effect on growth inhibition when combined with TSA or LEE011 in NPC cells. Since MHC-I genes alterations are found in a third of NPC tumors, the effect of EED226 on MHC-I genes expression on response to immunotherapy in NPC warrants further investigations.
Collapse
Affiliation(s)
- Junyu Zhu
- State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, Department of Clinical Oncology, The Chinese University of Hong Kong, Prince of Wales HospitalHong Kong, China
| | - Lili Li
- State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, Department of Clinical Oncology, The Chinese University of Hong Kong, Prince of Wales HospitalHong Kong, China
| | - Joanna Tong
- Department of Anatomical and Cellular Pathology, The Prince of Wales HospitalHong Kong, China
| | - Connie Hui
- State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, Department of Clinical Oncology, The Chinese University of Hong Kong, Prince of Wales HospitalHong Kong, China
| | - Chi Hang Wong
- State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, Department of Clinical Oncology, The Chinese University of Hong Kong, Prince of Wales HospitalHong Kong, China
| | - Kwok Wai Lo
- Department of Anatomical and Cellular Pathology, The Prince of Wales HospitalHong Kong, China
| | - Raymond Chan
- State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, Department of Clinical Oncology, The Chinese University of Hong Kong, Prince of Wales HospitalHong Kong, China
| | - Qi Yong Ai
- Department of Imaging and Interventional Radiology, The Chinese University of Hong KongHong Kong, China
| | - Edwin P Hui
- State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, Department of Clinical Oncology, The Chinese University of Hong Kong, Prince of Wales HospitalHong Kong, China
| | - Anthony TC Chan
- State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, Department of Clinical Oncology, The Chinese University of Hong Kong, Prince of Wales HospitalHong Kong, China
| | - Ka F To
- Department of Anatomical and Cellular Pathology, The Prince of Wales HospitalHong Kong, China
| | - Qian Tao
- State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, Department of Clinical Oncology, The Chinese University of Hong Kong, Prince of Wales HospitalHong Kong, China
| | - Brigette BY Ma
- State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, Department of Clinical Oncology, The Chinese University of Hong Kong, Prince of Wales HospitalHong Kong, China
| |
Collapse
|
30
|
Quantitative proteomics reveals specific metabolic features of acute myeloid leukemia stem cells. Blood 2020; 136:1507-1519. [DOI: 10.1182/blood.2019003654] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 05/08/2020] [Indexed: 12/12/2022] Open
Abstract
Abstract
Acute myeloid leukemia is characterized by the accumulation of clonal myeloid blast cells unable to differentiate into mature leukocytes. Chemotherapy induces remission in the majority of patients, but relapse rates are high and lead to poor clinical outcomes. Because this is primarily caused by chemotherapy-resistant leukemic stem cells (LSCs), it is essential to eradicate LSCs to improve patient survival. LSCs have predominantly been studied at the transcript level, thus information about posttranscriptionally regulated genes and associated networks is lacking. Here, we extend our previous report on LSC proteomes to healthy age-matched hematopoietic stem and progenitor cells (HSPCs) and correlate the proteomes to the corresponding transcriptomes. By comparing LSCs to leukemic blasts and healthy HSPCs, we validate candidate LSC markers and highlight novel and potentially targetable proteins that are absent or only lowly expressed in HSPCs. In addition, our data provide strong evidence that LSCs harbor a characteristic energy metabolism, adhesion molecule composition, as well as RNA-processing properties. Furthermore, correlating proteome and transcript data of the same individual samples highlights the strength of proteome analyses, which are particularly potent in detecting alterations in metabolic pathways. In summary, our study provides a comprehensive proteomic and transcriptomic characterization of functionally validated LSCs, blasts, and healthy HSPCs, representing a valuable resource helping to design LSC-directed therapies.
Collapse
|
31
|
Liu J, Zhao H, Zhang Q, Shi Z, Zhang Y, Zhao L, Ren Y, Ou R, Xu Y. Human papillomavirus type 16 E7 oncoprotein-induced upregulation of lysine-specific demethylase 5A promotes cervical cancer progression by regulating the microRNA-424-5p/suppressor of zeste 12 pathway. Exp Cell Res 2020; 396:112277. [PMID: 32918895 DOI: 10.1016/j.yexcr.2020.112277] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 12/20/2022]
Abstract
Human papillomavirus (HPV) infection and viral protein expression cause several epigenetic alterations that lead to cervical carcinogenesis. Our previous study identified that upregulated lysine-specific demethylase (KDM) 2 A promotes cervical cancer progression by inhibiting mircoRNA (miR)-132 function. However, the roles of histone methylation modifiers in HPV-related cervical cancer remain unclear. In the present study, changes in the expression of 48 histone methylation modifiers were assessed following knockdown of HPV16 E6/E7 in CaSki cells. The dysregulated expression of KDM5A was identified, and its function in cervical cancer was investigated in vitro and in vivo. E7 oncoprotein-induced upregulation of KDM5A promoted cervical cancer cell proliferation and invasiveness in vitro and in vivo, which was correlated with poor prognosis in patients with cervical cancer. KDM5A was found to physically interact with the promoter region of miR-424-5p, and to suppress its expression by removing the tri- and di-methyl groups from H3K4 at the miR-424-5p locus. Furthermore, miR-424-5p repressed cancer cell proliferation and invasiveness by targeting suppressor of zeste 12 (Suz12). KDM5A upregulation promoted cervical cancer progression by repressing miR-424-5p, which resulted in a decrease in Suz12. Therefore, KDM5A functions as a tumor activator in cervical cancer pathogenesis by binding to the miR-424-5p promoter and inhibiting its tumor-suppressive function. These results indicate a function for KDM5A in cervical cancer progression and suggest its candidacy as a novel prognostic biomarker and target for the clinical management of this malignancy.
Collapse
Affiliation(s)
- Jia Liu
- Department of Plastic and Cosmetic Center, The Affiliated Eye Hospital of Wenzhou Medical University, PR China
| | - Hongqin Zhao
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Wenzhou Medical University, PR China
| | - Qian Zhang
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Wenzhou Medical University, PR China
| | - Zhengzheng Shi
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Wenzhou Medical University, PR China
| | - Yuyang Zhang
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Wenzhou Medical University, PR China
| | - Liang Zhao
- Laboratory for Advanced Interdisciplinary Research, Institute of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Yi Ren
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, USA
| | - Rongying Ou
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Wenzhou Medical University, PR China.
| | - Yunsheng Xu
- Laboratory for Advanced Interdisciplinary Research, Institute of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China; Department of Dermatovenereology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, PR China.
| |
Collapse
|
32
|
León TE, Rapoz-D'Silva T, Bertoli C, Rahman S, Magnussen M, Philip B, Farah N, Richardson SE, Ahrabi S, Guerra-Assunção JA, Gupta R, Nacheva EP, Henderson S, Herrero J, Linch DC, de Bruin RAM, Mansour MR. EZH2-Deficient T-cell Acute Lymphoblastic Leukemia Is Sensitized to CHK1 Inhibition through Enhanced Replication Stress. Cancer Discov 2020; 10:998-1017. [PMID: 32349972 PMCID: PMC7611258 DOI: 10.1158/2159-8290.cd-19-0789] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 03/13/2020] [Accepted: 04/24/2020] [Indexed: 11/16/2022]
Abstract
Loss-of-function mutations of EZH2, the enzymatic component of PRC2, have been associated with poor outcome and chemotherapy resistance in T-cell acute lymphoblastic leukemia (T-ALL). Using isogenic T-ALL cells, with and without CRISPR/Cas9-induced EZH2-inactivating mutations, we performed a cell-based synthetic lethal drug screen. EZH2-deficient cells exhibited increased sensitivity to structurally diverse inhibitors of CHK1, an interaction that could be validated genetically. Furthermore, small-molecule inhibition of CHK1 had efficacy in delaying tumor progression in isogenic EZH2-deficient, but not EZH2 wild-type, T-ALL cells in vivo, as well as in a primary cell model of PRC2-mutant ALL. Mechanistically, EZH2 deficiency resulted in a gene-expression signature of immature T-ALL cells, marked transcriptional upregulation of MYCN, increased replication stress, and enhanced dependency on CHK1 for cell survival. Finally, we demonstrate this phenotype is mediated through derepression of a distal PRC2-regulated MYCN enhancer. In conclusion, we highlight a novel and clinically exploitable pathway in high-risk EZH2-mutated T-ALL. SIGNIFICANCE: Loss-of-function mutations of PRC2 genes are associated with chemotherapy resistance in T-ALL, yet no specific therapy for this aggressive subtype is currently clinically available. Our work demonstrates that loss of EZH2 activity leads to MYCN-driven replication stress, resulting in increased sensitivity to CHK1 inhibition, a finding with immediate clinical relevance.This article is highlighted in the In This Issue feature, p. 890.
Collapse
Affiliation(s)
- Theresa E León
- Department of Haematology, UCL Cancer Institute, University College London, London, United Kingdom
| | - Tanya Rapoz-D'Silva
- Department of Haematology, UCL Cancer Institute, University College London, London, United Kingdom
| | - Cosetta Bertoli
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Sunniyat Rahman
- Department of Haematology, UCL Cancer Institute, University College London, London, United Kingdom
| | - Michael Magnussen
- Department of Haematology, UCL Cancer Institute, University College London, London, United Kingdom
| | - Brian Philip
- Department of Haematology, UCL Cancer Institute, University College London, London, United Kingdom
| | - Nadine Farah
- Department of Haematology, UCL Cancer Institute, University College London, London, United Kingdom
| | - Simon E Richardson
- Department of Haematology, UCL Cancer Institute, University College London, London, United Kingdom
| | - Sara Ahrabi
- Department of Haematology, UCL Cancer Institute, University College London, London, United Kingdom
| | | | - Rajeev Gupta
- Stem Cell Laboratory, UCL Cancer Institute, University College London, London, United Kingdom
| | - Elisabeth P Nacheva
- Health Service Laboratories LLP, UCL Cancer Institute, London, United Kingdom
| | - Stephen Henderson
- Bill Lyons Informatics Centre, UCL Cancer Institute, University College London, London, United Kingdom
| | - Javier Herrero
- Bill Lyons Informatics Centre, UCL Cancer Institute, University College London, London, United Kingdom
| | - David C Linch
- Department of Haematology, UCL Cancer Institute, University College London, London, United Kingdom
| | - Robertus A M de Bruin
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Marc R Mansour
- Department of Haematology, UCL Cancer Institute, University College London, London, United Kingdom.
| |
Collapse
|
33
|
Garcia EG, Veloso A, Oliveira ML, Allen JR, Loontiens S, Brunson D, Do D, Yan C, Morris R, Iyer S, Garcia SP, Iftimia N, Van Loocke W, Matthijssens F, McCarthy K, Barata JT, Speleman F, Taghon T, Gutierrez A, Van Vlierberghe P, Haas W, Blackburn JS, Langenau DM. PRL3 enhances T-cell acute lymphoblastic leukemia growth through suppressing T-cell signaling pathways and apoptosis. Leukemia 2020; 35:679-690. [PMID: 32606318 PMCID: PMC8009053 DOI: 10.1038/s41375-020-0937-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 06/10/2020] [Accepted: 06/16/2020] [Indexed: 01/06/2023]
Abstract
T cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy of thymocytes and is largely driven by the NOTCH/MYC pathway. Yet, additional oncogenic drivers are required for transformation. Here, we identify protein tyrosine phosphatase type 4 A3 (PRL3) as a collaborating oncogenic driver in T-ALL. PRL3 is expressed in a large fraction of primary human T-ALLs and is commonly co-amplified with MYC. PRL3 also synergized with MYC to initiate early-onset ALL in transgenic zebrafish and was required for human T-ALL growth and maintenance. Mass spectrometry phosphoproteomic analysis and mechanistic studies uncovered that PRL3 suppresses downstream T cell phosphorylation signaling pathways, including those modulated by VAV1, and subsequently suppresses apoptosis in leukemia cells. Taken together, our studies have identified new roles for PRL3 as a collaborating oncogenic driver in human T-ALL and suggest that therapeutic targeting of the PRL3 phosphatase will likely be a useful treatment strategy for T-ALL.
Collapse
Affiliation(s)
- E G Garcia
- Department of Pathology, Massachusetts General Research Institute, Boston, MA, 02114, USA.,Center of Cancer Research, Massachusetts General Hospital, Charlestown, MA, 02129, USA.,Harvard Stem Cell Institute, Boston, MA, 02114, USA.,Center of Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - A Veloso
- Department of Pathology, Massachusetts General Research Institute, Boston, MA, 02114, USA.,Center of Cancer Research, Massachusetts General Hospital, Charlestown, MA, 02129, USA.,Harvard Stem Cell Institute, Boston, MA, 02114, USA.,Center of Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - M L Oliveira
- Instituto de Medicina Molecular João Lobo Antunes Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - J R Allen
- Department of Pathology, Massachusetts General Research Institute, Boston, MA, 02114, USA.,Center of Cancer Research, Massachusetts General Hospital, Charlestown, MA, 02129, USA.,Harvard Stem Cell Institute, Boston, MA, 02114, USA.,Center of Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - S Loontiens
- Cancer Research Institute Ghent, Ghent, Belgium
| | - D Brunson
- Department of Pathology, Massachusetts General Research Institute, Boston, MA, 02114, USA.,Center of Cancer Research, Massachusetts General Hospital, Charlestown, MA, 02129, USA.,Harvard Stem Cell Institute, Boston, MA, 02114, USA.,Center of Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - D Do
- Department of Pathology, Massachusetts General Research Institute, Boston, MA, 02114, USA.,Center of Cancer Research, Massachusetts General Hospital, Charlestown, MA, 02129, USA.,Harvard Stem Cell Institute, Boston, MA, 02114, USA.,Center of Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - C Yan
- Department of Pathology, Massachusetts General Research Institute, Boston, MA, 02114, USA.,Center of Cancer Research, Massachusetts General Hospital, Charlestown, MA, 02129, USA.,Harvard Stem Cell Institute, Boston, MA, 02114, USA.,Center of Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - R Morris
- Center of Cancer Research, Massachusetts General Hospital, Charlestown, MA, 02129, USA
| | - S Iyer
- Department of Pathology, Massachusetts General Research Institute, Boston, MA, 02114, USA.,Center of Cancer Research, Massachusetts General Hospital, Charlestown, MA, 02129, USA.,Harvard Stem Cell Institute, Boston, MA, 02114, USA.,Center of Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - S P Garcia
- Department of Pathology, Massachusetts General Research Institute, Boston, MA, 02114, USA.,Center of Cancer Research, Massachusetts General Hospital, Charlestown, MA, 02129, USA.,Harvard Stem Cell Institute, Boston, MA, 02114, USA.,Center of Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - N Iftimia
- Department of Pathology, Massachusetts General Research Institute, Boston, MA, 02114, USA.,Center of Cancer Research, Massachusetts General Hospital, Charlestown, MA, 02129, USA.,Harvard Stem Cell Institute, Boston, MA, 02114, USA.,Center of Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - W Van Loocke
- Cancer Research Institute Ghent, Ghent, Belgium.,Department of Biomolecular Medicine and Center for Medical Genetics, Ghent University, Ghent, Belgium
| | - F Matthijssens
- Cancer Research Institute Ghent, Ghent, Belgium.,Department of Biomolecular Medicine and Center for Medical Genetics, Ghent University, Ghent, Belgium
| | - K McCarthy
- Department of Pathology, Massachusetts General Research Institute, Boston, MA, 02114, USA.,Center of Cancer Research, Massachusetts General Hospital, Charlestown, MA, 02129, USA.,Harvard Stem Cell Institute, Boston, MA, 02114, USA.,Center of Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - J T Barata
- Instituto de Medicina Molecular João Lobo Antunes Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - F Speleman
- Cancer Research Institute Ghent, Ghent, Belgium.,Department of Biomolecular Medicine and Center for Medical Genetics, Ghent University, Ghent, Belgium
| | - T Taghon
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - A Gutierrez
- Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Boston, USA
| | - P Van Vlierberghe
- Cancer Research Institute Ghent, Ghent, Belgium.,Department of Biomolecular Medicine and Center for Medical Genetics, Ghent University, Ghent, Belgium
| | - W Haas
- Department of Pathology, Massachusetts General Research Institute, Boston, MA, 02114, USA.,Center of Cancer Research, Massachusetts General Hospital, Charlestown, MA, 02129, USA.,Harvard Stem Cell Institute, Boston, MA, 02114, USA.,Center of Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - J S Blackburn
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - D M Langenau
- Department of Pathology, Massachusetts General Research Institute, Boston, MA, 02114, USA. .,Center of Cancer Research, Massachusetts General Hospital, Charlestown, MA, 02129, USA. .,Harvard Stem Cell Institute, Boston, MA, 02114, USA. .,Center of Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA.
| |
Collapse
|
34
|
Epigenetic regulation of protein translation in KMT2A-rearranged AML. Exp Hematol 2020; 85:57-69. [PMID: 32437908 DOI: 10.1016/j.exphem.2020.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/21/2020] [Accepted: 04/27/2020] [Indexed: 01/31/2023]
Abstract
Inhibition of the H3K79 histone methyltransferase DOT1L has exhibited encouraging preclinical and early clinical activity in KMT2A (MLL)-rearranged leukemia, supporting the development of combinatorial therapies. Here, we investigated two novel combinations: dual inhibition of the histone methyltransferases DOT1L and EZH2, and the combination with a protein synthesis inhibitor. EZH2 is the catalytic subunit in the polycomb repressive complex 2 (PRC2), and inhibition of EZH2 has been reported to have preclinical activity in KMT2A-r leukemia. When combined with DOT1L inhibition, however, we observed both synergistic and antagonistic effects. Interestingly, antagonistic effects were not due to PRC2-mediated de-repression of HOXA9. HOXA cluster genes are key canonical targets of both KMT2A and the PRC2 complex. The independence of the HOXA cluster from PRC2 repression in KMT2A-r leukemia thus affords important insights into leukemia biology. Further studies revealed that EZH2 inhibition counteracted the effect of DOT1L inhibition on ribosomal gene expression. We thus identified a previously unrecognized role of DOT1L in regulating protein production. Decreased translation was one of the earliest effects measurable after DOT1L inhibition and specific to KMT2A-rearranged cell lines. H3K79me2 chromatin immunoprecipitation sequencing patterns over ribosomal genes were similar to those of the canonical KMT2A-fusion target genes in primary AML patient samples. The effects of DOT1L inhibition on ribosomal gene expression prompted us to evaluate the combination of EPZ5676 with a protein translation inhibitor. EPZ5676 was synergistic with the protein translation inhibitor homoharringtonine (omacetaxine), supporting further preclinical/clinical development of this combination. In summary, we discovered a novel epigenetic regulation of a metabolic process-protein synthesis-that plays a role in leukemogenesis and affords a combinatorial therapeutic opportunity.
Collapse
|
35
|
Xu X, Zhou X, Chen Z, Gao C, Zhao L, Cui Y. Silencing of lncRNA XIST inhibits non-small cell lung cancer growth and promotes chemosensitivity to cisplatin. Aging (Albany NY) 2020; 12:4711-4726. [PMID: 32209729 PMCID: PMC7138551 DOI: 10.18632/aging.102673] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/25/2019] [Indexed: 01/05/2023]
Abstract
Long noncoding RNAs (lncRNAs) play critical roles in tumour progression and metastasis. Emerging evidence indicates that the lncRNA X inactive-specific transcript (XIST) is dysregulated in several tumor types, including non-small cell lung cancer (NSCLC). However, in NSCLC and other cancers the oncogenic mechanism of XIST remains incompletely understood. Here, we confirmed that XIST is upregulated in human NSCLC specimens, and is especially overexpressed in tumors previously treated with cisplatin (cis-diamminedichloroplatinum(II); DDP). In vitro, XIST knockdown inhibited NSCLC cell growth and promoted DDP chemosensitivity by stimulating apoptosis and pyroptosis. Moreover, XIST's oncogenic effects and ability to promote DDP chemoresistance were largely related to its binding to the TGF-β effector SMAD2, which inhibited its translocation to the nucleus and prevented the transcription of p53 and NLRP3, crucial regulators of apoptosis and pyroptosis, respectively. Using DDP-resistant NSCLC cells, mouse xenograft studies verified the oncogenic function of XIST and its ability to inhibit programmed cell death, thereby mediating DDP chemoresistance. These findings suggest that XIST expression may serve as a novel biomarker to predict DDP treatment efficacy, and may help in the design of new therapies to circumvent DDP chemoresistance in NSCLC and other tumor types.
Collapse
Affiliation(s)
- Xiaohui Xu
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Wangfujing, Dongcheng, Beijing 100730, P.R. China
| | - Xiaoyun Zhou
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Wangfujing, Dongcheng, Beijing 100730, P.R. China
| | - Zhenju Chen
- Beijing 100biotech Co., Ltd., Beijing 100006, China
| | - Chao Gao
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Wangfujing, Dongcheng, Beijing 100730, P.R. China
| | - Luo Zhao
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Wangfujing, Dongcheng, Beijing 100730, P.R. China
| | - Yushang Cui
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Wangfujing, Dongcheng, Beijing 100730, P.R. China
| |
Collapse
|
36
|
Gianni F, Belver L, Ferrando A. The Genetics and Mechanisms of T-Cell Acute Lymphoblastic Leukemia. Cold Spring Harb Perspect Med 2020; 10:a035246. [PMID: 31570389 PMCID: PMC7050584 DOI: 10.1101/cshperspect.a035246] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic malignancy derived from early T-cell progenitors. The recognition of clinical, genetic, transcriptional, and biological heterogeneity in this disease has already translated into new prognostic biomarkers, improved leukemia animal models, and emerging targeted therapies. This work reviews our current understanding of the molecular mechanisms of T-ALL.
Collapse
Affiliation(s)
- Francesca Gianni
- Institute for Cancer Genetics, Columbia University Medical Center, New York, New York 10032, USA
| | - Laura Belver
- Institute for Cancer Genetics, Columbia University Medical Center, New York, New York 10032, USA
| | - Adolfo Ferrando
- Institute for Cancer Genetics, Columbia University Medical Center, New York, New York 10032, USA
- Department of Pathology, Columbia University Medical Center, New York, New York 10032, USA
- Department of Pediatrics, Columbia University Medical Center, New York, New York 10032, USA
| |
Collapse
|
37
|
Li B, Chng WJ. EZH2 abnormalities in lymphoid malignancies: underlying mechanisms and therapeutic implications. J Hematol Oncol 2019; 12:118. [PMID: 31752930 PMCID: PMC6868783 DOI: 10.1186/s13045-019-0814-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 10/27/2019] [Indexed: 02/08/2023] Open
Abstract
EZH2 is the catalytic subunit of the polycomb repressive complex 2 (PRC2), which along with other PRC2 components mediates gene expression suppression via the methylation of Histone H3 at lysine 27. Recent studies have revealed a dichotomous role of EZH2 in physiology and in the pathogenesis of cancer. While it plays an essential role in the development of the lymphoid system, its deregulation, whether due to genetic or non-genetic causes, promotes B cell- and T cell-related lymphoma or leukemia. These findings triggered a boom in the development of therapeutic EZH2 inhibitors in recent years. Here, we discuss physiologic and pathogenic function of EZH2 in lymphoid context, various internal causes of EZH2 aberrance and how EZH2 modulates lymphomagenesis through epigenetic silencing, post-translational modifications (PTMs), orchestrating with surrounding tumor micro-environment and associating with RNA or viral partners. We also summarize different strategies to directly inhibit PRC2-EZH2 or to intervene EZH2 upstream signaling.
Collapse
Affiliation(s)
- Boheng Li
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Wee-Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore. .,Department of Haematology-Oncology, National University Cancer Institute of Singapore, Singapore, Singapore. .,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
38
|
Pouliot GP, Degar J, Hinze L, Kochupurakkal B, Vo CD, Burns MA, Moreau L, Ganesa C, Roderick J, Peirs S, Menten B, Loh ML, Hunger SP, Silverman LB, Harris MH, Stevenson KE, Weinstock DM, Weng AP, Van Vlierberghe P, D’Andrea AD, Gutierrez A. Fanconi-BRCA pathway mutations in childhood T-cell acute lymphoblastic leukemia. PLoS One 2019; 14:e0221288. [PMID: 31721781 PMCID: PMC6853288 DOI: 10.1371/journal.pone.0221288] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 08/02/2019] [Indexed: 01/03/2023] Open
Abstract
BRCA2 (also known as FANCD1) is a core component of the Fanconi pathway and suppresses transformation of immature T-cells in mice. However, the contribution of Fanconi-BRCA pathway deficiency to human T-cell acute lymphoblastic leukemia (T-ALL) remains undefined. We identified point mutations in 9 (23%) of 40 human T-ALL cases analyzed, with variant allele fractions consistent with heterozygous mutations early in tumor evolution. Two of these mutations were present in remission bone marrow specimens, suggesting germline alterations. BRCA2 was the most commonly mutated gene. The identified Fanconi-BRCA mutations encode hypomorphic or null alleles, as evidenced by their inability to fully rescue Fanconi-deficient cells from chromosome breakage, cytotoxicity and/or G2/M arrest upon treatment with DNA cross-linking agents. Disabling the tumor suppressor activity of the Fanconi-BRCA pathway is generally thought to require biallelic gene mutations. However, all mutations identified were monoallelic, and most cases appeared to retain expression of the wild-type allele. Using isogenic T-ALL cells, we found that BRCA2 haploinsufficiency induces selective hypersensitivity to ATR inhibition, in vitro and in vivo. These findings implicate Fanconi-BRCA pathway haploinsufficiency in the molecular pathogenesis of T-ALL, and provide a therapeutic rationale for inhibition of ATR or other druggable effectors of homologous recombination.
Collapse
Affiliation(s)
- Gayle P. Pouliot
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - James Degar
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Laura Hinze
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Bose Kochupurakkal
- Center for DNA Damage and Repair and Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Chau D. Vo
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Melissa A. Burns
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Lisa Moreau
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Center for DNA Damage and Repair and Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Chirag Ganesa
- Center for DNA Damage and Repair and Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Justine Roderick
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Sofie Peirs
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Bjorn Menten
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Mignon L. Loh
- Department of Pediatrics, University of California San Francisco, San Francisco, California, United States of America
| | - Stephen P. Hunger
- Division of Oncology and the Center for Childhood Cancer Research, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Lewis B. Silverman
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Marian H. Harris
- Department of Pathology, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Kristen E. Stevenson
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - David M. Weinstock
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Andrew P. Weng
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | | | - Alan D. D’Andrea
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Center for DNA Damage and Repair and Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Alejandro Gutierrez
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
39
|
Strategies to Overcome Resistance Mechanisms in T-Cell Acute Lymphoblastic Leukemia. Int J Mol Sci 2019; 20:ijms20123021. [PMID: 31226848 PMCID: PMC6627878 DOI: 10.3390/ijms20123021] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 06/14/2019] [Accepted: 06/17/2019] [Indexed: 12/20/2022] Open
Abstract
Chemoresistance is a major cause of recurrence and death from T-cell acute lymphoblastic leukemia (T-ALL), both in adult and pediatric patients. In the majority of cases, drug-resistant disease is treated by selecting a combination of other drugs, without understanding the molecular mechanisms by which malignant cells escape chemotherapeutic treatments, even though a more detailed genomic characterization and the identification of actionable disease targets may enable informed decision of new agents to improve patient outcomes. In this work, we describe pathways of resistance to common chemotherapeutic agents including glucocorticoids and review the resistance mechanisms to targeted therapy such as IL7R, PI3K-AKT-mTOR, NOTCH1, BRD4/MYC, Cyclin D3: CDK4/CDK6, BCL2 inhibitors, and selective inhibitors of nuclear export (SINE). Finally, to overcome the limitations of the current trial-and-error method, we summarize the experiences of anti-cancer drug sensitivity resistance profiling (DSRP) approaches as a rapid and relevant strategy to infer drug activity and provide functional information to assist clinical decision one patient at a time.
Collapse
|